初一年级数学经典例题
七年级 初一 数学线段典型题型练习题
七年级数学线段典型题型1. 如图所示,线段AD 被点B 、C 分成三段,且AC =10,BD =7,求AB - CD 的长. 【难度★★】2. 线段AB =1996 cm ,点P 、Q 是线段AB 上的两个点,线段AQ =1200 cm ,线段 BP =1050 cm ,求线段 PQ 的长. 【难度★★】3. 如图所示,线段AB 被点C 、D 分成了2﹕3﹕4三部分,且AB =90,M 、N 分别为AC 、BD 的中点,求MN 的长. 【难度★★】4. 如图所示,已知AE =14,B 为AE 上一点,且AB ﹕BE =3﹕4,C 为AE 的中点,D 为BE 的中点,求线段CD 的长. 【难度★★】A BC D 第1题图A DN B M C 第3题图CD B 第4题图5.线段AB被点M分成两段,使得AM﹕BM=1﹕2,且被点N分成两段,使得AN﹕BN=3﹕1且MN=3,求AB的长.【难度★★】6.两条长度不相等的线段,它们长的和为a,较长线段的2倍等于较短线段的3倍.求两条线段的长度差.【难度★★】7.如图所示,已知线段AB=4,延长AB至点C,使得AB=2BC,反向延长AB至点D,使得AC=2AD.(1)求线段CD的长;BC,求线段PQ的长. 【难度★★】(2)若Q为线段AB的中点,P为线段CD上一点,且BP=12第7题图8.如图所示,已知点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点(1)若线段AB=a,CE=b,|a-15|+(b-4.5)²=0,求a、b的值;(2)在(1)的条件下,求线段DE的长;(3)若AB=15,AD=2BE,求线段CE的长. 【难度★★】DA C E B第8题图9. 关于x 的一次二项式ax +b 的值随x 的变化而变化,分析下表列举的数据,若ax +b =37,线段AB =x.点C 在线段AB 上.且AC =14AB ,则图中所有线段的和为_________. 【难度★★】 x 0 1 1.5 2 ax +b -3-1110. 如图所示,点B 、C 、D 依次是 AE 上的三点.已知 AE =8.9cm ,BD =3cm ,则图中以 A 、B 、C 、D 、E 这五个点为端点的所有线段长度的和为__________cm. 【难度★★】11. 工程队从A 市到B 市有一天的路程,计划上午比下午多走 100 km 到C 市吃午饭. 由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400km ,傍晚才停下来休息.司机说,再走从C 市到这里路程的二分之一就到达目的地了.A 、B 两市相距妥少干米? 【难度★★】12. 如图所示,已知线段AB 上看两点C 、D ,点M 、N 分別为线段AD 、BC 的中点。
(必考题)初中七年级数学上册第一章《有理数》经典题(含答案解析)
1.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 2.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.3.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭;④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 4.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.5.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( )A.7.26×1010B.7.26×1011C.72.6x109D.726×108A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.6.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.8.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.9.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.10.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C 解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.4.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.5.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.6.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.7.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.8.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.10.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a,b的值是解题的关键.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.2.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 3.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E表示的数.-(2)0.5(3)3-或7-解析:(1)1【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。
七年级上学期数学解决问题练习题(经典必考题)
工程问题1、打印某文件,小李独自做需要6小时完成,小王需要8小时完成,如果他们共同做需要多少小时完成?2、一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲单独做4小时。
(1)剩下部分甲乙合作还需要几小时完成? (2)还需要几小时完成这项工作的八分之五)3、整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体应先安排多少人工作?4、某中学学生自己动手整修操场,若让初一学生单独工作,需要7.5小时完成,若让初二学生单独工作,需要5小时完成,如果让初一、初二学生一起工作1小时,再由初二学生单独完成乘余部分,共需多少时间完成?5、整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的四分之三,怎样安排参与整理数据的具体人数?6、一水池装有甲、乙、丙三个水管,甲、乙管是注水管,丙管是排水管,单独开放甲管要6小时可注满水池,单开乙管要8小时注满水池,单开丙管要12小时可把满水池的水排完,现在先打开甲、乙两管进水2小时,再打开丙管,问打开丙管几小时后便可将水池注满水?配套问题1、包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B 种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?销售问题1、一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或不盈不亏?2、工艺商场按标价销售某种工艺品时,每件可获利45元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
七年级上册数学竞赛题和经典题
七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
初一数学上册一元一次方程的应用12种经典题型汇总
初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
七年级数学绝对值典型例题
七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
对于公式,因为公式是负数,所以公式。
对于公式,根据定义公式。
对于公式,因为3是正数,所以公式。
2. 例2:已知公式,求公式的值。
解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。
二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。
解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。
所以公式或公式。
2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。
解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。
这里公式,公式,则公式、公式两点间的距离公式。
三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。
例如公式,这里公式。
2. 例6:已知公式,求公式、公式的值。
解析:
因为绝对值是非负数,即公式,公式。
要使公式成立,则公式且公式。
当公式时,公式,解得公式;当公式时,公式,解得公式。
七年级下册数学第一章经典题型
七年级下册数学第一章经典题型
第一章经典题型
1. 整数性质运用
题目:已知某数的两倍再加3等于15,求这个数是多少。
解析:设这个数为x,根据题目可得方程2x+3=15,解方程得x=6,所以这个数是6。
2. 一元一次方程组
题目:某班今天上体育课和音乐课的学生人数共60人,已知上体
育课的人数是上音乐课的人数的1.5倍,求上体育课和音乐课的学生
人数分别是多少。
解析:设上音乐课的学生人数为x,则上体育课的学生人数为
1.5x,根据题目可得方程x+1.5x=60,解方程得x=20,所以上音乐课
的学生人数为20人,上体育课的学生人数为30人。
3. 百分数运用
题目:某商品原价为400元,现在打8折出售,求打折后的售价
是多少。
解析:打8折即为原价的80%,所打折后的价格为400*0.8=320元,所以打折后的售价为320元。
4. 比例与比例运用
题目:某条线段长13cm,其中一部分长5cm,求另一部分的长度。
解析:设另一部分的长度为x,则根据题目可得比例5:13=x:(13-5),解比例得x=8,所以另一部分的长度为8cm。
5. 平行线角相关问题
题目:如图所示,直线l与m平行,求∠a、∠b、∠c、∠d的度数。
解析:由平行线性质可得∠a=180°-70°=110°,∠b=70°,
∠c=70°,∠d=110°。
希望以上经典题型的例题能帮助同学们更好地理解并掌握数学知识,提升解题能力。
七年级数学上册《盈亏问题》6道经典题及答案,期末复习必备!
(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;到甲商场购买所花的费用为:150×100+100(a﹣100/10)=100a+14000(元)到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.4、某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.5、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得:(1+x)(1-5%)=1+14%解得x=1/2=20%答:这个月的石油价格相对上个月的增长率为20%.6、北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只4元.超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款。
现某顾客要到该超市购买茶壶5只,茶杯x只(茶杯数多于5只)。
初中数学52个经典母题
初中数学52个经典母题初中数学是学生们学习数学的重要阶段,掌握好基本概念和解题方法对于提高数学水平至关重要。
以下是初中数学中的52个经典母题,涵盖了各个知识点和解题方法,可以帮助学生系统地掌握数学知识。
1. 有一列数,第一个数是1,后面每个数都比前一个数多2,求第10个数是多少?2. 已知一个数是另一个数的1/4,这两个数的和是45,求这两个数分别是多少?3. 如果一个矩形的长是2/3,宽是6,求它的面积。
4. 若a+b=4,a-b=2,求a和b的值。
5. 一辆汽车每小时行驶60公里,行驶8个小时,求行驶的总里程数。
6. 已知一个数是另一个数的1/3,这两个数的差是24,求这两个数分别是多少?7. 如果一个圆的半径是5,求它的周长和面积。
8. 在一个平行四边形中,已知一条边长是6,另一条边长是8,求它的面积。
9. 有一列数,第一个数是3,后面每个数都比前一个数少4,求第10个数是多少?10. 若a-b=5,a+b=9,求a和b的值。
11. 一辆汽车每小时行驶80公里,行驶5个小时,求行驶的总里程数。
12. 一个长方形的长是4,宽是1/2,求它的面积。
13. 在一个正方形中,已知一条边长是3,求它的周长和面积。
14. 有一列数,第一个数是10,后面每个数都比前一个数多3,求第10个数是多少?15. 若a+b=7,a-b=1,求a和b的值。
16. 一辆汽车每小时行驶50公里,行驶10个小时,求行驶的总里程数。
17. 如果一个矩形的长是3/4,宽是8,求它的面积。
18. 已知一个数是另一个数的1/5,这两个数的差是30,求这两个数分别是多少?19. 如果一个圆的半径是8,求它的周长和面积。
20. 在一个平行四边形中,已知一条边长是5,另一条边长是7,求它的面积。
21. 有一列数,第一个数是20,后面每个数都比前一个数少2,求第10个数是多少?22. 若a-b=8,a+b=12,求a和b的值。
23. 一辆汽车每小时行驶70公里,行驶6个小时,求行驶的总里程数。
七年级数学经典例题
七年级数学经典例题一、有理数运算。
1. 计算:(-2)+3-(-5)- 解析:- 根据有理数的运算法则,减去一个数等于加上这个数的相反数。
- 所以(-2)+3 - (-5)=(-2)+3+5。
- 先计算(-2)+3 = 1,再计算1 + 5=6。
2. 计算:-2^2-( - 3)^3÷(-1)^2023- 解析:- 先计算指数运算。
-2^2=-4(这里注意指数运算的优先级,先计算指数2^2 = 4,再加上负号)。
- (-3)^3=-27,(-1)^2023=-1。
- 则原式=-4-(-27)÷(-1)。
- 接着计算除法-27÷(-1) = 27。
- 最后计算-4 - 27=-31。
二、整式的加减。
3. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 对于a的同类项3a和-5a,合并得3a-5a=-2a。
- 对于b的同类项2b和-b,合并得2b - b=b。
- 所以化简结果为-2a + b。
4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1- 解析:- 先去括号,根据去括号法则,括号前是正号,去掉括号不变号;括号前是负号,去掉括号要变号。
- 原式=2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。
- 再合并同类项,2x^2-3x^2=-x^2,4y^2-5y^2=-y^2,-3xy+3xy = 0。
- 化简结果为-x^2-y^2。
- 当x=-2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。
三、一元一次方程。
5. 解方程:3x+5=2x - 1- 解析:- 移项,把含有x的项移到等号一边,常数项移到等号另一边,移项要变号。
- 得到3x - 2x=-1 - 5。
- 合并同类项得x=-6。
七年级动点问题大全
七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
初一上学期必会的40道经典数学题
初一上学期必会的40道经典数学题1. 学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?2. 小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数3. 某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套(2轴承配3机轴)?4. 某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净? 56、某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?5. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。
一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走16米,那么甲出发几秒与乙相遇?6. 小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)7. 某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的`路程的多少讨论用哪个公司的车比较合算?8. 某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。
七年级上册数学例题
七年级上册数学例题
1. 将13/20 和3/5 相加,并将结果化简为最简形式。
2. 一辆汽车以每小时60公里的速度行驶,需要多长时间才能行驶360公里?
3. 一个三角形的三条边分别为6厘米、8厘米和10厘米,这个三角形是什么类型的三角形?
4. 一个圆的直径为14厘米,求这个圆的半径和周长。
5. 一本书原价80元,打八折出售,现在的售价是多少?
6. 一个矩形的长为12厘米,宽为8厘米,求其面积和周长。
7. 若a = 4,b = 2,c = 3,求表达式2a - 3b + c 的值。
8. 一个正方体的边长为5厘米,求其表面积和体积。
9. 小明的体重是42千克,小美的体重是36千克,他们两人的体重总共是多少千克?
10. 一个角的补角是70度,那么这个角本身是多少度?。
初一年级100道数学计算题和答案解析
初一年级100道数学计算题和答案解析1. 计算:3 + 5 × 2 4 ÷ 2答案:13解析:根据运算法则,先乘除后加减,所以先计算5 × 2 = 10,再计算4 ÷ 2 = 2,进行加减运算,得出结果为13。
2. 计算:(4 + 6) × (5 3)答案:18解析:先计算括号内的加法和减法,4 + 6 = 10,5 3 = 2,然后将两个结果相乘,得出18。
3. 计算:8 ÷ 2(2 + 3)答案:1解析:先计算括号内的加法,2 + 3 = 5,然后将8除以2,得4,用4除以5,得出结果为1。
4. 计算:7 × 7 7 ÷ 7答案:48解析:先计算乘法,7 × 7 = 49,再计算除法,7 ÷ 7 = 1,进行减法运算,得出结果为48。
5. 计算:9 + 6 ÷ 3 2 × 4答案:1解析:根据运算法则,先乘除后加减。
先计算6 ÷ 3 = 2,再计算2 × 4 = 8,进行加减运算,得出结果为1。
6. 计算:15 3 × 2 + 4 ÷ 2答案:10解析:处理乘法,3 × 2 = 6,然后进行除法,4 ÷ 2 = 2。
接着,将15减去6,再加上2,得到最终答案10。
7. 计算:4² 6²答案:20解析:这里涉及到平方的计算,4² = 16,6² = 36。
将16减去36,得到的结果是20。
8. 计算:(8 5) × (3 + 2)答案:18解析:先解决括号内的运算,8 5 = 3,3 + 2 = 5。
然后将两个结果相乘,3 × 5 = 18。
9. 计算:12 ÷ (2 + 1)答案:4解析:计算括号内的加法,2 + 1 = 3。
接着,用12除以3,得到的结果是4。
七年级数学上册《列代数式》-典型例题一
典型例题一
例题01 用字母表示下面实际问题.
(1)行驶中的火车的速度为v 米 / 秒,汽车行驶的速度是火车速度的3
1,用v 表示汽车速度;
(2)如图,表示圆环的面积;
(3)如图,是用火柴摆出的三角形的图案,当摆n 个三角形时,需火柴多少根.
分析 (1)如果v 是一个数,该题就是求v 的31是多少,可表示为v 3
1; (2)分别用R 、r 把大圆和小圆的面积表示出来,用大圆面积减去小圆的面积就是圆环的面积;
(3)由图可以发现,当第一个三角形摆完之后,每增加一个三角形就要增加2根火柴,所以摆n 个三角形需)]1(23[-+n 根火柴.
解 (1)汽车的速度可表示为v 3
1;
(2)圆环的面积为:22r R ππ-;
(3)摆成n 个三角形需要火柴)1(23-+n 根.
说明 (1)用含字母的式子表示实际问题时,我们必须弄清实际问题中的数量关系;
(2)字母和字母相乘可以把“×”写在“·”或不写,如b a ⨯可写成b a ⋅或ab ;而b a ÷或b ÷1,则写成b
b a 1,;(3)数乘以字母,或数乘以含有字母的式子,一般省略乘号,并把数写在前面,如a ⨯3写成a 3,不写成3a ,同理,)(3b a +⨯写成)(3b a +.。
(完整版)初一年级数学经典例题
数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+- =200711- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2)=2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2)=2-22-23-24-……-217+218=……=2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、20082007 2、3 字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当n=1,S=1①n=2,S=5②③n=3,S=9变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x 所以2x-4y+6=2(x-2y)+6=6352+⨯=328 例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0. 2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线. A .20 B .36 C .34 D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40° 例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O AM C N O B AC D E 图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA 所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB 因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。
初一数学分配问题、配对问题、行程问题
一元一次方程应用题(一)—分配问题一、比例问题:1、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?2、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运货物12吨,则三辆卡车各运货物多少吨?3、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?4、一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?5、.配制一种农药,其中生石灰和硫磺粉的重量比是1:3,硫磺粉和水的重量比是1:4,要配置这种农药2272克,各种原料各需多少千克?6、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?二、整体与部分问题:7、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的单价分别是多少?8、小明用172元钱买了两种书,共10本,单价分别为18元、10元。
这两种书小明各买了多少本?9、把1400元奖金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元.获得一等奖的学生有多少?第1页,共8页第2页,共8页10、服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米,现在已做成了80套成人服装,则用余下的布还可以做几套儿童服装?三、分配问题:11、种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树?12、把一些图书分给某班学生阅读,如果每人3本.则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?这批书共有多少本?13、小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。
七年级数学绝对值最小值典型例题
七年级数学绝对值最小值典型例题在七年级的数学课上,绝对值最小值这个话题可真是个“麻烦”的东西。
不过,别担心,我们来轻松聊聊,搞清楚这个问题,绝对不会让你觉得像在上天文课那样无聊。
想象一下,你在超市里逛,看到一堆价格标签。
价格有高有低,对吧?但绝对值就像是一个无形的“尺子”,不管正负,只看距离零有多远。
比如说,5和5的绝对值都是5,它们在零的两边,远得就像两头大象,根本不打架。
这里有个小秘诀,绝对值的最小值通常就是零。
只要找个数字离零最近,嘿,就是它了。
让我们看看一个简单的例子。
假设你有一个数学表达式,像是|x 3|。
这里的意思是“从x到3的距离”,所以,x在3的位置时,这个距离就是零。
这时候绝对值最小值“现身”了,简直像是看到了一位老朋友。
想想看,想要最小距离,你当然要朝着目标靠拢。
这样一来,x=3就是我们的“黄金位置”,这就算是它的绝对值最小值。
再来个更有趣的,假如你在海边玩沙子,突然一阵风把你的沙堡吹了个粉碎。
这时候,你可能心情有点郁闷,但数学家可能会想:“沙堡距离零有多远呢?”这就像是我们要找出一些值的绝对值。
就像|y + 2|,当y=2时,这个表达式又给我们带来了“零”的神奇感觉。
这个小子真是个聪明鬼,懂得如何靠近最小值。
生活中,绝对值其实无处不在。
比如说,想象一下你在山上滑雪,忽然摔了个跟头,向下的距离就是负的,向上的距离就是正的。
绝对值告诉你,不管摔多惨,距离零的那个数字才是真正重要的。
在这场雪上滑行的冒险中,绝对值像个忠实的伙伴,陪着你计算每一次滑行的“真实距离”。
这种“真距离”不受方向的影响,保持一颗中立的心态。
我们会遇到更复杂的表达式,比如|2x + 5|。
这时候,我们需要找到x的值,让这个表达式最小。
就像找到了“开锁的钥匙”,把x设为2.5,咱们就能看见那个美丽的“零”!这时的感觉,就像是解开了一个大谜团,内心的小雀跃不亚于过年时收到压岁钱的兴奋。
数学的魅力就在于它的奇妙关系。
数学七年级上册经典试卷
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 已知a=-3,b=2,那么a+b的值是()A. -1B. -5C. 5D. 73. 下列各数中,是偶数的是()A. 0.2B. 0.4C. 0.6D. 0.84. 下列各数中,是负数的是()A. -2B. 2C. 0D. -0.55. 下列各数中,是整数的是()A. -1.5B. 0.5C. 1.5D. 2.5二、填空题(每题4分,共16分)6. -5的相反数是_________,5的倒数是_________。
7. 2的平方根是_________,-3的立方根是_________。
8. 下列各数中,-2.5的绝对值是_________,0.3的倒数是_________。
9. 下列各数中,是偶数的是_________,是奇数的是_________。
10. 下列各数中,是正数的是_________,是负数的是_________。
三、解答题(每题10分,共30分)11. (10分)已知a=3,b=-2,求下列代数式的值:(1)a+b;(2)a-b;(3)ab。
12. (10分)已知x=2,y=-1,求下列代数式的值:(1)x+y;(2)x-y;(3)xy。
13. (10分)已知a=5,b=-3,求下列代数式的值:(1)a+b;(2)a-b;(3)ab。
四、应用题(每题10分,共20分)14. (10分)小明从家出发,向东走了5米,然后又向北走了10米,最后又向东走了5米。
请问小明离家的距离是多少米?15. (10分)一辆汽车从A地出发,以每小时60千米的速度向东行驶,3小时后到达B地。
请问A地和B地之间的距离是多少千米?答案:一、选择题1. C2. B3. B4. A5. A二、填空题6. -5的相反数是5,5的倒数是1/5。
7. 2的平方根是√2,-3的立方根是-√3。
8. -2.5的绝对值是2.5,0.3的倒数是10/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一,年级,数学,经典,例题,数学,天地,初一,数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:分析此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成,可利用通项,把每一项都做如此变形,问题会迎刃而解.解原式====例2 已知有理数a、b、c在数轴上的对应点分别为A、B、C(如右图).化简.分析从数轴上可直接得到a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b0.解由数轴知,a0所以, = -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:分析本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解原式==分析本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.=2-22-23-24-……-218+219=2-22+23【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:的值.(提示:此题可看作例1的升级版,求出a、b的值代入就成为了例1.)【参考答案】1、 2、3字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得,把x、y的值代入2x-4y+6可得答案.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解由3x-6y-5=0,得所以2x-4y+6=2(x-2y)+6==例2已知代数式,其中n为正整数,当x=1时,代数式的值是,当x=-1时,代数式的值是 .分析当x=1时,可直接代入得到答案.但当x=-1时,n和(n-1)奇偶性怎么确定呢?因n和(n-1)是连续自然数,所以两数必一奇一偶.解当x=1时,==3当x=-1时,==1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n(n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n表示S的公式.分析当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:n123…nS159…4(n-1)+1S的变化过程11+4=51+4+4=9…1+4+4+…+4=4(n-1)+1所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:--1,,,,,①填空:第11,12,13三个数分别是,,;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①,,;②;③0.2、1+n×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解找交点最多的规律:直线条数234…n交点个数136…交点个数变化过程11+2=31+2+3=6…1+2+3+…+(n-1) 图形图1图2图3…例2 两条平行直线m、n上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连()条直线.A.20 B.36 C.34 D.22分析与解让直线m上的4个点和直线n上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n上的5个点各确定的一条直线,共22条直线.故选D.例3 如图,OM是∠AOB的平分线.射线OC在∠BOM内,ON是∠BOC的平分线,已知∠AOC=80°,那么∠MON的大小等于_______.分析求∠MON有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解因为OM是∠AOB的平分线,ON是∠BOC的平分线,所以∠MOB=∠AOB,∠NOB=∠COB所以∠MON=∠MOB-∠NOB=∠AOB-∠COB=(∠AOB-∠COB)=∠AOC=×80°=40°例4 如图,已知∠AOB=60°,OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.(1)求∠DOE的大小;(2)当OC在∠AOB内绕O点旋转时,OD、OE仍是∠BOC和∠AOC的平分线,问此时∠DOE的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析此题看起来较复杂,OC还要在∠AOB内绕O点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE是∠AOB的一半,也就是说要求的∠DOE,和OC在∠AOB内的位置无关.解 (1)因为OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.所以∠DOC=∠BOC,∠COE=∠COA所以∠DOE=∠DOC+∠COE=∠BOC+∠COA=(∠BOC+∠COA)=∠AOB因为∠AOB=60°所以∠DOE =∠AOB=×60°=30°(2)由(1)知∠DOE =∠AOB,和OC在∠AOB内的位置无关.故此时∠DOE的大小和(1)中的答案相同.【核心练习】1、A、B、C、D、E、F是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时分.【参考答案】1、15条2、.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。
解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。
列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。
【典型例题】例1已知方程2x+3=2a与2x+a=2的解相同,求a的值.分析因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x,可把2x整体代入.解由2x+3=2a,得 2x=2a-3.把2x=2a-3代入2x+a=2得。