定量分析中的误差及
定量分析中的误差及有效数字答案
思考题1. 指出在下列情况下,各会引起哪种误差?如果是系统误差,应该用什么方法减免?(1) 砝码被腐蚀;答:引起系统误差(仪器误差),采用校准砝码、更换砝码。
(2) 天平的两臂不等长;答:引起系统误差(仪器误差),采用校正仪器(天平两臂等长)或更换仪器。
(3) 容量瓶和移液管不配套;答:引起系统误差(仪器误差),采用校正仪器(相对校正也可)或更换仪器。
(4) 试剂中含有微量的被测组分;答:引起系统误差(试剂误差),采用空白试验,减去空白值。
(5) 天平的零点有微小变动;答:随机(偶然)误差。
(6) 读取滴定管体积时最后一位数字估计不准;答:随机(偶然)误差。
采用读数卡和多练习,提高读数的准确度。
(7) 滴定时不慎从锥形瓶中溅出一滴溶液;答:过失,弃去该数据,重做实验。
(8) 标定HCl 溶液用的NaOH 标准溶液中吸入CO2。
答:系统误差(试剂误差)。
终点时加热,除去CO2,再滴至稳定的终点(半分钟不褪色)。
2. 判断下列说法是否正确(1) 要求分析结果达到0.2%的准确度,即指分析结果的相对误差为0.2%。
(2) 分析结果的精密度高就说明准确度高。
(3) 由试剂不纯造成的误差属于偶然误差。
(4) 偏差越大,说明精密度越高。
(5) 准确度高,要求精密度高。
(6) 系统误差呈正态分布。
(7) 精密度高,准确度一定高。
(8) 分析工作中,要求分析误差为零。
(9) 偏差是指测定值与真实值之差。
(10) 随机误差影响测定结果的精密度。
(11) 在分析数据中,所有的“0”均为有效数字。
(12) 方法误差属于系统误差。
(13) 有效数字中每一位数字都是准确的。
(14) 有效数字中的末位数字是估计值,不是测定结果。
(15) 有效数字的位数多少,反映了测量值相对误差的大小。
(16) 有效数字的位数与采用的单位有关。
(17) 对某试样平行测定多次,可以减少系统误差。
(18) Q检验法可以检验测试数据的系统误差。
答:(1) 对;(2) 错;(3) 错;(4) 错;(5) 对;(6) 错;(7) 错;(8) 错;(9) 错;(10) 对;(11) 错;(12) 对;(13) 错;(14) 对;(15) 对;(16) 错;(17) 错;(18) 错3. 单选题(1) 准确度和精密度的正确关系是……………………..……………………………………………….( )(A) 准确度不高,精密度一定不会高(B) 准确度高,要求精密度也高(C) 精密度高,准确度一定高(D) 两者没有关系(2) 从精密度好就可判断分析结果准确度的前提是…………………..……………………………….( )(A) 偶然误差小(B) 系统误差小(C) 操作误差不存在(D) 相对偏差小(3) 以下是有关系统误差叙述,错误的是………………………………...…………………………….( )(A) 误差可以估计其大小(B) 误差是可以测定的(C) 在同一条件下重复测定中,正负误差出现的机会相等(D) 它对分析结果影响比较恒定(4) 测定精密度好,表示………….…………………………………..………………………………….( )(A) 系统误差小(B) 偶然误差小(C) 相对误差小(D) 标准偏差小(5) 下列叙述中错误的是…………….……………………………………..…………………………….( )(A) 方法误差属于系统误差(B) 系统误差具有单向性(C) 系统误差呈正态分布(D) 系统误差又称可测误差(6) 下列因素中,产生系统误差的是………………………………………….………………………….( )(A) 称量时未关天平门(B) 砝码稍有侵蚀(C) 滴定管末端有气泡(D) 滴定管最后一位读数估计不准(7) 下列情况所引起的误差中,不属于系统误差的是……..………………..………………………….( )(A) 移液管转移溶液后残留量稍有不同(B): 称量时使用的砝码锈蚀(C) 天平的两臂不等长(D) 试剂里含微量的被测组分(8) 下述说法不正确的是……..…..………………..…………………….……………………………….( )(A) 偶然误差是无法避免的(B) 偶然误差具有随机性(C) 偶然误差的出现符合正态分布(D) 偶然误差小,精密度不一定高(9) 下列叙述正确的是……….…………………..……………………………………………………….( )(A) 溶液pH为11.32,读数有四位有效数字(B) 0.0150g试样的质量有4位有效数字(C) 测量数据的最后一位数字不是准确值(D) 从50mL滴定管中,可以准确放出5.000mL标准溶液(10) 分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称……….( )(A) 0.1000克以上(B) 0.1000克以下(C) 0.2克以上(D) 0.2克以下(11) 精密度的高低用()的大小表示………………………..………………………………………….( )(A) 误差(B) 相对误差(C) 偏差(D) 准确度(12) 分析实验中由于试剂不纯而引起的误差属于…………………..…………….……………..…….( )(A): 系统误差(B) 过失(C) 偶然误差(D)方法误差(13) 四次测定结果:0.3406、0.3408、0.3404、0.3402,其分析结果的平均值为……………………….( )(A) 0.0002 (B) 0.3405 (C) 0.059% (D) 0.076%(14) 配制一定摩尔浓度的NaOH溶液时,造成所配溶液浓度偏高的原因是…..…………………….( )(A) 所用NaOH固体已经潮解(B): 向容量瓶倒水未至刻度线(C) 有少量的NaOH溶液残留在烧杯中(D) 用带游码的托盘天平称NaOH固体时误用“左码右物”(15) 四次测定结果:55.51、55.50、55.46、55.49、55.51,其分析结果的平均偏差为………..………….( )(A) 55.49 (B) 0.016 (C) 0.028 (D) 0.008(16) 托盘天平读数误差在2克以内,分析样品应称至( )克才能保证称样相对误差为1% 。
第4章 定量分析概论二、三节
分 准确度高低的尺度。 析 误差的表示方式分为绝对误差和相对误差两种。
概 绝对误差:测量值与真实值之差。 Ea x xT
论 相对误差:绝对误差占真实值的百分比。
1
Er
Ea xT
100 %
郑工学院
例:用分析天平直接称量铁粉,其质量分别为5.0000g和
0.5000g,试问哪一个称量值会较准确?
章
溶液溅失;
定 量 分 析 概 论
加错试剂; 读错刻度; 记录和计算错误等。
注意:过失误差必须给予删除。
1
郑工学院
减小误差的方法
第 四 ☆尽可能地减小系统误差和偶然误差 章
减小和消除系统误差
定 量
①选择合适的分析方法 在相同的条件下,对已知准确含量的标
②对照试验:
准样品进行多次测定,将测定值和准确 值进行比较,求出校正系数,用校正系
分
n
4
析
概
论
dr
d x
100 %
0.14 15.82
100 %
0.89%
1
郑工学院
(三)准确度与精密度的关系
第 四 章
定
量
分
析
概 结 论:
论 1. 准确度高,要求精密度一定高,精密度是保证准确度的
前提,但精密度高,准确度不一定高;
2. 准确度反映了测量结果的正确性,精密度反映了测量结
1
果的重现性。
分 ③空白试验(空白值) 数来校正试样的分析结果。
析 分析结果-空白值=较准确的分析结果
概 指不加待测试样,在相同的条件下,按分析试样所采用的方法进行测 论 定,其测定结果为空白值。
化学分析中误差及分析数据的处理
xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统
第二章 定量分析中的误差及结果处理
增加平行测定次数
三、消除系统误差 (一)对照试验 —— 检验有无方法误差
(二)空白试验 —— 检验有无试剂误差
试样 + 试剂 试剂 则 样品含量
同一条件 同一条件
测定结果 X1
测定结果 X0 ( X0—空白值
二、偏差与精密度
思考题:
甲乙两位同学对同一样品进行了五次重复测定, 测定结果分别如下: 甲: 0.3,0.2,0.3,0.3,0.4, x = 0.3 乙: = 0.3 0.1, 0.6, 0.2, 0.1, 0.5,
x
(1)甲同学测定的几个结果中哪个结果更好?乙同 学的呢? (2)两位同学的测定水平哪个更好?如何评价?
5 前面是偶数 —— 舍
5 后面全为 0 或无数字 尾数= 5时 5 后面有任一不为 0 的数 —— 入 5 前面是奇数 —— 入
例:将下列数字修约为三位有效数字
0. 3216 解: 0.322 21. 2499 21.2 10. 2500 10.2 10. 3500 10.4 3.42 3.415 10. 25001
36.50 37.00
平均值
37.50
38.00
真值
(三)准确度和精密度的关系
1、精密度高,准确度一定高。( ) 2、精密度高,准确度一定低 ( ) 3、精密度的高低不会影响准确度( ) 4、要有高的准确度,必须要有高的精密度( )
精密度是保证准确度的先决条件.精密度差, 所测结果不可靠,就失去了衡量准确度的前提, 高的精密度,不一定能保证高的准确度.
主要来源有
仪器误差:
试剂误差: 操作误差 :
定量分析的误差和数据处理
查表:P 0.95, f 6 1 5时,t表 2.57
t计算 t表说明 x与差异异著,有系统误差
1.4.2 两组数据平均值的比较
为了比较两组数据 x1、s1、n1与 x2、s2、n2间是
否存在显著性差异,需首先用F检验法检验两 组测定结果的精密度s1、s2之间是否差异显著。
定量分析的误差和数据处理
测定结果的两个特征
准确度:即人、仪器、方法 所得结果也不可能绝对准确。
结论:定量分析中误差是不可避免的,定量分析的结 果只能是真值的近似值。误差是客观存在的。真值是 测不出的。
测定结果的第二个特征
精确度:同一个人、同一样品、相同条件下、多次平 行测定,所得结果也不可能完全相同 这是一个自然规律
标准偏差s也影响置信区间。“做多次平行测定 取平均值以减少随机误差对准确度的影响” 的前提是必须保证测定的精密度。
1.3.3 可疑值的取舍
(1)由过失引起必须舍弃; (2)非过失引起,必须根据统计学原理决定其
取舍。
取舍的意义:
无限次平行测定,随机误差遵从态分布规律, 可大可小,且绝对值相等的正负差出现机会相 同,故任一测定结果,不论偏差小都不应舍 弃;
相对标准偏差。
解: x 10.43%
d di 0.18% 0.036%
n
5
d 100% 0.036% 100% 0.35%
x
10.43%
s
d
2 i
8.610 7 4.610 4 0.046%
n 1
4
s 100% 0.046% 100% 0.44%
英国化学家W.Gosset(戈赛特)根据统计学原理,提出 t—分布,描述有限数据分布规律
定量分析中的误差及数据处理
多元线性回归
总结词
多元线性回归是定量分析中常用的方法,用于探索多个自变量与一个因变量之 间的线性关系。
详细描述
多元线性回归通过最小二乘法拟合一个平面或一个超平面,使得因变量的观测 值与预测值之间的残差平方和最小。这种方法可以帮助我们了解多个自变量对 因变量的影响程度和方向,并可进行预测和控制。
对各种不确定度进行量化评估,计算其对最终测量结 果的影响。
不确定度报告
将不确定度评估结果整合到测量报告中,为用户提供 完整的数据分析结果。
04
回归分析
一元线性回归
总结词
一元线性回归是定量分析中常用的方法,用于探索一个因变量与一个自变量之间的线性 关系。
详细描述
一元线性回归通过最小二乘法拟合一条直线,使得因变量的观测值与预测值之间的残差 平方和最小。这种方法可以帮助我们了解自变量和因变量之间的关联程度和方向,并可
Box-Cox变换
离散化
是一种通用的数据变换方法,通过选择适当 的λ值,使数据达到最合适的形式。
将连续变量转换为离散变量,便于分类或 决策树算法的使用。
数据插值与外推
线性插值
基于已知的数据点,通过线性函数进行插值, 得到未知点的值。
样条插值
通过样条函数进行插值,可以更好地处理数 据的弯曲程度。
多项式插值
05
数据分析与可视化
描述性统计
总结词
描述性统计是定量分析的基础,用于 概括和描述数据的特征。
详细描述
通过均值、中位数、众数、标准差等 统计量,描述数据的集中趋势和离散 程度。此外,还包括数据的频数分布 、偏度、峰度等描述性统计指标。
推断性统计
总结词
推断性统计基于样本数据推断总体特征 ,通过样本信息对总体进行估计和预测 。
定量分析中的误差
定量分析中的误差定量分析中的误差,也称为测量误差,是指实际测量结果与真实值之间的差异。
在定量分析领域中,对误差的准确定义和评估是非常重要的,因为它直接影响到数据的可靠性和结果的准确性。
本文将探讨定量分析中的误差的类型、产生原因以及如何评估和控制误差。
1.系统误差是由于测量方法、仪器或实验条件等固有的偏倚或倾斜引起的误差。
这种误差是有方向性的,通常是持续的,会导致测量结果偏离真实值的固定量。
系统误差的产生原因包括:-仪器漂移:由于仪器老化、磨损或使用不当等,仪器的测量性能会逐渐下降,导致系统误差。
-校准不准确:如果仪器的校准不准确,或者校准曲线的拟合不好,都会产生系统误差。
-环境条件:例如温度、湿度等环境条件的变化,会影响到实验条件,进而产生系统误差。
-人为因素:操作员的技术水平、操作规范等因素也可能引起系统误差。
2.随机误差是由于各种随机因素所引起的误差,其大小和方向都是无规律的,因此也称为无偏差误差。
这种误差会导致在多次重复测量中,得到不同结果,形成结果的分布。
随机误差的产生原因包括:-个体差异:不同个体之间的差异,包括实验对象的差异和人体感知的差异等,会导致随机误差。
-实验条件的不确定性:例如仪器的读数精度、样品的异质性等,都会产生随机误差。
-测量误差的传播:由于测量值之间的运算和计算过程中的近似或舍入,误差会被传递到结果中,导致随机误差。
在定量分析中,我们需要对误差进行评估和控制,以保证数据的准确性和可靠性。
评估误差的方法包括:1.校准和验证:通过与已知标准值的比较,来评估仪器的准确性和正误差大小。
2.重复测量:通过多次重复测量同一样品,来评估测量值的离散程度,即随机误差的大小。
3.数据处理和统计分析:使用合适的统计方法,对测量数据进行处理和分析,以评估误差的大小和分布。
控制误差的方法包括:1.合理设计实验:在实验过程中,根据实验目的和特点,合理设计实验方案,减少系统误差和随机误差的产生。
第二章 定量分析中的误差及分析数据的处理(上)
第2章定量分析中的误差及分析数据的处理(上)§2-1定量分析的误差§2-1-1 误差的种类、性质及产生的原因1. 系统误差——由某种固定原因引起的误差(1) 特点a.单向性:对分析结果的影响比较恒定;b.重现性:在同一条件下,重复测定,重复出现;c.可测性:可以测定,可以消除。
产生的原因?(2) 系统误差产生的原因a.方法误差——选择的方法不够完善例:重量分析中沉淀的溶解损失;滴定分析中指示剂选择不当。
b.仪器误差——仪器本身的缺陷例:天平两臂不等,砝码未校正;滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质例:去离子水不合格;试剂纯度不够(含待测组份或干扰离子)。
d.主观误差——操作人员主观因素造成例:对指示剂颜色辨别偏深或偏浅;滴定管读数不准,洗涤沉淀不充分等。
2.随机误差(偶然误差——由某些无法控制及避免的偶然因素造成的)(1) 特点a.不恒定b.难以校正c.服从正态分布(统计规律)(2) 产生的原因a.偶然因素(温度、电压等)b.分析仪器读数的不确定性方向不定,大小不定,难以预测3. 过失误差重作实验!误差如何定量表示?一、误差与准确度1. 绝对误差E a ──测定结果与真实值之间的差值测得值-真实值(E a =x-x T )真值——有时用标准值或多次测定的平均值代替准确度──分析结果与真实值的接近程度准确度的高低用误差的大小来衡量误差──测得值与真值(客观存在的真实数值)的差值误差的绝对值越小准确度越高,误差一般用绝对误差和相对误差来表示。
§2-1-2准确度与精密度三、准确度和精密度的关系——分析结果的衡量指标。
准确度──分析结果与真实值的接近程度精密度──分析结果相互的接近程度表示方法来源对结果的影响准确度——绝对误差——系统误差——正确性相对误差偶然误差精密度——平均偏差——偶然误差——重现性标准偏差相对平均偏差极差§2-2、提高分析结果准确度的方法1. 系统误差的减免(1) 方法误差——采用标准方法,对照实验用新方法对标准样品进行测定,将测定结果与标准值相对照(2) 仪器误差——校正仪器(3) 试剂误差——作空白实验:通常用蒸馏水代替试样,而其余条件均与正常测定相同2. 偶然误差的减免——增加平行测定的次数:一般分析实验平行测定3-4次3.控制测量的相对误差任何测量仪器的测量精确度都是有限度的由测量精度的限制而引起的误差又称为测量的不确定性,属于随机误差例如,滴定管读数误差滴定管的最小刻度为0.1 mL,要求测量精确到0.01 mL,最后一位数字只能估计最后一位的读数误差在正负一个单位之内,即±0.01 mL在滴定过程中要获取一个体积值V(mL)需要两次读数按最不利的情况考虑,两次滴定管的读数误差相叠加,则所获取的体积值的读数误差为±0.02 mL这个最大可能绝对误差的大小是固定的,是由滴定管本身的精度决定的——绝对误差可以设法控制体积值本身的大小而使由它引起的相对误差在所要求的±0.1%之内§2-3 有效数字及其运算法则2-3-1 有效数字1.实验过程中常遇到的两类数字(1)测量值或计算值。
第二章 定量分析中的误差与数据处理
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59
定量分析中误差及数据处理
CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg
定量分析中的误差及结果处理(2)
95.5%
99.7% -3 -2 -1 0 1 2 3 z
2.4
随机误差分布规律: 1)对称性:大小相等的正、负误差出现的概率相等,误差分布曲线是对称的。 2)单峰性:小误差出现的概率大,大误差出现的概率小,特别大的误差出现的 概率非常小。误差分布曲线只有一个峰值。误差有明显的集中趋势。 3)有界性:仅仅由于偶然误差造成的误差不可能很大,即大误差出现的概率很 小。如果发现误差很大的测定值出现,往往是由于其他过失误差造成。
注意:滴定分析测定常量组分时,分析结果的相对平均偏差一般小于0.2%。
2.1.2精密度和偏差
1. 精密度(PRECISION) • 多次测量值(XI)之间相互接近的程度。 反映测定的再现性。 • 2. 表示方法---偏差 • 1) 算术平均值 • 对同一种试样,在同样条件下重复测定N次,结果分别为X1,X2,……XN
t分布:1908年,由英国人高塞特(W.S.Gosset)提出。用标准偏差s代替 ,统计量t代替z。的涵义为平均值的误差是以平均值的标准偏差为单位 表示的数值,这时随机误差不服从正态
2.1.1准确度与误差
• 2)
RELATIVE ERROR
• 表示误差在真实值中所占的百分率,分析结果的准确度常用相对误差表示。
• RE% =(E/XT) *100%=(X-XT) /XT*100%
• 如, 对于1000KG和10KG,绝对误差相同(±1KG),但产生的相对误差却不同。
• RE%=(±1/1000)*100%=±0.1%
前三位是准确的,最后一位是估计的、不甚准确,但它不是臆造的。记录时
应保留这一位。这四位都是有效数字。
有效数字--实际上能测到的数字(只有
)。
定量分析中的误差及有效数字练习题
11误差表示分析结果的_______;偏差表示分析结果的_______。
答案:准确度好坏;精密度高低
12多次分析结果的重现性愈好,则分析的精密度愈_______。
答案:高
13用相同的方法对同一个试样平行测定多次,得到的n次测定结果相互接近的程度,称为_______。测定值与真值之间接近的程度,称为_______。
答案: A, C, E
2提高分析结果准确度的方法是()。
A:做空白试验B:增加平行测定的次数C:校正仪器D:使用纯度为98%的基准物
E:选择合适的分析方法
答案: A, B, C, E
3系统误差产生的原因有()。
A:仪器误差B:方法误差C:偶然误差D:试剂误差E:操作误差
答案: A, B, D, E
4准确度的高低用()大小来表示。
9不加试样,按照试样分析步骤和条件平行进行的分析试验,称为_______。通过它主要可以消除由试剂、蒸馏水及器皿引入的杂质造成的_______。
答案:空白试验。仪器和试剂误差
10系统误差的减免是采用校正仪器以及做_______试验、试验和空白试验等办法减免的,而偶然误差则是采用增加_______的办法,减小偶然误差。
19下列一组分析结果的平均偏差为( )。55.51 55.50 55.46 55.49 55.51
A: 55.49B: 0.016C: 0.028D: 0.008
答案: B
20托盘天平读数误差在2克以内,分析样品应称至( )克才能保证称样相对误差为1%。
A: 100克B: 200克C: 150克D: 50克
答案: B
6测定精密度好,表示().
A:系统误差小B:偶然误差小C:相对误差小D:标准偏差小
分析化学 第二章 定量分析中的误差及数据处理
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
误差: 测定值与真实值之间的差值。 一般用绝对误差和相对误差来表示。
绝对误差(E):
测定值(X)与真实值(XT)之间的差值。 E = X ̶ XT
注: 当舍去后,余下数据较少时,应适当补做数据。
例. p.15, 例3
四、 分析测试结果准确度的评价
(一) 分析测试结果准确度的评价 1.用标准物质评价分析结果的准确度 2.用标准方法评价分析结果的准确度 3.通过测定回收率评价分析结果的准确度
(二) 显著性检验
1.F检验法
检验两种方法的精密度有无显著性差异。如果
2. 检验顺序: G检验 → F 检验 → t检验
离群值的 取舍
精密度显著性 检验
准确度或系统误 差显著性检验
五、有效数字及其运算规则 思考题: 下列数据各包括了几位有效数字? (1)0.0330 (2)10.030 (3)89.6 (4)3.30×10-2 (5)pKa 4.74 (6)pH10.2 (7)3.3×10-2
误差的种类及其性质 误差产生的原因及减免方法
(一) 误差的种类及其性质 1. 系统误差 2. 偶然误差 3. 过失误差
1. 系统误差 特点: (1)对分析结果的影响比较恒定; (2)在同一条件下,重复测定,重复出现; (3)影响准确度,不影响精密度; (4)可以消除。
2. 偶然误差 特点:
(1)不恒定 (2)难以校正 (3)服从正态分布
步骤:
(1) 数据从小至大排列x1,x2 ,…… ,xn (2) 计算该组数据的平均值和标准偏差S
分析化学 第二章 定量分析中的误差和数据处理
s
(x x)
i
2
n 1
相对标准偏差(RSD, sr):
sr
教材p42 例2
s 100% x
2.1.4 误差产生原因和减免方法 根据误差来源和性质的不同,定量分析中 的误差分为系统误差和随机误差。
1. 系统误差(可测误差) 由某种固定的原因引起的误差。
系统误差产生的原因: (1)方法误差
思考题: 下列数据各有几位有效数字? (1)0.0330
(2)10.030
(3)89.6 (6)pH=10.2
(4)3.30×10-2 (5)pKa=4.74
2.2.1 有效数字(significant figure)
1. 有效数字为分析中能实际测量到的数字 有效数字位数=所有准确数字 + 一位可疑数字 例:滴定读数20.30mL,最多可以读准前3位 第4位为估读数(可疑数字), 有±1个单位的误差 2. 数字零在数据中有双重作用: (1)若只起定位作用,不是有效数字。 例: 0.0318 为3位有效数字 (2)若作为普通数字使用,为有效数字。 例: 0.03180 为 4位有效数字 3.单位变换不影响有效数字位数 例:10.00(mL)→0.001000(L) 均为4位有效数字
特点: (1)对分析结果的影响比较恒定(单向性); (2)多次测定时重复出现(重复性); (3)影响准确度,不影响精密度; (4)可以校正消除。
(2)仪器和试剂误差 (3)操作误差 (4)主观误差
(1)方法误差:方法选择不合适 例:重量分析中,沉淀不完全或沉淀溶解损失 指示剂选择不当 (2)仪器和试剂误差: 仪器不符合要求(如,天平砝码质量、仪表 刻度、容量器皿刻度不准确等) 所用试剂纯度不够(去离子水不合格、试剂级 别不合适等 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二组:d2= ——— = 0.24 n
第一组:S1 =
0.28
2第020/6二/16 组:S2 =
Analytical chemistry
二 、 精密度与偏差
4.极差 R=测定最大值-测定最小值
_
相对极差=(R / x)×100%
极差:平行测定不多,常采用极差(R)来 说明偏差的范围,极差也称“全距”。
二、精密度与偏差
2.算术平均偏差
_
_ 算术平均偏差d
=
—∑—| x—i-—x—|—
(
i=1,2,
…,n)
n
_ __
相对平均偏差(d%)= (d / x ) × 100%
算术平均偏差:是指单项测定值与平均值的偏差 (取绝对值)之和,除以测定次数。
2020/6/16
Analytical chemistry
定量分析中的误差及 有效数字
2020/6/16
Analytical chemistry
教学指导
学习误差及偏差的概念、种类和计算方法 。
明确准确度、精密度的概念及实际应用中 两者间的关系。
学习分析检验过程中误差产生的原因及特 点。
了解提高分析结果准确度的方法。
掌握有效数字及运算规则。 2020/6/16
偏差:表示几次平行测定结果相互接近的程度。
2020/6/16
Analytical chemistry
二、精密度与偏差
精密度:相同条件下几次重复测定结 果彼此相符合的程度。
精密度大小由偏差表示。 偏差愈小,精密度愈高。
2020/6/16
Analytical chemistry
二、精密度与偏差
偏差 算术平均偏差 偏差的表示 标准偏差 极差 公差
二、精密度与偏差
在一般分析中,通常多采用平均偏差来表示测 量的精密度。
对于一种分析方法所能达到的精密度的考察, 一批分析结果的分散程度的判断以及其它许多 分析数据的处理等,最好采用相对标准偏差等 理论和方法。
用标准偏差表示精密度,可将单项测量的较大 偏差和测量次数对精密度的影响反映出来。
2020/6/16
2020/6/16
Analytical chemistry
一、准确度与误差
误差的表示: 绝对误差(E)=测得值(X) 真实值(T)
测得值(X) 真实值(T)
相对误差(RE)=
×100%
真实值(T)
绝对误差:表示测定值与真实值之差。 相对误差:是指误差在真实值(结果)中所占百分率。
2020/6/16
2020/6/16
Analytical chemistry
二、精密度与偏差
1.偏差 _
绝对偏差(d)=x-x _
x-x 相对偏差(d%)= —— ×100%
_ x
绝对偏差:单项测定与平均值的差值。 相对偏差:绝对偏差在平均值所占百分率或千分 率。
2020/6/16
Analytical chemistry
Analytical chemistry
二、精密度与偏差
3.标准偏差
测定次数趋于无穷大时
总体标准偏差 : Xi 2 / n
μ 为无限多次测定 的平均值(总体平均值) ;即当消除系统误差时,μ即为真实值。
有限测定次数
lim X n
样本标准偏差 : S Xi X 2 / n 1
_
相202对0/6/1标6 准偏差 :(变An异alytic系al ch数emis)try CV% = S / X
Analytical chemistry
第一节 准确度和精密度
准确度与误差 精密度与偏差 准确度与精密度的关系
2020/6/16
Analytical chemistry
一、准确度与误差
例1:测定酒精溶液中乙醇含量为 50.20%; 50.20%; 50.18%; 50.17% 误差:分析结果与真实值之间的差值。 平均值:50.19% 真实值:50.36% 真实值:实际工作中人们常将用标准方法通过多 次重复测定所求出的算术平均值作为真实值。
Analytical chemistry
三、准确度与精密度的关系
例6:现有三组各分 析四次结果的数 据如表所示
(真实值=0.31)
Ⅰ 第一组 0.20 第二组 0.40 第三组 0.36
Ⅱ Ⅲ Ⅳ 平均值 0.20 0.18 0.17 0.19 0.30 0.25 0.23 0.30 0.35 0.34 0.33 0.35
Analytical chemistry
一、准确度与误差
准确度:实验值与真实值之间相符合的 程度。
误差越小,准确度越高; 误差越大,准确度越低。
2020/6/16
Analytical chemistry
一、准确度与误差
例2:测定值57.30,真实值57.34 测定值为80.35,真实值80.39
二、精密度与偏差
例4:55.51,55.50,55.46,55.49,55.51 __ _
求:x,d,d%
J解: _
X=55.49_
_ ∑ | xi-x | d = ——————_= 0.016 _ _ 相对平均偏n 差(d%)= (d / x) × 100%
2020/6/16
= 0.016/55.49 = 0.028%
2020/6/16
Analytical chemistry
二、精密度与偏差
5.公差 又称允差,是指某分析方法所允许的平行测定间 的绝对偏差。
※ 若2次平行测定的数据之差在规定允差绝对值 的2倍以内,认为有效,如果测定结果超出允许 的公差范围,成为“超差”,就应重做。
2020/6/16
Analytical chemistry
求:绝对误差(E),相对误差(RE)
讨论:绝对误差与相对误差的不同?
2020/6/16
Analytical chemistry
二、精密度与偏差
例3:
甲
50.20
50.20
50.18
50.17
平均值: 50.19
真实值:50.36
乙 50.40 50.30 50.25 50.23 50.30
丙 50.36 50.35 50.34 50.33 50.35
二、精密度与偏差
例5:甲:0.3,0.2,0.4,-0.2,0.4,0.0,0.1,0.3,0.2,-0.3 乙:0.0,0.1,0.7,0.2,0.1,0.2,0.6,0.1,0.3,0.1
求:第一组和第二组即甲组和乙组的d和S。
_ ∑ | di |
第一组:d1= ——— = 0.24
n
由此说明