《理论力学》第十章--动量矩定理试题及答案
理论力学试题含答案
精选文档理论力学试题及答案一、是非题(每题2分。
正确用√,错误用×,填入括号内。
)1、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必定均衡。
2、力关于一点的矩不因力沿其作用线挪动而改变。
()3、在自然坐标系中,假如速度υ=常数,则加快度α=0。
()4、虚位移是偶想的,极细小的位移,它与时间,主动力以及运动的初始条件没关。
5、设一质点的质量为m,其速度与x轴的夹角为α,则其动量在x轴上的投影为mvx=mvcosa。
二、选择题(每题3分。
请将答案的序号填入划线内。
)1、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果是。
①主矢等于零,主矩不等于零;②主矢不等于零,主矩也不等于零;③主矢不等于零,主矩等于零;④主矢等于零,主矩也等于零。
2、重P的均质圆柱放在V型槽里,考虑摩擦柱上作用一力偶,其矩为 M时(如图),圆柱处于极限均衡状态。
此时按触点处的法向反力N A与N B的关系为。
①N A=NB;②N A>NB;③N A<NB。
3、边长为L的均质正方形平板,位于铅垂平面内并置于圆滑水平面上,如图示,若给平板一细小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C点的运动轨迹是。
①半径为L/2的圆弧;②抛物线;③椭圆曲线;④铅垂直线。
4、在图示机构中,A//O2B,杆O2C//O3D,且O1A=20cm,O2C=杆O140cm,CM=MD=30cm,若杆AO1以角速度ω=3rad/s匀速转动,则D点的速度的大小为cm/s,M点的加快度的大小为cm/s2。
①60;②120;③150;④360。
.精选文档5、曲柄OA以匀角速度转动,当系统运动到图示地点(OA//O1B。
AB |OA)时,有V A V B,A B,ωAB 0,AB 0。
①等于;②不等于。
三、填空题(每题5分。
请将简要答案填入划线内。
)1、已知A重100kN,B重25kN,A物与地面间摩擦系数为0.2。
理论力学10—动量定理
p 2m1vC m1vC1 m2v A m2v B
B
m2 vB 2m1vC
C
C
C1 m1vC1 O t
m2 v A A
x
v A 2l sin t
vB cos(90 t ) vc cos(90 2t ) B c vB 2l cos t B
10.2
动量定理
F fN C f ( P sin 45 mg cos30 )
从而摩擦力为
0 0 tt 0 tt
动量定理积分形式应用时经常使用投影式:
tt
若作用于质点上的外力主矢恒等于零,则质点的动量守恒, 此即质点的动量守恒定律。 若作用于质点上的外力在某轴上投影的代数和恒等于零,则 质点的动量在该轴上的投影守恒,此即质点对轴的动量守恒 定律。
10.2
动量定理
y
例4 锤的质量m=3000 kg,从高度h=1.5 m 处自由下落到受锻压的工件上,工件发生变 形历时τ=0.01s ;求锤对工件的平均压力。 解:以锤为研究对象,和工件接触后受力如图。 工件反力是变力,在短暂时间迅速变化,用 平均反力N*表示。 锤自由下落时间
d ri vi dt
代入式10—1,注意到质量mi是不变的,则有
d ri d p mi vi mi mi ri dt dt i 1 i 1
令
M mi
n
n
为质点系的总质量
10.1
动量与冲量
m r m r i i i i rC mi M
1 p mvC ml 2
10.1
动量与冲量
vC C
动量矩定理
思 考 题9-1. 质点系的动量按公式i i c m m ==∑I v v 计算,那么质点系的动量矩是否也可以按公式()()o o i i o c m m ==∑L M v M v 计算?为什么?9-2. 花样滑冰运动员利用手臂伸张和收拢来改变旋转速度,试说明其原因。
9-3. 坐在转椅上的人不接触地面,能否使转椅转动?为什么?9-4. 为什么直升飞机要有尾桨?如果没有尾桨,直升飞机飞行时将会怎样? 9-5.传动系统中J 1、J 2为轮I 、轮II 的转动惯量,轮I 的角加速度按式1112M J J α=+对吗?9-6. 质量为m 的均质圆盘,平放在光滑的水平面上,受力情况如图所示,设开始时,圆盘静止,图中R =2r 。
试说明各圆盘将如何运动。
思考题9-6图思考题9-5图习题9-4图习 题9-1 如图所示,已知均质杆的质量为M ,对1z 轴的转动惯量为1J ,求杆对2z 的转动惯量2J 。
9-2 均质直角折杆尺寸如图所示,其质量为3m ,求其对轴O 的转动惯量。
9-3 质量为m 的点在平面Oxy 内运动,其运动方程为:tb y ta x ωω2sin cos ==式中a 、b 和ω为常量。
求质点对原点O 的动量矩。
9-4 如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。
(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。
习题9-2图习题9-1图习题9-5图习题9-7图9-5如图所示水平圆板可绕z 轴转动,在圆板上有一质点M 作圆周运动,已知其速度的大小为常量,等于v 0,质点M 的质量为m ,圆的半径为r ,圆心到z 轴的距离为l ,M 点在圆板的位置由ϕ角确定,如图所示。
理论力学第七版第十章 动量定理
(1) 质点具有惯性,其质量是惯性的度量 质点具有惯性, (2)作用于质点的力与其所产生的加速度成比例 (2)作用于质点的力与其所产生的加速度成比例 (3)作用力与反作用力等值、方向、共线, (3)作用力与反作用力等值、方向、共线,分别 作用力与反作用力等值 作用于两物体上。 作用于两物体上。
§10-1 动量与冲量 10一、冲 量
单位: N·s 1、常力的冲量 常力与作用时间t的乘积 F·t 称为常力的冲量。并用I表 常力与作用时间t 称为常力的冲量。并用I 冲量是矢量,方向与力相同。 示,冲量是矢量,方向与力相同。
I = F⋅ t
2、变力的冲量 若力F是变力, 若力 是变力,可将力的作用时间 t 分成无数的微小时间 是变力 dt,在每个 dt 内,力 F 可视为不变。 可视为不变。 , 元冲量——力 元冲量——力F在微小时间段 dt 内的冲量称为力F 的元冲量。 内的冲量称为力F 元冲量。 变力 F 在 t1~t2 时间间隔内的冲量为: 时间间隔内的冲量为:
§10-2 动量定理 10二、冲量定理
p2 − p1 = ∑∫ F dt ≡ ∑I
t1
t2
t2
(e)
具体计算时,往往写成投影形式, 具体计算时,往往写成投影形式,即
p2x − p1x = ∑∫ Fx dt ≡ ∑Ix
t1
(e)
p2y − p1y = ∑∫ Fy dt ≡ ∑Iy
t2 t1
(e)
p2z − p1z = ∑∫ F dt ≡ ∑Iz z
I = ∫ Fdt
t1
t2
§10-1 动量与冲量 102、变力的冲量
t
I =∫ F dt
理论力学:动量矩定理
y’
2020/12/9
Fe maA aA mg
B
A
FN 1
F1
FN 2
x’
F2
10
理论力学
§6-2 动量矩定理
例:滑块A可在光滑水平面上滑动,为使AB杆以匀角速度 绕
铰链A转动,求作用在AB杆上的力偶M。设:m1 m2 m, AB L
y
FN
解:1、取滑块A和小球B为研究对象
2、受力分析与运动分析
m1 m2
2020/12/9
11
理论力学
§6-2 动量矩定理
y FAy
A
o
FAx aA xA x
3、研究AB杆和小球B,受力分析 4、应用相对动轴A的动量矩定理
dLrA
dt
n
M A (Fi(e) )
i1
rAC (maA )
A
M
杆相对A轴的动量矩
LrA m2L2
B m2xA 外力对A轴之矩
问题:若滑块不脱离地面,试确定AB杆的最大角速度。
2020/12/9
13
理论力学
§6-2 动量矩定理
2020/12/9
14
理论力学
§6-2 动量矩定理
思考题:图示系统中,系统结 构不同,求解方法是否相同?
m1 A
M
m1 A
M
m2
B
2020/12/9
m1 A
M
m2
R
m3 B
m2 B
15
理论力学
§6-2 动量矩定理
mg
B
AB L
2020/12/9
§6-2 动量矩定理
L
3(g 2
动量矩定理作业参考答案及解答
g (顺时针), 2r
FOx = 0,
1 FOy = mg (↑) 2
6.如题图所示,有一轮子,轴的直径为 50mm,无初速的沿倾角θ=20°的轨道
滚下,设只滚不滑,5s 内轮心滚过的距离为 s=3m。试求轮子对轮心的惯性半径。
s
提示:本题用刚体平面运动微分方程求解。注意到轮心加速度可由式 1 s = at 2 求得,且轮心加速度 a 与轮子角加速度α关系 a = rα ,其中 r 为轮轴的 2 半径。 解:
a mg
Ff × r = mρ α
2
由以上两式消去 Ff 得 ρ 2 =
r ( g sin θ − a )
α
=
r 2 t 2 g sin θ − r 2 = 8113(mm) 2 2s
ρ= & 90mm
r 2 t 2 g sin θ − r 2 = 8113(mm) 2 , ⇒ 2s
答案: ρ 2 =
整个系统对轴 O 的动量矩守恒
p 1 p LO = L1 + L2 = r 2 1 ω + 2 r (ωr − at ) = 0 2 g g
解得
ω=
2aP2 t , r (2 P2 + P1 )
α=
2aP2 dω = dt r (2 P2 + P1 )
答案: ω =
2aP2 t , r (2 P2 + P1 )
vB
A
ωB
B
D
1 1)对杆分析,杆对轴 A 的动量矩 L A1 = m2 R 2ω 3 2)对轮分析
ω B R = ωl
ωB =
齿轮对轮心 B 的动量矩为 齿轮对轴 A 的动量矩为
ωl
理论力学课后习题答案-第10章--动能定理及其应用-)
理论力学课后习题答案-第10章--动能定理及其应用-)(a)v ϕABC rv 1v 1v 1ωϕ(a)CCωCvωO第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.222222163)2(2121)2(212121BBB CCCmv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m vm T +=⋅++= 3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a ) B AT T T +=)2121(21222211ωC CJ vgWv g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
(完整版)动量定理精选习题+答案
三、计算题(本大题共 10 小题,共 100.0 分)
M 在水平轨道上向右移动了 0.54 m
11. 如图所示,质量为 5kg 的木板 B 静止于光滑水平面上,物块 A 质量为 5kg,停在 B 的左端 .质量为 1kg
的小球用长为 0.45??的轻绳悬挂在固定点 O 上,将轻绳拉直至水平位置后, 由静止释放小球, 小球在最
m 的静
止木块发生碰撞,碰撞的时间极短 .在此碰撞过程中,下列哪个或哪些说法是可
能发生的? ( )
A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为
??1、 ??2 、 ?3?,满足 (?? + ??0 )??= ???1? +
???2? + ??0 ??3
B. 在此碰撞过程中, 小球的速度不变, 小车和木块的速度分别为 ?1?和 ?2?,满足 (?? + ??0)??= ???1?+ ???2?
4
B. 5 ??0
1
C. 5 ??0
1
D. 25 ??0
2. 如图所示,小车静止在光滑水平面上, AB 是小车内半圆弧轨道的水平直径,现 将一小球从距 A 点正上方 h 高处由静止释放,小球由 A 点沿切线方向经半圆轨 道后从 B 点冲出,在空中能上升的最大高度为 0.8? ,不计空气阻力 .下列说法正 确的是 ( )
1
理论力学答案完整版(清华大学出版社)10
子 C 沿水平轨道滚动而不滑动,试求重物 A 的加速度。
解: 取整个系统为研究对象,自由度为 1。设重物速度为 vA ,则轮
题 10-9 图
的角速度 ω = vA ,轮心速度为 R−r
vO
=
R
r −
r
vA 。系统的动能为
( ) T
拉格朗日方程的普遍形式
d dt
∂L ∂q& j
− ∂L ∂q j
= Q′j
( j = 1,2,..., m)
式中 Q′j 为非有势力对应的广义力。
矢量方法
动量法:动量定理
动量矩定理 质心运动定理 定轴转动微分方程 平面运动微分方程
质点系统动力学
动静法
动能定理
能量方法
拉格朗日方程
3 保守系统拉格朗日方程的初积分
10-3 质量为 m1 的匀质杆,长为 l,一端放在水平面上, 另一端与质量为 m2、半径为 r 的匀质圆盘在圆盘中心 O 点 铰接。圆盘在地面上作纯滚动,圆心速度为 v。求系统在此
题 10-3 图
位置的动能。
解:杆作平移,动能为
T1
=
1 2
m1v2
;
圆盘作纯滚动,动能为
T2
=
1 2
m2v2
+
1 2
mivi
⋅ vi
,
其中 n 为系统中的质点数目,可以是有限或无穷,mi 和 vi 分别为各质点的质量和速度。 平
移刚体的动能 T = 1 mv2 , 2
其中 m 为平移刚体的质量。
定轴转动刚体的动能
T
=
1 2
11 动量矩定理习题解答
R
O ve
r o B
vr
[解]
研究整体,由于∑Mz (F)= 0,且系统初始静止, 所以 Lz = 0,即 L z 盘+ L z 人 = 0 式中 Lz 盘= J z =
1P 2 R 2g
L z 人= 解得
ds Q (v -v )r, v = rω , vr at e r e dt g
解:重物 A 和 B 速度 v A vB r ,
LO m1v A r m2 vB r J O 1 m1r r m2 r r m3r 2 2
A
B (c)
vA
vB
m1 g
m2 g
1 2 m1 m2 m3 r 2
…….. ①
对 B 轮,有
…….. ②
P aB P FT1 g
…….. ③
FT1 FT1
…….. ④
再以轮与绳相切点 D 为基点,则轮心 B 的加速度
v B v D v BD ,式中 v D r A , v BD r B
∴ v B r A r B , 对上式求导得轮心 B 的加速度为
Fx maCx , FNA maCx , Fy maCy , FNB mg maCy , M C ( F ) J C , FNB l cos FNA l sin 1 ml 2 2 2 12
l 2 FNA 2 ( sin cos )m, l 2 FNB mg ( cos sin )m, 2 l l 1 2 FNB 2 cos FNA 2 sin 12 ml
A
动量矩定理10
FxA
N Ff F
F F yA f'
N'
X0
ω
Y0
Ff
fN
f
Fl b
,
J
0
Ff r
Ff r fFlr 2 fFl , d d d
J0 J0b mrb
d dt d
2 fFl , d d d
mrb
d dt d
0 d
2 fFl mrb
0
d
2mrb n
4 fFl
FN
a 60 Ff
mgr2 sin 600 r2 fmg cos 60o r2FT mar2 (4)
(3) (4) : a
3r 2 2
fr R
2 r2
r
g
1.29
m
s2
习题12.21 如图所示,两根质量均为8kg的均质细杆固
连成T字形,可绕通过O点的水平轴转动,当OA处于水 平位置时,T形杆具有角速度ω=4rad/s。求该瞬时轴承 O处的约束反力。
Fox mg
c
(b)
m
l
2
macy
Fiye mg Foy
(c)
联立(a)、(b)、(c)解得
Fox 0
Foy
1 4
mg
(2)杆落至任意角φ时,所受的外力有:重力mg、
o处约束反力 FOn 、FO
杆运动的角速度、角加
速度均未知。欲求O处 约束力,必先求质心加
0.25m 0.25m
解:由题意知T字形刚体质心在C0点, 2m=16kg
C0 0.375m
由质心运动定理知
F 0x
ω an
C aτ
2man Fox
理论力学课后习题答案-第10章--动能定理及其应用-)
(a)A(a)O第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v(图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.222222163)2(2121)2(212121BB BC C C mv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a )B A T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。
试求行星齿轮机构的动能。
理论力学10动量矩定理
在更高维度的空间中,动量矩定理可以通过向量的外积和叉积进行推广,适用于描述更复杂系统的动量矩变化。
n维空间推广
定理在更高维度空间的应用
多体系统
动量矩定理可以应用于多体系统,描述多个刚体之间的相互作用和运动关系,为多体动力学提供了基础。
非惯性参考系
在非惯性参考系中,动量矩定理需要考虑科里奥利力和离心力等因素的影响,以准确描述系统的动量矩变化。
定理证明的思路
在证明过程中,需要引入质点的质量、速度、位置矢量等概念,以及力、力矩等物理量。
引入相关概念
根据物理定律和数学公式,进行详细的数学推导,包括向量的点乘、叉乘等运算。
进行数学推导
经过推导,得出动量矩定理的结论,即质点系的动量矩等于外力矩对时间的积分。
得出结论Βιβλιοθήκη 定理证明的过程通过证明,得出的动量矩定理表述为:质点系的动量矩等于外力矩对时间的积分。
力矩的作用
力矩是描述力对物体运动轴的转动效应的物理量。在动量矩定理中,力矩的作用是改变物体的动量,即改变物体的运动状态。
时间和空间的影响
动量矩定理不仅涉及到物体的运动状态(动量和速度),还涉及到时间的变化率(即加速度),以及力作用的空间效应(即力矩)。因此,这个定理全面地描述了物体在空间和时间中的运动规律。
定理的物理意义
02
CHAPTER
定理的证明
首先明确动量矩定理的定义和意义,即对于一个质点系,其动量矩与外力矩之间的关系。
引入动量矩定理
建立证明框架
推导定理的表达式
根据定理的证明需求,建立证明的框架,包括定义、假设、推导和结论等部分。
根据牛顿第二定律和动量定理,推导出动量矩定理的表达式。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学11章作业题解
11-3 已知均质圆盘的质量为m ,半径为R ,在图示位置时对O 1点的动量矩分别为多大?图中O 1C=l 。
解 (a) 2
1l m l mv L c O w == ,逆时针转动。
(b) w w 2
210||1mR J L v m r L c c c O =+=+´=r
r ,逆时针转动。
(c ) )2(2
2
212
2
212
1l R m ml mR ml J J c O +=+=+=
w w )2(2
22111l R m J L O O +==,逆时针转动。
(d)
w
w mR R l mv R l R v mR l mv J l mv L v m r L c c c c c c c O )5.0()5.0(/||2
2
11-=-=-=-=+´= r r
,顺时针转动
解毕。
v c
v c
v c
11-5 均质杆AB 长l 、重为G 1,B 端刚连一重G 2的小球,弹簧系数为k ,使杆在水平位置保持平衡。
设给小球B 一微小初位移0d 后无初速度释放,试求AB 杆的运动规律。
解 以平衡位置(水平)为0=j ,顺时针转为正。
平衡时弹簧受力为:
)5.0(312G G F s +=
弹簧初始变形量:
k G G k F s st /)5.0(3/12+==d
在j 角时弹簧的拉力为(小位移):
3/)5.0(3)3/(12l k G G l k F st s j j d ++=+=¢
系统对A 点的动量矩:
j j j
&&&2
21233l g
G G l l g G J L A A +=×+= 对点的动量矩定理)(/å=E
i A A F M dt dL r :
j j 9
3/5.0332
21221kl l F lG lG l g G G s -=¢-+=+&& 0)3(321=++j j
G G gk &&,令)
3(3212G G gk
p +=则有02=+j j
p &&,其解为: )cos()sin(pt B pt A +=j
由初始条件0| ,/|000====t t l j
d j &得l B A / ,00d ==。
故运动方程为: )cos(0
pt l
d j =
解毕。
G 1
G 2
F Ax F Ay
F s
11-10 一半径为r 、重为W 1的均质水平圆形转台,可绕通过中心O并垂直于台面的铅直轴转动。
重W 2的物块A ,按规律s =at /2 沿台的边缘运动。
开始时,圆台是静止的。
求物块运动以后,圆台在任一瞬时的角速度与角加速度。
解 (1)运动分析
物块A的相对速度: at dt ds v r ==/ (2)受力分析 (3)建立动力学方程
0)(==\=åconst L F M z i z Q
0)(2=-+=r m v r J L r z w w r
W W at
W )2(2212+=
w 求导得角加速度:
r
W W a
W )2(2212+=
a
解毕。
W 1
W 2
F x
F y
F z
m x m y
z
v r
11-17 均质圆柱体A 和B 的重量均为W ,半径均为r 。
一绳绕于可绕固定轴O 转动的圆柱A 上,绳的另一端绕在圆柱B 上。
求B 下落时质心的加速度。
摩擦不计。
解 (1) 运动分析
系统有2个独立的坐标参数,设两轮的角速度为ωA 和ωB 。
则有合成运动可得:r r v B A C w w +=
上式恒成立可求导得:r r a B A C a a += (2) 受力分析 (3) 建立动力学方程 对轮A:
r F J A O 1=a
对轮B:
1
1F mg ma r F J C B C -==a
3个方程求解3个未知量:1,,F B A a a
得:g a 54
=,
解毕。
C
v C
A
w
B
w
C mg
mg
F 1F R
11-19 半径为r 的均值圆轮在半径为R 的圆弧面上作纯滚动。
初瞬时0j j =(微小),00=j
&。
试求圆轮的运动方程。
解 圆轮由于受约束只有1个自由度,取广义坐标j 描述圆轮的运动。
(1)运动分析
r r R r R a r r R r R v t
C C /)( ),(/)( ),(-=-=-=-=j a j
j w j
&&&&&&
(2)受力分析,作示力图
(3)用刚体平运动微分方程建立圆轮的动力学方程
îíì-=--=-Fr r r R mr mg F r R m /)(sin )(2
2
1j j j
&&&& 解得:0sin )
(32=-+j j
r R g
&&
由于j 微小,故有j j »sin ,方程可简化为(另)
(322r R g
k -=
)
02=+j j
k && 其解为:)cos()sin(kt B kt A +=j 由初始条件得:0 ,0j ==B A 故运动方程为:) )
(32cos()cos(00t r R g
kt -==j j j
解毕。
W
F
F N
v C
w
11-23 长l 、质量为m 的均质杆AB 与BC 在B 点刚连成直角后置于光滑的水平面上。
试求在A 端作用一与AB 垂直的水平力F 后A 点的加速度。
解:首先求质心E 的加速度(E 在BD 的中点,D 在AC 的中点)。
根据质心运动定理可以判断初始质心在y 向无加速度。
设E 点的x 向加速度为a E ,杆的角加速为a 。
由质心运动定理得 îí
ì´==l F J F
ma E E 4
3
2a 式中2
1252
812
121
)(2ml l m ml J E =´+=,由方程可以解得
)2/(m F a E =,)5/(9ml F =a
基点法求A 点加速度
n
EA t EA E A a a a a ++=r
其中0=n
EA a EA a
t EA
´=a
m
F
l ml F m F a a a t EA
E Ax
203743592cos =´+=´+=q
m
F
l ml F a a t
EA Ay 209459sin -=´-
=´-=q
解毕。
11-25 两根质量m 、长度l 的均质杆构成的系统如图示(初始处于静止状态)。
如在B 端作用一个已知力F ,试求此时两根杆的角加速度。
解 (1) 运动分析
系统有2个独立的运动参数。
设OA 、AB 杆的角加速度为α1,α2。
OA 杆质心加速度(只有切向分量):
2/1l a t D
a =
AB 杆质心加速度用基点法计算(只有水平分量):
2/21l l a
a a t CA t A t C a a +=+=
(2) 受力分析 (3) 建立动力学方程 对OA 杆:l F J Ax O =1a
对AB 杆:mg
F m F F ma l F Fl J Ay Ax
t
C
Ax C -=×-=+=02
/2/2a
4个方程求解4个未知量:Ay Ax F F ,,,21a a 得:ml F 761=a ,ml
F
7302=a 。
解毕。
O
O B
C。