二次函数基础训练基础训练(精编)
初中数学二次函数综合基础训练题3(附答案详解)
初中数学二次函数综合基础训练题3(附答案详解)1.在同一坐标系中,函数y =ax 2+bx 与y =b x的图象大致为( ) A . B . C . D . 2.已知 23M x x =-, 5N x =-(x 为任意实数),则M 、N 的大小关系为( ) A .M N < B .M N > C .M N D .不能确定 3.课堂上,老师给出一道题:如图,将抛物线C :y =x 2﹣6x +5在x 轴下方的图象沿x 轴翻折,翻折后得到的图象与抛物线C 在x 轴上方的图象记为G ,已知直线l :y =x +m 与图象G 有两个公共点,求m 的取值范围甲同学的结果是﹣5<m <﹣1,乙同学的结果是m >54.下列说法正确的是( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确4.如图,抛物线y=-x 2+2x+m+1交x 轴于点A (a ,0)和B (B ,0),交y 轴于点C ,抛物线的顶点为D .下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1< x 2,且x 1+ x 2>2,则y 1> y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m=2时,四边形EDFG 周长的最小值为,其中正确判断的序号是( )A .①B .②C .③D .④5.如图,抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)M 在抛物线上,线段MA 绕点M 顺时针旋转90°得MD ,当点D 在抛物线的对称轴上时,求点M 的坐标;(3)P 在对称轴上,Q 在抛物线上,以P ,Q ,B ,C 为顶点的四边形为平行四边形,直接写出点P 的坐标.6.如图,抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点D ,抛物线的顶点为C .(1)求A ,B ,C ,D 的坐标;(2)求四边形ABCD 的面积.7.已知抛物线2y ax bx c =++与x 轴交于A ,B ,与y 轴交下点C ,请仅用无刻度直尺按要求作图:(1)在图1中,直线l 为对称轴,请画出点C 关于直线l 的对称点;(2)在图2中,若CD x 轴,请画出抛物线的对称轴.8.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧);(3)求△OBC 的面积.9.抛物线y =﹣x 2+mx +n 与x 轴的一个交点为(﹣1,0),对称轴是直线x =1, (1)抛物线与x 轴的另一个交点坐标为 ;m = ,n = .(2)画出此二次函数的图象;(3)利用图象回答:当x 取何值时,y ≤0?10.二次函数2642y x x =--(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点()3, 4-是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.11.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x 的二次函数y 1=2x 2﹣4mx+2m 2+1,和y 2=x 2+bx+c ,其中y 1的图象经过点A(1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求当0≤x≤3时,y 2的取值范围.12.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.13.已知二次函数y=ax2+bx+3(a≠0)图象的对称轴是直线x=2,且经过点P(3,0).(1)求这个二次函数的解析式;(2)若y≤0,请直接写出x的取值范围;(3)若抛物线y=ax2+bx+3﹣t(a≠0,t为实数)在0<x<3.5的范围内与x轴有公共点,求出t的取值范围.14.如图,抛物线y=﹣12x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.15.一个抛物线形状与二次函数y =x 2的图象形状和顶点相同,但开口方向不同. (1)求抛物线解析式.(2)如果该抛物线与一次函数y =kx ﹣2相交于A 、B 两点,已知A 点的纵坐标为﹣1,求△OAB 的面积.16.如图,已知抛物线2142y x x =--+与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于C .(1)求点A 、B 、C 的坐标;(2)若点E 与点C 关于抛物线的对称轴对称,求梯形AOCE 的面积.17.已知抛物线y =ax 2+bx+3过A(﹣3,0),B(1,0)两点,交y 轴于点C ,(1)求该抛物线的表达式.(2)设P 是该抛物线上的动点,当△PAB 的面积等于△ABC 的面积时,求P 点的坐标. 18.已知函数y 1=-13x 2 和反比例函数y 2的图象有一个交点是 A a 1). (1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么范围内取值时,对于x 的同一个值,都有y 1<y 2? 19.已知:抛物线2y x bx c =-++,经过点A(-1,-2),B(0,1).(1)求抛物线的关系式及顶点P 的坐标.(2)若点B′与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.①求∠P′B B′的大小.②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M 处,设点N 在(1)中的抛物线上,当△MN B′的面积等于63时,求点N 的坐标.20.如图,抛物线223y x mx m =-+与x 轴交于,A B 两点,与y 轴交于点()0,3C -.(1)求该抛物线的解析式;(2)若点E 为线段OC 上一动点,试求22AE EC +的最小值; (3)点D 是y 轴左侧的抛物线上一动点,连接AC ,当DAB ACO =∠∠时,求点D 的坐标.21.如图,在正方形ABCD 中,点E 在对角线BD 上,EF ∥AB 交AD 于点F ,连接BF .(1)如图1,若AB =4,DE 2,求BF 的长;(2)如图2.连接AE ,交BF 于点H ,若DF =HF =2,求线段AB 的长;(3)如图3,连接BF ,AB =2,设EF =x ,△BEF 的面积为S ,请用x 的表达式表示S ,并求出S 的最大值;当S 取得最大值时,连接CE ,线段DB 绕点D 顺时针旋转30°得到线段DJ,DJ与CE交于点K,连接CJ,求证:CJ⊥CE.22.已知抛物线y=kx2-4kx+3k(k>0)与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,顶点为D.(1)如图1,请求出A、B两点的坐标;(2)点E为x轴下方抛物线y=kx2-4kx+3k(k>0)上一动点.①如图2,若k=1时,抛物线的对称轴DH交x轴于点H,直线AE交y轴于点M,直线BE交对称轴DH于点N,求MO+NH的值;②如图3,若k=2时,点F在x轴上方的抛物线上运动,连接EF交x轴于点G,且满足∠FBA=∠EBA,当线段EF运动时,∠FGO的度数大小发生变化吗?若不变,请求出tan∠FGO的值;若变化,请说明理由.23.在Rr△ABC中,∠C=90°,AC=BC=1,点O为AB的中点,点D、E分别为AC、AB边上的动点,且保持DO⊥EO,连接CO、DE交于点P.(1)求证:OD=OE;(2)在运动的过程中,DP•EP是否存在最大值?若存在,请求出DP•EP的最大值;若不存在,请说明理由.(3)若CD=2CE,求DP的长度.24.如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,F 为AB 的中点,连接CF ,CD ,当△CDE 中有一个角与∠CFO 相等时,求点D 的横坐标;若不存在,请说明理由.25.在平面直角坐标系中,抛物线21y x 6x 42=-+的顶点M 在直线L :y kx 2=-上. ()1求直线L 的函数表达式;()2现将抛物线沿该直线L 方向进行平移,平移后的抛物线的顶点为N ,与x 轴的右交点为C ,连接NC ,当tan NCO 2∠=时,求平移后的抛物线的解析式.26.二次函数 223y x x =++ 图像的对称轴是直线____.27.已知抛物线y =x 2﹣4x +h 的顶点A 在直线y =﹣4x ﹣1上,则抛物线的顶点坐标为_____.28.二次函数223y x =的图象如图所示,点A 0位于坐标原点,A 1,A 2,A 3,…,A 2009在y 轴的正半轴上,B 1,B 2,B 3,…,B 2009在二次函数223y x =第一象限的图象上,若△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2008B 2009A 2009都为等边三角形,计算出△A 2008B 2009A 2009的边长为_____.29.(在平面直角坐标系xOy中,抛物线y=ax2+4ax+4a+1(a<0)交x轴于A,B两点,若此抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)有且只有8个整点(横、纵坐标都是整数的点),则a的取值范围是__.30.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3…如此进行下去,则C2019的顶点坐标是_____.参考答案1.D【解析】试题解析:A、根据反比例函数得出b>0,根据二次函数得出a>0,b<0,所以b的范围不同,故本选项错误;B、根据反比例函数得出b>0,根据二次函数得出a<0,b<0,所以b的范围不同,故本选项错误;C、根据反比例函数得出b<0,根据二次函数得出a>0,b>0,所以b的范围不同,故本选项错误;D、根据反比例函数得出b>0,根据二次函数得出a<0,b>0,所以b的范围相同,故本选项正确;故选D.2.B【解析】【分析】首先根据题意分别画出两个函数图像,然后根据图像即可比较大小.【详解】根据题意,分别画出函数图像,如图所示根据图像即可判定M N故答案为B.【点睛】此题主要考查利用函数图像进行比较大小,熟练掌握,即可解题. 3.C【解析】【分析】当直线过抛物线与x轴右侧的交点时,恰有一个交点;直线y=x+m向上移,经过g左侧交点之前均为两个交点;继续向上平移,直到经过G中间的顶点(3,4)之前均为三个交点;最终向上平移,均有两个交点.【详解】解:令y=x2﹣6x+5=0,解得(1,0),(5,0)将点(1,0),(5,0)分别代入直线y=x+m,得m=﹣1,﹣5;∴﹣5<m<﹣1由题可知,图象C关于x轴对称的抛物线的顶点为(3,4),a=-1则解析式为y=-x2+6x-5联立265y x m y x x =+⎧⎨=-+-⎩25(5)0x x m -++=254200m ∆=--≤∴m >54综上所述,m >54或﹣5<m <﹣1 故选C .【点睛】本题主要考查抛物线与直线的交点问题,熟练掌握抛物线的性质是解题的关键.4.C【解析】【分析】【详解】试题解析:①当x >0时,函数图象过一四象限,当0<x <b 时,y >0;当x >b 时,y <0,故本选项错误;②二次函数对称轴为x=-22(1)⨯-=1,当a=-1时有12b -+=1,解得b=3,故本选项错误; ③∵x 1+x 2>2, ∴122x x +>1, 又∵x 1-1<1<x 2-1,∴Q 点距离对称轴较远,∴y 1>y 2,故本选项正确;④如图,作D 关于y 轴的对称点D′,E 关于x 轴的对称点E′,连接D′E′,D′E′与DE 的和即为四边形EDFG 周长的最小值.当m=2时,二次函数为y=-x2+2x+3,顶点纵坐标为y=-1+2+3=4,D为(1,4),则D′为(-1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,-3);则22(21)(34)2-+-=22(12)(34)58--+--=;∴四边形EDFG258故选C.考点:抛物线与x轴的交点.5.(1)y=﹣x2+x+2;(2)点M(1021012-)或(102-,1102--)或(1+102,13310+1﹣10213310-);(3)点P(12,14)或(12,﹣154)或(12,34).【解析】【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣2)=a(x2﹣x﹣2),即可求解;(2)设点M(m,﹣m2+m+2)顺时针旋转90°此时点M即为点D(﹣m2+m+2,﹣m﹣1),即可求解;(3)分BC是平行四边形的边、BC是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:y=a(x+1)(x﹣2)=a(x2﹣x﹣2),﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)设点M(m,﹣m2+m+2),过点M作y轴的平行线HN,交过点A与x轴的平行线于点H,交x轴于点N,∵∠DMH+∠HDM=90°,∠DMH+∠AMN=90°,∴∠DHM=∠AMN,又∵∠MHD=∠ANM=90°,AM=MD,∴△MDH≌△AMN(ASA),∴DH=MN,即:﹣m2+m+2=|12﹣m|,解得:m=10±或110,故点M 10101-)或(10110--)或(1013310+11013310-);(3)设点Q(m,n),n=﹣m2+m+2,点P(12,s),点B、C的坐标分别为:(2,0)、(0,2),①当BC是平行四边形的边时,点C向右平移2个单位向上平移2个单位得到B,同样点Q(P)向右平移2个单位向上平移2个单位得到点P(Q),则m+2=12,n﹣2=s或m﹣2=12,n+2=s,解得:s=14或﹣154,故点P(12,14)或(12,﹣34);②当BC是平行四边形的对角线时,m+12=2,n+s=2,解得:s=34,故点P(12,34),综上,故点P的坐标为:(12,14)或(12,﹣154)或(12,34).【点睛】本题考查了二次函数的综合性问题,能够正确求出函数解析式以及读懂题干意思,画出具体图形,求出点的坐标是解题的关键6.(1)A(﹣1,0),B(3,0),C(1,﹣4),D(0,﹣3);(2)9.【解析】【分析】(1)根据题目中的函数解析式可以求得A,B,C,D的坐标;(2)根据(1)中求得的点A,B,C,D的坐标,可以求得四边形ABCD的面积.【详解】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1)=(x﹣1)2﹣4,∴当y=0时,x1=3,x2=﹣1,当x=0时,y=﹣3,该函数的顶点坐标为(1,﹣4),∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D的坐标为(0,﹣3);(2)连接OC,如图所示,∵点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D的坐标为(0,﹣3),∴四边形ABCD的面积是:S△AOD+S△ODC+S△OCB=313134++=9 222⨯⨯⨯.【点睛】本题考查了二次函数中点的特征以及四边形的面积,掌握二次函数的性质是解题的关键7.(1)见解析;(2)见解析【解析】【分析】(1)运用画对称轴的作图技巧,连接CB交于对称轴一点,再连接A点与此点,与函数图像的交点即对称点,(2)用无刻度直尺连接CB,AD交于一点,连接AC,BD并延长交于一点,再连接这两点,此线即直线m.【详解】解:(1)如图1,点E即为所求(画法不唯一);(2)如图2,直线m即为所求.【点睛】本题考查轴对称图形的画法,抛物线的性质,熟练掌握抛物线的性质以及画对称轴的作图技巧是解题的关键.8.(1)a= -1 b= -1 (2) B(2,-2) 2,-2) (3)面积是2,【解析】试题分析:()1将点A 代入23y x =-求出b ,再把点A 代入抛物线2y ax =求出a 即可. ()2解方程组2{2,y x y =-=-即可求出交点坐标. ()3利用三角形面积公式即可计算.试题解析:()1∵点()1,A b 在直线23y x =-上,1b ∴=-,∴点A 坐标()1,1-,把点()1,1A -代入2y ax =得到1a =-, ()1 1.a b ∴==-()2由2{2,y x y =-=-解得2{2x y ==-2{ 2.x y =-=-∴点C 坐标()2,2,--点B 坐标)2,2.- ()3 12222 2.2BOC S =⨯=9.(1)(3,0),m =2,n =3;(2)图象见解析;(3)当x ≤﹣1或x ≥3时y ≤0.【解析】【分析】(1)根据二次函数的对称性求得另一个交点,然后根据待定系数法即可求得m 、n 的值;(2)求得顶点,画出图象即可;(3)观察图形可直接得出y ≤0时,x 的取值范围;【详解】解:(1)∵抛物线y =﹣x 2+mx +n 与x 轴的一个交点为(﹣1,0),对称轴是直线x =1, ∴抛物线与x 轴另一个交点坐标为(3,0),把(﹣1,0),(3,0)代入y =﹣x 2+mx +n 得-1-0930m n m n +=⎧⎨-++=⎩, 解得23m n =⎧⎨=⎩, 故答案为(3,0),m =2,n =3;(2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点为(1,4);画出此图象如图:(3)由图象可知:当x ≤﹣1或x ≥3时y ≤0.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10.(1)开口向下,对称轴为直线1x =-,顶点为(1,8)-;(2)不在函数图象上,理由详见解析;(3) 12.【解析】【分析】(1)先把抛物线解析式配成顶点式得到22(1)8y x =-++,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将3x =代入函数解析式求出对应的y 即可判断;(3)确定抛物线与y 轴的交点坐标为(0,6),然后根据三角形面积公式求解.【详解】解:(1)解:(1)226422(1)8y x x x =--=-++20a =-<,∴抛物线开口向下;22(1)8y x =+-,∴抛物线对称轴方程为1x =-,顶点坐标(1,8)--;开口向下,对称轴为直线1x =-,顶点为1,8-()(2)不在函数图象上.理由:当3x =时,29436244y =-⨯-⨯+=-≠-所以点4-(3,)不在函数图象上. (3)令0y =,得26420x x --=,解得13x =-,21x =,所以抛物线与x 轴的交点坐标为(3,0)-,(1,0),当x=0时,y=6.抛物线与y 轴交于点0,6A (),()1136122ABC S ∆=⨯+⨯= 【点睛】本题考查了二次函数的性质:二次函数2(0)y ax bx c a =++≠的图象为抛物线;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,)c . 11.(1) y=(x -1)2+3和y=2(x -1)2+3(答案不唯一);(2)y 2 =x 2 -2x+1,02y 4≤≤.【解析】【分析】(1)根据“同簇二次函数”的定义写出两个即可;(2)将A 代入y 1=2x 2−4mx+2m 2+1中,可求出y 1与x 的函数关系式,并求出此抛物线的顶点坐标,从而求出y 1+y 2与x 的函数关系式,再根据“同簇二次函数”的定义即可求出b 、c ,从而求出函数y 2的表达式,最后根据二次函数的性质自变量的取值范围和对称轴的位置关系求最值即可.【详解】(1)根据“同簇二次函数”的定义:两个二次函数图象的顶点,开口方向都相同,故这两个二次函数可以为:y=(x -1)2+3和y=2(x -1)2+3;(2)把A(1,1)代入y 1=2x 2−4mx+2m 2+1得2−4m+2m 2+1=1,解得m=1,则y 1=2x 2−4x+3=2(x -1)2+1,∴y 1=2x 2−4x+3顶点坐标为(1,1),且y 1+y 2=3x 2+(b−4)x+c+3∵y 1+y 2与y 1为“同簇二次函数” ∴()()241234334143b c b -⎧-=⎪⨯⎪⎨⨯+--⎪=⎪⨯⎩解得:b=-2,c=1y 2 =x 2 -2x+1 此抛物线的开口向上,对称轴为:21221b x a -=-=-=⨯ ∴0≤x≤3包含对称轴∴当1x =时,y 2取最小值,此时y 2=0,当x=3时,y 2取最大值,此时y 2=4∴02y 4≤≤【点睛】此题考查的是新定义问题,掌握二次函数的图像及性质和“同簇二次函数”的定义是解决此题的关键.12.(1)如y =x 2,y =x 2﹣x +1,y =x 2+2x +4等(答案不唯一);(2)详见解析;(3)①y =2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【解析】【分析】(1)按照黄金抛物线的定义给a、b、c赋值即可;(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;(3)①根据“上加下减”写出平移后的抛物线解析式即可;②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;【详解】(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;(2)依题意得b2=ac,∴△=b2﹣4ac=b2﹣4b2=﹣3b2,∴当b=0时,△=0,此时抛物线与x轴有一个公共点,当b≠0时,△<0,此时抛物线与x轴没有公共点;(3)①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,②存在.如图:若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,P点的坐标为:(0,﹣1),(1,﹣1),此时,△AOB≌△BQP;若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,令2x2﹣2x﹣1=12,解得:x=﹣12或x=32,∴P点的坐标为:(﹣12,12),(32,12).此时,△AOB≌△PQB;综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【点睛】此题主要考查新定义下抛物线的性质,熟练掌握,即可解题.13.(1)y=x2﹣4x+3;(2)1≤x≤3;(3)﹣1≤t<3.【解析】【分析】(1)利用对称性得到抛物线经过点(1,0).然后利用待定系数法求抛物线解析式;(2)写出抛物线在x轴下方所对应的自变量的范围即可;(3)对于抛物线y=x2﹣4x+3﹣t,当△=(﹣4)2﹣4(3﹣t)=0时,满足条件,此时t=﹣1,当△=(﹣4)2﹣4(3﹣t)>0时,若x=0,y=x2﹣4x+3﹣t>0,满足条件,此时﹣1<t<3,然后综合两种情况即可.【详解】(1)∵对称轴为x=2,点B(3,0),∴抛物线经过点(1,0).将(1,0)、(3,0)代入得:9a+3b+3=0且a+b+3=0解得a=1,b=﹣4,∴抛物线解析式为y=x2﹣4x+3;(2)由(1)得知抛物线过点(1,0)和(3,0),且a=1,可判定开口向上,故当1≤x≤3时,y≤0;(3)由(1)可知y=ax2+bx+3﹣t的解析式为y=x2﹣4x+3﹣t,当△=(﹣4)2﹣4(3﹣t)=0时,解得t=﹣1,抛物线与x轴的交点为(2,0);当△=(﹣4)2﹣4(3﹣t)>0时,解得t>﹣1,若x=0,y=x2﹣4x+3﹣t>0,抛物线y=ax2+bx+3﹣t(a≠0,t为实数)在0<x<3.5的范围内与x轴有公共点,即t<3,∴t的范围为﹣1≤t<3.【点睛】此题主要考查抛物线的对称性、待定系数法求解析式以及根的判别式的运用,熟练掌握,即可解题.14.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404bk b=⎧⎨=-+⎩解得:14 kb=⎧⎨=⎩∴AC解析式为y=x+4.设P(t,﹣12t2﹣t+4)则D(t,t+4)∴PD=(﹣12t2﹣t+4)﹣(t+4)=﹣12t2﹣2t=﹣12(t+2)2+2∴S△ACP=12PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.15.(1)y=﹣x2;(2)3.【解析】【分析】(1)由图象形状和顶点相同,但开口方向不同可知二次项系数a互为相反数即可得出函数解析式.(2)利用抛物线解析式和点A的纵坐标求出A的坐标,把A的坐标代入y=kx-2,根据待定系数法求得解析式,然后解析式联立求得B的坐标,利用S△OAB=S△AOG+S△BOG求解即可.【详解】解:(1)形状与二次函数y=x2的图象形状和顶点相同,但开口方向不同,此抛物线解析式为y=﹣x2.(2)∵A点的纵坐标为﹣1,把y=﹣1代入y=﹣x2,解得x=±1,∴A(1,﹣1)或(﹣1,﹣1)把A(1,﹣1)代入y=kx﹣2得,﹣1=k﹣2,解得k=1,把A(﹣1,﹣1)代入y=kx﹣2得﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=x﹣2或y=-x﹣2,∴令x =0,得y =﹣2,∴G (0,﹣2),I .当一次函数表达式为y =﹣x ﹣2时,由一次函数与二次函数联立可得22y x y x =--⎧⎨=-⎩, 解得11x y =-⎧⎨=-⎩或24x y =⎧⎨=-⎩, ∴B (2,﹣4), ∴S △OAB =S △AOG +S △BOG =()122+12⨯⨯=3, II .同理证得当一次函数表达式为y =x ﹣2时,S △OAB =3,故△OAB 的面积为3.【点睛】本题主要考查了待定系数法求解析式,二次函数图象上点的坐标特征,解题的关键是分两种情况正确的求出点B 的坐标.16.(1)A (-4,0),B (2,0),C,0,4);(2)12【解析】【分析】(1)在抛物线的解析式中,令x=0可以求出点C 的坐标,令y=0可以求出A 、B 点的坐标;(2)先求出E 点坐标,然后求出OA ,OC ,CE 的长计算面积即可.【详解】解:(1)当y=0时,212x --x+4=0,解得x 1=-4,x 2=2, ∴A (-4,0),B (2,0),当x=0时,y=4,∴C (0,4);(2)y=212x -﹣x+4=12-(x+1)2+92,∴抛物线y=212x -﹣x+4的对称轴是直线x=-1, ∴E 的坐标为(-2,4),则OA=4,OC=4,CE=2,S 梯形AOCE =(24)4122+⨯= 【点睛】本题是对二次函数的基础考查,熟练掌握二次函数与x 轴,y 轴交点坐标的求解及梯形面积知识是解决本题的关键.17.(1)y =﹣x 2﹣2x+3;(2)P 点坐标为(﹣,﹣3)或(﹣1,﹣3).【解析】【分析】(1)把A 与B 坐标代入求出a 与b 的值,即可确定出表达式;(2)先求出点C 的坐标,从而确定△ABC 的面积,再根据△PAB 的面积等于△ABC 的面积求出P 的坐标即可.【详解】解:(1)把A 与B 坐标代入得:933030a b a b -+=⎧⎨++=⎩, 解得:12a b =-⎧⎨=-⎩, 则该抛物线的表达式为y =﹣x 2﹣2x+3;(2)由抛物线解析式得:C(0,3),∴△ABC 面积为12×3×4=6, ∴△PAB 面积为6,即12×|y P 纵坐标|×4=6,即y P 纵坐标=3或﹣3, 当y P 纵坐标=3时,可得3=﹣x 2﹣2x+3,解得:x =﹣2或x =0(舍去),此时P 坐标为(﹣2,3);当y P 纵坐标=﹣3时,可得﹣3=﹣x 2﹣2x+3,解得:x =﹣,此时P 坐标为(﹣,﹣3)或(﹣1,﹣3).此题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键. 18.(1)23y x =-;(2)作图见解析;(3)x <0,或x >3. 【解析】分析:(1)利用A 点在二次函数的图象上,进而利用待定系数法求反比例函数解析式即可; (2)根据二次函数的性质以及反比例函数的性质画出草图即可;(3)利用函数图象以及交点坐标即可得出x 的取值范围.详解:(1)把点A (a ,-1)代入y 1=−13x 2, 得-1=−13a , ∴a=3.设y 2=k x,把点A (3,-1)代入, 得 k=−3,∴y 2=−3. (2)画图;(3)由图象知:当x <0,或x 3时,y 1<y 2.点睛:此题主要考查了待定系数法求反比例函数解析式以及二次函数的性质和比较函数的大小关系,利用数形结合得出是解题关键.19.(1)221y x x =-++,顶点坐标()12P ,;(2)①120P BB ''∠=,②当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.【分析】(1)把点A (-1,-2)B (0,1)代入2y x bx c =-++即可求出解析式;(2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)即可求出m ,得出顶点坐标 ()P ',连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得P H '=,P’B=2求出tan P H P BH BH∠='='得60P BH ∠=',故可得P BB ∠''的度数②根据题意作出图形,根据旋转的性质与MNB S '∆=,解得三角形的高6h =;故设()7N a -,或()5N a ,分别代入221y x x =-++即可求出N 的坐标.【详解】(1)把点A (-1,-2)B (0,1)代入2y x bx c =-++得2=11b c c ---+⎧⎨=⎩解得=21b c ⎧⎨=⎩∴抛物线的关系式为:221y x x =-++,得y=-(x-1)2+2; ∴顶点坐标为()12P ,. (2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)得,-1=-(m-1)2+2解得11m =,21m =(舍去);∴(212y x =-++,得顶点()P ' 连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得P H '=,=2∵tan P H P BH BH∠='=' ∴60P BH ∠=',∴18060120P BB ∠=-=''.②∵2BB '=,2P B '=即BB P B '=',∴30BP B P B B ''''∠=∠=;∵线段P B ''以点B '为旋转中心顺时针旋转120,点P '落在点M 处; ∴90OB M ∠=',B M B P '=''∴//MB x '轴,23B M B P ''='=;设MNB ∆'在B M '边上的高为h ,得:632MNB B M h S '∆⋅'==,解得6h =; ∴设()7N a -,或()5N a ,分别代入221y x x =-++得 2721a a -=-++解得:4a =或2a =-∴()47N -,或()27N --,, 2521a a =-++方程无实数根舍去,∴综上所述:当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,并根据题意作出图形进行求解.20.(1)223y x x =+-;(2)22AE EC +=(3)D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)把点()0,3C 代入抛物线表达式即可求出m ,即可得到抛物线的解析式;(2)连接BC ,过点A 作AF BC ⊥于点F ,交y 轴于点E ,当A E F 、、 三点共线时,22AE EC +最小值为AF ,再根据由三角形面积公式得:11•·22BC AF AB OC =,即可求出22AF = ;(3) 过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23m m m +- ,利用tan tan DAB ACO ∠=∠即BH AOAH CO=,代入即可求出m 的值,再求出D 点坐标 【详解】解:(1)把点()0,3C 代入抛物线表达式得:9630m m ++= , 解得:1m =-故该抛物线的解析式为:223y x x =+-(2)连接BC ,过点A 作AF BC ⊥于点F ,交y 轴于点E由223y x x =+-,得:()3,0B - ,()0,3C -OB OC ∴= ,即45ABC ∠=,4,32AB BC ∴==由三角形面积公式得:11•·22BC AF AB OC = 即:11324322AF ⨯=⨯⨯ ,解得:22AF =在Rt CEF ∆中,2EF =,2AE AE EF AF ∴=+=∴当A E F 、、 三点共线时,2AE EC +最小值为22AF =2222AE EC ∴+= (3)过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23m m m +-DAB ACO ∠=∠ tan tan DAB ACO ∴∠=∠,即BH AOAH CO=223113m m m +-∴=-或223113m m m --+=-解得:103m =-或1(舍去1m =),或1m =或83- (舍去1m =) 过点D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭【点睛】此题主要考查二次函数综合,解题的关键是熟知三角函数的定义与性质及最值的求法. 21.(1)5;(2)8;(3)21329S (x 224=--+,92,见解析. 【解析】 【分析】(1)由正方形的性质可得AB =AD =4,∠A =90°,∠BDA =45°=∠DBA ,由平行线性质可得∠DFE =∠A =90°,∠DEF =∠DBA =∠EDF =45°,可得DF =1,AF =3,由勾股定理可求BF 的长;(2)由题意可得DF =EF =FH =2,由平行线的性质和等腰三角形的性质可得∠BAE =∠FHE =∠BHA ,可得AB =BH ,由勾股定理可求AB 的长;(3)由三角形面积公式可求S △BEF =12EF×AF =12x (﹣x )=219224x ⎛⎫--+ ⎪ ⎪⎝⎭由二次函数性质可得x =2时,S 取得最大值,即点E 是BD 中点,由旋转的性质和直角三角形的性质可证四边形JCEN 是矩形,可证CJ ⊥CE . 【详解】解:(1)∵四边形ABCD 是正方形,∴AB =AD =4,∠A =90°,∠BDA =45°=∠DBA , ∵EF ∥AB∴∠DFE =∠A =90°,∠DEF =∠DBA =∠EDF =45° ∴DF =EF∴DE DF ∴DF =1∴AF =AD ﹣DF =3∴BF 5(2)∵DF =EF ,DF =HF =2, ∴EF =2=FH ∴∠FEH =∠FHE ∵EF ∥AB∴∠FEH =∠BAE , ∴∠BAE =∠FHE =∠BHA ∴AB =BH∵在Rt △ABE 中,BF 2=AF 2+AB 2, ∴(AB+2)2=(AB ﹣2)2+AB 2, ∴AB =8,AB =0(不合题意舍去) ∴AB =8(3)如图,过点J 作JN ⊥BD 于,∵S△BEF=12EF×AF=12x(2x)=2132924x⎛-+⎝⎭∴当x=322时,S△BEF最大值为94,∵x=322,∴EF=32 2∵EF∥AB∴12 EF DE DFAB BD AD===∴BD=2DE,AD=2DF∵CB=CD,BD=2DE,∴CE⊥BD,BD=2CE,∵旋转∴JD=BD,∠JDB=30°,又∵JN⊥BD∴JD=2JN,∴BD=2JN,∴JN=CE,∵JN⊥BD,CE⊥BD∴JN∥CE,且CE=JN∴四边形JCEN是平行四边形,∵JN⊥BD∴四边形JCEN是矩形∴CJ⊥CE【点睛】本题是四边形综合题,正方形的性质,勾股定理,矩形的判定和性质,旋转的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键.22.(1)A (1,0)、B (3,0);(2)①2MO NH +=,②不会变化,tan FGO ∠=4. 【解析】 【分析】(1)令y =kx 2-4kx +3k=0,求得x 1=1,x 2=3,故A (1,0)B (3,0)(2)①过点 E 作 EK ⊥ x 轴于点k ,设 E (m , m 2-4m +3),易证∆BKE ∽ ∆BHN , ∆AKE∽ ∆AOM ,则K KB KE KE A HB HN MO AO ,==,故23431m m m HN --+-=,24311m m m MO -+--=,求出NH = m -1, MO = -m + 3得()132MO NH m m +=-+-+=;②过点 E 作 EN ⊥ x 轴于点N ,作FH ⊥ x 轴于点H 过点 E作 EM ⊥ FH , 交 FH 的延长线于点 M ,设 F (n ,2n 2 - 8n + 6), E (a ,2a 2 - 8a + 6)当n > 3 时,不能满足∠FBA = ∠EBA ,当 n < 1,由∆FHB ∽ ∆ENB ,则N FH HBE NB=, 故2228632863n n w n a a a-+-=-+--,得:n + a = 2()22286286tan tan n n a a FM FGO FEM EM a n-+--+∠=∠==- , = 8 - 2(n + a) = 4为定值,即tan ∠FGO 的值不变. 【详解】解:(1)令y =kx 2-4kx +3k=0,求得x 1=1,x 2=3,故A (1,0)B (3,0) (2)① y = x 2-4x +3 ,如图 1 过点 E 作 EK ⊥ x 轴于点k ,∵KE ∥HN ∥x 轴,∴∆BKE ∽ ∆BHN , ∆AKE ∽ ∆AOM ,设 E (m , m 2-4m +3)K KB KE KE A HB HN MO AO ,==,即:23431m m m HN --+-=,24311m m m MO -+--= 得: NH = m -1, MO = -m + 3()132MO NH m m ∴+=-+-+=②不会变化。
人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)
人教版九年级数学第22章基础测试题(含答案)22.1 二次函数的图象和性质一、选择题(本大题共8道小题)1. 已知直线y=bx-c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()2. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度3. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<14. 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP 的面积为y,则下列能大致反映y与x函数关系的图象是()5. 二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()6. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()7. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止.设移动x s 后,矩形ABCD与△PMN重叠部分的面积为y cm2,则y关于x的大致图象是()8. 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x =-12时,与其对应的函数值y>0,有下列结论:(1)abc>0;(2)-2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n<203.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共8道小题)9. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.10. 函数y =-4x 2-3的图象开口向________,对称轴是________,顶点坐标是________;当x ________0时,y 随x 的增大而减小,当x ________时,y 有最________值,是________,这个函数的图象是由y =-4x 2的图象向________平移________个单位长度得到的.11. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)14. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)15. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.16. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题(本大题共4道小题)17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(5,-6),C(6,0).(1)求抛物线的解析式.(2)在直线AB下方的抛物线上是否存在点P,使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.19. 已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式.(2)设点P在该抛物线上滑动,则满足条件S△PAB=1的点P有几个?求出所有点P的坐标.(3)设抛物线交y轴于点C,该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.20. (2019·山西)综合与探究如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】C【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b2a >0,∵a>0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a >0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a <0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c >0,由一次函数图象知-c >0,即c <0,∴选项D 错误.2. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.3. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根, 整理,得:x2+x+c=0, 所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2, 所以函数y=x2+x+c=0在x=1时,函数值小于0, 即1+1+c<0,综上则140110c c ->⎧⎨++<⎩,解得c<-2, 故选B .4. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.7. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.8. 【答案】C [解析] (1)因为当x =-12时,与其对应的函数值y>0,由表格可知x =0时,y=-2,x =1时,y =-2,可以判断在对称轴左侧,y 随x 的增大而减小,图象开口向上,a>0;由表格可知x =0时,y =-2,x =1时,y =-2,可得对称轴为直线x =12,所以b<0;当x =0时,y =-2,所以c =-2<0,故abc>0,(1)正确.(2)由于对称轴是直线x =12,x =-2和x =3关于对称轴对称,当x =-2时,y =t ,所以当x =3时,y =t ,即-2和3是关于x 的方程ax 2+bx +c =t 的两个根,所以(2)正确.(3)依题意可得c =-2,a +b =0,当x =-12时,与其对应的函数值y>0可得a>83,当x =-1时,m =a -b -2=2a -2>103.因为x=-1和x =2关于对称轴对称,所以m =n ,所以m +n>203,故(3)错误.故选C.二、填空题(本大题共8道小题)9. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.10. 【答案】下y 轴 (0,-3) > =0 大 -3 下 311. 【答案】向下直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大4 右 3 上 412. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.13. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.15. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)bb=3- 3.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)设y =a(x +1)(x -6),把(5,-6)代入解析式,得a(5+1)(5-6)=-6, 解得a =1,∴y =(x +1)(x -6)=x2-5x -6. (2)存在.如图,分别过点P ,B 向x 轴作垂线,垂足为M ,N.设P(m ,m2-5m -6),其中-1<m <5,设四边形PACB 的面积为S ,则PM =-m2+5m +6,AM =m +1,MN =5-m ,CN =6-5=1,BN =6,∴S =S △AMP +S 梯形PMNB +S △BNC =12(-m2+5m +6)(m +1)+12(6-m2+5m +6)(5-m)+12×1×6=-3m2+12m +36=-3(m -2)2+48,当m =2时,S 有最大值为48,这时m2-5m -6=22-5×2-6=-12, ∴P(2,-12).19. 【答案】解:(1)将(1,0),(3,0)分别代入y =-x2+bx +c ,得⎩⎪⎨⎪⎧-1+b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =4,c =-3.∴该抛物线的解析式为y =-x2+4x -3. (2)设点P 的坐标为(x ,y).∵AB =2,S △PAB =12AB·|y|=1,∴y =±1.当y =1时,有1=-x2+4x -3, 即x2-4x +4=(x -2)2=0, 解得x1=x2=2;当y =-1时,有-1=-x2+4x -3,即x2-4x +2=0,解得x1=2-2,x2=2+ 2. ∴满足条件的点P 有3个,坐标分别为(2,1), (2+2,-1),(2-2,-1). (3)存在.作点C 关于抛物线的对称轴的对称点C′,连接AC′交抛物线的对称轴于点M ,连接MC ,任取抛物线对称轴上除点M 外的任意一点N ,连接NA ,NC ,NC′,如图所示.∵NA +NC =NA +NC′>AC′=MA +MC′=MA +MC , ∴当点A ,M ,C′共线时,△MAC 的周长最小. ∵抛物线的解析式为y =-x2+4x -3,∴点C 的坐标为(0,-3),抛物线的对称轴为直线x =-42×(-1)=2,∴C′(4,-3).设直线AC′的解析式为y =mx +n. ∵点A(1,0),C′(4,-3)在直线AC′上,∴⎩⎪⎨⎪⎧m +n =0,4m +n =-3,解得⎩⎪⎨⎪⎧m =-1,n =1,∴直线AC′的解析式为y =-x +1. 当x =2时,y =-x +1=-1,∴直线AC′与抛物线对称轴的交点的坐标为(2,-1),即M(2,-1). ∴存在点M(2,-1),使得△MAC 的周长最小.20. 【答案】(1)抛物线2y ax bx c =++经过点A(–2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC=1126622OA OC ⋅⋅=⨯⨯=,∵S△BCD=34S△AOC,∴S△BCD=39642⨯=,设直线BC的函数表达式为y kx n=+,由B,C两点的坐标得406k nn+=⎧⎨=⎩,解得326kn⎧=-⎪⎨⎪=⎩,∴直线BC的函数表达式为362y x=-+,∴点G的坐标为3(,6)2m m-+,∴2233336(6)34224DG m m m m m=-++--+=-+,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=1111()2222DG CF DG BE DG CF BE DG BO⋅⋅+⋅⋅=⋅+=⋅⋅,∴S△BCD=22133346242m m m m-+⨯=-+(),∴239622m m-+=,解得11m=(舍),23m=,∴m的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为15(3,)4,∴点N点纵坐标为±154,当点N的纵坐标为154时,如点N2,此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N3,N4, 此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N1点与N2点重合, ∵115(1,)4N -,D(3,154),∴N1D=4, ∴BM1=N1D=4, ∴OM1=OB+BM1=8, ∴M1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【22.2二次函数与一元二次方程】一.选择题1.若抛物线y=x2﹣6x+m与x轴只有一个交点,则m的值为()A.﹣6B.6C.3D.92.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5B.8C.10D.113.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200B.x1=0,x2=400C.x1=100,x2=300D.x1=100,x2=5005.已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 7.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 9.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣3 10.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x 轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或二.填空题11.抛物线y=ax2﹣2x﹣1与x轴有两个交点,则a的取值范围为.12.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为13.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.14.已知抛物线y=a(x﹣h)2+k经过点A(﹣2,0),B(3,0)两点.若关于x的一元二次方程a(x﹣h+m)2+k=0的一个根是1,则m的值为.15.抛物线y=ax2﹣3x+2与x轴正半轴交于A、B两点,且AB=2,则a=.三.解答题16.已知关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,求k的取值范围.17.抛物线y=﹣x2+bx+c交x轴于A(3,0)、B两点,与y轴交于点C(0,3),点D为顶点,对称轴l交x轴于点E,点P是抛物线上一点,AP交对称轴于点M,BP交对称轴于点N.求点D坐标及对称轴l.18.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.19.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.20.如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=1,请你解答下列问题:(Ⅰ)求m的值;(Ⅱ)求出抛物线与x轴的交点;(Ⅲ)当y随x的增大而减小时x的取值范围是.(Ⅳ)当y<0时,x的取值范围是.参考答案一.选择题1.解:根据题意得△=(﹣6)2﹣4m=0,解得m=9.故选:D.2.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.3.解:由图象可知,当y>0时,x的取值范围是x<﹣1或x>2,故选:D.4.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,对称轴为直线x=﹣=1,即b=﹣2a,∴当x=时,y>0,则①正确;∵点()到直线x=1和点()到直线x=1的距离相等,∴y1=y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.6.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.9.解:抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3.所以b=﹣4,c=3.故选:B.10.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1)=a(x+1)2﹣4a,∴点A的坐标为(﹣3,0),点B(1,0),点D(﹣1,﹣4a),∴D′(3,4a),C(5,0),∵△CDD′是直角三角形,∴当∠DD′C=90°时,4a=×(5﹣1)=2,得a=,当∠D′CD=90°时,CB=DD′,∴5﹣1=,解得,a1=,a2=﹣(舍去),由上可得,a的值是或,故选:A.二.填空题21.解:∵抛物线y=ax2﹣2x﹣1与x轴有两个交点,∴,解得,a>﹣1且a≠0,故答案为:a>﹣1且a≠0.22.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.23.解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n <0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.24.解:由已知可得:对称轴为x=,∴h=,∴y=a(x﹣)2+k,将点A(﹣2,0)代入y=a(x﹣)2+k,∴k=﹣a,∵a(x﹣h+m)2+k=0,∴a(x﹣+m)2﹣a=0,∵a≠0,∴(x﹣+m)2=,∵方程的一个根为1,∴(1﹣+m)2=,故答案为m=2或m=﹣3.25.解:当y=0时,ax2﹣3x+2=0,∵a>0,∴(x﹣1)(x﹣2)=0,解得x1=,x2=,∴A、B两点的坐标为(,0),(,0),∵AB=2,∴﹣=2,解得a=.故答案为.三.解答题31.解:∵关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,∴或,解得,k≤2且k≠1或k=1,由上可得,k的取值范围是k≤2.32.解:把A(﹣3,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3,因为y=﹣(x﹣1)2+4,所以D点坐标为(1,4),抛物线的对称轴l为直线x=1.33.解:(1)令y=0,得:﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点A(﹣3,0),点B(1,0);令x=0,得:y=3,∴点C(0,3);设直线AC的解析式为:y=kx+b,点A(﹣3,0),点C(0,3)在直线AC上,,解得:,∴直线AC的解析式为:y=x+3.(2)如图所示,设点P的坐标为(a,﹣a2﹣2a+3),由PM∥x轴,可知点M的纵坐标为﹣a2﹣2a+3,∴x=﹣a2﹣2a,∴PM=﹣a2﹣2a﹣a=﹣a2﹣3a(﹣3<a<0),=.当a=时,PM最大34.解:(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.35.解:(Ⅰ)抛物线的对称轴为直线x=﹣=1,∴m=3;(Ⅱ)∵m=3,∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点为(﹣1,0),(3,0);(Ⅲ)∵a=﹣1<0,对称轴为直线x=1,∴当x>1时,y的值随x的增大而减小,故答案为x>1;(Ⅳ)当x<﹣1或x>3时,y<0,故答案为x<﹣1或x>3.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C .600平方米D .2400平方米5. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE =CF =x cm ,要使包装盒的侧面积最大,则x 应取( )A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm2.2. 【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,。
九年级上册数学二次函数基础训练-比较大小顶点对称轴训练题(含答案)
二次函数顶点、对称轴、大小比较训练题一、单选题(共42题;共84分)1.(2020九上·镇海期中)已知(﹣3,),(﹣2,),(1,)是抛物线上的点,则()A. B. C. D.2.(2020九上·永嘉期中)已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则下列正确的是( )A. y3<y2<y1B. y3<y1<y2C. y2<y3<y1D. y1<y3<y23.(2020九上·长春月考)已知a<-1,点(a-1,),(a,),(a+1,)都在函数y=x²的图象上,则()A. <<B. <<C. <<D. <<4.(2020九上·齐齐哈尔月考)若,,为二次函数图象上的三点,则,,的大小关系是()A. B. C. D.5.(2020九上·鹿城月考)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y =-(x+1)2 + 3上的三点,则y1,y2,y3的大小关系为()A. y1 > y2 > y3B. y1> y3 > y2C. y3 > y2 > y1D. y3>y1>y26.(2020九上·秀洲月考)已知二次函数,当自变量x分别取-2,2,5时,对应的值分别为,则的大小关系正确的是( )A. B. C. D.7.(2020九上·硚口月考)抛物线y=ax2+bx+c(a、b、c为常数,a<0)经过A(2,0)、B(-4,0)两点,若点P(-5,y1)、Q(π,y2)、R(5,y3)该抛物线上,则()A. y1<y2<y3B. y1=y3<y2C. y1<y3<y2D. y3<y2<y18.(2020九上·巩义月考)二次函数的图象如图所示:若点,在此函数图象上,,与的大小关系是()A. y1≤y2B. y1<y2C. y1≥y2D. y1>y29.(2020九上·重庆月考)已知二次函数中,函数值与自变量之间的部分对应值如下表所示:若点,在函数图象上,则当,时,与的大小关系是()A. B. C. D.10.(2020九上·鹿城月考)已知一个二次函数y = ax2(a≠0)的图象经过(-2,8),则下列点中在该函数的图象上的是()A. (2,8)B. (1,3)C. (-1,3)D. (2,6)11.(2020九上·营口月考)在二次函数y=-x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是()A. x<1B. x>1C. x<-1D. x>-112.(2020九上·淮北月考)已知在二次函数y=-x2+(a-1)x+1,当x>1时,y随x的增大而减小,则a的取值范围是()A. a=-1B. a=3C. a≥-1D. a≤313.(2020·眉山)已知二次函数(为常数)的图象与x轴有交点,且当时,y随x的增大而增大,则a的取值范围是()A. B. C. D.14.(2020九上·亳州月考)关于二次函数,下列说法正确的是()A. 当x<1时,y值随x值的增大而增大B. 当x<1时,y值随x值的增大而减小C. 当时,y值随x值的增大而增大D. 当时,y值随x值的增大而减小15.(2020九上·淮北月考)抛物线y=2(x+1)2+3的顶点坐标在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限16.(2020九上·亳州月考)k为任意实数,抛物线y=a(x﹣k)2﹣k(a≠0)的顶点总在()A. 直线y=x上B. 直线y=﹣x上C. x轴上D. y轴上17.(2020九上·马山月考)抛物线的顶点坐标是()A. (0,-2)B. (-2,-1)C. (0,-1)D. (-1,)18.(2020九上·江城月考)抛物线y=-2(x-1)2-3的图象的顶点坐标是( )A. (1,3)B. (-1,3)C. (1,-3)D. (-1,-3)19.(2020九上·巢湖月考)抛物线y= x2的顶点坐标是( )A. (0,)B. (0,0)C. (0,)D. (1,)20.(2020九上·宁波月考)二次函数y=(x-1)2+3图象的顶点坐标是()A. (-1,3)B. (1,-3)C. (-1,-3)D. (1,3)21.(2020九上·越城月考)一抛物线的形状、开口方向与相同,顶点为(-2,1).此抛物线的解析式为( )A. B. C. D.22.(2020九上·台州月考)抛物线y=x2-4x+7的顶点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)23.(2020九上·营口月考)抛物线y=(x﹣3)2﹣5的顶点坐标是()A. (3,5)B. (﹣3,5)C. (3,﹣5)D. (﹣3,﹣5)24.(2020九上·巩义月考)若二次函数y=(m-3)x2+m2-9的图象的顶点是坐标原点,则m的值是( )A. 3B. -3C. ±3D. 无法确定25.(2020八上·合肥月考)下面哪个点在函数y=2x-1的图像上()A. (1,1)B. (0,1)C. (-1,0)D. (3,2)26.(2020九上·长春月考)二次函数图像的开口方向是().A. 向上B. 向下C. 向左D. 向右27.(2020九上·湖北月考)抛物线y=-2x2的对称轴是()A. 直线x=B. 直线x=-C. 直线x=0D. 直线y=028.(2020九上·广西月考)二次函数的图像大致为()A. B. C. D.29.(2020九上·广西月考)二次函数的图象大致为()A. B. C. D.30.(2020九上·越城月考)抛物线的对称轴是直线()A. x=2B. x=-2C. x=1D. x=-131.(2020九上·海曙月考)关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A. 抛物线的开口方向向上B. 抛物线的对称轴是直线x=﹣1C. 抛物线对称轴左侧部分是下降的D. 抛物线顶点到x轴的距离是232.(2020九上·广东开学考)对于抛物线,下列说法错误的是()A. 对称轴是直线B. 函数的最大值是3C. 开口向下,顶点坐标是(5,3)D. 当时,随的增大而增大33.(2020九上·普陀期末)下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是()A. B. C. D.34.(2020九上·白城月考)二次函数图像上部分点的坐标对应值列表如下:则该函数图像的对称轴是( )A. 直线x=-3B. 直线x=0C. 直线x=-1D. 直线x=-235.(2020九上·秀洲月考)抛物线的对称轴是()A. 直线B. 直线C. 直线D. 直线36.(2020九上·马山月考)关于抛物线y=﹣2(x﹣1)2说法正确的是()A. 顶点坐标为(﹣2,1)B. 当x<1时,y随x的增大而增大C. 当x=0时,y有最大值 1D. 抛物线的对称轴为直线x=﹣237.(2020九上·新昌月考)已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向下B. 图象的顶点坐标是C. 当时,y随x的增大而减少D. 图象与x轴有唯一交点38.(2020九上·秀洲月考)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A. 当a=1时,函数图象过点(-1,1)B. 当a=-2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大39.(2020九上·厦门月考)已知抛物线和,其中a,b,c,n均为正数,且,则关于这两条抛物线,下列判断正确的是( )A. 顶点的纵坐标相同B. 对称轴相同C. 与y轴的交点相同D. 其中一条经过平移可以与另一条重合40.(2020九上·昆山月考)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b-4ac>0)的函数叫做”鹊桥”函数,小丽同学画出了“鹊桥”函数y=|x-2x-3|(如图所示).并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是()A. 1B. 2C. 3D. 441.(2020九上·武昌月考)关于二次函数y=2x2+x-1,下列说法正确的是()A. 图象与y轴的交点坐标为(0,1)B. 图象的对称轴在y轴的右侧C. 当x<0时,y的值随x值的增大而减小D. y的最小值为-42.(2020九上·开封月考)已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象与y轴交点是C. 图象与x轴有唯一交点D. 当时,y随x的增大而增大参考答案一、单选题1.【答案】B【解答】解:=-3(x2+4x+4)+12+m=-3(x+2)2+12+m∴对称轴x=-2,∵,,,∵a=-3<0,0<1<3,∴.故答案为:B.2.【答案】B【解答】解:y=-3(x+2)2+m+12,抛物线的对称轴为直线x=-2,∴点(1,y3)关于直线x=-2对称的点的坐标为(-5,y3)∵a=-3<0∴抛物线的开口向下,∴当x=-2时函数有最大值,x<-2时,y随x的增大而增大∵-3>-5∴ y3<y1<y2.故答案为:B.3.【答案】C【解答】解:∵,∴,由函数的图象知:当时随着的增大而减小,∴.故答案为:C.4.【答案】A【解答】解:把点A、B、C,分别代入二次函数的解析式,则,,,∴;故答案为:A.5.【答案】A【解答】解:∵对称轴:x=-1,∵=1,=2,=3,∵a=-1<0,∴离对称轴越远,y值越小,∴ y1 > y2 > y3 .故答案为:A.6.【答案】C【解答】解:由二次函数知,二次函数的开口向上,对称轴为直线x=2,又-2对应的点离对称轴最远,2对应的点离对称轴最近,∴故答案为:C.7.【答案】D【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(-4,0)两点,∴该抛物线的对称轴为直线x= =-1,函数图象开口向下,∴点P(-5,y1)关于直线x=-1的对称点D(3,y1)在该抛物线上;当x>-1时,y随x的增大而减小,∵3<π<5,∴y1>y2>y3,故答案为:D.8.【答案】B【解答】解:根据图象可知,抛物线的对称轴为直线x=1.∵点A(x1,y1),点B(x2,y2)在抛物线上,且x1<x2<1,∴点A,B都在对称轴的左侧.∵抛物线y=-x2+bx+c的开口向下,在对称轴左侧,y随x的增大而增大,∴故答案为:B.【分析】由x1<x2<1可知x1和x2均在抛物线对称轴的左侧,又因为抛物线开口向下,在对称轴左侧y随x的增大而增大,即可解答.9.【答案】A【解答】解:由表中数据可知当x=0和x=2时y的值相等,所以抛物线的对称轴为x= =1,由表中数据知在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,所以抛物线开口向下,有最大值,离对称轴越近函数值越大,因为,,所以点A离对称轴x=1近,所以.故答案为:A.10.【答案】A【解答】解:由题意得:8=a(-2)2,∴a=2,∴y=2x2,A、当x=2时,y=2(2)2=8, 符合题意;B、当x=1时,y=2(1)2=2, 不符合题意;C、当x=-1时,y=2(-1)2=2, 不符合题意;D、当x=2时,y=2(2)2=8, 不符合题意;故答案为:A.11.【答案】B【解答】解:y=-x2+2x+1=-(x-1)2+2,抛物线的对称轴为直线x=1,∵a=-1<0,开口向下,∴当x>1时,y随x的增大而减少.故答案为:B.【分析】先求得抛物线的对称轴为直线x=1,然后根据图象开口向下,在对称轴右侧满足y随x的增大而减小即可求解.12.【答案】D【解答】解:∵y=-x2+(a-1)x+1,∴对称轴为x=- ,∵-1<0,∴抛物线开口向下,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而减小,∴≤1,解得a≤3,故答案为:D.13.【答案】D【解答】解:∵图象与x轴有交点,∴△=(-2a)2-4(a2-2a-4)≥0解得a≥-2;∵抛物线的对称轴为直线抛物线开口向上,且当时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是-2≤a≤3.故答案为:D.14.【答案】D【解答】解:如图,由图像可得:当x<1时,y值随x值的增大先减少后增大,故A不符合题意;当x<1时,y值随x值的增大先减少后增大,故B不符合题意;当时,y值随x值的增大而减少,故C不符合题意;当时,y值随x值的增大而减小,故D符合题意;故答案为:D.【分析】观察二次函数的图像,从而可得答案.15.【答案】B【解答】解:由题意可知,抛物线的顶点坐标为(-1,3),其顶点坐标在第二象限,故答案为:B.【分析】先求出顶点坐标,然后再判断其所在象限即可.16.【答案】B【解答】解:∵y=a(x﹣k)2﹣k(a≠0),∴抛物线的顶点为(k,﹣k),∵k为任意实数,∴顶点在y=﹣x直线上,故答案为:B.17.【答案】C【解答】解:y=-2x2-1的顶点坐标为(0,-1)故答案为:C.18.【答案】C【解答】解:抛物线y=-2(x-1)2-3的图象的顶点坐标是(1,-3). 故答案为:C.19.【答案】B【解答】解:抛物线y= x2的顶点坐标为(0,0).故答案为:B.20.【答案】D【解答】解:二次函数y=(x-1)2+3图象的顶点坐标是(1,3). 故答案为:D.21.【答案】C【解答】解:依题可设新抛物线解析式为y=a(x-h)2+k,∵形状、开口方向与y=x2-4x+3相同,∴a=,∵顶点为(-2,1),∴h=-2,k=1,∴抛物线解析式为:y=(x+2)2+1,故答案为:C.22.【答案】A【解答】解:y=x2-4x+7= x2-4x+4-4+7=(x-2)2+3.顶点坐标为:(2,3).故答案为:A.23.【答案】C【解答】解:∵y=(x-3)2-5是顶点式,∴此抛物线的顶点坐标为(3,-5).故答案为:C.24.【答案】B【解答】解:∵y=(m﹣3)x2+m2﹣9,∴顶点坐标为(0,m2﹣9).∵顶点坐标在原点,∴m2﹣9=0,解得:m=3或m=﹣3,又m﹣3≠0,∴m=﹣3.故答案为:B.25.【答案】A【解答】解:当x=1时,y=1,(1,1)在函数y=2x-1的图象上;当x=0时,y=-1,(0,1)不在函数y=2x-1的图象上;当x=-1时,y=-3,(-1,0)不在函数y=2x-1的图象上;当x=3时,y=5,(3,2)不在函数y=2x-1的图象上.故答案为:A.26.【答案】B【解答】解:∵的二次项系数为∴二次函数图像的开口向下故答案为:B.【分析】根据二次函数中二次项系数的符号判断,即可完成求解.27.【答案】C【解答】解:对称轴为y轴,即直线x=0.故答案为:C.28.【答案】D【解答】解:a=1>0,抛物线开口向上,由解析式可知对称轴为x=﹣2,顶点坐标为(﹣2,﹣1).故答案为:D.29.【答案】D【解答】解:a=1>0,抛物线开口向上,由解析式可知对称轴为x=﹣2,顶点坐标为(﹣2,﹣1).故答案为:D.30.【答案】C【解答】解:∵y=-2(x-1)2,∴对称轴x=1.故答案为:C.31.【答案】D【解答】解:抛物线y=﹣x2+2x﹣3=-(x-1)2-2.A、a=-1<0,抛物线的开口向下,故A不符合题意;B、抛物线的对称轴为直线x=1,故B不符合题意;C、当x<1时,y随x的增大而增大,抛物线对称轴左侧部分是呈上升趋势,故C不符合题意;D、顶点坐标为(1,-2),抛物线到x轴的距离为2,故D符合题意;故答案为:D.32.【答案】D【解答】解:∵抛物线的解析式为,∴对称轴是直线x=5,开口向下,顶点坐标是(5,3),函数的最大值是3,当x>5时,y随x的增大而减小,故ABC正确,D错误.故答案为:D.【分析】根据二次函数的图象与性质,得出对称轴是直线x=5,开口向下,顶点坐标是(5,3),函数的最大值是3,当x>5时,y随x的增大而减小,即可求解.33.【答案】C【解答】二次函数的对称轴为y轴,则函数对称轴为x=0,即函数解析式y=ax2+bx+c中,b=0,故答案为:C.34.【答案】D【解答】解:∵x=-3和-1时的函数值都是-3相等,∴二次函数的对称轴为直线x=-2.故答案为:D.35.【答案】C【解答】解:∵,∴抛物线顶点坐标为,对称轴为.故答案为:C.36.【答案】B【解答】解:A、抛物线y=﹣2(x﹣1)2的顶点坐标为(1,0),故A不符合题意;B、a=-2,抛物线的开口向下,当x<1时,y随x的增大而增大,故B符合题意;C、当x=1时,y有最大值为0,故C不符合题意;D、抛物线的对称轴为直线x=1,故D不符合题意;故答案为:B.37.【答案】A【解答】解:∵<,∴抛物线的开口向下,故A正确;∵∴抛物线的顶点为:,故B错误;当,即在抛物线的对称轴的左侧,y随x的增大而增大,故C错误;∵∴>,∴抛物线与轴有两个交点,故D错误.故答案为:A.38.【答案】D【解答】解:A.∵当a=1,x=-1时,y=1+2-1=2,∴函数图象不经过点(-1,1),故错误;B.∵当a=-2时, y=-2x2+4x-1;△=4-4 (-2)×(-1)=8>0,∴函数图象与x轴有两个交点,故错误;C.∵抛物线的对称轴为直线x =1,∴若a>0,则当x≥1时,y随x的增大而増大,故错误;D.∵抛物线的对称轴为直线x =1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确.故答案为:D39.【答案】B【解答】解:由抛物线和,其中a,b,c,n均为正数,且,可得:这两个抛物线的对称轴分别为:直线和直线,故B符合题意;顶点纵坐标分别为,,故A不符合题意;与y轴的交点分别为,,故C不符合题意;根据抛物线的平移方法可得不能经过平移得到另一条抛物线,故D不符合题意;故答案为:B.40.【答案】D【解答】解:①因为(-1,0),(3,0)和(0,3)坐标都满足函数,所以①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值y随x值的增大而增大,因此③也是正确;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=-1或x=3,因此④也是正确的;⑤从图象上看,当或x>3,函数值要大于当x=1时的因此⑤是不正确的. 故答案为:D.41.【答案】D【解析】解:∵y=2x2+x-1=2(x+)2−,∴当x=0时,y=−1,故选项A错误;该函数的对称轴是直线x=−,故选项B错误;当x<−时,y随x的增大而减小,故选项C错误;当x=−时,y取得最小值,此时y=−,故选项D正确.故答案为:D.42.【答案】D【解答】解:∵y=−x2+2x+4=−(x−1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y随x的增大而增大,A选项错误;图象与y轴交点是,B选项错误;令y=0,则−x2+2x+4=0,∴△=4−4×(−1)×4=20>0,∴抛物线与x轴有两个交点,C选项错误,故答案为:D.。
二次函数基础训练
星海学校2012年暑期万达校区3L个性化一对一名师培优精讲学科:数学年级:初三姓名:雷雯老师:安静日期:2012.11.04一、填空2 、已知函数y=(m-1)x2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.3、函数y=x2+2x+3的对称轴是,顶点坐标是,对称轴的右侧y 随x的增大而,当x= 时,函数y有最值,是 .4、函数y=3(x-2)2的对称轴是,顶点坐标是,图像开口向,当x 时,y随x的增大而减小,当x 时,函数y有最值,是.5、.函数y=-(x+5)2+7的对称轴是,顶点坐标是,图象开口向,当x 时,y随x 的增大而减小,当时,函数y有最值,是.6、函数y=x2-3x-4的图象开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,当x 时,函数y有最值,是.7、.函数y=–3(x-1)2+1是由y=–3x2向平移单位,再向平移单位得到的.8、已知抛物线y=x2-kx-8经过点P (2, -8), 则k= ,这条抛物线的顶点坐标是 .9、已知二次函数y=ax2-4x-13a有最小值-17,则a= .11. 抛物线y=2x2+4x与x轴的交点坐标分别是A( ),B( ).12. 已知二次函数y=-x2+mx+2的对称轴为直线X= 1 ,则m= .13、已知二次函数y=x2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ;c= .14、抛物线y=ax2+bx,当a>0,b<0时,它的图象经过第象限.15、抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是 .二、选择1. 二次函数y=(x-1)2-2的顶点坐标是()A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2. 二次函数y=(x-3)(x+2)的图象的对称轴是( )A.x=3B.x=-2C.x=-0.5D.x=0.53. 把y= -x2-4x+2化成y= a (x+m)2 +n的形式是()A.y= - (x-2 )2 -2B.y= - (x-2 )2 +6C. y = - (x+2 )2 -2D. y= - (x+2 )2 +64 把二次函数B.y= - (x-2 )2 +6的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是()A. y= - (x-4 )2 +9B. y= - x2 +9 C y= - (x-5)2 +8. D y= - x2 +85 抛物线y=2x2-5x+3与坐标轴的交点共有()A . 1个 B. 2个 C. 3个 D. 4个6. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()A.y= (x+2 )2 -2B.y= (x-2 )2 -2C. y = 2(x+2 )2 -2D. y= 2(x-2 )2 -2 7. 若二次函数y=mx 2-3x+2m-m 2的图象经过原点,则m 的值是( )A .1 B. 0 C. 2 D. 0或28、二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( )A.直线y=-x 上B. 直线y=x 上C.y 轴上D.x 轴上9、抛物线y=x 2+x+2上三点(-2,a )、(--1,b),(3,c ),则a 、 b 、c 的大小关系是( )A 、a >b >cB b >a >cC c >a >bD 无法比较大小10、已知二次函数y=x 2-4x-5,若y>0, 则( )A . x>5 B.-l <x <5 C. x>5或x <-1 D. x>1或x<-511、已知二次函数2y ax bx c =++(0a ≠)的图象如图10-6所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数(2)写出它的开口方向、对称轴;2 已知抛物线经过点(2,0)(-1,-1)并以直线X=1为对称轴。
基础训练(7) 二次函数
基础训练(7) 二次函数一、选择题 1.232++=m m mx y 是二次函数,则m 的值为( )A 、0,-3B 、0,3C 、0D 、-32.已知抛物线bx ax y +=2,当a>0,b<0时,它的图象经过()A 、一、二、三象限B 、一、二、四象限C 、一、三、四象限D 、一、二、三、四象限3.同一直角坐标系中,函数y m x m =+和222y m x x =-++(m 是常数,且0m ≠)的图象可能..是( )4.如图1,正方形A B C D 的边长为10,四个全等的小正方形的对称中心分别在正方形A B C D 的顶点上,且它们的各边与正方形A B C D 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )5.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,那么这条抛物线的对称轴是( ) A .直线1=xB .直线2=xC .直线3=xD .直线4=x6.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 2)都在函数y=x 2的图象上,则( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.对y=227x x --的叙述正确的是( )A 、当x=1时,y 最大=22B 、当x=1时,y 最大=8xy O A.xyO B.x y O C.xy OD.x ADCB图1yx10 O 100 A .yx10 O 100 B .yx10 O 100 C .5 yx10 O 100D .C 、当x= -1时,y 最大=8D 、当x= -1时,y 最大=228.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ). A .221216y x x =--+ B .221216y x x =-+- C .221219y x x =-+- D .221220y x x =-+-二、填空题1.二次函数y=-x 2+6x+3的图象顶点为 对称轴为 。
2012中考二次函数基础训练题目4
2012中考二次函数基础训练题目4
1、(2012南京市)已知下列函数:①y=x2;②y= -x2;③y=(x-1)2+2.其中,图像通过平移可以得到函数y= -x2+2x-3的图像有 .
2、(2012甘肃兰州)已知二次函数)0()1(2≠-+=a b x a y 有最小值1,则a 、b 的大小关系为( )
A.a>b
B. a<b
C. a=b
D. 不能确定
3、(2012甘肃兰州)抛物线y=(x+2)2-3可以由抛物线y=x 2平移得到,则下列平移过程中正确的是( )
A. 先向左平移2个单位,再向上平移3个单位
B. 先向左平移2个单位,再向下平移3个单位
C. 先向右平移2个单位,再向下平移3个单位
D. 先向右平移2个单位,再向上平移3个单位
4、(2012甘肃兰州)抛物线y=-2x 2+1的对称轴是( )
A.直线1
2x =
B. 直线1
2x =- C. y 轴 D. 直线x=2
5、(2012江苏苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x ﹣1)2+1的图象上,若x 1>x 2>1,则y 1 y 2(填“>”、“<”或“=”).
6、(2012深圳市 )二次函数
y x x =-+226的最小值是 。
二次函数常用公式、结论及训练
初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。
纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。
(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。
(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。
(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -∙+=2122124)(1x x x x k -+∙+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -∙+=2122124)(1x x x x k -+∙+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1∙x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。
二次函数基础训练题
二次函数基础训练题一、 选择题1.下列各式中,y 是x 的二次函数的个数为( )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .62.把160元的电器连续两次降价后的价格为y 元,若平均每次降价的百分率是x ,则y 与x 的函数关系式为( )A .y =320(x -1)B .y =320(1-x )C .y =160(1-x 2)D .y =160(1-x )23.若函数y =226a a ax --是二次函数且图象开口向上,则a =( )A .-2B .4C .4或-2D .4或34.关于函数y =x 2的性质表达正确的一项是( )A .无论x 为任何实数,y 值总为正B .当x 值增大时,y 的值也增大C .它的图象关于y 轴对称D .它的图象在第一、三象限内5.抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( )A .(-2,1)B .(2,1)C .(2,-1)D .(1,2)6.函数y =-x 2-1的开口方向和对称轴分别是( )A .向上,y 轴B .向下,y 轴C .向上,直线x =-1D .向下,直线x =-17.将抛物线y =3x 2平移得到抛物线y =3(x -4)2-1 的步骤是( )A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位8.抛物线y =12x 2-4x +3的顶点坐标和对称轴分别是( ) A .(1,2),x =1 B .(1-,2),x =-1C .(-4,-5),x =-4D .(4,-5),x =49.如图,抛物线顶点坐标是P (1,2),函数y 随自变量x 的增大而减小的x 的取值范围是( )A .x >2B .x <2C .x >1D .x <110.若二次函数y =x 2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值分别为( )A .0,5B .0,1C .-4,5D .-4,111.如图,将二次函数y =31x 2-999x +892的图形画在平面直角坐标系上,判断方程式31x 2-999x +892=0的两根,下列叙述正确的是( )A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根12.二次函数y =x 2-2x -3的图象如图.当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-1或x >313.消防员的水枪喷出的水流可以用抛物线y =-12x 2+bx 来描述,已知水流的最大高度为20米,则b 的值为( )A .210B .±210C .-210D .±10 214.已知二次函数的图象(0≤x ≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值-1,有最大值0C .有最小值-1,有最大值3D .有最小值-1,无最大值15.如果抛物线y =x 2-6x +c -2的顶点到x 轴的距离是3,那么c 的值等于( )A .8B .14C .8或14D .-8或-1416.已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图,则下列结论中正确的是( )A .a >0B .b <0C .c <0D .a +b +c >017.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论:①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y=-2时,x 的值只能为0,其中正确的个数是( )A .1个B .2个C .3个D .4个18.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )A .k >-74B .k <-74且k ≠0C .k ≥-74D .k ≥-74且k ≠0 19.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1 m ,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m 处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为( )A .1.5 mB .1.625 mC .1.66 mD .1.67 m二、 填空题1.过坐标原点,顶点坐标是(1,-2)的抛物线的解析式为____________.2.将抛物线y =x 2-2x 向上平移3个单位,再向右平移4个单位得到的抛物线解析式是____________.3.已知抛物线y =ax 2+bx +c 经过点(-1,10)和(2,7),且3a +2b =0,则该抛物线的解析式为________.4.已知二次函数的图象关于直线x =3对称,最大值是0,与y 轴的交点是(0,-1),这个二次函数解析式为____________________.5.如图,已知二次函数y =x 2+bx +c 的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为C ,则AC 长为________.6.抛物线y =x 2+2x -3与x 轴的交点有______个.7.若一元二次方程ax 2+bx +c =0的两个根是-3和1,那么二次函数y =ax 2+bx +c 与x 轴的交点是____________.8.根据图填空:(1)a ______0;(2)b ______0;(3)c ______0;(4)b 2-4ac ______0.9.小李想用篱笆围成一个周长为60米的矩形场地,设矩形面积为S (单位:平方米),一边长为x (单位:米).(1)S 与x 之间的函数关系式为____________,自变量x 的取值范围为____________;(2)当x =________时,矩形场地面积S 最大?最大面积是________平方米.三、 解答题1.已知抛物线y =ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.2.指出下列函数图象的开口方向,对称轴及顶点坐标:(1)y =12x 2+x -32; (2)y =-34x 2+15x ; (3)y =-(x -1)(x -2); (4)y =x 2+bx +c .3.如图,A (-1,0),B (2,-3)两点都在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的解析式;(2)请直接写出当y 1>y 2时,自变量x 的取值范围.4.如图,直线l 经过A (3,0),B (0,3)两点且与二次函数y =x +1的图象在第一象限内相交于点C .(1)求△AOC 的面积;(2)求二次函数图象的顶点D 与点B ,C 构成的三角形的面积.5.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润y (单位:元/千度)与电价x (单位:元/千度)的函数关系式为y =-15x +300(x ≥0). (1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (单位:元/千度)与每天用电量m (单位:千度)的函数关系为x =10m +500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?。
2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)
2019-2020中考数学二次函数基础选择题课时练班级:姓名:评价:1.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.3.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣255.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.18.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2410.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.12.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.413.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤14.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.515.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=016.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁答案提示1.【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x >时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.2.【分析】根据一次函数图象经过的象限,即可,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>03.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.4.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.5.【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选:D.6.【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.7.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.8.【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.9.【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.10.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a ≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.11.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.12.【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.13.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.14.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.15.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B 进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.16.【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.。
浙教版数学九年级上册第1章《二次函数》基础训练
浙教版九年级数学上册第 1 章《二次函数》基础训练班级 ______姓名_______一、选择题(每题 3 分,共 30 分)1 .以下关系式中,属于二次函数的是(x 为自变量)()A y 1 x2B y x2 1C y 1D y a2 x28 x22. 以下二次函数中,图象以直线x = 2为对称轴,且经过点(0 ,1) 的是( )A.y = ( x - 2) 2 + 1 B.y = ( x + 2) 2 + 1C.y = ( x - 2) 2 - 3 D .y = ( x + 2) 2 - 33. 抛物线 y x2 2x 1的极点坐标是( )A.(1,0)B.(- 1 ,0 )C.(- 2,1)D.(2,- 1)4. 抛物线y x 2 3能够由抛物线y x2, ( ) 2平移获取则以下平移过程正确的选项是A. 先向左平移 2 个单位 ,再向上平移 3 个单位B.先向左平移 2 个单位 ,再向下平移 3 个单位C. 先向右平移 2 个单位 ,再向下平移 3 个单位D. 先向右平移 2 个单位 ,再向上平移 3 个单位5. 若 A(-4, y1),B(-3,y 2), C(1,y3)为二次函数y=x 2+4 x-5的图象上的三点,则y 1, y2, y3的大小关系是()A. y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y36.由二次函数 y 2(x 3) 2 1 ,可知()A .其图象的张口向下B.其图象的对称轴为直线 x 3C.其最小值为 1 D .当 x 3 时, y 随 x 的增大而增大7. 二次函数 y x2 2x 3 的图象如下图.当y<0 时,自变量 x 的取值范围是().A .- 1 <x< 3 B.x<- 1 C.x> 3 D .x<- 1 或x> 38. 已知二次函数的图象(0 ≤x≤3) 如下图.对于该函数在所给自变量取值范围内,以下说法正确的选项是 ( )A .有最小值 0 ,有最大值 3 B.有最小值- 1,有最大值 0C.有最小值- 1 ,有最大值 3 D .有最小值- 1,无最大值第7题第8题第10题9.敏在校运会竞赛中跳出了满意一跳,函数-2(t的单位:s, h的单位:m)能够描绘他跳跃时重心高度的变化.则他跳起后到重心最高时所用的时间是()A. 0.71 s B.C. D .10.如下图的二次函数 y ax2 bx c 的图象中,刘星同学察看得出了下边四条信息:(1)2;( 2)c>1 ;( 3 ) 2 a-b <0 ;( 4)a+ b + c<0 。
二次函数各知识点、考点、典型例题及练习解析
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
北师大版八年级数学上册 第二章 二次函数知识整理及基础训练(含答案)
第二章 二次函数知识整理及基础训练【知识整理】1. 定义:形如:c bx ax y ++=2(其中a,b,c 是常数,且a ≠0)的函数是二次函数。
2. 本质:二次函数是用自变量的二次式表示的函数。
3. 图象:二次函数的图象是抛物线,抛物线是轴对称图形,对称轴和抛物线的交点叫做抛物线的顶点。
4. 二次项的系数a 对抛物线的影响:当 a>0时,抛物线的开口向上, 当 a<0时,抛物线的开口向下;a 越大开口越小, a 越小开口越大、综上所述:a 决定抛物线的开口大小和方向,即a 决定抛物线的形状。
5. 一次项的系数b 对抛物线的影响: 当b=0时,抛物线的对称轴是y 轴; 当a,b 同号时,对称轴在y 轴的左边;当a,b 异号时,对称轴在y 轴的右边。
即“左同右异” 综上所述:a,b 决定抛物线的左右位置。
6. 常数项c 对抛物线的影响:当c>0时,抛物线与y 轴的交点在y 轴的正半轴; 当c<0时,抛物线与y 轴的交点在y 轴的负半轴; 当c=0时,抛物线经过原点、综上所述:c 决定抛物线的上下位置。
7. 判别式⊿对抛物线的影响:当⊿>0时,抛物线与x 轴有两个交点;当⊿=0时,抛物线与x 轴有一个交点,即顶点在x 轴上; 当⊿<0时,抛物线与x 轴没有交点。
综上所述:⊿决定抛物线与x 轴交点的个数。
8. 当 a>0且⊿<0时, 二次函数c bx ax y ++=2的值恒为正;当 a<0且⊿<0时, 二次函数c bx ax y ++=2的值恒为负。
9. 当x=0, 二次函数c bx ax y ++=2的值为c, 当x=1, 二次函数c bx ax y ++=2的值为c b a ++, 当x=-1, 二次函数c bx ax y ++=2的值为c b a+-,……10. 二次函数c bx ax y ++=2的对称轴为直线abx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,2211. 二次函数的解析式有如下三种形式:12. 当 a>0时,若a bx 2-<,y 随着x 的增大而减小,若a b x 2->,y 随着x 的增大而增大,当 a<0时,若a bx 2-<,y 随着x 的增大而增大,若ab x 2->,y 随着x 的增大而减小。
九年级数学二次函数全章例题+练习(基础、培优)
二次函数概念1.一般地,形如y =ax 2+bx +c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数.其中二次项系数、一次项系数和常数项分别为a ,b ,c .(1)下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =(x -1)2-1C .y =12(x +1)(x -1) D .y =(x -2)2-x 2(2)二次函数y =x 2+4x 中,二次项系数是 ,一次项系数是 ,常数项是 . 【点拨】 判断二次函数要紧扣定义.2.现在我们已学过的函数有一次函数、二次函数,它们的表达式分别是y =ax +b(a ,b 是常数,a≠0)、y =ax 2+bx +c(a ,b ,c 是常数,a≠0).二次函数y =ax 2的图象和性质1.一般地,当a>0时,抛物线y =ax 2的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小.2.一般地,当a<0时,抛物线y =ax 2的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点,a 越小,抛物线的开口越小.3.从二次函数y =ax 2的图象可以看出:如果a>0,当x<0时,y 随x 的增大而减小,当x>0时,y 随x 的增大而增大;如果a<0,当x<0时,y 随x 的增大而增大,当x>0时,y 随x 的增大而减小.4.(1)抛物线y =2x 2的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点; (2)抛物线y =-3x 2的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点;(3)在抛物线y =2x 2对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大; (4)在抛物线y =-3x 2对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.二次函数y=ax2+k的图象和性质二次函数y=ax2+k的图象和性质二次函数y=a(x-h)2+k的图象和性质二次函数y=ax2+bx+c的图象和性质例1、求二次函数y=2x2+4x-1的对称轴,顶点坐标,并画出其函数图象.例2、将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.(1)y=x2-4x+5;(2)y=-2x2-12x-22.用待定系数法确定二次函数的解析式例1如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三个点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.【跟踪训练1】已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.例2已知抛物线的顶点坐标为(-1,-3),与y 轴的交点为(0,-5),求此抛物线的解析式.【点拨】 特别地,当抛物线的顶点为原点时,h =0,k =0,可设函数的解析式为y =ax 2; 当抛物线的对称轴为y 轴时,h =0,可设函数的解析式为y =ax 2+k ; 当抛物线的顶点在x 轴上时,k =0,可设函数的解析式为y =a (x -h )2.【跟踪训练2】 已知抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),则这个二次函数的解析式是 .例3已知抛物线与x 轴交于点A (-1,0),B (1,0)并经过点M (0,1),求此抛物线的解析式.【点拨】 交点式y =a (x -x 1)(x -x 2)中,x 1和x 2分别是抛物线与x 轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线x =x 1+x 22就是抛物线的对称轴.【跟踪训练3】 已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为 .巩固训练1.已知抛物线y =ax 2+bx +c 过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为( )A .y =x 2-3x +2B .y =2x 2-6x +4C .y =2x 2-6x -4D .y =x 2-3x -22.如果抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),则它的解析式为( )A .y =-13x 2+2x -4B .y =-13x 2-2x -4C .y =-13(x +3)2-1 D .y =-x 2+6x -123.如图,抛物线的解析式为( )A .y =-x 2-x +2B .y =x 2+x +2C .y =-2x 2+x +2D .y =-x 2+x +24.若y =ax 2+bx +c ,则由表格中信息可知y 与x 之间的函数关系式为( )x -1 0 1 ax 21 ax 2+bx +c83A .y =x 2-3x +3B .y =x 2-3x +4C .y =x 2-4x +3D .y =x 2-4x +85、已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表: x … 0 1 2 3 … y …﹣1232…在该函数的图象上有A(x 1,y 1)和B(x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是( ) A. y 1≥y 2 B. y 1>y 2 C. y 1≤y 2 D. y 1<y 26.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )B .C .D .1111xoyyoxyoxxoy7.已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ )8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是Oy x1-1A . xyO 1-1B . xy O1-1xyO1-1图像性质提高1.作出二次函数y=x2-2x-3的图象,当y=0时,自变量x= ;当y<0时,自变量x的取值范围是;当y>0时,自变量x的取值范围是.2、抛物线y=ax2+bx+c的对称轴是直线x=-1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a-2b+c>0;③8a+c>0;④c=3a-3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的结论是(只填序号)3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>04.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c>0;③2a+b <0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)5、小明在某次投篮中,球的运动路线是抛物线y=-51x 2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L 是 m6、如图所示,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(-1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①4a-2b+c <0;②2a-b >0;③a <-1;④b 2+8a >4ac.其中正确的有: (填写番号).7、已知二次函数y=ax 2+bx+c 的图象如图所示,下列结论:①9a-3b+c=0;②4a-2b+c >0;③方程ax 2+bx+c-4=0有两个相等的实数根;④方程a (x-1)2+b (x-1)+c=0的两根是x 1=-2,x 2=2.其中正确的有: (填写番号).8.如图,二次函数y =ax 2+bx +c (a ≠0)的图象过点(﹣1,2),下列结论:①abc >0;②a +b +c >0;③2a +b <0;④b <﹣1;⑤b 2﹣4ac <8a ,正确的结论是 (只填序号)9.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2;⑤若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2.其中正确的结论是 .二次函数的应用1.如图,某小区决定要在一块一边靠墙(墙长10米)的空地上用栅栏围成一个矩形绿化带ABCD,绿化带的一边靠墙,中间用栅栏隔成两个小矩形,所用栅栏总长为36米,设AB的长为x米,矩形绿化带的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出x的取值范围;(2)求围成矩形绿化带ABCD面积S的最大值.2.如图,已知边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=1,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是 .3.天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y件,销售单价为x元/件(x≥13).(1)写出y与x之间的函数关系式;(2)设商场每天的销售利润为w(元),若每天销售量不少于150件,求商场每天的最大利润.4.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲.节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量y(件)是销售单价x(元/件)的一次函数.销售单价x(元/件)…30 40 50 60 …每天销售量y(件)…350 300 250 200 …(1)求出y与x的函数关系;(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100%:①当销售单价x取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价﹣成本价);②试确定销售单价x取何值时,花店销该鲜花礼盒每天获得的利润W(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.5.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w (元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价,又不高于36元,当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?6.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.7.2020年,新型冠状病毒肆虐,给人们的生活带来许多不便,网络销售成为这个时期最重要的一种销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?8.某企业销售某商品,以“线上”与“线下”相结合的方式一共销售了100件.设该商品线下的销售量为x(10≤x≤90)件,线下销售的每件利润为y1元,线上销售的每件利润为y2元.如图中折线ABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求y1与x之间的函数表达式;(2)若70≤x≤90,问线下的销售量为多少时,售完这100件商品所获得的总利润最大?最大利润是多少?{)5840(1402)7158(82≤≤+-≤<+-=x x x x y(3)①求他的销售利润w (元)与销售单价x (元/双)之间的函数关系式.(4)②小王每月需向银行还贷2075元,另童鞋店每月需缴纳水电费、营业税等固定费用3000元,通过计算判断,小王每月(按30天计算)能否有盈余?如果有,最多盈余多少元?(盈余=销售利润-固定费用-银行贷款)二次函数的综合如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求一次函数与二次函数的解析式;(2)根据图象,写出满足kx+b ≥(x-2)2+m 的x 的取值范围.练习1:如图所示,二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x 的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A (-1,0),B (3,0),C (0,-3),一次函数图象与二次函数图象交于B 、C 两点. (1)求一次函数和二次函数的解析式.(2)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (3)当自变量x 为何值时,一次函数值大于二次函数值. (4)当自变量x 为何值时,两函数的函数值的积小于0.ABC Oxy一次函数和二次函数的交点有关的面积类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【抛物线对称轴的求法】1、抛物线y = 2x2开口______ ,对称轴是________________2、抛物线y = -2x - 3 开口___________ ,对称轴是_______________3、求抛物线y=2x2-4x+3的对称轴。
4、抛物线y= x2-3x + 2与x轴相交于A(2,0)、B(1,0)则抛物线的对称轴是 ___________ 。
5、请将二次函数y =2x2-5x+3配成y=a(x-h)2+ k的形式,然后判断顶点坐标和对称轴。
二次函数y = 1(x-3)(x+2) 的对称轴是6、【抛物线的解析式求法——顶点式】1、二次函数y = ax2+bx+c(a0)的顶点坐标为(-2,-4),且过点(5,2)求其解析式。
2、二次函数y = ax2+bx+c(a0)过点(2,4),且当x=1 时,y有最值6,求解析式。
3、已知抛物线y =ax2+ bx + c顶点坐标为(4,-1) ,与y轴交于点(0,3) ,求这条抛物线的解析式.4、如图所示,求二次函数的解析式。
5、二次函数y =ax2+bx+c(a0)的对称轴为直线x=3,最小值为-2,,且过(0,1),求此函数的解析式。
【抛物线的解析式求法——交点式】1、已知二次函数的图象与x轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。
2、已知一抛物线与x 轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那么这个二次函数的解析式是_______________ 。
3、已知二次函数的图象如图,求此函数的解析式。
4、已知二次函数的图像过点A(-1,0)、B(3,0),与y 轴交于点C,且BC=2 3 ,求二次函数关系式。
5、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A、B 两点,与y 轴交于C 点,点A、C 的坐标分别是(8,0)(0,4),求这个抛物线的解析式。
【二次函数解析式求法综合练习】1、若抛物线y=ax2+bx+c 的对称轴为x=2,且经过点(1,4)和点(5,0),求此抛物线解析式2、已知二次函数图象与x轴交点(2,0)(-1,0)与y 轴交点是(0,-1),那么这个二次函数的解析式是____________ 。
3、已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析式是4、已知二次函数的图象与x轴交点的横坐标分别是x1= -3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。
5、【中考压轴题练一练】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)在抛物线的对称轴上求一点N,使点N到点B的距离与到点O的距离之差最大,并求此时点N的坐标;(3)P是抛物线上的第一象限内的动点,过点P 作P M⊥x轴,垂足为M,是否存在点P,使得以P、M、A 为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.基础过关【二次函数求与坐标轴的交点及与x 轴的交点个数】知识点小结:【基本方法】求二次函数y =ax2+ bx + c与x轴的交点:令y=0,求x求二次函数y =ax2+ bx + c与y轴的交点:令x=0,求y 【窍门:(0,c)】1、求二次函数y = x2-3x+2与x轴和y轴的交点坐标。
2、求抛物线y = 2x2-5x与x轴的交点坐标。
3、抛物线y= x2- 2x -8与x轴相交于A、B两点,与y轴相交于点C,求ABC的面积。
4、抛物线y= x2- 2x -8与x轴相交于A、B两点,顶点为C,求ABC的面积。
5、抛物线y = 2(x -3)(x +5)与x轴的交点坐标为________________ ,与y轴的交点坐标为66抛物线y =ax2+bx+c与x轴的一个交点坐标为(-1,0)且对称轴为直线x =2,则与x 轴的另外一个交点为 _________________________ 。
【抛物线与x 轴的交点个数】与b 2 - 4ac 有关 若b 2 - 4ac 0抛物线与x 轴有2个交点;若b 2 - 4ac = 0抛物线与x 轴有1个交点。
若b 2 - 4ac0抛物线与x 轴没有交点。
1、抛物线y =2x 2 -3x +2与x 轴的交点个数是( )A 、0 个B 、1 个C 、2 个2、抛物线y = x 2的图像与x 轴的公共点的个数有( )A 、0 个B 、1 个C 、2 个3、抛物线y =3x 2 + 5x 与x 轴的交点个数是( ) A 、0 个B 、1 个C 、2 个4、抛物线 y = x 2 -5x + 3与坐.标.轴.的交点个数是( )5、 抛物线 y = 2x 2 +8x +m 与 x 轴只有一个交点,则 m= ______________6、 一个足球杯从地面向上踢出,它距地面的高度h (m )可以用公式h =-4.9t 2 +19.6t 来表示,其中t (s )可以表示足球被踢出后经过的时间。
(1) 经过多少秒后,足球被踢到其运动轨迹的最高点?2 经过多长时间足球落地?D 、无法确定D 、无法确定D 、无法确定A 、0 个B 、1 个C 、2个D 、3 个二次函数y = ax2+bx+c中a、b、c 的符号确定】方法小结】a:看开口方向。
开口向上a 0,开口向下a 0 b:看对称轴的位置。
口诀:左同右异c:看与y 轴的交点位置:口诀:上大下小其他可能出现的考点】b2- 4ac:看与x轴的交点个数a +b + c:当x = 1时,判断y的情况。
a - b +c :当x = -1时,判断y的情况。
若要比较2a和b,则会考虑- 与 1 的关系。
2a1、【填表】二次函数的图象与性质具体如下图所示:y yyy y y yo x ox ox oxo x oxa 0、b0 a 0 、b 0 a 0 、b 0 a 0、b 0a0、b 0 a 0 、b 0c 0 、abc 0 c 0 、abc 0 c 0 、abc 0 c 0 、abc 0 c 0 、abc 0 c 0 、abc 0b2-4ac0b2-4ac 0b2-4ac 0b2-4ac 0b2-4ac 0b2-4ac 02、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列4 个结论中:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;⑤b=2a.正确的是(填序号)3、⑴ a0 ;b 0 ;c 0 ;abc 0.⑵ b2-4ac 0 .⑶a +b+c 0;a -b +c 0;⑷当x0时,y的取值范围是;当y0时,x的取值范围是.4、(2009年齐齐哈尔市)已知二次函数y =ax2+bx+c(a0)的图象如下图所示,则下列结论:①ac0;②方程ax2+ bx + c = 0的两根之和大于0;③y随x的增大而增大;④a-b+c0,其中正确的个数()A.4 个B.3 个C.2 个D.1 个y【判断x 和y 的取值范围】1、如图抛物线y = ax2+ bx + c与x轴交与点(-3,0)、(1,0),与y轴交与点(0,-3).结合图象回答:⑴当x0时,y的取值范围是;当x0时,y的取值范围是.⑵当y0时,x的取值范围是;当y0时,x的取值范围是.⑶ax2+bx+c0的解集是;ax2+bx+c≤0 的解集是.2、抛物线y = x2-2x -3与x 轴相交于A、B 两点,当x__________________ 时,y>0;当x _____________时,y<0。
【其他图像问题】3、抛物线y = x2-3x + 2不经过().(A)第一象限; (B)第二象限; (C)第三象限; (D)第四象限4、已知二次函数y= -x2+bx+5,它的图像经过点(2,-3). (1)求这个函数关系式及它的图像的顶点坐标.(2)当x为何值时,函数y随着x的增大而增大?当为x何值时,函数y随着x的增大而减小?5、二次函数y = ax2+ bx + c的图像与x轴交于点A(-8,0)、B(2 0),与y轴交于点C,∠ACB=90°.(1)、求二次函数的解析式;(2)、求二次函数的图像的顶点坐标;【平移练习】1、将二次函数y = 2x2向上平移5个单位得到 _______________2、将二次函数y = 2x2向左平移 3 个单位得到_______________________________________________________ ;向右平移 2 个单位得到3、将二次函数y = 2x2先向左平移2个单位,再向上平移1个单位得到________________4、二次函数y = -2(x + 3)2-1由y=-2(x-1)2+1向__________ 平移________ 个单位,再向 ____ 平移______ 个单位得到。
5、抛物线y = 3(x + 2)2- 3可由抛物线y =3(x+2)2+2向平移个单位得到.6、将抛物线y = 5(x-3)2+ 2向右平移3个单位,再向上平移2个单位,得到的抛物线是67、把抛物线y =-(x-1)2-1向平移个单位,再向__________ 平移_______ 个单位得到抛物线y=-(x+2)2-3.8、抛物线y = x2-2x-1可由抛物线y = x2-4x+1向平移个单位,再向________ 平移 ______ 个单位得到.9、抛物线y=-2x2-4x-5 经过平移得到y=-2x2,平移方法是( )A.向左平移1 个单位,再向下平移3 个单位B.向左平移1个单位,再向上平移3 个单位C.向右平移1个单位,再向下平移3 个单位D.向右平移1 个单位,再向上平移3 个单位10、抛物线y =ax2+c是由y = 2x2向下平移5个单位得到的,则a= ________ ,c= _________。