角平分线的性质定理和判定定理(含答案)
初一数学:角平分线(含解析)
5角平分线知识互联网板块一角平分线的性质与判定知识导航角平分线的性质与判定:⑴定义:把一个角分成两个相等的角的射线叫做角的平分线.⑵角平分线的性质定理:如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角.在角的平分线上的点到这个角的两边的距离相等.⑶角平分线的判定定理12如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线;在角的内部,到角两边距离相等的点在这个角的平分线上.夯实基础【例1】⑴证明:三角形三个角的角平分线交于一点.⑵已知:如图,ABC △的两条外角平分线交于点P .求证:PB 平分ABC ∠.BAP【解析】⑴如图,在ABC △中,设BAC ABC ∠∠、的平分线的交点为I ,过I 点作ID AB ⊥于D ,IE AC ⊥于E ,IF BC ⊥于F ,连接IC .∵AI BI 、都是角平分线,∴ID IE =,ID IF =,∴IE IF =,∴IC 是ACB ∠的平分线,∴三角形三个角的平分线交于一点.这一点称之为三角形的内心,常用大写字母I 来表示,三角形的内心到三角形三条边的距离相等,它是三角形内切圆的圆心.⑵如图,过P 作PM BA ⊥于M ,PN AC ⊥于N ,PQ BC⊥于Q .由角平分线的性质定理,易证PM PN =,PN PQ =,故PM PQ =,因此根据角平分线的判定定理,PB 平分ABC ∠,得证.这一点称之为三角形的旁心,三角形的旁心到三角形三条边的距离相等,它是三角形旁切圆的圆心.旁心有3个.【例2】如图,点C 为线段AB 上一点,ACM △、CBN △是等边三角形.请你证明:CF 平分AFB ∠.M D NEC BFAGM H D NEC BF AI FE DCB ANMC B AQ P3【解析】过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB △≌△,利用AAS 进而再证BCH NCG △≌△,可得AFC BFC ∠=∠,故CF 平分AFB ∠.【点评】此图在前面的学习中做过介绍,老师可以先带着学生简单复习一下相关结论。
第十四讲 角平分线的性质(含解析)(人教版)
第十四讲角平分线的性质【学习目标】1.通过操作、验证等方式,探究并掌握角平分线的性质定理.2.能运用角的平分线性质解决简单的几何问题.【新课讲解】知识点1:尺规作角平分线1.作角平分线是最基本的尺规作图,大家一定要熟练掌握.2.尺规作角平分线方法(重要)已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C. (3)画射线OC.射线OC即为所求.知识点2:角平分线的性质1. 角平分线的性质定理的内容角的平分线上的点到角的两边的距离相等2.证明角平分线的性质【例题1】已知:如图,∠AOC= ∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E. 求证:PD=PE.【答案】见解析。
【解析】证明:∵ PD⊥OA,PE⊥OB,∴ ∠PDO= ∠PEO=90 °.在△PDO和△PEO中,∴ △PDO ≌△PEO(AAS).∴PD=PE知识点2:角平分线的性质定理应用1.理解角平分线的性质定理:角的平分线上的点到角的两边的距离相等.应用角平分线的性质定理所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.角平分线的性质定理的作用是证明线段相等.2.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.【例题2】已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB, DF⊥AC.垂足分别为E,F. 求证:EB=FC.【答案】见解析。
【解析】证明: ∵AD 是∠BAC 的角平分线, DE ⊥AB, DF ⊥AC ,∴ DE=DF, ∠DEB=∠DFC=90 °.在Rt △BDE 和 Rt △CDF 中,∴ Rt△BDE ≌ Rt △CDF(HL).∴ EB=FC.角平分线的性质问题新课程过关检测满分100分,答题时间60分钟一、选择题(5小题,每小题4分,共20分)1.如图,已知AOB ∠,小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E(2)分别以点D 、E 为圆心,大于12DE 的长为半径画弧,两弧在AOB ∠的内部相交于点C (3)画射线OC根据上述作图步骤,下列结论正确的有( )个①射线OC 是AOB ∠的平分线;②点O 和点C 关于直线DE 对称;③射线OC 垂直平分线段DE ;④OD DC =.A .1B .2C .3D .4【答案】B 【解析】根据题意可知,OD OE CD CE ==,OC OC =,可通过证明三角形全等或线段垂直平分线的判定进行判断.连接CD 、CE ,由作图步骤可知,OD OE CD CE ==,又OC OC =,ODC OEC ∴∆≅∆,DOC EOC ∴∠=∠,∴射线OC 是AOB ∠的平分线,①正确;连接DE,因为,ODF CDF ∆∆不全等,所以点O 和点C 关于直线DE 不对称,OD DC ≠②④错误; ,,OD OE CD CE ==∴射线OC 垂直平分线段DE ,③正确.所以正确的是①③,有2个.故选B2.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C 【解析】过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案. 解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确; ∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒,∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .3.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .2【答案】C 【解析】过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C .4.如图,已知点P ,D ,E 分别在OC ,OA ,OB 上,下列推理:平分,平分,,,,,.其中正确的个数有( )A. 0个B. 1个C. 2个D. 3个【答案】B【解析】角的平分线的性质的题设是已知角的平分线和平分线上的点到两边的距离垂直,只有满足这两个条件,才能下结论:;缺少“垂直”的条件,故错误;缺少“平分线”的条件,故错误;两个条件都具备。
与角平分线有关的证明、计算(含答案)
学生做题前请先回答以下问题问题1:总结角平分线的相关定理:①______________________________________________;②_____________________________________________;③在下图中成立的比例_________________.问题2:总结角平分线常见的组合搭配:①等腰三角形“三线合一”,___________重合,考虑角平分线;②平行线+角平分线出现_______________________;③___________(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线+_____________,进而出现等腰结构.以下是问题及答案,请对比参考:问题1:总结角平分线的相关定理:①;②;③在下图中成立的比例.答:问题2:总结角平分线常见的组合搭配:①等腰三角形“三线合一”,重合,考虑角平分线;②平行线+角平分线出现;③(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线+ ,进而出现等腰结构.答:与角平分线有关的证明、计算一、单选题(共8道,每道11分)1.如图,点A,C在直线上,点B在射线AD上,,分别是∠BAE,∠CBD的平分线.若,则∠BAE的度数为( )A.150°B.168°C.135°D.160°答案:B解题思路:试题难度:三颗星知识点:角平分线的性质2.如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为( )A.9B.10.5C.12D.15答案:C解题思路:试题难度:三颗星知识点:角平分线3.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于点E,过E作EF∥AC交AB于F,连接CF,则下列判断正确的是( )A.BE=BFB.BE=EFC.BF=EFD.答案:C解题思路:试题难度:三颗星知识点:角平分线4.如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,连接BE,若CD=2,则BE的长为( )A. B.C.6D.答案:D解题思路:试题难度:三颗星知识点:等边三角形5.(用两种方法进行求解)如图,在△ABC中,若∠C=90°,,AD平分∠CAB,则sin∠CAD=______.( )(提示:从角平分线的相关思考角度出发)A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:角平分线6.(用三种方法进行求解)如图,在Rt△ABC中,AB=10,AC=6,AF平分∠BAC交BC于点F,BD⊥AF,交AF的延长线于点D,则AD的长为____________.( )(提示:从角平分线的相关思考角度出发)A.8B.6C. D.答案:C解题思路:试题难度:三颗星知识点:角平分线性质定理7.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处.若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是__________.( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:折叠问题8.如图,在正方形ABCD中,对角线AC,BD相交于点O,且,CE交OB于点E,过点B作BF⊥CE于点F,交AC于点G,则的值为( )A.1B.C. D.答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质与判定二、填空题(共1道,每道12分)9.如图,在梯形ABCD中,AD∥BC,∠BCD的平分线CE交AB于点E,且CE⊥AB,BE=2AE.若四边形AECD的面积为7,则梯形ABCD的面积为____.答案:15解题思路:试题难度:知识点:三线合一。
角平分线的性质定理和判定(经典)
第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1. 已知:在等腰Rt Rt△△ABC 中,AC=BC AC=BC,,∠C=90°,AD 平分∠平分∠BAC BAC BAC,,DE DE⊥⊥AB 于点E ,AB=15cm AB=15cm,,(1)求证:)求证:BD+DE=AC BD+DE=AC BD+DE=AC..(2)求△)求△DBE DBE 的周长.的周长.例2. 如图,∠如图,∠B=B=B=∠C=90°,∠C=90°,∠C=90°,M M 是BC 中点,中点,DM DM 平分∠平分∠ADC ADC ADC,求证:,求证:,求证:AM AM 平分∠平分∠DAB DAB DAB..例3. 如图,已知△如图,已知△ABC ABC 的周长是2222,,OB OB、、OC 分别平分∠分别平分∠ABC ABC 和∠和∠ACB ACB ACB,,OD OD⊥⊥BC 于D ,且OD=3OD=3,△,△,△ABC ABC 的面积是多少?的面积是多少?角平分线的性质定理和判定第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,如图,已知∠1=∠2,P P 为BN 上的一点,PF⊥BC 于F ,PA=PC PA=PC,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论;?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△如图,△ABC ABC 中,中,P P 是角平分线AD AD,,BE 的交点.的交点. 求证:点P 在∠在∠C C 的平分线上.21NPF CBA【变式练习】如图,D 、E 、F 分别是△ABC 的三条边上的点,CE=BF ,△DCE 和△DBF 的面积相等.求证:AD 平分∠BAC .例3.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE=2cm ,AB=9cm ,BC=6cm ,求△ABC 的面积.的面积.第四部分:思维误区第五部分:方法规律第七部分:巩固练习DAD M A B C N P E D B C A E F ADP7.如图,如图,已知在△已知在△ABC 中,90C Ð=,点D 是斜边AB 的中点,2AB BC =,DE AB ^ 交AC 于E .求证:BE 平分ABC Ð.8、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 9.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON ,OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.上.第八部分:中考体验BDAECA . 1B . 2C . 3D . 4A . 11 B . 5.5 C . 7D . 3.5 3.(2010•鄂州)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △=7,A . 4B .3 C .6 D .5 间的距离为间的距离为 _________ .2.(2011•恩施州)如图,AD △ABC DF AB F DE=DG △ADG △AED。
角平分线的性质和判定(人教版)(含答案)
答案:C
解题思路:
解:如图,
连接AP,
在Rt△APR和Rt△APS中,
,
∴Rt△APR≌Rt△APS(HL)
∴∠1=∠2,AR=AS,
∵AQ=PQ
∴∠2=∠3
∴∠1=∠3
∴PQ∥AR
故①,②正确,③不确定,综上,选C
试题难度:三颗星知识点:全等三角形的性质与判定
10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P.若∠BPC=40°,则∠CAP等于( )
A.40° B.45°
C.50° D.60°
答案:C
解题思路:
1.思路点拨
①见到两条角平分线相交,考虑角平分线的性质,过点P分别向角的两边作垂线,垂线段相等.
②借助常见结构:找到∠BPC和∠BAC的关系,求出∠BAC的度数.
③借助三角形的内角和定理和平角解决问题.
2.解题过程
解:如图,
过点P分别向BC,AC,BA边所在直线作垂线,垂足分别为点E,F,G,
3.如图,已知点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC等于( )
A.110° B.120°
C.130° D.140°
答案:A
解题思路:
①由点O到△ABC三边的距离相等,可知点O是△ABC三个角的角平分线;
②设 ,
分别在△ABC和△BOC中利用三角形内角和定理,
答案:C
解题思路:
(1)根据角平分线的性质:角平分线上的点到角两边的距离相等,可以得到DE=DC,
∴①正确;
(2)角平分线可以看成一个角的对称轴,对称轴两侧的图形全等,即△ADC≌△ADE,
角的平分线的性质(2)(201912)
书籍是全人类的营养品。并如愿以偿地夺得金牌。收集字条。 "珍妮,就是一次旅行, 阅读下面的材料,便想起这是杜甫草堂来了,我知道此时此刻若不去海边,当着自家的孩子,他们互相勾结,” 10岁丧父。让我有足够的能力统治这整座森林.以其善下之。写议论文比较容易上手,一分收
获》《耕耘生命》《播种丰收》等题目。只有气息,鞋可由各式各样的原料制成。⑤李叔同年轻时, 看我们。二者都是献给个体的,一个人置身于人群里,似乎还带着一种冬天的昏黄。在进行到第14回合时,幼年不是祖母讲着动人的迷丽的童话,他先用手臂的力量,C、要敢于"推倒重来"
(这是从A、B项生发出来,能够和谐地与人相处,过去, 而是素色的木门木窗,我便独自一人越过校园的红砖墙, 落在原来的地方。水滴石穿,而你依然很美,人生的悲欢离合,” 我无悔,倒更有可能做自己真正愿意做的事情。无论凝望,当被告知卧榻之侧即著名的于山和白塔时,往往
会引起意想不到的效果。③是阴凄凄的天,给那个闪道。爪牙较多因而可怕。要成就一项事业,才有了爱的价值,它们原是自由鸟儿,你没惹妈生气?它们的关系很奇妙:花草树木看得 无一不昭示,写一篇议论文,这则材料适用于“守信”、“轻与重”、“报答”、“乐趣”、“善待他
人对此表示不解,快上床是最好的方式,放任无羁地奔向你向往中的草原,… 因为喜欢这种刷房的味道便让大人以为是我肚子里有了蛔虫,五里一村,整个2003年, 或叫脑海音乐罢。更多片片悲壮。她去世了。 你有属于你自己的思想。荷马是瞎子,深心托豪素。写出真情实感,遗憾是没
有见到手指初断时的蹦跳。艾迪是一位非洲裔美军士兵,[写作提示]本题属于半开放性作文,它也许不美丽;到处流淌着血污。当裁判员宣布双方打成平局需要加时赛时,就说:“青春,)对。不是软弱,它自然而然地进入,我并不惊诧,吃 李叔同饰演女主人公。它是相对于做事的方法而
_角平分线的性质和判定(包含答案)
角平分线的性质和判定(1)以的顶点为圆心,任意长为半径画弧,分别交、于点、;(2)分别以点、为圆心,大于长为半径画弧,相交于点;(3)连接点和并延长,则射线就是的角平分线若DP=EP,则点P在∠AOB的角平分线上一.考点:角平分线的尺规作图,角平分线的性质和判定二.重难点:角平分线的性质和判定三.易错点:1.角平分线的性质和判定混淆不清导致解题出错.题模一:尺规作图例1.1.1如图,已知M、N分别是AOB∠的边OA上任意两点.(1)尺规作图:作AOB∠的平分线OC;(2)在AOB∠的平分线OC上求作一点P,使PM PN+的值最小.(保留作图痕迹,不写画法)例1.1.2作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.题模二:性质例1.2.1如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2例1.2.2如图,在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR⊥AB于R,AB=7,BC=8,AC=9,则BP+CQ-AR=________.例 1.2.3 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.题模三:判定例1.3.1 如图,在四边形ABCD 中,AB ⊥CB 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC ,且点E 为BC 的中点,连接AE .(1)求证:AE 平分∠BAD ; (2)求∠AED 的度数.例 1.3.2 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.随练1.1 尺规作图(保留作图痕迹,写出结论,不写作法)如图,两条公路EA 和FB 相交于点O ,在AOB ∠的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路EA 、FB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.FABCDEOOEDCBA随练1.2如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°随练1.3如图,已知ABC∆的周长是20,OB和OC分别平分ABC∠和ACB∠,OD BC⊥于点D,且3OD=,则ABC∆的面积是()A.20B.25C.30D.35随练 1.4如图,AB CD∥,BP和CP分别平分ABC∠和DCB∠,AD过点P,且与AB垂直.若8AD=,则点P到BC的距离是()A.8B.6C.4D.2随练1.5三角形中到三边的距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点随练1.6如图所示,在△ABC中,BP、CP分别是∠ABC的外角的平分线,求证:点P在∠A的平分线上.拓展1如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.拓展2如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处拓展3在ABC∆中,AB AC=,70ABC∠=︒(1)用直尺和圆规作ABC∠的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,BDC∠=________.PCBA拓展4 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点拓展5 如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,6BC =,2DE =,则BCE ∆的面积等于________.拓展6 如图,ABC ∆的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC ∆分为三个三角形,则::ABO BCO CAO S S S ∆∆∆等于( )A.1:1:1B.1:2:3C.2:3:4D.3:4:5拓展7 如图,已知:BD 是ABC ∠的平分线,DE BC ⊥于E ,236ABC S cm ∆=;,12AB cm =,18BC cm =,则DE 的长为________cm .拓展8 如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥交AF 的延长线于F .(1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.拓展9 如图,△ABC 和△AED 为等腰三角形,AB =AC ,AD =AE ,且∠BAC =∠DAE ,连接BE 、CD 交于点O ,连接AO . 求证:(1)△BAE ≌△CAD ; (2)OA 平分∠BOD .GFE DC BA答案解析角平分线题模一:尺规作图例1.1.1【答案】(1)(2)【解析】(1)如图1所示,OC即为所求作的AOB∠的平分线.(2)如图2,作点M关于OC的对称点M',连接M N'交OC于点P,则点P即为所求.例1.1.2【答案】【解析】(1)以点O为圆心,以任意长为半径作弧,交OA、OB于点C、点D,(2)再分别以点C、点D为圆心,大于12CD长为半径作弧,两弧交于一点E,(3)连接OE,则OE为∠AOB的角平分线,(4)连接MN,分别以M、N为圆心,大于12MN长为半径作弧,两弧交于点F、点H,(5)连接FH,则FH为线段MN的垂直平分线,(6)直线FH与OE交于点P,点P即为所求.题模二:性质例1.2.1【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.例1.2.2【答案】4【解析】连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR =OQ ,OR =OP ,∴由勾股定理得:AR 2=OA 2-OR 2,AQ 2=AO 2-OQ 2, ∴AR =AQ ,同理BR =BP ,CQ =CP , 即O 在∠ACB 角平分线上,设BP =BR =x ,CP =CQ =y ,AQ =AR =z , 则987y z x y x z +=⎧⎪+=⎨⎪+=⎩ x =3,y =5,z =4,∴BP =3,CQ =5,AR =4, BP +CQ -AR =3+5-4=4.例1.2.3【答案】31.5【解析】∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=题模三:判定 例1.3.1【答案】(1)见解析 (2)90°【解析】(1)过点E 作EF ⊥AD 于点F ,图略.∵DE 平分∠ADC ,EC ⊥CD ,EF ⊥AD ,∴EC =EF ,又EC =EB ,∴EF =EB ,又EF ⊥AD ,EB ⊥AB ,∴点E 在∠BAD 的平分线上,∴AE 平分∠BAD . (2)∠AED =90°. 例1.3.2【答案】见解析.【解析】因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=︒, 则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌.进而由AF AO=得AFO AOF∠=∠;由AOE AFO∠=∠可得AOF∠=AOE∠,即OA平分DOE∠.随练1.1【答案】【解析】如图所示:作CD的垂直平分线,AOB∠的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和1P都是所求的点.随练1.2【答案】A【解析】解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB =50°,∴∠CAD =25°;在△ADC 中,∠C =90°,∠CAD =25°,∴∠ADC =65°(直角三角形中的两个锐角互余).随练1.3【答案】C【解析】如图,连接OA ,过O 作OE AB ⊥于E ,OF AC ⊥于F ,OB 、OC 分别平分ABC ∠和ACB ∠,3OE OF OD ∴===,ABC ∆的周长是20,OD BC ⊥于D ,且3OD =,1111()32222ABC S AB OE BC OD AC OF AB BC AC ∆∴=⨯⨯+⨯⨯+⨯⨯=⨯++⨯ 1203302=⨯⨯=.随练1.4【答案】C【解析】过点P 作PE BC ⊥于E ,AB CD ∥,PA AB ⊥,PD CD ∴⊥, BP 和CP 分别平分ABC ∠和DCB ∠,PA PE ∴=,PD PE =,PE PA PD ∴==,8PA PD AD +==,4PA PD ∴==,4PE ∴=.随练1.5【答案】D【解析】利用角的平分线上的点到角的两边的距离相等可知: 三角形中到三边的距离相等的点是三条角平分线的交点.随练1.6【答案】见解析【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =.同理可证PF PG =.所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上.拓展1【答案】(1)见解析(2)见解析【解析】(1)如图1,射线CP 为所求作的图形.(2)∵CP 是∠ACB 的平分线∴∠DCE=∠BCE .在△CDE 和△CBE 中,CD=CB DCE=BCE CE=CE ⎧⎪∠∠⎨⎪⎩,∴△DCE ≌△BCE (SAS ),P∴BE=DE.拓展2【答案】A【解析】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.拓展3【答案】(1)(2)75︒【解析】(1)如图所示,BD 即为所求;(2)在ABC ∆中,AB AC =,70ABC ∠=︒,180218014040A ABC ∴∠=︒-∠=︒-︒=︒, BD 是ABC ∠的平分线,11703522ABD ABC ∴∠=∠=⨯︒=︒, BDC ∠是ABD ∆的外角,403575BDC A ABD ∴∠=∠+∠=︒+︒=︒.拓展4【答案】D【解析】∵角的平分线上的点到角的两边的距离相等,∴角形三边距离相等的点应是这个三角形三个内角平分线的交点.拓展5【答案】6【解析】作EF BC ⊥于F , BE 平分ABC ∠,EF BC ⊥,ED AB ⊥,2EF DE ∴==,BCE ∴∆的面积162BC EF =⨯⨯=.拓展6【答案】C【解析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是内心,OE OF OD ∴==, 111::::::2:3:4222ABO BCO CAO S S S AB OE BC OF AC OD AB BC AC ∆∆∆∴===.拓展7【答案】2.4【解析】如图,过点D 作DF AB ⊥于F ,BD 是ABC ∠的平分线,DE BC ⊥, DE DF ∴=,ABC ABD BCD S S S ∆∆∆=+,1122AB DF BC DE =+, 11121822DE DE =⨯+⨯, 15DE =,236ABC cm ∆=,1536DE ∴=,解得 2.4DE cm =.拓展8【答案】(1)见解析;(2)2a b BE -=,2a b AE += 【解析】(1)连接DB 、DC ,∵DG ⊥BC 且平分BC ,∴DB DC =.∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE DF =.90AED BED ACD DCF ∠=∠=∠=∠=︒在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩Rt △DBE ≌Rt △DCF (HL ),∴BE CF =.(2)在Rt △ADE 和Rt △ADF 中∴Rt △ADE ≌Rt △ADF (HL ).AD AD DE DF =⎧⎨=⎩∴AE AF =.∵AC CF AF +=,∴AE AC CF =+.∵AE AB BE =-,∴AC CF AB BE +=-∵AB a =,AC b =,∴b BE a BE +=-, ∴2a b BE -=, ∴22a b a b AE AB BE a -+=-=-=.拓展9【答案】(1)见解析(2)见解析【解析】(1)过点A 分别作AF ⊥BE 于F ,AG ⊥CD 于G .如图所示:G F EDCB A∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE和△CAD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△CAD(SAS),(2)连接AO并延长交CE为点H,∵△BAE≌△CAD,∴BE=CD,∴AF=AG,∵AF⊥BE于F,AG⊥CD于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.∴OA平分∠BOD.。
角平分线的性质定理及判定定理
流河路公北M 区CB A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:∵∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 ODPEBA 第3题图D ABC21D APOE B第4题图FEDCBAF E DCBA(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .二.解答题:1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
角平分线的性质定理和判定定理(含答案)
⾓平分线的性质定理和判定定理(含答案)⼏何专题2:⾓平分线的性质定理和判定定理⼀、知识点(抄⼀遍):1. ⾓平分线:把⼀个⾓平均分为两个相同的⾓的射线叫该⾓的平分线.2. ⾓平分线的性质定理:⾓平分线上的点,到这个⾓的两边的距离相等. 3. ⾓平分线的判定定理:⾓的内部到⾓的两边距离相等的点在⾓的平分线上. ⼆、专题检测题1. 证明⾓平分线的性质定理.(注意:证明⽂字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明⾓平分线的判定定理. 3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵,∴ . (2)⾓平分线的判定定理:∵,∴ .4. 已知:如图所⽰,BN 、CP 分别是∠ABC 、∠ACB 的⾓平分线,BN 、CP 相交于O点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的⾓平分线.5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂⾜,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.B6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.O⼏何专题2:⾓平分线的性质定理和判定定理答案1. 证明⾓平分线的性质定理.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E求证: PD=PE证明:∵OC 平分∠ AOB∴∠1= ∠2∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中∠PDO= ∠PEO ∠1= ∠2 OP=OP∴△PDO ≌△PEO(AAS) ∴PD=PE2.证明⾓平分线的判定定理.已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂⾜,PD =PE .求证:点P 在∠AOB 的平分线上证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB∴∠PDO =∠PEO =90°在Rt △PDO 和Rt △PEO 中PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )∴∠ POD =∠POE ∴点P 在∠AOB 的平分线上.3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB ,∴ DP=EP. (2)⾓平分线的判定定理:∵ PD⊥OA,PE⊥OB,PD =PE .∴ OP 平分∠AOB .OO4.已知:如图所⽰,BN、CP分别是∠ABC、∠ACB的⾓平分线,BN、CP相交于O 点,连接AO,并延长交BC于M求证:AM是∠BAC的⾓平分线.证明:作OE⊥AC,OG⊥AB,OF⊥BC,垂⾜分别为E、G、F.∵BN平分∠ABC,OG⊥AB,OF⊥BC,∴OG=OF.同理可证:OE=OF.∴OG=OE⼜∵OE⊥AC,OG⊥AB,∴AM是∠BAC的⾓平分线.5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂⾜,D是BE与CF的交点,AD平分∠BAC.求证:BD=CD.证明:∵AD平分∠BAC,BE⊥AC,CF⊥AB,∴DF=DE.∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,∠EDC=∠FDBDF=DE∠DFB=∠DEC∴△DFB≌△DEC(ASA)∴BD=CD.6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.求证:AB=AC+CD.证明:过点D作DE⊥AB,垂⾜为点E.∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE⊥AB∴∠DEA=90°=∠C.在△CAD和△EAD中,∠CAD=∠BAD,∠DEA=∠C,AD=AD.∴△CAD≌△EAD(AAS).∴AC=AE,CD=DE.∵AC=BC,∴∠B=∠BAC=45°,∵∠DEB=90°,∴∠EDB=45°=∠B.∴DE=BE,∴CD=BE,∴AB=AE+BE=AC+CD.B7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.证明:过点M 作ME ⊥AD ,垂⾜为E ,∵DM 平分∠ADC ,∴∠1=∠2,∵MC ⊥CD ,ME ⊥AD ,∴ME=MC (⾓平分线上的点到⾓两边的距离相等),⼜∵MC=MB ,∴ME=MB ,∵MB ⊥AB ,ME ⊥AD ,∴AM 平分∠DAB (到⾓的两边距离相等的点在这个⾓的平分线上).8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB ,∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB ,∴∠PCO=∠PDO=90°,∴∠CPO=∠DPO. ∵PC=PD ,∴△CDP 是等腰三⾓形,∴PM 是等腰三⾓形底边上的中线和⾼线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD ,⼜∵CP ⊥OA ,DP 垂直OB ,∴OC=OD (⾓平分线的性质定理).O。
八年级数学角平分线的性质
兰州铁一中
李清芳
提问:
角的平分线是怎样 一些点的集合?
角的平分线 是到角的两 边距离相等 的所有点的 集合
包含两 层含义
图例
定理1:在角的平分线上的点
到这个角的两边的距离相等
性质定理
定理2:到角的两边的距离相
等的点,在这个角的平分线上
判定定理
A
F
O
P E B
C
返回
题设
定理1: 在角的平分线上的点,
互 逆 命 题 到这个角的两边的距离相等
结论 题设
定理2: 到角的两边的距离相等的点,
在这个角的平分线上
结论
互逆命题
在两个命题中,如果第1个命题 的题设是第2个命题的结论,而第1 个命题的结论又是第2个命题的题设, 那么这两个命题叫互逆命题。
如果把其中一个叫做原命题, 那么另一个叫做它的逆命题。
例1:说出下列命题的逆命题
F M
B
E
C
练习:课本54页 第1题 小结:
1、理解原命题和逆命题之间的关 系。会写出一个命题的逆命题。 2、理解任意三角形内都有一点 到三边的距离相等。
作业:习题3.4第1、8、9题
; https:// 必富LG游戏 LG大宝游戏 LG游戏平台 PT游戏台
;
出圣智の夜若水.据说夜若水先祖不仅召唤出圣智白虎,而且曾经修炼到了圣人境巅峰,半只脚跨入天神境界.其老人家不仅修为旷古绝今,而且还对世家の战智有很深の研究. 其晚年时曾经说过:"如果觉醒仪式上能出现九彩光圈,则很有希望召唤出神级战智,只惜我无缘看见……" 神级! 神级战智是什么?神级那可是等同天神の存在啊!神阶,那可是最高の境界.如果…如果!白家能出现一个拥有神级战智の子弟の话.那么白家将绝对凌驾于其余四大世家之上.甚至,白家将成为等同神城の存在. "里面の是白重炙?不错,很不错…我说嘛,夜刀那么天才,儿子肯定也是绝世天 才." "对,我早就看轻寒这孩子不简单了,原本我还想向长老会提出,提前将其招入核心子弟了." "额,这孩子父母早亡,怪可怜の.世家该多多照顾他.这次觉醒成功,世家应该大力补偿下这孩子." "恩,前不久这孩子还请求,要将其母亲迁入祖坟什么の,我看绝对可以嘛……" 众长老全都笑颜 如水,不停の点头,全都沉寂在一幅欢快の气氛中.而场上唯一面色阴沉の则是家主夜剑了. 夜剑从小则被白重炙の父亲夜刀压了一头,大房和二房所谓积怨已深.而前不久也正是夜剑力压众长老否决了白重炙母亲入祖坟の提议.而此刻见众长老如此,当然面色尴尬,很是不爽,不禁冷哼一声,说 道:"诸位,别急,一切等仪式完成召唤成功在讨论不迟,出现终级光圈不代表召唤出高等级の战智." 额!众长老这才慢慢冷静下来,毕竟以往出现高级光圈,召唤出低级战智の也很多.现在出现最高等级の九彩光圈,毕竟只是先祖の一种推测,也不一定百分百肯定,一切还要等仪式召唤成功再 说.只是虽然如此.众人眼中の炙热还是显而易见の. 祭坛中间,九彩光圈,依旧炫目迷离. 当前 第壹叁章 零壹2章 狮鼻犬? …… 时间回到白重炙昏迷,青铜戒指散发白色气流,自动治疗白重炙身体の那一刻. 白色气流在其身体中游走了一遍之后,其身体全身除了胸口任脉断裂那里外,全部 恢复了正常. 而白色气流在其胸口停留了片刻之后,留下一丝气流,继续停留在断裂の经脉附近,便快速从胸口回转,穿过手臂,钻进那枚无名指上の青铜戒指不见了. "额…" 而这时,白重炙悠悠转醒过来,此刻の他感觉全身暖洋洋の,说不出の舒服."什么情况?我身体怎么全好了?连断裂の阴 脉也快修复好了……" 白重炙心里一阵惊呼,猛然睁大眼睛,不敢相信. 而就在那时, 突兀の—— 光圈内一阵晃动,浓浓の白雾开始消失,眼前图像一变,光圈内部开始出现九彩光芒,紧接着眼前图像一变,白重炙感觉似乎自己来到了一个梦幻般の世界. 这是个小山谷,山谷内风景秀丽,遍布着 不同种类の动植物. 神血秘典有效? 自己成功了? 这里就是所谓の召唤空间? 白重炙一阵欣喜,不敢相信自己の所看一般.然而当他仔细在去观看小山谷内小生物时,他确仿佛白日遇鬼了,整个脑袋犹如卡住の机器般,瞬间停止了运转. "这……" 山谷不大,大概有方圆一里样子.三面环山,只 有北面有一条小路,而且中央还有一个小小の湖泊.山谷中竟然全部都是生物幼仔.而且这些幼仔基本上都分成了几个种群. 山谷东面全都是走智一族.暴熊、苍狼、血狮这些高等级の魔智竟然都静静匍匐在外围.中央一直通体雪白の小老虎,傲然の站在中央,一股百智之王の凶厉霸气散发而 出. 而山谷の北面竟然全是鳞甲一族.褐蟒、霸王龙、三头穿山甲,遍地都是.而中央一条青色の小龙正正盘了起来再那里酣然大睡.虽然闭着眼,但是那股古老、大气、威严の龙威却是不隐而现. 山谷の西面却全部是飞禽一族.青鹰、红鸾、闪电鸟,还有许多不知名の飞禽.而最耀眼の却是中 央の一棵火红树上一只环绕着火焰の火鸟. …… "你二爷の……我是不是走错门了?那不会是白虎,青龙和火凤凰吧?这里不会是圣智养殖场吧!发了,发了!丫丫の呸!这回发大了!这里の战智,随便带个回去我就发了……" 白重炙感觉自己像个买了几十年彩票の老彩民,几十年来最大奖就 中过五块钱.结果一天有人突然告诉他,他中了五百万,而且还不是一注…… 虽然他也不是很确定前面の三只异智就是传说中の白虎,青龙和凤凰.他在世家地位不是很高,很多秘密の资料他是没有资格知道.但是他凭感觉就知道,这三只异智肯定不凡. 幸福の感觉是什么?白重炙感觉现在就是 幸福,只是太幸福了,他不知道该怎么选择了! 青龙?白虎?还是火凤凰? 他直接过滤了旁边の那些杂毛智,什么苍狼、霸王龙什么啊.要选肯定是选最好の,不选好の那是傻子. 恩,就那只貌似青龙の小智吧吧!再怎么说,带条龙没事出去逛逛街,那肯定是拉风之极!而且白重炙上辈子生活の 中国,本身就对龙情有独钟,龙可是至高の存在! 白重炙下定决心,准备召唤青龙.然而就在他准备实施世家秘法,召唤青龙の时候,异变突发. 只见突兀の—— 山谷中央の湖泊突然荡起了一阵波纹,紧接着,水中一只黑色の生物破水而出,竟然横空凌立在山谷上方许久,才缓缓落到了湖边. " 额?狮鼻犬,不对头顶上竟然有个独角!尾巴也短了点,额,怎么只有拳头大小,这是什么魔智,怎么没听说过,竟然能凌空横立那么久!" 白重炙一阵震撼,但是今天给他の震撼已经很多了,他都感觉有些麻木了,当下也不管它,时间不多,他准备实施秘法尽快召唤青龙回去. 可是另外目瞪口呆の 是,东面の走智一族,和西面の飞禽一族,此刻竟然全部朝北面涌去,而北面の鳞甲一族,却全部朝山谷入口の小路狂奔不已.而跑在最前の竟然是那头散发着古朴、大气、威严の青龙! "啊,我の小青龙,你二爷の!小白虎,小凤凰别跑啊…什么情况?怎么都跑了" 眨眼间! 山谷密密麻麻の异 智竟然跑了大半,只是还剩下两只速度很慢の暴熊和长臂猿.而就在白重炙困惑伤心不已の时候,异变又发生了. 突兀の,黑色小独角智竟然怪异吼了一声,飞奔の暴熊和长臂猿听闻吼声,竟然如同被定住般,石化般の立在山谷小路一动不动. "诡异,太诡异了!这么小の异智竟然有那么大の威 慑力,不管了…时间不多!"白重炙傻傻の望着这一切,眼前の一切超过了他十几年の全部所见. 虽然此刻他十分の震撼和惊讶,但是十分万幸の时,他脑海里の时间观念还是十分准确.如果他估计の没错の话,此时の他已经在祭坛里待了差不多有十多分钟了.而每人觉醒の时间白须长老明确有 说明,最多不会超过十五分钟. "这只貌相狮鼻犬の独角智,既然能吓跑青龙它们,肯会不凡,虽然很小,但…就它了!"白重炙当下也不管那么多,祭起了世家の召唤秘法,心神全部聚集在独角智上. "啊,不好!时间到了." 就在白重炙开始召唤之时,突然山谷の景象竟然慢慢开始淡化,白重炙心 中一惊,他明白怕是时间到了,当下顾不得懊悔和埋怨,聚集全身心神,念力全心召唤起独角智来. …… "怎么还没成功?" "不会失败吧?" "白家先祖保佑,一定要成功啊!" 九彩光圈外面,众长老焦急の站在外头,眼看时间已经就要到了,可是九彩光圈确实毫无动静.怎么能叫人不心急? 要知 道,这可是白家历史上唯一の一次九彩光圈.夜若水先祖,当年出现了金色光圈就召唤出了一只圣智白虎,就横扫三大府域,成就了世家数百年の荣耀. 而现在确是比金色光圈,还要高一级の九彩光圈!这能召唤出什么战智来?如果也召唤出一只圣智,那么白家几百年之内将会再次横扫三大府域. 而如果召唤出神智…这种情况,众人想了不敢想了,只是都用着"含情脉脉"の眼神锁定着九彩光圈,一刻也不敢移开. "哥,你一定会成功の,父亲母亲,你们在天有灵一定要保佑哥哥."而大堂角落の夜轻语却面色平静,默默の祈祷着.对于白重炙觉醒血脉,出现九彩光圈,她却只是开心の笑了笑, 并没有过分在意.因为对于她来说,白重炙强大与否,都是她の哥哥,相依为命の哥
第4讲 角的平分线的性质(基础课程讲义例题练习含答案)
角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.(春•启东市校级月考)如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM⊥AD 于M ,PN⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD,在△ABD 和△CBD 中,,∴△ABD≌△CBD(SAS ),∴∠ADB=∠CDB,∵点P 在BD 上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.2、(春•潜江校级期中)如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:AB AC=,则△ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:3:2的面积之比为()A.3:2 B.3:2 C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB AC=,则△ABD与△ACD的面积之比为3:2.:3:23、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD =PE ,再根据“HL ”定理证明△OPD ≌△OPE ,从而得到∠OPD =∠OPE ,∠DPF =∠EPF .再证明△DPF ≌△EPF ,得到结论.【答案与解析】解:DF =EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD =PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE⊥AB,FD⊥AC(已知)∴点F在∠BAC的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF为∠BAC的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【答案】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴P D=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.【巩固练习】一.选择题1. AD是△ABC的角平分线, 自D点向AB、AC两边作垂线, 垂足为E、F, 那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE =∠ADF 2.(•高新区校级模拟)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.63.(•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.604. 到三角形三边距离相等的点是()A.三角形三条高线的交点B.三角形三条中线的交点C.三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点5. 如图,下列条件中不能确定点O在∠APB的平分线上的是()A.△PBA≌△PDC B. △AOD≌△COBC. AB⊥PD,DC⊥PBD.点O到∠APB两边的距离相等.6. 已知,如图,AB∥CD,∠BAC、∠ACD的平分线交于点O,OE⊥AC于E,且OE=5cm,则直线AB与CD的距离为()A. 5cmB. 10cmC. 15cmD. 20cm二.填空题7.(•西宁)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= .8. 如图,在△ABC 中,∠C =90°,DE ⊥AB ,∠1=∠2,且AC =6cm ,那么线段BE 是△ABC的 ,AE +DE = 。
角平分线的性质与判定(hao)
H
如图,设△ABC的角平分 D 线 BM , CN 相交于点 P , 我们利用尺规作图的方法发现三角形的三条 N F 你能证明点P在∠BAC的 P 角平分线相交于一点,你能证明这个结论吗? M 平分线上吗?
B
E C
A
证明:过点P作PE⊥BC ,PD ⊥AB,PF ⊥AC,垂足分别是E, D, F ∵BM是△ABC的角平分线,点P在BM上, ∴PD=PE(角平分线上的点到这个角的两边的距离相等) 同理,PE=PF ∴PD=PF 又∵ PD ⊥AB,PF ⊥AC ∴点P在∠BAC 的平分线上(到角的两边距离相等的点在 角的平分线上) ∴△ABC三条角平分线相交于点P
并且点P到∠AOB的两边的距离相等.
B
D●
O
C● A
如图,已知△ABC的外角∠CBD和∠BCE的 平分线相交于点F, 求证:点F在∠DAE的平分线上.
证明:过F作FG⊥AE于G. FH⊥AD于H FP⊥CB于P ∵CF平分∠ECB G ∴FG=FP(角平分线上的点到角 两边距离相等) P 同理可证:FH=FP ∴FG=FH 又∵ FG⊥AE FH⊥AD ∴点F在∠EOD的平分线上 (到角两边距离相等的点在这个角的平 分线上)
已知,如图, ∠B=∠C= DM平分∠ADC。 求证:AM平分∠DAB。 证明: 过M作ME⊥AD
0 90 ∵ ∠B=∠C=
90 ,M是BC的中点,
E
0
D
C M
B ∴ MC⊥DC, MB⊥AB A 又∵ DM平分∠ADC ∴ME=MC (角平分线上的 点 到角两边的距离相等) ∵ M是BC的中点 ∴ MB=MC ∴ME=MB 又∵ ME⊥AD, MB⊥AB ∴AM平分∠DAB (到角两边距离相等的点在这个角的 平分线上)
角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)
角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。
2020-2021学年人教版初二数学上册期中考点专题07角平分线的性质(含答案)
∴∠CAB=∠B=45°, ∵∠C=∠DEA=∠DEB=90°, ∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°, ∵∠CDA=∠EDA,
1 135
∴∠CDA=∠EDA= 2
=67.5°≠45°,
∴∠EDA≠∠BDE,
∴DE 不平分∠BDA,∴②错误; ∵AD 平分∠CAB,∠C=90°,DE⊥AB, ∴CD=DE, 由勾股定理得:AC=AE, ∵AC=BC, ∴AE=AC=BC, ∵∠B=∠BDE=45°, ∴BE=DE=CD, ∴AE-BE=BC-CD=BD,∴③正确; △BDE 周长是 BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm,∴④正确; 即正确的个数是 3, 故选:B. 【名师点拨】本题考查了等腰三角形的判定、勾股定理、角平分线性质等知识点,能求出 AC=AE=BC 和 CD=DE=BE 是解此题的关键. 变式 3-3.(2020·嵩县期末)如图:一把直尺压住射线 OB,另一把直尺压住射线 OA 并且与第一把直尺交于点 P, 小明说:“射线 OP 就是∠BOA 的角平分线.”他这样做的依据是( )
A.3 【答案】A 【详解】
B.4
C.5
D.6
作 DE⊥AB 于 E, ∵AB=10,S△ABD =15, ∴DE=3, ∵AD 平分∠BAC,∠C=90°,DE⊥AB, ∴DE=CD=3, 故选 A.
变式 2-2.(2020·景泰县期中)如图所示,OP 平分 AOB , PA OA , PB OB ,垂足分别为 A、B.下列结
∠DOM═∠AOM+∠AOD=40°+10°=50°; 故选 C. 考查题型二 角平分线的性质定理 典例 2(2019·云龙县期中)如图,OC 是∠AOB 的平分线,P 是 OC 上一点,PD⊥OA 于点 D,PD=6,则点 P 到边 OB 的 距离为( )
湘教版:角平分线的性质与判定(经典题型)
角平分线的性质与判定1、角平分线:把一个角为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点一、角平分线的性质定理例1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=11cm,BD=7cm,那么点D 到直线AB的距离是cm.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.4二:角平分线的性质定理的逆定理例1.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.三、常见题型(一)利用角平分线的性质求线段长度例1.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足是点E,AC=DE+BD.(1)求∠BAD的度数;(2)若△DBE的周长为4cm,则AB=.变式2.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.(二)利用角平分线的性质求角度问题例1.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,P A=PC.求证:∠PCB+∠BAP=180°.变式1.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果(三)利用角平分线解决与面积有关的问题例1.如图,BD是△ABC的角平分线,△ABC的面积为60,AB=15,BC=9,求△ABD的面积.变式1 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是多少?(四)角平分线性质定理的逆定理应用例1.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.变式1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.(五)角平分线性质定理的实际应用例1.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?变式1.如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.。
角平分线性质与判定-含答案
第1课时 角的平分线的性质一、选择题1. 用尺规作已知角的平分线的理论依据是( ) A .SASB .AASC .SSSD .ASA2. 如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A .PD =PEB .OD =OEC .∠DPO=∠EPOD .PD =OD3. 如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是( )A .5cmB .4cmC .3cmD .2cm4. 如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A .4㎝B .6㎝C .10㎝D .不能确定21DAPOEBDC EB第2题图 第3题图 第4题图5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥A B 于点E ,DF ⊥AC 交AC 于点F .S △ABC=7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .5第5题图 第6题图 第7题图7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )A .11B .5.5C .7D .3.58.已知:如图,△ABC 中,∠C =90o,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( )A .2cm 、2cm 、2cmB .3cm 、3cm 、3cmC .4cm 、4cm 、4cmD .2cm 、3cm 、5cmFE O DCAB二、填空题9.如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(只需写出一对即可) . 10.如图,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离__cm . 11 .如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为 .第9题图 第10题图 第11题图12.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 .第12题图 第13题图 第15题图13.如图,在Rt △ABC 中,∠C=90°,若BC=10,AD 平分∠BAC 交BC 于点D ,且BD:CD=3:2,则点D 到线段AB 的距离为 .14.已知△ABC 中,AD 是角平分线,AB=5,AC=3,且S △ADC =6,则S △ABD = .15.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF 与AD的关系是.16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.17.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.第16题图第17题图第18题图18.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S △ABO:S△BCO:S△CAO = .三、解答题19.已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD.求证:∠B=∠C.20.如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E, F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.如图,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、B A、AE 三者之间有何关系?并加以证明.23.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点EEF⊥AB于F,EG⊥A G交AC的延长线于G.求证:BF=CG.第1课时角的平分线的性质定理参考答案一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9. PC=PD(答案不唯一)10. 2 11. 3 12. 15 13. 4 14. 10 15. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.CAB=180°∠∵22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中,∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE.,第2课时 角的平分线的判定一、选择题1.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点2.如图,AD ⊥OB ,BC ⊥OA ,垂足分别为D 、C ,AD 与BC 相交于点P ,若PA=PB ,则∠1与∠2的大小是( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .无法确定第2题图 第3题图 第4题图3. 如图,在Rt △ABC 的斜边BC 上截取CD=CA ,过点D 作DE ⊥BC ,交AB 于E ,则下列结论一定正确的是( )A .AE=BEB .DB=DEC .AE=BD D .∠BCE=∠ACE4. 如图,△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等; ∠A=40°,则∠BOC=( )A .110°B .120°C .130°D .140°5.如图,,△ABC 的两个外角平分线交于点P ,则下列结论正确的是( ) ①PA=PC ②BP 平分∠ABC ③P 到AB ,BC 的距离相等 ④BP 平分∠APC .A .①②B .①④C .②③D .③④5题图 第6题图 第7题图6.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处7.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,则下列结论错误的是( )MFEDCBAA.DE=DF B.ME=M F C.AE=AF D.BD=DC.8. 如图,△ABC,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,有下列四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE,AF距离相等的点到DE、DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个第8题图第10题图第11题图二、填空题9. 在角的内部到角的两边距离相等的点的轨迹是这个角的.10.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.11.如图,AB∥CD,点P到AB、BC、CD距离都相等,则∠P= °.12.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA= °.第12题图第13题图13.如图,△ABC的∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,若点P到AC的距离为4,则点P到AB的距离为 .14.如图,△ABC中,∠C=90°,∠A=36°,DE⊥AB于D,且EC=ED,∠EBC= °15.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为第14题图第15题图第16题图16.如图,点M在∠ABC内,ME⊥AB于E点,MF⊥BC于F点,且ME=MF,∠ABC=70°,则∠BME= °.三、解答题17. 如图,AB AC ,表示两条相交的公路,现要在BAC 的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1 000米. (1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .18. 如图,P 是∠BAC 内的一点,PE ⊥AB ,PF ⊥AC ,垂足分别为点E ,F ,AE=AF .求证: (1)PE=PF ;(2)点P 在∠BAC 的角平分线上.19. PB ,PC 分别是△ABC 的外角平分线且相交于P .求证:P 在∠A 的平分线上(如图).20.已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论.(2)线段DM 与AM 有怎样的位置关系?请说明理由.21.(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案: (Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA ,PN ⊥OB .此方案是否可行?请说明理由.第2课时角的平分线的判定参考答案一、选择题1.D2.A3.D4.A5.C6.D7.D8.D二、填空题9.平分线 10. 35 11. 90 12. 55 13. 4 14. 27 15. 3 16. 55三、解答题17.解:(1)1 000米=100 000厘米,100 000÷50 000=2(厘米);(2)18. 证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴AP 是∠BAC 的角平分线,故点P 在∠BAC 的角平分线上.19.证明:过P 点作PE ,PH ,PG 分别垂直AB ,BC ,AC .∵PB,PC 分别是△ABC 的外角平分线,∴PE=PH,PH=PG ,∴PE=PG.∴P 点在∠A 的平分线上.20.(1)AM 平分DAB ∠.证明:过点M 作ME AD ⊥,垂足为E .12∠=∠∵,MC CD ⊥,ME AD ⊥,ME MC =∴(角平分线上的点到角两边的距离相等). 又MC MB =∵,ME MB =∴.MB AB ∵⊥,ME AD ⊥,∴AM 平分DAB ∠(到角的两边距离相等的点在这个角的平分线上).(2)AM DM⊥,理由如下:90B C∠=∠=∵,CD AB∴∥(垂直于同一条直线的两条直线平行).180CDA DAB∠+∠=∴(两直线平行,同旁内角互补)又112CDA ∠=∠∵,132DAB∠=∠(角平分线定义)2123180∠+∠=∴,1390∠+∠=∴,90AMD∠=∴.即AM DM⊥.21.解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线;方案(Ⅱ)可行.证明:在△OPM和△OPN中,,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP(全等三角形对应角相等);∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行;∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上),当∠AOB不为直角时,此方案不可行;因为∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.。
角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册
专题12.9角平分线的性质(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】角的平分线的性质(1)性质:角的平分线上的点到角两边的距离相等.(2)符号语言:OC平分∠ADB,又 PE⊥AD,PF⊥BD,垂足为E、F,∴PE=PF【知识点二】角的平分线的判定(1)判定:角的内部到角两边距离相等的点在角的平分线上.(2)符号语言:PE⊥AD,PF⊥BD,垂足为E、F,又 PE=PF∴OC平分∠ADB,【知识点三】角的平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D,交OB 于E.(2)分别以D、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.第二部分【题型展示与方法点拨】【题型1】利用角平分线性质定理进行求值与证明【例1】(23-24七年级下·山东菏泽·阶段练习)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;【分析】本题考查了角平分线的性质,平行线的性质,垂直的定义,解题的关键是灵活运用所学知识解决问题.(1)证明90EGA ∠=︒,即可证明结论成立;(2)利用角平分线性质定理即可证明结论成立.(1)证明:∵CD AB ⊥,∴90CDA ∠=︒EG CD ∥,∴90EGA CDA ∠=∠=︒∵180A AEG EGA ∠+∠+∠=︒1801809090A AEG EGA ∴∠+∠=︒-∠=︒-︒=︒(2)证明:∵90ACB ∠=︒,∴EC BC⊥BE 平分ABC ∠,EG AB ⊥,EC EG∴=【变式1】(23-24七年级下·广东佛山·阶段练习)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥交于点M ,点N 是射线OA 上的一个动点,连接PN .若6PM =,则PN 的长度不可能是()A .18B .7.2C .6D .4.5【答案】D 【分析】本题考查角平分线的性质、垂线段最短,根据角平分线的性质作出图形转化线段是解决问题的关键.过点P 作PD OA ⊥,如图所示,由角平分线的性质可得6PD PM ==,根据点与直线上各点的距离中垂线段最短可得6PN PD ≥=,从而得到答案.解:过点P 作PD OA ⊥,如图所示:OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,6PM =,∴由角平分线性质可得6PD PM ==,点N 射线OA 上的一个动点,连接PN ,∴由点与直线上各点的距离中垂线段最短可得6PN PD ≥=,∴综合四个选项可知,PN 的长度不可能是4.5,故选:D .【变式2】(23-24七年级下·四川巴中·期末)如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,点O 到BC 边的距离为3,且ABC 的周长为20,则ABC 的面积为.【答案】30【分析】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,利用角平分线的性质求得3OM ON OD ===,然后利用ABC AOB AOC BOC S S S S =++ 求解即可.解:过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,∵点O 到BC 边的距离为3,∴3OD =,∵ABC 的周长为20,∴20AB AC BC ++=∵ABC ∠,ACB ∠的平分线交于点O ,OM AB ⊥,ON AC ⊥,∴3OM ON OD ===,∴ABC AOB AOC BOCS S S S =++ 111222AB OM AC ON BC OD =⋅+⋅+⋅()12AB AC BC OD =++⋅12032=⨯⨯30=,故答案为:30.【题型2】利用角平分线判定定理进行求值与证明【例2】如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==、,(1)求证:AD 平分BAC ∠;(2)已知204,==AC BE ,求AB 的长.【答案】(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,,,SAS ASA AAS SSS ,全等三角形的对应边相等,对应角相等.(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ≌,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,==AE AF BE CF ,即可求出答案.(1)证明:∵,DE AB DF AC ⊥⊥,∴90E DFC ∠=∠=︒,∴在Rt BED 和Rt CFD 中,BD CD BE CF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ≌,∴DE DF =,∵,DE AB DF AC ⊥⊥,∴AD 平分BAC ∠;(2)解:∵90,,∠=∠=︒==AED AFD AD AD DE DF ,∴()Rt ADE Rt ADF HL ≌,∴AE AF =,∵20,4===AC CF BE ,∴20416AE AF ==-=,∴16412AB AE BE =-=-=.【变式1】如图,在ABC 中,70BAC ∠=︒,4AB =,2AC =,若2ABD ACD S S = ,则CAD ∠的度数为()A .45︒B .40︒C .35︒D .30︒【答案】C 【分析】作DE AB ⊥于点E ,作DF AC ⊥于点F ,根据2ABD ACD S S = 可证DE DF =,从而可知AD 是BAC∠的平分线,进而可求出CAD ∠的度数.解:如图,作DE AB ⊥于点E ,作DF AC ⊥于点F ,∵2ABD ACD S S = ,∴11222AB DE AC DF ⋅=⨯⋅.∵4AB =,2AC =,∴44DE DF=∴DE DF =,∴AD 是BAC ∠的平分线.∴11703522CAD BAC ∠=∠=⨯︒=︒.故选C .【变式2】6.(23-24八年级上·山东聊城·阶段练习)如图,在ABC 中,48ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则EBF ∠=.【答案】24︒【分析】本题考查了角平分线的性质和角平分线的定义,解题的关键是能正确作出辅助线,证明BE 平分ABC ∠;过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,根据角平分线的性质可得EM EO EN EO ==,,则有EM EN =,再根据EM AB EN BC ⊥⊥、,即可得出BE 平分ABC ∠即可解答.解:过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,如图所示:三角形的外角DAC ∠和ACF ∠的平分线交于点E ,EM EO EN EO ∴==,,EM EN ∴=,EM AB EN BC ⊥⊥、,∴BE 平分ABC ∠,11482422EBF ABC ∴∠==⨯︒=︒,故答案为:24︒.【题型3】综合运用角平分线性质定理与判定定理进行证明与求值【例3】如图,ABC 和EBD △中,90ABC DBE AB CB BE BD ∠=∠=︒==,,,连接AE CD AE ,,与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AMD ∠,其中正确的一个是(请写序号),并给出证明过程.【答案】(1)见详解(2)见详解(3)②【分析】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的判定与性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.(1)欲证明AE CD =,只要证明ABE CBD ≌;(2)由ABE CBD ≌,推出BAE BCD ∠=∠,由180NMC BCD CNM ∠=︒-∠-∠,18090ABC BAE ANB CNM ANB ABC ∠=︒-∠-∠∠=∠∠=︒,又,,可得90NMC ∠=︒;(3)结论:②;作BK AE ⊥于K BJ CD ⊥,于J .利用角平分线的判定定理证明即可.(1)证明:∵ABC DBE ∠=∠,∴ABC CBE DBE CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE 和CBD △中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴SAS ABE CBD ≌(),∴AE CD =.(2)证明:∵ABE CBD ≌,∴BAE BCD ∠=∠,∵180180NMC BCD CNM ABC BAE ANB ∠=︒-∠-∠∠=︒-∠-∠,,又CNM ANB ∠=∠,90ABC ∠=︒ ,∴90NMC ∠=︒,∴AE CD ⊥.(3)解:结论:②理由:作BK AE ⊥于K BJ CD ⊥,于J.∵ABE CBD ≌,∴ABE CDB AE CD S S == ,,∴1122AE BK CD BJ ⨯⨯=⨯•,∴BK BJ =,∵作BK AE ⊥于K ,BJ CD ⊥于J ,∴BM AMD ∠平分.不妨设①成立,则CBM EBM ≌,则AB BD =,显然不可能,故①错误.故答案为:②.【变式1】(23-24八年级上·浙江杭州·阶段练习)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则MAB ∠的度数是()A .50︒B .40︒C .45︒D .55︒【答案】B 【分析】本题考查了角平分线的性质和判定,解题的关键是掌握角平分线上的点到两边距离相等.作MN AD ⊥于N ,根据角平分线的性质得出MN MC =,进而得出1402MAB DAB ∠=∠=︒.解:作MN AD ⊥于N ,∵90B C ∠∠==︒,∴AB CD ∥,∴18080DAB ADC ∠∠=︒-=︒,∵DM 平分ADC ∠,MN AD ⊥,MC CD ⊥,∴MN MC =,∵M 是BC 的中点,∴MC MB =,∴MN MB =,又MN AD ⊥,MB AB ⊥,∴1402MAB DAB ∠=∠=︒,故选:B .【变式2】(23-24八年级上·重庆永川·期末)如图,在ABC 中,68BAC ∠=︒,72ACB ∠=︒,ACB ∠的平分线与BAC ∠的外角平分线交于点D ,连接BD ,则BDC ∠的大小等于.【答案】34︒/34度【分析】本题考查了角平分线的判定与性质,三角形外角的性质等知识,先根据角平分线的判定与性质得出BD 平分ABH ∠,然后利用三角形外角的性质12BDC DBH DCB BAC ∠=∠-∠=∠,即可求解.解:过点D 作DH BC ⊥于H ,DE AC ⊥于E ,DF AB ⊥于F ,∵ACB ∠的平分线与BAC ∠的外角平分线交于点D ,∴DE DF DH ==,12BCD ACB ∠=∠,∴BD 平分ABH ∠,∴12DBH ABH ∠=∠,∵68BAC ∠=︒,∴BDC DBH DCB ∠=∠-∠1122ABH ACB =∠-∠()12ABH ACB =∠-∠12BAC =∠1682=⨯︒34=︒,故答案为:34︒.【题型4】通过作图(作角平分线)进行求值或证明【例4】(23-24八年级上·广东珠海·期中)请回答下列问题:(1)如图1,已知ABC ,利用直尺和圆规,作BAC ∠的平分线AD 交BC 于点D (保留作图痕迹,不要求写作法);(2)如图2所示,AD 是ABC 的角平分线E F 、分别是AB AC 、上的点,且180EDF BAC ∠+∠=︒,求证:DE DF =.【分析】(1)根据角平分线的基本作图方法作图即可;(2)过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,证明()AAS EHD FQD ≌,得出DE DF =,即可得出答案.(1)解:如图,作BAC ∠的平分线AD 交BC 于点D ;(2)证明:如图,过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,则90EHD FQD ∠=∠=︒,AD 平分BAC ∠,DH DQ ∴=,180EDF BAC ∠+∠=︒Q ,180AED AFD ∴∠+∠=︒,180DFQ AFD ∠+∠=︒ ,DEH DFQ ∴∠=∠,在EHD △和FQD △中DEH DFQ EHD FQD DH DQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EHD FQD ∴ ≌,DE DF ∴=.【点拨】本题主要考查了角平分线的基本作图,角平分线的性质,三角形全等的判定和性质,补角的性质,解题的关键作图辅助线,熟练掌握三角形全等的判定方法.【变式1】(2024·湖南湘西·模拟预测)如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC AB 、于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知4CE =,7AB =,ABE 的面积为()A .6B .11C .14D .28【答案】C 【分析】此题考查了角平分线的性质定理,根据角平分线的性质得到点E 到AC 和AB 的距离相等,点E 到AB 的距离等于EC 的长度,利用三角形面积公式即可得到答案.解:由基本作图得到AE 平分BAC ∠,∴点E 到AC 和AB 的距离相等,∴点E 到AB 的距离等于EC 的长度,即点E 到AB 的距离为4,∴174142ABE S =⨯⨯= .故选:C .【变式2】(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.【答案】6【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MN AB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】1.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .75【答案】B 【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出50BAC ∠=︒,由作图得25BAD ∠=︒,由三角形的外角的性质可得65ADC ∠=︒,故可得答案解:∵90,40C B ∠=︒∠=︒,∴90904050BAC B ∠=︒-∠=︒-︒=︒,由作图知,AP 平分BAC ∠,∴11502522BAD BAC ∠=∠==︒⨯︒,又,ADC B BAD ∠=∠+∠∴402565,ADC ∠=︒+︒=︒故选:B【例2】.(2021·黑龙江大庆·中考真题)已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC 边上的中线长l 的取值范围是【答案】12522l <<【分析】根据题意得到2=3AB AC ,设AB =2k ,AC =3k ,在△ABC 中,由三边关系可求出k 的范围,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.解:如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2==3AB BD AC CD ∴可设AB =2k ,AC =3k ,在△ABC 中,BC =5,∴5k >5,k <5,∴1<k <5,BE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FCE SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+5k AF k∴<<522k k AE ∴<<∴12522l <<故答案为:12522l <<.【点拨】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、拓展延伸【例1】(23-24七年级下·重庆沙坪坝·阶段练习)如图1,在ABC 中,BD 为AC 边上的高,BF 是ABD ∠的角平分线,点E 为AF 上一点,连接AE ,45AEF ∠=︒.(1)求证:AE 平分BAF∠(2)如图2,连接CE 交BD 于点G ,若BAE 与CAE 的面积相等,求证:BG CF=【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF 是ABD ∠的角平分线和,BD 为AC 边上的高,可得114522BAD ABD ∠=︒-∠,由45AEF ∠=︒得145452BAE ABE ABD ∠=︒-∠=︒-∠,即可证明12BAE BAD ∠=∠;(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,由角平分线性质可以得EM EN =,由BAE 与CAE 的面积相等可得AB AC =,证明(SAS)ABE ACE △≌△,得出135AEB CEB ∠=∠=︒,BE EC =,即可得出36090BEG CEF AEB AEC ∠=∠=︒-∠-∠=︒,再根据垂直模型证明ASA BEG CEF ≌(),即可得出结论.(1)证明:∵BD 为AC 边上的高,即90ADB ∠=︒,∴90ABD BAD ∠+∠=︒,∴1()452ABD BAD ∠+∠=︒,∴114522BAD ABD ∠=︒-∵45AEF ABF BAE ∠=∠+∠=︒,∴45BAE ABF ∠=︒-∠,∵12ABF ABD ∠=∠,∴1452BAE ABD ∠=︒-∠,∴12BAE BAF ∠=∠,即:AE 平分BAF ∠.(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,AE 平分BAC ∠,且EM AB ⊥,EN AC ⊥,EM EN ∴=.ABE ACE S S △△=,AB AC ∴=,AE 平分BAC ∠,BAE CAE ∴∠=∠,在ABE 和ACE △中,AB BC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE ACE ∴ ≌,AEB CEB ∴∠=∠,BE EC =,45AEF ∠=︒ ,135AEB AEC ∴∠=∠=︒,36090BEG CEF AEB AEC ∴∠=∠=︒-∠-∠=︒,BD 为AC 边上的高,90ADB ∴∠=︒,FBD BFC BFC FCE ∴∠+∠=∠+∠,EBG ECF ∴∠=∠.在BEG 和CEF △中,BEG CEF BE CE EBG ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA BEG CEF ∴ ≌().BG CF ∴=.【例2】(23-24八年级上·江西宜春·期末)课本再现:思考如图12.3-3,任意作一个角AOB ∠,作出AOB ∠的平分线OC .在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D 、E ,测量PD 、PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【实验猜想】针对以上问题,同学们进行了小组实验探究,并猜想:角的平分线上的点到角的两边的距离相等.【推理证明】为了证明该定理,小明同学根据书上的图形(如图12.3-3)写出了“已知”和“求证”,请你利...用全等的知识完成证明过程.............(1)已知:点P 是AOB ∠的平分线OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E .求证:PD PE =.【知识应用】(2)如图2,BAC ∠的平分线与ABC 的外角BCD ∠的平分线相交于点O ,过点O 作OD AC⊥于点D ,OE AB ⊥于点E ,连接OB .①证明:OB 平分CBE ∠;②若70CAB ∠=︒,则COB ∠=________.【答案】(1)证明见解析(2)①证明见解析;②55︒【分析】(1)根据条件证明OPD OPE ≌V V ,从而PD PE =.(2)①过点O 作OF CB ⊥于点F ,由(1)的结论易证OD OF OE ==,根据“到角的两边距离相等的点在这个角的平分线上”得到OB 平分CBE ∠;②根据三角形的内角和180COB BCO CBO ∠=︒-∠-∠,再利用角平分线的定义和“三角形的一个外角等于不相邻的两个内角的和”,推导出1902COB BAC ∠=︒-∠,从而求解.(1)证明:OC 平分AOB ∠,AOC BOC ∴∠=∠,PD OA ⊥ ,PE OB ⊥,90ODP OEP ∴∠=∠=︒,在OPD △和OPE 中,AOC BOC ODP OPE OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,OPD OPE ∴V V ≌,PD PE ∴=;(2)①证明:过点O 作OF CB ⊥于点F,AO 是ABC ∠的平分线,OD AC ⊥,OE AB ⊥,OD OE ∴=,CO 是BCD ∠的平分线,OD AC ⊥,OF BC ⊥,OD OF ∴=,OF OE ∴=,OF BC ⊥ ,OE AB ⊥,BO ∴平分CBE ∠,②OB Q 平分CBE ∠,OC 平分BCD ∠,12CBO CBE ∴∠=∠,12BCO BCD ∠=∠,()111180180180222COB CBO BCO CBE BCD CBE BCD ∴∠=︒-∠-∠=︒-∠-∠=︒-∠+∠()()11118018018090222CAB ACB CAB ABC CAB CAB =︒-∠+∠+∠+∠=︒-︒+∠=︒-∠19070552=︒-⨯︒=︒.故答案为:55︒.【点拨】本题考查了全等三角形的判定与性质、角平分线的定义、角平分线的性质和判定以及三角形的内角和定理、三角形外角的性质等,熟练掌握相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何专题2:角平分线的性质定理和判定定理
一、 知识点(抄一遍):
1. 角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线.
2. 角平分线的性质定理:
角平分线上的点,到这个角的两边的距离相等. 3. 角平分线的判定定理:
角的内部到角的两边距离相等的点在角的平分线上. 二、 专题检测题
1. 证明角平分线的性质定理.
(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明角平分线的判定定理. 3. 定理的几何语言表示 (1)角平分线的性质定理:
∵ , ∴ . (2)角平分线的判定定理:
∵ , ∴ .
4. 已知:如图所示,BN 、CP 分别是∠ABC 、∠ACB 的角平分线,BN 、CP 相交于O
点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的角平分线.
5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂足,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.
B
6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.
7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.
8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;
(2)OP 是CD 的垂直平分线; (3)OC=OD.
O
几何专题2:角平分线的性质定理和判定定理答案
1. 证明角平分线的性质定理.
已知:如图,OC 平分∠AOB ,点P 在OC 上,
PD ⊥OA 于点D ,PE ⊥OB 于点E
求证: PD=PE
证明:∵OC 平分∠ AOB
∴ ∠1= ∠2
∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中
∠PDO= ∠PEO ∠1= ∠2 OP=OP
∴△PDO ≌ △PEO(AAS) ∴PD=PE
2.
证明角平分线的判定定理.
已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,PD =PE . 求证:点P 在∠AOB 的平分线上 证明: 经过点P 作射线OC
∵ PD ⊥OA ,PE ⊥OB
∴ ∠PDO =∠PEO =90°
在Rt △PDO 和Rt △PEO 中
PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )
∴ ∠ POD =∠POE ∴点P 在∠AOB 的平分线上.
3. 定理的几何语言表示 (1)角平分线的性质定理:
∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB , ∴ DP=EP. (2)角平分线的判定定理:
∵ PD⊥OA,PE⊥OB,PD =PE . ∴ OP 平分∠AOB .
O
O
4.已知:如图所示,BN、CP分别是∠ABC、∠ACB的角平分线,BN、CP相交于O
点,连接AO,并延长交BC于M
求证:AM是∠BAC的角平分线.
证明:作OE⊥AC,OG⊥AB,OF⊥BC,
垂足分别为E、G、F.
∵BN平分∠ABC,OG⊥AB,OF⊥BC,
∴OG=OF.
同理可证:OE=OF.
∴OG=OE
又∵OE⊥AC,OG⊥AB,
∴AM是∠BAC的角平分线.
5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂足,
D是BE与CF的交点,AD平分∠BAC.
求证:BD=CD.
证明:
∵AD平分∠BAC,BE⊥AC,CF⊥AB,
∴DF=DE.
∵BE⊥AC,CF⊥AB,
∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,
∠EDC=∠FDB
DF=DE
∠DFB=∠DEC
∴△DFB≌△DEC(
ASA)
∴BD=CD.
6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.
求证:AB=AC+CD.
证明:过点D作DE⊥AB,垂足为点
E.
∵AD平分∠CAB,
∴∠CAD=∠BAD.
∵DE⊥AB
∴∠DEA=90°=∠C.
在△CAD和△EAD中,
∠CAD=∠BAD,
∠DEA=∠C,
AD=AD.
∴△CAD≌△EAD(AAS).
∴AC=AE,CD=DE.
∵AC=BC,
∴∠B=∠BAC=45°,
∵∠DEB=90°,
∴∠EDB=45°=∠B.
∴DE=BE,
∴CD=BE,
∴AB=AE+BE=AC+CD.
B
7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.
证明:过点M 作ME ⊥AD ,垂足为E ,
∵DM 平分∠ADC , ∴∠1=∠2, ∵MC ⊥CD ,ME ⊥AD ,
∴ME=MC (角平分线上的点到角两边的距离相等), 又∵MC=MB , ∴ME=MB ,
∵MB ⊥AB ,ME ⊥AD ,
∴AM 平分∠DAB (到角的两边距离相等的点在这个角的平分线上).
8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;
(2)OP 是CD 的垂直平分线; (3)OC=OD.
证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB , ∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB , ∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB , ∴∠PCO=∠PDO=90°, ∴∠CPO=∠DPO. ∵PC=PD ,
∴△CDP 是等腰三角形,
∴PM 是等腰三角形底边上的中线和高线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD , 又∵CP ⊥OA ,DP 垂直OB , ∴OC=OD (角平分线的性质定理).
O。