2_傅里叶级数与傅里叶变换

合集下载

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换

第九章 傅里叶级数和傅里叶变换在自然界中广泛地存在各种各样的周期性运动(即相隔一定时间间隔往复循返的过程)。

例如,日月星球的运动,海洋潮汐的运动,电磁波与声波的运动,工厂里机器部件的往复运动,时钟摆的摆动以及人体心脏的跳动等等,都是周期性运动。

为了描述周期性的运动过程,数学上是借助某类函数来描述的。

当然这类函数也要体现出周期性。

这类函数称为周期函数。

在前面几章中,为了研究函数的性质,常常采用分析表示法,将这些函数在某区域展开成幂级数的形式,如泰勒级数或罗朗级数。

但是,这种幂级数形式的展开式是体现不出周期性来的,那么,对于周期性函数应采取怎样的分析表示法呢?这就是本章要讨论的内容。

9.1 周期函数和傅里叶级数9.1.1 周期函数 凡满足以下关系式:)()(x f T x f =+ (T 为常数) (9.1.1) 的函数,都称为周期函数。

周期的定义(1) 满足式(9.1.1)的T 值中的最小正数,即为该函数的周期; (2) 一个常数以任何正数为周期。

9.1.2 基本三角函数系按某一规律确定的函数序列称为函数系。

如下形式的函数系:1,x l πcos,x l πsin,x l π2cos ,x l π2sin ,…,x l k πcos ,x lk πsin ,… (9.1.2)称为基本三角函数系。

所有这些函数具有各自的周期,例如x l k πcos 和x lk πsin 的周期为kl2,但它们的共有周期为l 2(即所有周期的最小公倍数)。

通常这个周期命名为函数系的周期。

所以式(9.1.2)的三角函数系的周期为l 2。

如果我们将基本三角函数系中的函数,任意取n 个组合,则我们可以得到一个较复杂的函数。

例如图9.1(a )是两个函数的组合x lx l x f ππ2sin 21sin )(-=;图9.1(b )是三个函数的组合x lx l x l x f πππ3sin 312sin 21sin )(+-=。

4种傅里叶变换

4种傅里叶变换

copyright©赵越 ise_zhaoy1@
4种傅里叶变换
DFT的变换 的变换
x(nT)=x(n)
Tp = 1 F
Tp = NT
x(e jkΩ0T ) x(k)
0 T 2T 1 2
Ωs = 2 π T 1 fs = T
NT
N
Ω0 =
2 π =2 F π Tp
t n
Ωs = N 0 Ω
( )
--Ω
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
4.离散傅里叶变换 离散傅里叶变换(DFT) 离散傅里叶变换
周期性离散时间信号从上可以推断: 周期性离散时间信号从上可以推断: 从上可以推断 周期性时间信号可以产生频谱是离散的 离散时间信号可以产生频谱是周期性的。 离散时间信号可以产生频谱是周期性的。 得出其频谱为周期性离散的 得出其频谱为周期性离散的。 周期性离散
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
四种傅里叶变换形式的归纳
copyright©赵越 ise_zhaoy1@

正: X(e jω ) =
1 反 : x(n) = 2π
n=−∞
x(n)e − jnω ∑

∫π

π
X(e jπ )e jnω dω
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
对称性
时域信号 离散的 非周期的 频域信号 周期的 连续的
时域:非周期、离散(取样间隔为T 时域:非周期、离散(取样间隔为T) 频域:连续、周期( 频域:连续、周期(周期为 Ω = 2π ) s
copyright©赵越 ise_zhaoy1@

傅里叶变换与傅里叶级数

傅里叶变换与傅里叶级数

傅里叶级数和傅里叶变换的区别与联系以上我们分别讨论了傅里叶级数和傅里叶变换的定义及其存在条件,现简要讨论一下二者的区别。

前已述及,傅里叶级数对应的是周期信号,而傅里叶变换对应的是非周期信号;前者要求信号在一个周期内的能量是有限的,而后者要求信号在整个时间区间内的能量是有此外,傅里叶级数的系数X(k Q2o )是离散的,而傅里叶变换x(jn)是Q的连续函数。

由此可见,傅里叶级数与傅里叶变换二者的物理含义不同,因而量纲也不同。

X(k Q。

)代表了周期信号x(t)的第k次谐波幅度的大小,而x(js2)是频谱密度的概念为说明这一点,我们可将一个非周期信号视为周期丁趋于无穷大的周期信号。

由Q o=2 n /!可知,若T TS则必有Qo TO, k Qo 将(3. 1. 3)式两边同乘以T,并取时的极限,可得hm7'A (if)r ) - lim —- = X(jn) (3. t 13) 瞬以•从童姻上于IWift幅度除以類率显见*它是義墙麼度的If念.比较01翥】■ I, M 3. L2A(3, L5)W(3.1/12)^式;菱们看到•周期倩号的傅里叶系数和用谏倩号的一牛周期所求出的傅塑叶童换的黄索为只厲仏)=\a…^这一Jt累也可由图3. I, 1和图龙L 2曹岀,由(L2*飭)式可側周期值号了仃)的功率■= S= £ i xun)i f于垦有时".r{ t) |:d/ :一£W “我们*用同样的方注可&.导出匕厂J I 之〔門 a 匕| X(jjQ) dD (3t L 16)© 1.15)#(3* L 16)Xin .1i 的两t JtSft 为pfirwval 关系或Par^eval 定理.前# 反映的是劝率Jt 系,痞帰反映的是能H关累.现住•我I订不考慮(乳1.羅试的约电及Dirichlet条件,立接求鮮周期佰号的傅曬叶变换「将G I)式代人佩1.门式*有该式表明,一个周期信号的傅里叶变换是由频率轴上间距为Q。

傅里叶级数与傅里叶变换的关系

傅里叶级数与傅里叶变换的关系

傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换是数学中重要的工具,它们在信号处理、图像处理和物理学等领域中有着广泛的应用。

本文将介绍傅里叶级数和傅里叶变换的概念,并探讨它们之间的关系。

一、傅里叶级数的概念傅里叶级数是一种将周期信号分解为一系列正弦和余弦函数的方法。

它基于傅里叶分析的原理,将一个周期为T的周期信号f(t)表示为:f(t) = a0 + Σ[an*cos(nω0t) + bn*sin(nω0t)]其中,a0是信号直流分量的系数,an和bn是信号的谐波分量的系数,n为谐波的阶数,ω0为基频的角频率。

傅里叶级数可以理解为将一个周期信号分解为不同频率成分的叠加。

二、傅里叶变换的概念傅里叶变换是一种将非周期信号分解为不同频率成分的方法。

它的基本思想是将信号f(t)在整个实数轴上进行积分变换,得到频率域上的表示。

傅里叶变换的定义如下:F(ω) = ∫[f(t)*e^(-jωt)]dt其中,F(ω)表示信号在频率域上的表示,f(t)为原始信号,e^(-jωt)为旋转因子。

傅里叶变换将一个时域上的信号转换为频域上的表示,以便更好地分析信号的频谱特性。

三、傅里叶级数与傅里叶变换的关系傅里叶级数可以看作是傅里叶变换在周期信号上的特殊情况。

当一个信号f(t)为周期信号时,其傅里叶变换和傅里叶级数之间存在着对应关系。

具体而言,傅里叶级数是傅里叶变换在周期为T的周期信号上的反离散化。

通过傅里叶级数,我们可以将一个周期信号分解为多个谐波成分,每个谐波成分对应着傅里叶变换的频谱。

四、应用实例傅里叶级数和傅里叶变换在信号处理和图像处理中有着广泛的应用。

以音频信号为例,我们可以通过傅里叶级数将音频信号分解为不同频率的音调,进而进行声音合成和音乐分析。

而傅里叶变换则可以将非周期信号的频谱特性表示出来,如在图像处理中可以用于图像压缩和特征提取。

傅里叶级数和傅里叶变换的关系使得我们能够更好地理解和处理信号和图像。

总结傅里叶级数和傅里叶变换是处理周期信号和非周期信号的有效工具,它们在信号处理和图像处理中有着广泛的应用。

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换傅里叶级数和傅里叶变换是数学中常见且重要的概念,它们在信号处理、图像处理、电路分析以及物理学等领域中起着重要的作用。

本文将介绍傅里叶级数和傅里叶变换的基本原理、应用以及它们之间的关系。

一、傅里叶级数傅里叶级数是将一个周期性函数表示为正弦函数和余弦函数的无限级数。

在数学上,一个周期为T的函数f(t)可以表示为傅里叶级数的形式:f(t) = a0/2 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0表示直流分量,an和bn分别表示函数f(t)在一个周期内的cosine分量和sine分量,n为正整数,ω0为角频率,ω0 = 2π/T。

傅里叶级数的基本原理是,任何一个函数都可以用一系列基本的正弦和余弦函数来表示。

通过计算函数f(t)在一个周期内的各种正弦和余弦分量的系数,我们可以将函数f(t)展开成傅里叶级数的形式。

傅里叶级数在信号处理中有广泛的应用,例如音频信号的分析与合成、图像压缩等。

通过对信号进行傅里叶级数分解,我们可以得到信号的频率成分,从而对信号进行频域分析和处理。

二、傅里叶变换傅里叶变换是将一个非周期性函数或一个有限区间内的函数表示为连续频谱的方法。

傅里叶变换可以将一个时域上的函数转换为频域上的函数,从而能够更方便地观察信号在不同频率上的分量。

函数f(t)的傅里叶变换定义为:F(ω) = ∫f(t) * exp(-jωt) dt其中,F(ω)表示函数f(t)的频域表示,ω为频率。

傅里叶变换将函数f(t)从时域转换到频域,提供了频域上对信号进行分析和处理的方法。

傅里叶变换在信号处理中有广泛的应用,例如频率滤波、信号去噪、图像处理等。

通过对信号进行傅里叶变换,我们可以将信号表示为一系列复指数函数的线性组合,从而得到信号的频谱信息。

三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换之间存在着密切的关系。

事实上,傅里叶级数可以看作是傅里叶变换的一种特殊形式,即周期为T的函数的傅里叶级数可以看作是傅里叶变换在频率上的离散表示。

傅里叶变换和傅里叶级数的区别和联系

傅里叶变换和傅里叶级数的区别和联系

傅里叶变换和傅里叶级数的区别和联系傅里叶变换和傅里叶级数是信号处理领域中两个重要的数学工具。

许多人对这两个概念有所了解,但是很难区分它们之间的差异和联系。

本文将探讨傅里叶变换和傅里叶级数的异同,以及它们在信号处理中的应用。

一、傅里叶级数傅里叶级数是一种将周期信号分解成若干个简单周期信号的方法。

简单周期信号包括正弦和余弦波形。

将周期信号分解成若干个频率分量之和,这些频率分量即为傅里叶级数的各项。

这些项被称为正弦项和余弦项,它们的系数决定了信号中每一个频率分量的能量大小。

在傅里叶级数中,信号的周期性是必要条件。

举个例子,我们可以将一个周期为T的三角波信号表示为以下傅里叶级数形式:f(x) = a0 + Σ(an cos(nω0x) + bn sin(nω0x))n=1其中,a0和an、bn分别代表0、正弦和余弦项的系数,ω0代表角频率(ω0 = 2π/T)。

根据傅里叶级数的定义,信号f(x)可以表示为n个特定频率分量的组合。

每个分量的能量与其系数平方成正比。

傅里叶级数的范围仅限于周期信号。

但是,实际应用中,我们会遇到非周期信号,这时候傅里叶级数就不再适用。

二、傅里叶变换与傅里叶级数类似,傅里叶变换也是一种将信号分解成频域分量的方法。

傅里叶变换可处理可瞬时信号,即非周期信号。

简单来说,通过傅里叶变换,我们可以将时域信号f(t)转换成频域表示F(ω)。

傅里叶变换的一般形式为:F(ω) = ∫f(t) e−iωtdt−∞< ω < ∞其中,F(ω)是频域表达式,表示信号f(t)在频率ω处的贡献。

ω代表角频率,f(t)是时域信号。

傅里叶变换主要通过频域分析来提取信号特征。

对于一个信号,我们可以通过傅里叶变换来分离出不同的频率分量,进一步分析其特征,例如幅度、频率和相位信息。

三、傅里叶变换和傅里叶级数的联系虽然傅里叶变换和傅里叶级数适用的信号类型不同,但两者有很多相似之处。

对于周期信号,我们可以使用傅里叶级数和傅里叶变换来得到相同的频率分量表示。

傅里叶变换常用公式

傅里叶变换常用公式

傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。

它常被应用于信号处理、图像处理、通信等领域。

本文将介绍傅里叶变换的基本概念和常用公式。

2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。

傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。

3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。

傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。

4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。

反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。

5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。

5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。

5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。

5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。

6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。

本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换
而用三角级数表示的函数范围很广(它们甚至可以是不 连续或不可微的),并且用三角级数展开对于信号(函 数)的分析和处理非常方便。
最常见的三角级数是傅立叶级数。
傅立叶级数
直线
y kx b
y x
抛物线 y ax2 bx c
y x
傅立叶级数展开(T=2l)
y
f (x)
a0 2
n x
(an cos
二维Hartley变换
F f (x)eix d x
一维傅立叶变换
FF
,
F f
x, y
f (x, y)ei2 x yd x d y
二维傅立叶变换
傅立叶变换存在问题:核函数中出现了复数,这就意 味着即使在空域中的实序列经过傅立叶变换之后也会 变成复数,如果实序列用复序列来处理,问题本身将 被复杂化。
恩格斯把傅里叶的数学成就与他所推崇的哲学家黑格尔的辩证法 相提并论。他写道:傅里叶是一首数学的诗,黑格尔是一首辩证 法的诗。
傅立叶级数
常见的表示函数的工具:幂级数和三角级数。
幂级数简单、方便,但条件苛刻,要求函数在相应的区 间内不仅必须无限次可微,还有其它一些要求(例如收 敛性等),因而从理论上说其使用范围比较有限。
周期函数展开成傅立叶级数的核心思想是:f(x)可以分解 为不同频率的谐波之和。
傅立叶级数 例2:周期为τ =1的方波函数
傅立叶级数
若设f(x)是定义在(-∞,+∞)区间上的非周期函数,它 是否可以表示为不同频率谐波的迭加?
设f(x),及其一阶导数f΄(x)在任意一个有限区间上
分段连续,且
f xd存x 在。
由于
1 1 1 , n
l l
n
lim l

信号与系统公式大全

信号与系统公式大全

信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。

在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。

同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。

如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是数学中重要的概念,广泛应用于信号处理、图像处理、通信系统等领域。

它们为我们理解和分析周期信号以及非周期信号提供了有效的数学工具。

本文将分别介绍傅里叶级数和傅里叶变换的基本概念、性质和应用。

一、傅里叶级数傅里叶级数是指将一个周期函数表示成一系列正弦和余弦函数的和。

它的基本思想是利用正弦和余弦函数的基本频率,将一个周期函数分解成多个不同频率的谐波分量,从而得到函数的频谱内容。

在数学上,傅里叶级数表示为:\[f(t) = \sum_{n=-\infty}^{\infty}c_ne^{i \omega_n t}\]其中,$c_n$代表系数,$e^{i \omega_n t}$是正弦和余弦函数的复数形式,$\omega_n$是频率。

将周期函数用傅里叶级数表示的好处是,可以通过调整系数来控制频谱内容,进而实现信号的滤波、合成等操作。

傅里叶级数的性质包括线性性、对称性、频谱零点等。

线性性意味着可以将不同的周期函数的傅里叶级数叠加在一起,得到它们的叠加函数的傅里叶级数。

对称性则表示实函数的傅里叶级数中系数满足一定的对称关系。

频谱零点表示在某些特殊条件下,函数的傅里叶级数中某些频率的系数为零。

傅里叶级数的应用广泛,例如在音频信号处理中,利用它可以进行音乐合成、乐音分析和音频压缩等操作。

此外,在图像处理领域,傅里叶级数被广泛应用于图像滤波、增强、噪声消除等方面。

二、傅里叶变换傅里叶变换是傅里叶级数的推广,用于处理非周期信号。

它将时域的信号转换为频域的信号,从而可以对信号进行频谱分析和处理。

傅里叶变换的定义为:\[F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i \omega t}dt\]其中,$F(\omega)$表示信号的频域表示,$f(t)$为时域信号,$\omega$为连续的角频率。

傅里叶变换可以将时域的信号分解成不同频率的复指数函数,并用复数表示频谱信息。

离散傅里叶级数和离散傅里叶变换

离散傅里叶级数和离散傅里叶变换

离散傅里叶级数和离散傅里叶变换离散傅里叶级数和离散傅里叶变换是数字信号处理中常用的数学工具。

它们可以将一个离散的信号分解成一系列的正弦和余弦函数,从而方便地进行频域分析和滤波处理。

离散傅里叶级数是将一个周期为N的离散信号表示为一系列复数的和。

它的公式为:X(k) = Σ[x(n) * exp(-j * 2π * k * n / N)]其中,X(k)表示信号的频域表示,x(n)表示信号的时域表示,k表示频域的索引,n表示时域的索引,N表示信号的长度。

离散傅里叶级数可以将一个离散信号分解成一系列的正弦和余弦函数,每个正弦和余弦函数的频率为k / N,幅度为X(k)。

通过分析这些正弦和余弦函数的频率和幅度,我们可以了解信号的频域特性,例如信号的主要频率成分和能量分布情况。

离散傅里叶变换是将一个长度为N的离散信号转换为一个长度为N 的复数序列。

它的公式为:X(k) = Σ[x(n) * exp(-j * 2π * k * n / N)]离散傅里叶变换可以将一个离散信号从时域转换到频域,得到信号的频域表示。

通过分析信号的频域表示,我们可以了解信号的频率特性,例如信号的主要频率成分和能量分布情况。

离散傅里叶变换和离散傅里叶级数在数字信号处理中有广泛的应用。

它们可以用于信号的频域滤波,例如去除信号中的噪声或者突发干扰。

通过将信号转换到频域,我们可以选择性地滤除不需要的频率成分,从而提取出我们感兴趣的信号。

此外,离散傅里叶变换和离散傅里叶级数还可以用于信号的压缩和编码。

通过分析信号的频域表示,我们可以找到信号中能量较低的频率成分,并将其舍弃,从而实现信号的压缩。

在通信系统中,离散傅里叶变换和离散傅里叶级数也被广泛应用于调制和解调过程中。

总之,离散傅里叶级数和离散傅里叶变换是数字信号处理中重要的数学工具。

它们可以将一个离散信号分解成一系列的正弦和余弦函数,从而方便地进行频域分析和滤波处理。

通过分析信号的频域表示,我们可以了解信号的频率特性,从而实现信号的处理和编码。

已知傅里叶级数求傅里叶变换

已知傅里叶级数求傅里叶变换

已知傅里叶级数求傅里叶变换傅里叶级数和傅里叶变换是信号处理和数学中非常重要的概念,它们在科学、工程、物理学和数学各个领域都有着广泛的应用。

傅里叶级数用于描述周期性信号的频域特性,而傅里叶变换则适用于非周期性信号,将信号从时域转换到频域。

通过对这两个概念的深入了解,我们可以更好地理解信号的频谱特性和信号处理的方法。

接下来,让我们来深入探讨已知傅里叶级数如何求傅里叶变换。

一、傅里叶级数的基本概念在深入研究傅里叶变换之前,我们需要首先了解傅里叶级数的基本概念。

傅里叶级数可以表示任意周期信号为一系列正弦和余弦函数之和的形式,它的数学表达式为:\[ f(t) = \frac{a_0}{2} + \sum\limits_{n=1}^{\infty} (a_n\cos{(\frac{2\pi nt}{T})} + b_n \sin{(\frac{2\pi nt}{T})}) \]其中,\[ f(t) \] 代表信号的时域表示,\[ T \] 代表信号的周期,\[ a_0, a_n, b_n \] 为傅里叶系数。

二、傅里叶级数到傅里叶变换当我们已知一个信号的傅里叶级数,想要求出其傅里叶变换时,我们可以通过一定的方法将傅里叶级数转换为傅里叶变换。

这里需要引入复数形式的傅里叶级数,即欧拉公式:\[ e^{ix} = \cos{x} + i\sin{x} \]通过欧拉公式,我们可以将之前的正弦和余弦函数转化为指数形式的复数函数。

这为我们求解傅里叶变换提供了便利。

傅里叶变换的数学定义是:\[ F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \]其中,\[ f(t) \] 为时域信号,\[ F(\omega) \] 为频域信号,表示信号在频域上的频谱特性。

三、从傅里叶级数推导傅里叶变换对于已知傅里叶级数的情况,我们可以通过一些步骤将其转换为傅里叶变换。

根据欧拉公式将傅里叶级数中的正弦和余弦函数转化为指数形式的复数函数。

什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系

什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系

什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。

傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。

具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。

这意味着周期波都可分解为n次谐波之和。

傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。

与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。

傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。

但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。

而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。

简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。

2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。

而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。

3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。

而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。

4. 联系:傅里叶级数可以视作傅里叶变换的特例。

当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。

此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。

傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。

傅里叶级数和傅里叶变换的关系和区别

傅里叶级数和傅里叶变换的关系和区别

傅里叶级数和傅里叶变换的关系和区别摘要:一、傅里叶级数简介二、傅里叶变换简介三、傅里叶级数与傅里叶变换的关系四、傅里叶级数与傅里叶变换的区别五、应用场景分析正文:傅里叶级数和傅里叶变换是数学和工程领域中广泛应用的两种信号处理方法。

它们在一定程度上具有相似性,但也存在明显的区别。

下面我们将分别介绍这两种方法,并探讨它们之间的关系和区别。

一、傅里叶级数简介傅里叶级数是一种将周期函数分解为一系列正弦和余弦函数和的形式。

任何一个周期函数都可以表示为傅里叶级数,这种表示方法在信号处理、图像处理等领域具有广泛的应用。

傅里叶级数提供了将复杂信号分解为简单正弦和余弦函数的和的方法,从而便于分析和处理。

二、傅里叶变换简介傅里叶变换是一种将时域信号转换为频域信号的数学方法。

通过傅里叶变换,我们可以将一个信号分解为一系列不同频率的正弦和余弦函数的乘积。

傅里叶变换在信号处理、通信、图像处理等领域具有重要应用价值。

与傅里叶级数相似,傅里叶变换也将复杂信号分解为简单的正弦和余弦函数,但它在处理非周期信号时具有优势。

三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换在一定程度上具有关联。

傅里叶级数可以看作是傅里叶变换在特定条件下的特例。

当信号为周期信号时,傅里叶变换可以退化为傅里叶级数。

因此,我们可以将傅里叶级数看作是傅里叶变换的一个基本概念,而傅里叶变换则是傅里叶级数的扩展和推广。

四、傅里叶级数与傅里叶变换的区别1.适用范围:傅里叶级数适用于周期性信号的处理,而傅里叶变换可以处理非周期性和周期性信号。

2.表达形式:傅里叶级数将周期信号表示为正弦和余弦函数的和,傅里叶变换将信号表示为不同频率正弦和余弦函数的乘积。

3.计算复杂度:傅里叶级数计算相对简单,但随着信号长度的增加,计算量呈线性增长;傅里叶变换计算复杂度较高,但随着信号长度的增加,计算量呈指数增长。

五、应用场景分析1.傅里叶级数应用场景:在需要处理周期性信号时,如信号处理、图像处理等领域,可以采用傅里叶级数进行信号分解和分析。

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换是数学分析中两个重要的概念和理论工具,它们在信号处理、图像处理、物理学等领域有广泛的应用。

傅里叶级数是一种将周期函数分解为一系列谐波的方法,而傅里叶变换是将非周期函数分解成连续谱的方法。

首先,我们来介绍一下傅里叶级数。

傅里叶级数是将一个周期为T的函数f(t)展开为一系列谐波的和的形式,其中每个谐波都有一个特定的频率和振幅。

傅里叶级数的基本公式为:f(t) = a0 + Σ(An cos(nω0t) + Bn sin(nω0t))其中a0表示直流分量,An和Bn分别表示正弦和余弦项的振幅,n为谐波的阶数,ω0为基本频率。

傅里叶级数的系数可以通过求解积分或者利用傅里叶级数的性质进行计算。

傅里叶级数的应用十分广泛。

例如在信号处理中,傅里叶级数可以用来将一个周期信号分解为多个频率成分,从而进行频域分析和滤波等操作。

此外,傅里叶级数也可以用来恢复被损坏的信号,例如在音频和图像压缩中,傅里叶级数可以用来还原被压缩的信号。

接下来,我们来介绍傅里叶变换。

傅里叶变换是将一个非周期函数f(t)分解成连续的频谱。

傅里叶变换的基本公式为:F(ω) = ∫[f(t)*e^(-jωt)] dt其中F(ω)表示函数f(t)在频率ω处的频谱,e^(-jωt)是一个旋转复指数,j为虚数单位。

傅里叶变换的结果是一个连续的函数,其中包含了函数f(t)在不同频率上的振幅和相位信息。

傅里叶变换的应用也非常广泛。

在信号处理中,傅里叶变换可以用来将一个时域信号转换成频域信号,在频域进行滤波、增强和分析操作。

在图像处理中,傅里叶变换可以用来进行图像的频域滤波、边缘检测和压缩等操作。

在物理学中,傅里叶变换可以用来研究波动、振动和量子力学等问题。

傅里叶级数和傅里叶变换是相互联系的。

当一个函数是周期函数时,傅里叶级数可以通过傅里叶变换来计算。

而当一个函数是非周期函数时,傅里叶变换可以通过傅里叶级数来近似计算。

总之,傅里叶级数和傅里叶变换是数学分析的两个重要工具,它们在信号处理、图像处理和物理学等领域具有广泛的应用。

信号与系统常用公式汇总_

信号与系统常用公式汇总_

信号与系统常用公式汇总_1.傅里叶级数公式:信号x(t)的周期为T时,它的傅里叶级数展开式为:x(t) = a0 + Σ(an*cos(nω0t) + bn*sin(nω0t)),其中n为整数,ω0 = 2π/T,an和bn为傅里叶系数。

2.傅里叶变换公式:连续时间信号x(t)的傅里叶变换为:X(ω) = ∫( -∞到+∞ ) x(t)*e^(-jωt)dt。

3.逆傅里叶变换公式:连续频率信号X(ω)的逆傅里叶变换为:x(t)=(1/2π)*∫(-∞到+∞)X(ω)*e^(jωt)dω。

4.傅里叶变换对称性:X(-ω)=X(ω)*,即傅里叶变换对称于原点。

5.卷积定理:连续时间卷积的傅里叶变换等于信号的傅里叶变换之积,即:x(t)*h(t)的傅里叶变换为X(ω)*H(ω)。

6.系统频率响应:系统的频率响应H(ω)是指系统对频率为ω的输入信号的增益和相位的影响。

7.系统单位冲激响应:系统对单位冲激信号δ(t)的响应称为系统的单位冲激响应h(t)。

8.系统的冲激响应和频率响应的关系:系统的冲激响应h(t)和频率响应H(ω)满足傅里叶变换的关系:H(ω) = ∫( -∞到+∞ ) h(t)*e^(-jωt)dt。

9.系统的传递函数:系统的传递函数H(ω)是频率响应H(ω)的傅里叶变换。

10.系统的单位阶跃响应:系统对单位阶跃信号u(t)的响应称为系统的单位阶跃响应s(t)。

11.傅里叶变换的线性性质:对于信号x(t)和y(t)和常数a和b,有以下性质:a*x(t)+b*y(t)的傅里叶变换为a*X(ω)+b*Y(ω)。

12.傅里叶变换的时移性质:对于信号x(t),有以下性质:x(t-t0)的傅里叶变换为e^(-jωt0)*X(ω)。

13.周期信号的傅里叶变换:周期信号x(t)的傅里叶变换可以通过傅里叶级数的频谱乘以δ函数的序列得到。

14.采样定理:若连续时间信号x(t)的带宽为BHz,则它的采样频率应大于2BHz,以避免采样失真。

傅里叶变换与傅里叶级数

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇本文记录得大多就是基础得公式,还有一些我认为比较重要得有参考价值得说明、(如果对这些公式已经很熟悉,可以直接瞧第三部分:总结性说明)重温傅里叶—笔记篇一、傅里叶级数$关于三角函数系得正交性:三角函数系包括:1, cosx, sinx , cos2x, sin 2x, ……cos nx, sin nx, ……“正交性"就是说,三角函数系中得任何一项与另一项得乘积,在(-π, π) 区间内得积分为0。

(任何两相得积总可以展成两个频率为整数倍基频得正余弦函数之与或差,而这两个展开后得正余弦在(—π,π)上积分都为0)。

不同频率(但都就是整数倍基频)得两个正弦函数之积,在(-π, π)上积分恒为0。

同频率得两个正弦函数之积,只有在这两个正弦得相位正交时,其在(-π,π)上积分才就是0、三角函数系中除“1”以外得任何一项得平方,在(—π,π)上得积分恒为π,“1”在这个区间上得积分为2π。

$上公式!①当周期为2π时:式(1):上式成立得条件就是f(x)满足狄立克雷充分条件:1。

在任意有限区间内连续,或只有有限多个第一类间断点;2. 任意得有限区间,都可被分成有限多个单调区间(另一种说法就是:任意有限区间内只有有限多个极值点,其实就是一样得)式(1)第一行中得a0/2 就就是f(x)得周期平均值,而且第一行得式子只对f(x)就是连续函数得情况成立;如果f(x)不连续,则应表示成“(1/2)×[f(x—0)+f(x+0)]”,即f(x)左右极限得算术平均。

下面得类似情况都就是这样,之后就不再专门说明,这些大家应该都懂。

第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。

②当周期为2L时(这也就是最一般得情形):式(2):第一行中得a0/2 就就是f(x)得周期平均值;第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。

傅里叶变换与傅里叶级数的关系

傅里叶变换与傅里叶级数的关系

傅里叶变换与傅里叶级数的关系
一、傅里叶变换与傅里叶级数的关系
1、概述
傅里叶变换和傅里叶级数之间的关系是十分密切的,它们可以互相折叠。

傅里叶变换是一种数学方法,可以将一个时变函数从时域变换到频域,而傅里叶级数是在有限的频带范围内由多个正弦函数和余弦函数组成的非独立函数,或者说可以用一系列正弦函数和余弦函数的叠加来拟合正弦函数的延伸。

2、傅里叶变换
傅里叶变换是指以离散化的时间序列来表达一个信号,然后将时域信号变换到频域上,以实现信号处理、信号分析的一种方法。

它通过把某一连续变量信号看作由另一连续变量的无穷多正弦振荡信号的线性叠加而成,来实现两变量之间的变换,将一维的、二维的或者二维以上的时域信号变换到频域。

3、傅里叶级数
傅里叶级数是把某一区间的一个连续函数分解为一系列正弦函数和余弦函数的叠加,或者说是一种表示连续函数的幅度和相位的级数。

在某些情况下,它可以近似足够的连续函数,特别是函数具有较高的周期和峰值点的情况下,傅里叶级数就比较有效。

4、关系
二者之所以关系密切,是因为傅里叶变换可以把连续信号变换成不连续的频谱,而傅里叶级数就是分析不连续频谱的方法。

因此,它
们的关系就是:傅里叶变换可以把时域信号变换到频域,频域信号就可以用傅里叶级数来表示,也就是所谓的“傅里叶变换与傅里叶级数的关系”。

5、总结
傅里叶变换是从时域变换到频域,而傅里叶级数则是对某一区间的连续函数进行拟合,它们之间的关系就是:在时域信号被变换到频域之后,可以用傅里叶级数来表示频域信号,从而实现函数拟合。

傅里叶级数与傅里叶变换的区别

傅里叶级数与傅里叶变换的区别

傅里叶级数与傅里叶变换的区别傅里叶级数和傅里叶变换是信号处理中常用的数学工具,用于分析和合成周期性信号以及非周期性信号。

虽然它们都是基于傅里叶分析的原理,但在具体的应用和数学推导过程中存在一些区别。

1. 定义与适用范围:傅里叶级数适用于周期性信号的分析和合成。

它将一个周期性函数表示为一系列正弦和余弦函数的线性组合,利用正交性质将信号分解为不同频率的谐波成分。

而傅里叶变换则适用于非周期性信号的分析,它可以将一个时域信号转换为频域表示,得到信号的频谱信息。

2. 变换对象:傅里叶级数的变换对象是周期性函数,它要求信号在一个周期内是连续的。

而傅里叶变换则适用于任意时域函数,可以对非周期性信号进行分析。

3. 表示形式:傅里叶级数将周期性函数表示为一系列正弦和余弦函数的线性组合,也可以使用指数形式的复数表示。

傅里叶变换则将时域函数表示为复数的频域函数,包含了信号的振幅和相位信息。

4. 连续与离散:傅里叶级数适用于连续时间的周期信号,它的频谱是连续的。

而傅里叶变换可以适用于连续时间信号和离散时间信号,分别得到连续频谱和离散频谱。

5. 时间和频率关系:傅里叶级数中的频率是离散的,由基波频率及其谐波频率组成。

而傅里叶变换中的频率是连续的,可以表示任意频率的分量。

6. 傅里叶逆变换:傅里叶级数的逆变换就是原信号本身,通过将各个频率分量加权合成即可。

而傅里叶变换的逆变换则将频域信号转换回时域信号,得到原始的时域函数。

7. 应用领域:傅里叶级数主要应用于周期性信号的分析,如电力系统中的电压和电流信号、音频信号等。

傅里叶变换则广泛应用于信号处理、通信系统、图像处理等领域,可以分析非周期性信号的频谱特性。

傅里叶级数和傅里叶变换在定义、适用范围、变换对象、表示形式、连续与离散、时间和频率关系、傅里叶逆变换以及应用领域等方面存在一些区别。

这两种数学工具在信号处理中发挥着重要作用,通过对信号的频域分析,可以帮助我们理解信号的特性,从而实现各种应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012/10/21 大连理工大学 6
• 傅里叶的主要贡献
– 任何周期信号可以用成谐波关系的正弦函数级数表 示。
2012/10/21
大连理工大学
7
• 傅里叶理论的发展历程
• 傅里叶之前周期性现象的研究
– 古代巴比伦(Babylonians)时代,利用这一理论来 研究天体运动。 – —1748年,欧拉(Euler)用于研究弦的振动,其 结论为: – 如果某一时刻,振动弦的形状是这些标准振荡模式 的线性组合,则其后任何时刻,振动的弦的形状也 都是这些振荡模式的线性组合。
2012/10/21 大连理工大学 9
• 傅里叶理论的意义
– 在数学、科学、工程上产生巨大影响,是电子信息 与通信技术的基石之一。 • 有了傅里叶理论,才有: – 信号的频域分析处理; – 通信的频率划分与复用; – 其他科学与工程问题的分析与解决。 – 近年来,傅里叶理论有新发展: • 本部分介绍4种:FS,DFS,FT,DTFT • 近年来:STFT与WT (第V部分介绍),FRFT
大连理工大学硕士研究生校管课程 信号分析与数据处理
第2章
傅里叶级数与傅里叶变换
电子信息与电气工程学部 邱天爽 2012年9月
2012/10/21 大连理工大学 1
内容概要
• §2.1 • §2.2 • §2.3 • §2.4 • §2.5 概述 周期性连续时间信号的傅里叶级数 周期性离散时间信号的傅里叶级数 连续时间信号的傅里叶变换 离散时间信号的傅里叶变换
a0 1/ 2
2012/10/21 大连理工大学 14
2012/10/21
周期性连续时间信号的频谱
大连理工大学 15
• 3.狄利赫莱条件(收敛问题)
x(t ) 必须绝对可积,即满足: x (t ) dt – 在任何周期内,
T
– 在任意有限区间内,x(t ) 具有有限个起伏变化。 – 在任何有限区间内,x(t ) 只有有限个不连续点,且在不 连续点上,函数值有限。 – 一般实际应用中的信号,都满足上述三个条件。
2012/10/21 大连理工大学 20
• 2.计算
ak • 【例2.3】:已知: x[n] sin 0 n ,求:
• 说明:给定不同的 0 值, x[n] 可能是周期的(有不同 的周期),或者可能是非周期的。
• 【解】:假设1:0 2 / N ,则 x[n] 为周期信号。
• 由欧拉公式,有, • 则:
2012/10/21
大连理工大学
5
• 3.傅里叶生平与傅里叶理论的发展
– Joseph Fourier,法国科学家,工程师(1768-1830) – 1768年3月21生于欧塞尔,1830年5月16卒于巴黎。 – 9岁父母双亡,17岁回乡教书(数学)。 – 1794年法国高等师范学校首批学员,次年到巴黎综 合工科学校任教。 – 1798年随拿破仑远征埃及;1801年回国,任伊泽尔 省地方长官。 – 1817年当选科学院院士。 – 1822年任科学院终身秘书,后任法兰西学院理工科 大学校务委员会主席。

x[n ]e jk0n
1 N
n N

x[n ]e
正变换
– 式中:N :基波周期;0 :基波角频率;x ( n ):周 期性离散时间信号; ak :傅里叶级数的系数 – 说明: ak 是周期性的,即:
a0 a N , a1 a N 1 , , ak ak N
大连理工大学
26
• FSFT的图示
2012/10/21
大连理工大学
27
• 2.计算
• 【例2.3】:已知 x(t ) e at u(t ),a 0 ,求 • 【解】:由定义,有:
X (j)= e at e jt dt
0
X ( j ) :
1 1 e ( a j ) t , a0 a j a j 0
2012/10/21 大连理工大学 22
• 离散傅里叶级数的频谱
2012/10/21
大连理工大学23来自• 3.离散傅里叶级数的性质(略)
– 线性; – 时移特性;频移特性; – 共轭特性; – 时间反转特性;时域尺度变换; – 微分性质,积分性质; – 周期卷积;乘法性质; – 帕色伐尔定理; – …… – 请自行阅读相关教材。
X (j)= e
a t 0
e
j t
dt e e

at jt
dt e at e jt dt
0
1 1 2 2 a j a j a 2
信号波形
信号频谱
2012/10/21
大连理工大学
30
• 【例2.5】:已知: x(t ) (t ) ,求 X ( j) 。 • 【解】:
T1
X (j)= e jt dt
1 j t e j

T1
1 jT1 2 jT1 e e sin(T1 ) j
信号波形
2012/10/21
大连理工大学
信号频谱
32

• 【解】:
1 x ( t )= 2π
W
1, W 【例2.7】:已知:X ( j) ,求 x (t ) 0, W
– (1)连续周期信号的傅里叶级数(FS) – (2)离散周期信号的离散傅里叶级数(DFS) – (3)连续非周期信号的傅里叶变换(FT) – (4)离散非周期信号的离散时间傅里叶变换 (DTFT) – (5)离散非周期信号的离散傅里叶变换(DFT) – (6)离散非周期信号的快速傅里叶变换(FFT) – 其他傅里叶变换(STFT,FRFT,……)
n n 1 j2N 1 j2N x[n ] e e 2j 2j
1 1 a1 , a1 , 且 ak 0 (if k 1) 2j 2j
a1 a N 1 a4 (when N =5)
大连理工大学 21
2012/10/21

N 和 m 无公因子,则 x[n] 可 确定一个基波周期为N的信号。将 x[n] 改写为:
• 幅度谱和相位谱:
, X (j)= tan X (j) 2 2 a a 1
1
2012/10/21
大连理工大学
28
• 上例的频谱
幅度谱
相位谱
2012/10/21
大连理工大学
29
• 【例2.4】:已知:x(t) eat u(t), a 0 ,求 X ( j) 。 • 【解】:

1 j t j t 1 e d t e W 2 π jt
W
W
1 1 j Wt j Wt sin(Wt ) e e 2 π jt πt
信号频谱
2012/10/21
大连理工大学
信号波形
33
• 讨论(比较【2.6】和【2.7】)
2012/10/21 大连理工大学 10
§2.2 周期性连续时间信号的 傅里叶级数
2012/10/21
大连理工大学
11
• 1. 定义(FS)
x (t )
jk 0 t a e k
k
k
ae
k

jk
2 t T
逆变换
1 ak T

T
x (t )e jk0t dt
X (j)= (t )e jt dt 1

(t )
信号波形
t
0
信号频谱
X ( j )
2012/10/21
0
大连理工大学

31

• 【解】:
T1 T1
1, t T 【例2.6】:已知:x(t ) ,求 X ( j) 。 0, t T1
正变换
– 式中:T :信号周期; 0 :基波角频率; x(t ) :周 期性连续时间信号; ak :傅里叶级数的系数
2012/10/21
大连理工大学
12
• 2.傅里叶级数的计算
• 【例2.1】:已知 x(t ) sin 0t ,求
ak 。
jk 0 t a e k 。
• 【解】:方法:利用逆变换公式 x(t )
1 j 0 t sin 0t (e e j0t ) 2j
– 与逆变换的定义式比较,有:
k
1 1 a1 , a1 , 其余 ak 0 2j 2j
2012/10/21
大连理工大学
13
• 【例2.2】:信号 x(t ) 如图,
1, t T1 x (t ) T 0, T1 t 2
x (t )
k
ae
k

jk 0 t

k
ae
k

jk
2 t T
1 x (t )= X (j)e jt d 2π -
1 ak T


T
x (t )e
jk 0 t
dt
X (j)= x (t )e jt dt
-

2012/10/21
n n 1 jm 2N 1 jm 2N x[n ] e e 2j 2j
假设2: 0
2 m (m 1) ,且 N
• 则:
am
1 1 (在一个周期内) , a m , 其余 ak 0 2j 2j

1 1 , a3 =a2 , a k =a N k ; ak =a N +k 2j 2j 1 1 if N =3, m=2, then a2 , a2 =a1 , a k =a N k ; ak =a N k 2j 2j if N =5, m=3, then a3
相关文档
最新文档