上海市中考数学试题及答案
2024年上海市中考真题数学试卷含答案解析
2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2023年上海市-数学中考试题及答案
2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。
1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。
1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。
答案:a = 3,b = 7。
2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。
答案:a的值为3。
2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。
答案:m的值为2,n的值为1。
2.3. 题目:若x的值满足|x + 3| = 5,求x的值。
答案:x的值为-8或2。
3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。
- 10和15的最小公倍数为30。
- 12和18的最小公倍数为36。
最大公约数:- 3和6的最大公约数为3。
- 10和15的最大公约数为5。
- 12和18的最大公约数为6。
3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。
答案:两条平行线之间的夹角为0°。
3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。
答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。
以上为2023年上海市数学中考试题及答案,仅供参考。
2023年上海市中考数学试卷(含答案)
2023年上海市中考数学试卷(含答案)一、选择题1. 在直角三角形ABC中,∠C=90°,边AC=6cm,边BC=8cm,则边AB的长为多少?A) 10cmB) 12cmC) 14cmD) 16cm答案: A2. 若a:b=3:4,且a=12,则b的值为多少?A) 8B) 10C) 16D) 24答案: C3. 已知a=4,b=-2,c=5,若方程ax^2 + bx + c=0有一个实数根,求此根的值。
A) -1B) 1C) -2D) 2答案: D二、填空题1. 16 ÷ 4 × 5 = __答案: 202. 黄牛加恩班从甲到乙的汽车速度分别为80km/h和100km/h,乙到甲的汽车速度是甲到乙的多少倍?答案: 1.253. 若9年前小明的年龄是小红年龄的2倍,而12年后小明的年龄将是小红年龄的3倍,那么现在小明的年龄是小红的__倍。
答案: 1.8三、解答题1. 某商店购进某种商品,每件进价为500元,商店出售时要加价50%。
求商店出售一件此商品能获利多少元?解答:进价为500元,加价50%意味着商店能卖出的价格为700元(500元 + 0.5*500元)。
利润为700元减去进价500元,即200元。
答案: 200元2. 学校义卖活动中,小明和小红分别负责售卖食品和饮料。
小明共售卖了30份食品,小红共售卖了20份饮料。
食品每份售价10元,饮料每份售价5元。
求小明和小红共售卖的食品和饮料总收入。
解答:小明卖食品的总收入为 30份 * 10元/份 = 300元。
小红卖饮料的总收入为 20份 * 5元/份 = 100元。
小明和小红共售卖的食品和饮料总收入为 300元 + 100元 =400元。
答案: 400元四、应用题某公司今年一季度的销售额是150万元,二季度的销售额是170万元,三季度的销售额是190万元。
若四季度的销售额比三季度增长了15%,求四季度的销售额。
解答:三季度的销售额是190万元。
2022年上海市中考数学试卷及答案解析
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数为()A.8B.﹣8C.D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC =13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【分析】根据相反数的定义解答即可,只有符号不同的两个数是相反数.【解答】解:8的相反数﹣8.故选:B.【点评】本题考查了相反数的定义,若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数.2.【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===.当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC+S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,∴S△OPB=×3|m|=3,∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2,∴n=﹣3=3,∴P点的坐标为(2,3)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x的值,则可得出答案;(2)由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.。
上海市中考数学试卷及答案
上海市中考数学试卷及答案一、填空题1. 8的平方根是 .2. 在6,8,21,4中,是最简二次根式的是 。
3.已知函数x x x f 1)(+=,那么)12(-f = 。
4.分解因式:1222+--a b a = 。
5.函数x x y -=1的定义域是 。
6.方程x x -=++22的根是 。
7.上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮列车的平均速度用科学记数法表示约 米/分钟。
8.在平面直角坐标系内,从反比例函数)0(>=k xk y 的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是 。
9.某公司今年5月份的纯利润是a 万元,如果每个月份纯利润的增长率都是x ,那么预计7月份的纯利润将达到 万元(用代数式表示)。
10.已知圆O 的弦AB =8,相应的弦心距OC =3,那么圆O 的半径等于 。
11.在△ABC 中,点D 、E 分别在边AB 、AC 上,CD 平分∠ACB ,DE ∥BC ,如果AC =10,AE =4,那么BC = 。
12.如图,矩形内有两个相邻的正方形,面积分别是4和2,那么,阴影部分的面积为 。
13.正方形ABCD 的边长为1。
如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的点D ’处,那么tg ∠BAD ’= 。
14.矩形ABCD 中,AB =5,BC =12。
如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围是 。
二、多项选择题15.下列命题中正确的是( )(A )有限小数是有理数 (B )无限小数是无理数16.已知0<b<a ,那么下列不等式组中无解的是( )(A )⎩⎨⎧<>b x a x (B )⎩⎨⎧-<->b x a x (C )⎩⎨⎧-<>bx a x (D )⎩⎨⎧<->b x a x17. 下列命题中正确的是( )(A )三点确定一个圆 (B )两个等圆不可能内切(C )一个三角形有且只有一个内切圆 (D )一个圆有且只有一个外切三角形18.已知AC 平分∠PAQ ,如图,点B 、B ’分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =AB ’,那么该条件可以是( )(A )BB ’⊥AC (B )BC = B ’C (C )∠ACB =∠AC B ’ (D )∠ABC =∠AB ’ C三、19.已知222=-x x ,将下式先简化,再求值:()()()()()133312--+-++-x x x x x .20.解方程组:⎪⎩⎪⎨⎧=+-=-.04,04222xy x y x21.将两块三角板如图放置,其中∠C =∠EDB =90º,∠A =45º,∠E =30º,AB =DE =6。
2022年上海市中考数学试卷及其答案
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:8的相反数为:﹣8.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=a.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.(4分)已知f(x)=3x,则f(1)=3.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.(4分)解方程组:的结果为.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是m<3.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为20%.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是88.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:y=﹣x+1(答案不唯一).【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=﹣2+.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为400π.(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S=π×OB2=400π,⊙O故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=或.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为2﹣.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC +S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.(10分)解关于x的不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt △AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,=×3|m|=3,∴S△OPB∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2(舍),∴n=﹣3=3,∴P点的坐标为(2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x 的值,则可得出答案;(2)方法一:由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.方法二:设EP=x,则AE=2x,CE=2x,证出∠DCE=90°,延长AP交DC的延长线于点Q,则CQ=CD,由勾股定理可得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:方法一:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.方法二:设EP=x,则AE=2x,CE=2x,∵AE=AF,BE=CF,∴AB垂直平分EF,∠AGF=90°,∴∠DCE=90°,,延长AP交DC的延长线于点Q,则CQ=CD∴EQ=ED=4x,由勾股定理得CD =2x,∠DEC=∠CEQ=45°,由DE=4x可得BE=2x,∴BP ==x,∴AB:BC =2x :2x =.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.第21页(共21页)。
上海市2023年中考数学真题及答案解析
上海市2023年中考数学真题及答案解析【注意:本文仅提供参考,实际考试请以教育部门发布的官方真题为准】一、选择题题目解析1. 小明从家到学校的路程共有5公里,他骑自行车一次骑行2/5的距离。
他一共用了多长时间?选项解析:题目中提到小明骑行2/5的距离,即2/5 * 5公里 = 2公里。
进而,我们可以计算出他骑行2公里所需要的时间。
答案:根据题目分析,小明骑行2公里所需要的时间为2公里/ 骑行速度 = 2公里 / 骑行速度,这里骑行速度未提及,所以无法计算具体时间。
答案为无法确定。
2. 某商品原价为300元,现在打八折出售,折后价格是多少?选项解析:题目中提到打八折,即原价 * 0.8,我们可以直接计算出折后价格。
答案:300元 * 0.8 = 240元。
答案为240元。
二、填空题题目解析1. 下图中国地图的颜色表示的是哪个省份?解析:根据题目中的提示,通过判断地图颜色可以得出对应的省份名称。
答案:由于无法提供具体地图,所以无法确定具体省份名称。
答案为无法确定。
2. 160 ÷ 8 = ____解析:题目中提到除法运算,我们可以直接计算出结果。
答案:160 ÷ 8 = 20。
答案为20。
三、解答题题目解析1. 如果a = 3, b = 4,则(a + b)² = ____解析:题目中给出了a和b的值,我们可以带入计算。
答案:(a + b)² = (3 + 4)² = 7² = 49。
答案为49。
2. 请用两种方法计算 2² + 3² + 4² + 5²的值。
解析:题目要求我们计算一个数列的和,我们可以分别列出每一项的平方然后相加,或者使用数列求和公式进行计算。
答案:方法一:2² + 3² + 4² + 5² = 4 + 9 + 16 + 25 = 54。
方法二:利用数列求和公式:n(n+1)(2n+1)/6,其中n为项数。
2023年上海市中考数学试卷含答案解析
绝密★启用前2023年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( ) A. a 5÷a 2=a 3B. a 3+a 3=a 6C. (a 3)2=a 5D. √ a 2=a2. 在分式方程2x−1x2+x 22x−1=5中,设2x−1x 2=y ,可得到关于y 的整式方程为( )A. y 2+5y +5=0B. y 2−5y +5=0C. y 2+5y +1=0D. y 2−5y +1=03. 下列函数中,函数值y 随x 的增大而减小的是( ) A. y =6xB. y =−6xC. y =6xD. y =−6x4. 如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A. 小车的车流量与公车的车流量稳定B. 小车的车流量的平均数较大C. 小车与公车车流量在同一时间段达到最小值D. 小车与公车车流量的变化趋势相同5. 在四边形ABCD 中,AD//BC ,AB =CD.下列说法能使四边形ABCD 为矩形的是( )A. AB//CDB. AD =BCC. ∠A =∠BD. ∠A =∠D6. 已知在梯形ABCD 中,联结AC ,BD ,且AC ⊥BD ,设AB =a ,CD =b.下列两个说法:①AC =√ 22(a +b);②AD =√ 22√ a 2+b 2,则下列说法正确的是( )A. ①正确②错误B. ①错误②正确C. ①②均正确D. ①②均错误二、填空题(本大题共12小题,共48.0分)7. 分解因式:n 2−9= ______ . 8. 化简:21−x −2x1−x 的结果为______ .9. 已知关于x 的方程√ x −14=2,则x = ______ . 10. 函数f(x)=1x−23的定义域为______ .11. 已知关于x 的一元二次方程ax 2+6x +1=0没有实数根,那么a 的取值范围是______ .12. 在不透明的盒子中装有一个黑球,两个白成,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为______ .13. 如果一个正多边形的中心角是20°,那么这个正多边形的边数为______ . 14. 一个二次函数y =ax 2+bx +c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______ .15. 如图,在△ABC 中,点D ,E 在边AB ,AC 上,2AD =BD ,DE//BC ,联结DE ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么用a ⃗ ,b ⃗ 表示DE ⃗⃗⃗⃗⃗⃗ = ______ .16. 垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为______ .17. 如图,在△ABC 中,∠C =35°,将△ABC 绕着点A 旋转α(0°<α<180°),旋转后的点B 落在BC 上,点B 的对应点为D ,联结AD ,AD 是∠BAC 的角平分线,则α= ______ .18. 在△ABC 中,AB =7,BC =3,∠C =90°,点D 在边AC 上,点E 在CA 延长线上,且CD =DE ,如果⊙B 过点A ,⊙E 过点D ,若⊙B 与⊙E 有公共点,那么⊙E 半径r 的取值范围是______ .三、解答题(本大题共7小题,共78.0分。
2022年上海市中考数学真题(解析版)
2022年上海中考数学真题一.选择题1.8的相反数是()A.8-B.8C.18 D.18-【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.下列运算正确的是……()A.a²+a³=a6B.(ab)2=ab2C.(a+b)²=a²+b²D.(a+b)(a-b)=a²-b2【答案】D【解析】【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D.【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;B.(ab)2=a2b2,故此选项不符合题意;C.(a+b)²=a²+2ab+b²,故此选项不符合题意D.(a+b)(a-b)=a²-b2,故此选项符合题意故选:D.【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)【答案】B【解析】【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可.【详解】解:∵反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,,∴k=xy<0,A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B.【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.5.下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解析】【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.【详解】解:A、命题一定有逆命题,故此选项符合题意;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.故选:A.【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.6.有一个正n边形旋转90 后与自身重合,则n为()A.6B.9C.12D.15【答案】C【解析】【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.二.填空题7.计算:3a -2a =__________.【答案】a 【解析】【详解】根据同类项与合并同类项法则计算:3a -2a=(3-2)a=a 8.已知f (x )=3x ,则f (1)=_____.【答案】3【解析】【分析】直接代入求值即可.【详解】解:∵f (x )=3x ,∴f (1)=3×1=3,故答案为:3【点睛】本题主要考查了求函数值,直接把自变量的值代入即可.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.【答案】21x y =⎧⎨=-⎩【解析】【分析】利用平方差公式将②分解因式变形,继而可得3x y -=④,联立①④利用加减消元法,算出结果即可.【详解】解:2213x y x y +=⎧⎨-=⎩①②由②,得:()()3x y x y +-=③,将①代入③,得:()13x y ⨯-=,即3x y -=④,①+②,得:24=x ,解得:2x =,①−②,得:22y =-,解得:1y =-,∴方程组2213x y x y +=⎧⎨-=⎩的结果为21x y =⎧⎨=-⎩.【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.10.已知x 2-+m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】m <3【解析】【分析】根据方程有两个不相等的实数根,则Δ>0,即2-4m >0,求解即可.【详解】解:∵x-x +m =0有两个不相等的实数根,∴Δ2-4m >0解得:m <3,故答案为:m <3.【点睛】本题考查一元二次方程根的判别式,熟练掌握“当方程有两个不相等的实数根,Δ>0;当方程有两个相等的实数根,Δ=0;当方程没有实数根,Δ<0”是解题的关键.11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.【答案】13【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与分到甲和乙的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图如下:由树形图可知所有可能情况共6种,其中分到甲和乙的情况有2中,所以分到甲和乙的概率为21=63,故答案为:13【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.【答案】20%【解析】【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14 人,3-4 小时 16 人,4-5 小时 6 人),若共有 200 名学生,则该学校六年级学生阅读时间不低于 3小时的人数是_____.【答案】88【解析】【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.【详解】解:该学校六年级学生阅读时间不低于3小时的人数是1662220020088,4101416650+´=´=++++故答案为:88【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.【答案】2y x =-+(答案不唯一)【解析】【分析】直接根据一次函数的图象与系数的关系即可得出结论.【详解】∵直线y kx b =+过第一象限且函数值随着x 的增大而减小,∴0k <,0b,∴符合条件的一条直线可以为:2y x =-+(答案不唯一).【点睛】本题考查一次函数的图象与系数的关系,熟知一次函数y kx b =+(0k ≠),当0k <,0b时,函数图象过第一象限且函数值随着x 的增大而减小.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b == 则DC=_____.【答案】2a b-+r r 【解析】【分析】利用向量相减平行四边形法则:向量相减时,起点相同,差向量即从后者终点指向前者终点即可求解.【详解】解:∵四边形ABCD 是平行四边形,AC ,BD 交于点O ,又BO a = ,BC b =,∴22BD BO a ==,∴2DC BC BD b a =--= ,故答案为:2a b -+r r.【点睛】本题考查平行四边形的性质,向量相减平行四边形法则,解题的关键是熟练掌握向量相减平行四边形法则.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为_____.(结果保留π)【答案】400π【解析】【详解】解:过点O 作OD ⊥AB 于D ,连接OB ,如图,∵AC =11,BC =21,∴AB =AC +BC =32,∵OD ⊥AB 于D ,∴AD =BD =12AB =16,∴CD =AD -AC =5,在Rt △OCD 中,由勾股定理,得OD 2222135OC CD -=-=12,在Rt △OBD 中,由勾股定理,得OB 22221612BD CD +=+=20,∴这个花坛的面积=202π=400π,故答案为:400π.【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AEAC =_____.【答案】12或14【解析】【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE 1E 2是等边三角形,求出E 1E 2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB 中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE 1E 2=60°,∴△DE 1E 2是等边三角形,∴DE 1=DE 2=E 1E 2=12BC ,∴E 1E 2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.【答案】2222-【解析】【分析】如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,再证明DK 经过圆心,CF AB ⊥,分别求解AC ,BC ,CF ,设O 的半径为,r 再分别表示,,,EF OF OE 再利用勾股定理求解半径r 即可.【详解】解:如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,,90,CD CK EQ ACB ==Ð=°Q 90,COD COK \Ð=Ð=°DK 过圆心O ,CF AB ⊥,,90,2,AC BC ACB AB =Ð=°=Q 12,1,2AC BC AF BF CF AB \======设O 的半径为,r ∴222,1,,CD r r r EQ OF r OE r =+===-=,CF AB ⊥ 2,2EF QF \==()22221,2r r 琪\=-+琪桫整理得:2420,r r -+=解得:1222r r ==-,OC CF <Q 2r \=不符合题意,舍去,∴当等弦圆最大时,这个圆的半径为2故答案为:2【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.三.解答题19.计算:11221||()123--+【答案】1【解析】【分析】原式分别化简|,121()3-,1212,再进行合并即可得到答案.【详解】解:11221|()123--+-+-=1-【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20.解关于x 的不等式组34423x x x x >-⎧⎪+⎨>+⎪⎩【答案】-2<x<-1【解析】【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.【详解】解:34423x xx x>-⎧⎪⎨+>+⎪⎩①②,解①得:x>-2,解②得:x<-1,∴-2<x<-1.【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.21.一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC 的值.【答案】(1)y=x+1(2【解析】【小问1详解】解:设这个一次函数的解析式y=kx+1,把A(2,3)代入,得3=2k+1,解得:k=1,∴这个一次函数的解析式为y=x+1;【小问2详解】解:如图,设反比例函数解析式为y =m x ,把A (2,3)代入,得3=2m ,解得:m =6,∴反比例函数解析式为y =6x ,当x =6时,则y =66=1,∴B (6,1),∴AB 22(62)(13)5-+-=∵将点B 向上平移2个单位得到点C ,∴C (6,3),BC =2,∵A (2,3),C (6,3),∴AC ∥x 轴,∵B (6,1),C (6,3),∴BC ⊥x 轴,∴AC ⊥BC ,∴∠ACB =90°,∴△ABC 是直角三角形,∴cos ∠ABC =25525BC AB ==.【点睛】本题考查待定系数法求函数解析式,点的平移,解三角形,坐标与图形,求得AC ⊥BC 是解题的关键.22.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度【答案】(1)a tanα+b米(2)3.8米【解析】【分析】(1)由题意得BD=a,CD=b,∠ACE=α,根据四边形CDBE为矩形,得到BE=CD=b,BD=CE=a,在Rt∆ACE中,由正切函数tanα=AECE,即可得到AB的高度;(2)根据AB∥ED,得到∆ABF~∆EDF,根据相似三角形的对应边成比例得到ED ABDF BF=,又根据AB∥GC,得出∆ABH~∆GCH,根据相似三角形的对应边成比例得到AB GCBH CH=联立得到二元一次方程组解之即可得;【小问1详解】解:如图由题意得BD =a ,CD =b ,∠ACE =α∠B =∠D =∠CEB =90°∴四边形CDBE 为矩形,则BE =CD =b ,BD =CE =a ,在Rt ∆ACE 中,tan α=AE CE,得AE =CE =CE ×tan α=a tan α而AB =AE +BE ,故AB =a tan α+b答:灯杆AB 的高度为a tan α+b 米【小问2详解】由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8由于AB ∥ED ,∴∆ABF ~∆EDF ,此时ED AB DF BF =即2=3 1.83AB BC ++①,∵AB ∥GC∴∆ABH ~∆GCH ,此时AB GC BH CH=,211AB BC =+②联立①②得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩,解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米【点睛】本题考查了相似三角形的应用,锐角三角函数的应用,以及二元一次方程组,解题的关键是读懂题意,熟悉相似三角形的判定与性质.23.如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB 求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ【答案】(1)见解析(2)见解析【解析】【分析】(1)利用SAS证明△ACE≌△ABF即可;(2)先证△ACE∽△AFQ可得∠AEC=∠AQF,求出∠BQF=∠AFE,再证△CAF∽△BFQ,利用相似三角形的性质得出结论.【小问1详解】证明:∵AB=AC,∴∠B=∠C,∵CF=BE,∴CE=BF,在△ACE和△ABF中,AC AB C B CE BF=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;【小问2详解】证明:∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE AC AQ AF=,∴△ACE ∽△AFQ ,∴∠AEC =∠AQF ,∴∠AEF =∠BQF ,∵AE =AF ,∴∠AEF =∠AFE ,∴∠BQF =∠AFE ,∵∠B =∠C ,∴△CAF ∽△BFQ ,∴CF AF BQ FQ=,即CF ·FQ =AF ·BQ .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定和性质,熟练掌握相关判定定理和性质定理是解题的关键.24.已知:212y x bx c =++经过点()21A --,,()03B -,.(1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围;②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠= 时,求P 点坐标.【答案】(1)2132y x =-(2)①k ≥2②P 的坐标为(3)或(,3)【解析】【分析】(1)把()21A --,,()03B -,代入212y x bx c =++,求解即可;(2)①由2132y x =-,得顶点坐标为(0,-3),即点B 是原抛物线的顶点,由平移得抛物线向右平移了m 个单位,根据1332OPB S m =⨯=△,求得 m =2,在 x =k 的右侧,两抛物线都上升,根据抛物线的性质即可求出k 取值范围;②把P (m ,n )代入2132y x =-,得n =2132m -,则P (m ,2132m -),从而求得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,则Q (0,m 2-3),从而可求得BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m +---=+,即可得出BP =PQ ,过点P 作PC ⊥y 轴于C ,则PC =|m |,根据等腰三角形的性质可得BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,再根据tan ∠BPC =tan60°=212||m BC PC m ==m 值,从而求出点P 坐标.【小问1详解】解:把()21A --,,()03B -,代入212y x bx c =++,得1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩,∴函数解析式为:2132y x =-;【小问2详解】解:①∵2132y x =-,∴顶点坐标为(0,-3),即点B 是原抛物线的顶点,∵平移抛物线使得新顶点为(),P m n (m >0).∴抛物线向右平移了m 个单位,∴1332OPB S m =⨯=△,∴m =2,∴平移抛物线对称轴为直线x =2,开口向上,∵在x k =的右侧,两抛物线都上升,又∵原抛物线对称轴为y 轴,开口向上,∴k ≥2,②把P (m ,n )代入2132y x =-,得n =2132m -,∴P (m ,2132m -)根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,∴Q (0,m 2-3),∵B (0,-3),∴BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∴BP =PQ ,如图,过点P 作PC ⊥y 轴于C ,则PC =|m |,∵BP =PQ ,PC ⊥BQ ,∴BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∴tan ∠BPC =tan60°=212||m BC PC m ==解得:m=±2∴n =2132m -=3,故P 的坐标为(3)或(,3)【点睛】本题考查待定系数法求抛物线解析式,抛物线的平移,抛物线的性质,解直角三角形,等腰三角形的性质,本题属抛物线综合题目,属中考常考试题目,难度一般.25.平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE .(1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且CE =.若F 在直线CE 上,求ABBC 的值.【答案】(1)①见解析;②(2)105【解析】【分析】(1)①连接AC 交BD 于O ,证△AOE ≌△COE (SSS),得∠AOE =∠COE ,从而得∠COE =90°,则AC ⊥BD ,即可由菱形的判定定理得出结论;②先证点E 是△ABC 的重心,由重心性质得BE =2OE ,然后设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在Rt △AOB 中,由勾股定理,得OA2=AB 2-OB 2=52-(3x )2=25-9x 2,从而得9-x 2=25-9x 2,解得:x =,即可得OB =3x ,再由平行四边形性质即可得出BD 长;(2)由⊙A 与⊙B 相交于E 、F ,得AB ⊥EF ,点E 是△ABC 的重心,又F 在直线CE 上,则CG 是△ABC 的中线,则AG =BG =12AB ,根据重心性质得GE =12CE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,则AG =22AE ,所以AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC2=BG 2+CG 2=12AE 2+(2AE )2=5AE 2,则BC AE ,代入即可求得AB BC的值.【小问1详解】①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD ,∴OA =OC ,∵AE =CE ,OE =OE ,∴△AOE ≌△COE (SSS),∴∠AOE =∠COE ,∵∠AOE +∠COE =180°,∴∠COE =90°,∴AC ⊥BD ,∵平行四边形ABCD ,∴四边形ABCD 是菱形;②∵OA =OC ,∴OB 是△ABC 的中线,∵P 为BC 中点,∴AP 是△ABC 的中线,∴点E 是△ABC 的重心,∴BE =2OE ,设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在 Rt △AOB 中,由勾股定理,得 OA 2=AB 2-OB 2=52-(3x )2=25-9x 2,∴9-x 2=25-9x 2,解得:x = 2 ,∴OB =3x =,∵,∴BD =2OB =6 2 ;【小问 2解:如图,∵⊙A 与⊙B 相交于 E 、F ,∴AB ⊥EF ,由(1)②知点 E 是△ABC 的重心,又 F 在直线CE 上,∴CG 是△ABC 的中线,∴AG =BG = 12 AB ,GE = 12 CE ,∵CE = 2 AE ,∴GE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,∴AG =2AE ,∴AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC 2=BG 2+CG 2=12AE 2+(322AE )2=5AE 2,∴BC ,∴5AB BC ==.【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.。
上海市2021年中考数学真题(含答案)
上海市2021年中考数学试题一、选择题1.下列实数中,有理数是()A. B. C. D.【答案】C【解析】【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A 22是无理数B 3是无理数C 12为有理数D 5是无理数故选:C【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键2.下列单项式中,23a b 的同类项是()A.32a b B.232a b C.2a b D.3ab 【答案】B【解析】【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.3.将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变C.y 随x 的变化情况不变D.与y 轴的交点不变【答案】D【解析】【分析】根据二次函数的平移特点即可求解.【详解】将抛物线2(0)y ax bx c a =++≠向下平移两个单位,开口方向不变、对称轴不变、故y 随x 的变化情况不变;与y 轴的交点改变故选D .【点睛】此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点.4.商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg /包B.3kg /包C.4kg /包D.5kg /包【答案】A【解析】【分析】选择人数最多的包装是最合适的.【详解】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故选:A .【点睛】本题较简单,从图中找到选择人数最多的包装的范围,再逐项分析即可.5.如图,已知平行四边形ABCD 中,,AB a AD b == ,E 为AB 中点,求12a b += ()A.ECB.CEC.EDD.DE【答案】A【解析】【分析】根据向量的特点及加减法则即可求解.【详解】∵四边形ABCD 是平行四边形,E 为AB 中点,∴1122a b AB BC EB BC EC +=+=+= 故选A .【点睛】此题主要考查向量的表示,解题的关键是熟知平行四边形的特点及向量的加减法则.6.如图,已知长方形ABCD 中,4,3AB AD ==,圆B 的半径为1,圆A 与圆B 内切,则点,C D 与圆A 的位置关系是()A.点C 在圆A 外,点D 在圆A 内B.点C 在圆A 外,点D 在圆A 外C.点C 在圆A 上,点D 在圆A 内D.点C 在圆A 内,点D 在圆A 外【答案】C【解析】【分析】根据内切得出圆A 的半径,再判断点D 、点E 到圆心的距离即可【详解】∵圆A 与圆B 内切,4AB =,圆B 的半径为1∴圆A 的半径为5∵3AD =<5∴点D 在圆A 内在Rt △ABC 中,5AC ===∴点C 在圆A 上故选:C【点睛】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键二、填空题7.计算:72=x x ÷_____________.【答案】5x 【解析】【分析】根据同底数幂的除法法则计算即可【详解】∵72=x x ÷5x ,故答案为:5x .【点睛】本题考查了同底数幂的除法,熟练掌握运算的法则是解题的关键.8.已知6()f x x=,那么f =__________.【答案】【解析】【分析】直接利用已知的公式将x 的值代入求出答案.【详解】解:∵6 ()f xx=,∴f=,故答案为:【点睛】本题主要考查了函数值,正确把已知代入是解题关键.9.3=,则x=___________.【答案】5【解析】【分析】方程两边同平方,化为一元一次方程,进而即可求解.3=,两边同平方,得49x+=,解得:x=5,经检验,x=5是方程的解,∴x=5,故答案是:5.【点睛】本题主要考查解根式方程,把根式方程化为整式方程,是解题的关键.10.不等式2120x-<的解集是_______.【答案】6x<【解析】【分析】根据不等式的性质即可求解.【详解】2120x-<212x<6x<故答案为:6x<.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.11.70︒的余角是__________.【答案】20︒【解析】【分析】根据余角的定义即可求解.【详解】70︒的余角是90°-70︒=20︒故答案为:20︒.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.12.若一元二次方程2230x x c -+=无解,则c 的取值范围为_________.【答案】98c >【解析】【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯ <0,然后求出c 的取值范围.【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∴()2243420b ac c =-=--⨯< ,解得98c >,∴c 的取值范围是98c >.故答案为:98c >.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为__________.【答案】38【解析】【分析】根据概率公式计算即可【详解】根据概率公式,得偶数的概率为38,故答案为:38.【点睛】本题考查了概率计算,熟练掌握概率计算公式是解题的关键.14.已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.【答案】2y x =-(0k <且1k ≠-即可)【解析】【分析】正比例函数经过二、四象限,得到k<0,又不经过(-1,1),得到k≠-1,由此即可求解.【详解】解:∵正比例函数y kx =经过二、四象限,∴k <0,当y kx =经过(1,1)-时,k =-1,由题意函数不经过(1,1)-,说明k ≠-1,故可以写的函数解析式为:2y x =-(本题答案不唯一,只要0k <且1k ≠-即可).【点睛】本题考查了正比例函数的图像和性质,属于基础题,y kx =(k ≠0)当0k <时经过第二、四象限;当0k >时经过第一、三象限.15.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.【答案】335k 【解析】【分析】利用待定系数法求出函数关系式,求出当售价为8元/千克时的卖出的苹果数量.再利用利润=(售价-进价)×销售量,求出利润.【详解】设卖出的苹果数量与售价之间的关系式为()510y mx n x =+≤≤,将(5,4k ),(10,k )代入关系式:5410m n k m n k +=⎧⎨+=⎩,解得357m k n k⎧=-⎪⎨⎪=⎩∴()375105y kx k x =-+≤≤令8x =,则115y k =∴利润=()11338555k k -⨯=【点睛】本题考查待定系数法求函数解析式和利润求解问题.利润=(售价-进价)×销售量.16.如图,已知12ABD BCD S S = ,则BOC BCDS S =_________.【答案】23【解析】【分析】先根据等高的两个三角形的面积比等于边长比,得出12AD BC =,再根据△AOD ∽△COB 得出12OD AD OB BC ==,再根据等高的两个三角形的面积比等于边长比计算即可【详解】解:作AE ⊥BC ,CF ⊥BD ∵12ABD BCD S S = ∴△ABD 和△BCD 等高,高均为AE ∴112122ABD BCD AD AE S AD S BC BC AE === ∵AD ∥BC∴△AOD ∽△COB ∴12OD AD OB BC ==∵△BOC 和△DOC 等高,高均为CF ∴1·2211·2BOC DOC OB CF S OB S OD OD CF === ∴BOC BCD S S = 23故答案为:23【点睛】本题考查相似三角形的判定和性质、等高的两个三角形的面积比等于边长比,熟练掌握三角形的面积的特点是解题的关键17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.【答案】332.【解析】【分析】由六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE 、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF中,∵直角三角板的最短边为1,∴正六边形ABCDEF为1,∴△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,∵∠ABC=∠CDE=∠EFA=120︒,AB=BC=CD=DE=EF=FA=1,∴∠BAG=∠BCG=∠DCE=∠DEC=∠FAE=∠FEA=30︒,∴BG=DI=FH=1 2,∴由勾股定理得:AG=CG=CI=EI=EH=AH=3 2,∴AC=AE=CE3,∴由勾股定理得:AI=3 2,∴S=111333 33322222⨯+=,故答案为:33 2.【点睛】本题主要考查了含30度角的直角三角形的性质、正多边形形与圆以及等边三角形的性质,关键在于知识点:在直角三角形中,30度角所对的直角边等于斜边的一半的应用.18.定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,2P OP=,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为__________.【答案】221d ≤≤【解析】【分析】先确定正方形的中心O 与各边的所有点的连线中的最大值与最小值,然后结合旋转的条件即可求解.【详解】解:如图1,设AD 的中点为E ,连接OA ,OE ,则AE =OE =1,∠AEO =90°,2OA =.∴点O 与正方形ABCD 边上的所有点的连线中,OE 最小,等于1,OA 2.∵2OP =,∴点P 与正方形ABCD 边上的所有点的连线中,如图2所示,当点E 落在OP 上时,最大值PE =PO -EO =2-1=1;如图3所示,当点A 落在OP 上时,最小值22PA PO AO =-=-.∴当正方形ABCD 绕中心O 旋转时,点P 到正方形的距离d 的取值范围是221d ≤≤.故答案为:221d ≤≤【点睛】本题考查了新定义、正方形的性质、勾股定理等知识点,准确理解新定义的含义和熟知正方形的性质是解题的关键.三、解答题19.计算:1129|1|2-+--【答案】2【解析】【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|1|2-+--,(112--⨯=31,=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.20.解方程组:22340x y x y +=⎧⎨-=⎩【答案】21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩【解析】【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩,由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y --=,进一步整理为:32y y -=或32y y -=-,解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可.21.已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【答案】(1)6AC =;(2)310【解析】【分析】(1)在Rt △ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ⊥BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)∵AC BD ⊥,4cos 5ABC ∠=∴cos 45ABC BC AB ∠==∴AB =10∴AC 6=;(2)过点F 作FG ⊥BD ,∵BF 为AD 边上的中线.∴F 是AD 中点∵FG ⊥BD ,AC BD⊥∴//FG AC∴FG 是△ACD 的中位线∴FG =1=2AC 3CG=1=22CD ∴在Rt △BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.22.现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【答案】(1)36万部;(2)100MB /秒【解析】【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数;(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,由题意可知:1000100019095x x-=-解得:100x =检验:当100x =时,()950x x ⋅-≠∴100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.23.已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ⊥BC ,ON ⊥AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥;(2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN ∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM ∥CN ,可证ACNM 是平行四边形,再由90AM N ∠=︒可证四边形ACNM 是矩形.【详解】证明:(1)连结,OM ON ,∵M 、N 分别是CB 和AD 的中点,∴OM ,ON 为弦心距,∴OM ⊥BC ,ON ⊥AD ,90GMO GNO ∴∠=∠=︒,在O 中,AB CD =,OM ON ∴=,在Rt △OMG 和Rt △ONG 中,OM ON OG OG =⎧⎨=⎩,()Rt GOM Rt GON HL ∴∆∆≌,∴MG NG MGO NGO =∠=∠,,OG MN ∴⊥;(2)设OG 交MN 于E ,()Rt GOM Rt GON HL ∆∆ ≌,∴MG NG =,∴GMN GNM ∠=∠,即CMN ANM ∠=∠,1122CM CB AD AN === ,在△CMN 和△ANM 中CM AN CMN ANM MN NM =⎧⎪∠=∠⎨⎪=⎩,CMN ANM ∴ ≌,,AM CN AMN CNM ∴=∠=∠,∵CN ∥OG ,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,∴AM ∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒ ,∴四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.24.已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式;(2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC .①若A 与Q 重合,求C 到抛物线对称轴的距离;②若C 落在抛物线上,求C 的坐标.【答案】(1)21922y x =-+;(2)①1;②点C 的坐标是52,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可;(2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;②根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩解得19,22a c =-=.所以抛物线的解析式是21922y x =-+.(2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .∵ABC 是等腰直角三角形,∴CBH 和CAH 也是等腰直角三角形,∴2CH AH BH ===,∴点C 到抛物线的对称轴的距离等于1.②如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩∴直线PQ 的解析式为26y x =-+,设(,26)A m m -+,∴26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+,得2193(23)22m m -+=--+.整理,得22730m m -+=.因式分解,得(21)(3)0m m --=.解得12m =,或3m =(与点B 重合,舍去).当12m =时,1523132,3322m m -=-=--+=-+=.所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭.【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.25.如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;②若BE CD ⊥,求AD BC的值;(2)若2,3DE OE ==,求CD 的长.【答案】(1)①见解析;②23;(2)1或3+【解析】【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;②若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30°所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值.(2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE V 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.②当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可.【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠.因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.②若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=.所以2233AD m BC m ==.(2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x =-.已知3OE =,所以6AC =.在Rt ACE 和Rt DCE V 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+,或1x =(舍去负值).②如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=,另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽.所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+.等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=.将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =+,或3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.。
【真题】上海市中考数学试题及答案解析
上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
上海市2023年中考数学试卷((附参考答案))
上海市2023年中考数学试卷一、单选题1.下列运算正确的是()A.B.C.D.2.在分式方程中,设,可得到关于y的整式方程为()A.B.C.D.3.下列函数中,函数值y随x的增大而减小的是()A.B.C.D.4.如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.5.在四边形中,.下列说法能使四边形为矩形的是()A.B.C.D.6.已知在梯形中,连接,且,设.下列两个说法:①;②则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题7.分解因式:.8.化简:的结果为.9.已知关于的方程,则10.函数的定义域为.11.已知关于x的一元二次方程没有实数根,那么a的取值范围是.12.在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.如果一个正多边形的中心角是,那么这个正多边形的边数为.14.一个二次函数的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.如图,在中,点D,E在边,上,,连结,设向量,,那么用,表示.16.垃圾分类(Refuse sorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.如图,在中,,将绕着点A旋转,旋转后的点B落在上,点B的对应点为D,连接是的角平分线,则.18.在中,点D在边上,点E在延长线上,且,如果过点A,过点D,若与有公共点,那么半径r的取值范围是.三、解答题19.计算:20.解不等式组21.如图,在中,弦的长为8,点C在延长线上,且.(1)求的半径;(2)求的正切值.22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.如图,在梯形中,点F,E分别在线段,上,且,(1)求证:(2)若,求证:24.在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.如图(1)所示,已知在中,,在边上,点边中点,为以为圆心,为半径的圆分别交,于点,,联结交于点.(1)如果,求证:四边形为平行四边形;(2)如图(2)所示,联结,如果,求边的长;(3)联结,如果是以为腰的等腰三角形,且,求的值.答案1.【答案】A2.【答案】D3.【答案】B4.【答案】B5.【答案】C6.【答案】D7.【答案】8.【答案】29.【答案】1810.【答案】11.【答案】12.【答案】13.【答案】1814.【答案】(答案不唯一)15.【答案】16.【答案】1500吨17.【答案】18.【答案】19.【答案】解:原式.20.【答案】解:,解不等式①得:,解不等式②得:,则不等式组的解集为.21.【答案】(1)解:如图,延长,交于点,连接,由圆周角定理得:,弦的长为8,且,,解得,的半径为.(2)解:如图,过点作于点,的半径为5,,,,,,即,解得,,,则的正切值为.22.【答案】(1)解:由题意知,(元),答:实际花了900元购买会员卡;(2)解:由题意知,,整理得,∴y关于x的函数解析式为;(3)解:当,则,∵,∴优惠后油的单价比原价便宜元.23.【答案】(1)证明:,,在和中,,,.(2)证明:,,,即,在和中,,,,由(1)已证:,,.24.【答案】(1)解:∵直线与x轴交于点A,y轴交于点B,当时,代入得:,故,当时,代入得:,故,(2)解:设,则可设抛物线的解析式为:,∵抛物线M经过点B,将代入得:,∵,即,∴将代入,整理得:,故,;(3)解:如图:∵轴,点P在x轴上,∴设,,∵点C,B分别平移至点P,D,∴点,点向下平移的距离相同,∴,解得:,由(2)知,∴,∴抛物线N的函数解析式为:,将代入可得:,∴抛物线N的函数解析式为:或.25.【答案】(1)证明:∵∴∵∴,∴∵是的中点,,∴是的中位线,∴,即,∴四边形是平行四边形;(2)解:∵,点边中点,设,,则由(1)可得∴,∴,又∵∴,∴即,∵,在中,,∴,∴解得:或(舍去)∴;(3)解:①当时,点与点重合,舍去;②当时,如图所示,延长交于点P,∵点是的中点,,∴,设,∵∴,∴,设,∵∴,∴,∴,∴,连接交于点,∵,∴∴,∴,在与中,,,∴,又,∴,∴,∴,∴,,∴.。
2022年上海市中考数学试卷及答案解析
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数为()A.8B.﹣8C.D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC =13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,ⅰ.如果S△OBP求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【分析】根据相反数的定义解答即可,只有符号不同的两个数是相反数.【解答】解:8的相反数﹣8.故选:B.【点评】本题考查了相反数的定义,若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数.2.【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===.当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,+S△BOC+S△AOB=S△ABC,由S△AOC=AC•BC,∴AC•OP+BC•ON+AB•OM=S△ABC设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,=×3|m|=3,∴S△OPB∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y =+n =﹣3,∴Q (0,m 2﹣3),∵B (0,﹣3),∴BQ =m 2,+,PQ 2=,∴BP =PQ ,如图,过点P 作PC ⊥y 轴于C ,则PC =|m |,∵PB =PQ ,PC ⊥BQ ,∴BC =BQ =m 2,∠BPC =∠BPQ =×120°=60°,∴tan ∠BPC =tan60°==,∴m =2或m =﹣2,∴n =﹣3=3,∴P 点的坐标为(2,3)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.【分析】(1)i .证明:如图,连接AC 交BD 于点O ,证明△AOE ≌△COE (SSS ),由全等三角形的性质得出∠AOE =∠COE ,证出AC ⊥BD ,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x的值,则可得出答案;(2)由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.。
上海市中考数学试卷(含答案解析)
上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次B.3.5次C.4次D.4.5次【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=a2.【考点】同底数幂的除法.【专题】计算题.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5.【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【考点】代数式求值.【专题】计算题;实数.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【考点】反比例函数的性质.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE ⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x 2﹣4x ﹣5,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.(3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB=5,∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3,∴tan ∠CBH==.∵在RT △BOE 中,∠BOE=90°,tan ∠BEO=,∵∠BEO=∠ABC ,∴,得EO=,∴点E 的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD 中,AB ∥DC ,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB . (1)求线段CD 的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。
上海市2023年中考数学试卷及答案详解(图片版)
第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。
上海市2022年中考数学试卷(解析版)
上海市2022年中考数学试卷一.选择题1. 8的相反数是()A B. 8 C. D.2. 下列运算正确的是……()A. a²+a³=a6B. (ab)2 =ab2C. (a+b)²=a²+b²D. (a+b)(a-b)=a² -b23. 已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A. (2,3)B. (-2,3)C. (3,0)D. (-3,0)4. 我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A. 平均数B. 中位数C. 众数D. 方差5. 下列说法正确的是()A. 命题一定有逆命题B. 所有的定理一定有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题6. 有一个正n边形旋转后与自身重合,则n为()A6 B. 9 C. 12 D. 15二.填空题7. 计算:3a-2a=__________.8. 已知f(x)=3x,则f(1)=_____.9. 解方程组的结果为_____.10. 已知x-x+m=0有两个不相等的实数根,则m的取值范围是_____.11. 甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.13. 为了解学生阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14人,3-4小时16人,4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.14. 已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.15. 如图所示,在口ABCD中,AC,BD交于点O,则=_____.16. 如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为_____.(结果保留)17. 如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.18. 定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.三.解答题19. 计算:20. 解关于x的不等式组21. 一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22. 我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度23. 如图所示,等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB 求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ24. 已知:经过点,.(1)求函数解析式;(2)平移抛物线使得新顶点为(m>0).①倘若,且在的右侧,两抛物线都上升,求的取值范围;②在原抛物线上,新抛物线与轴交于,时,求点坐标.25. 平行四边形,若为中点,交于点,连接.(1)若,①证明为菱形;②若,,求的长.(2)以为圆心,为半径,为圆心,为半径作圆,两圆另一交点记为点,且.若在直线上,求值.2022年上海市中考数学试卷一.选择题1. 8的相反数是()A. B. 8 C. D.【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是,故选A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2. 下列运算正确的是……()A. a²+a³=a6B. (ab)2 =ab2C. (a+b)²=a²+b²D. (a+b)(a-b)=a² -b2【答案】D【解析】【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D.【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;B.(ab)2 =a2b2,故此选项不符合题意;C.(a+b)²=a²+2ab+b²,故此选项不符合题意D(a+b)(a-b)=a² -b2,故此选项符合题意故选:D.【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3. 已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A. (2,3)B. (-2,3)C. (3,0)D. (-3,0)【答案】B【解析】【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可.【详解】解:∵反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,,∴k=xy<0,A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B.【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的4. 我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A. 平均数B. 中位数C. 众数D. 方差【答案】D【解析】【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.5. 下列说法正确的是()A. 命题一定有逆命题B. 所有的定理一定有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题【答案】A【解析】【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.【详解】解:A、命题一定有逆命题,故此选项符合题意;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.故选:A.【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.6. 有一个正n边形旋转后与自身重合,则n为()A. 6B. 9C. 12D. 15【解析】【分析】根据选项求出每个选项对应的正多边形的中心角度数,与一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形中心角,是的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.二.填空题7. 计算:3a-2a=__________.【答案】a【解析】【详解】根据同类项与合并同类项法则计算:3a-2a=(3-2)a=a8. 已知f(x)=3x,则f(1)=_____.【答案】3【分析】直接代入求值即可.【详解】解:∵f(x)=3x,∴f(1)=3×1=3,故答案为:3【点睛】本题主要考查了求函数值,直接把自变量的值代入即可.9. 解方程组的结果为_____.【答案】【解析】【分析】利用平方差公式将②分解因式变形,继而可得④,联立①④利用加减消元法,算出结果即可.【详解】解:由②,得:③,将①代入③,得:,即④,①+②,得:,解得:,①−②,得:,解得:,∴方程组的结果为.【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.10. 已知x-x+m=0有两个不相等的实数根,则m的取值范围是_____.【答案】m<3【解析】【分析】根据方程有两个不相等的实数根,则Δ>0,即(-2)2-4m>0,求解即可.【详解】解:∵x-x+m=0有两个不相等的实数根,∴Δ=(-2)2-4m>0解得:m<3,故答案为: m<3.【点睛】本题考查一元二次方程根的判别式,熟练掌握“当方程有两个不相等的实数根,Δ>0;当方程有两个相等的实数根,Δ=0;当方程没有实数根,Δ<0”是解题的关键.11. 甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.【答案】【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与分到甲和乙的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图如下:由树形图可知所有可能情况共6种,其中分到甲和乙的情况有2中,所以分到甲和乙的概率为,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.12. 某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.【答案】20%【解析】【分析】根据该公司5、6两个月营业额的月均增长率为x结合5月、7月营业额即可得出关于x的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x,根据题意得,解得,(舍去)所以,增长率为20%故答案为:20%【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.13. 为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14人,3-4小时16人,4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.【答案】88【解析】【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.【详解】解:该学校六年级学生阅读时间不低于3小时的人数是故答案为:【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.14. 已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.【答案】(答案不唯一)【解析】【分析】直接根据一次函数的图象与系数的关系即可得出结论.【详解】∵直线过第一象限且函数值随着x的增大而减小,∴,,∴符合条件的一条直线可以为:(答案不唯一).【点睛】本题考查一次函数的图象与系数的关系,熟知一次函数(),当,时,函数图象过第一象限且函数值随着x的增大而减小.15. 如图所示,在口ABCD中,AC,BD交于点O,则=_____.【答案】【解析】【分析】利用向量相减平行四边形法则:向量相减时,起点相同,差向量即从后者终点指向前者终点即可求解.【详解】解:∵四边形ABCD是平行四边形,AC,BD交于点O,又,,∴,∴,故答案为:.【点睛】本题考查平行四边形的性质,向量相减平行四边形法则,解题的关键是熟练掌握向量相减平行四边形法则.16. 如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛面积为_____.(结果保留)【答案】400π【解析】【详解】解:过点O作OD⊥AB于D,连接OB,如图,∵AC=11,BC=21,∴AB=AC+BC=32,∵OD⊥AB于D,∴AD=BD=AB=16,∴CD=AD-AC=5,在Rt△OCD中,由勾股定理,得OD==12,在Rt△OBD中,由勾股定理,得OB==20,∴这个花坛的面积=202π=400π,故答案为:400π.【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.17. 如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.【答案】或【解析】【分析】由题意可求出,取AC中点E1,连接DE1,则DE1是△ABC的中位线,满足,进而可求此时,然后在AC上取一点E2,使得DE1=DE2,则,证明△DE1E2是等边三角形,求出E1E2=,即可得到,问题得解.【详解】解:∵D为AB中点,∴,即,取AC中点E1,连接DE1,则DE1是△ABC的中位线,此时DE1∥BC,,∴,在AC上取一点E2,使得DE1=DE2,则,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,综上,的值为:或,故答案为:或.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据进行分情况求解是解题的关键.18. 定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.【答案】##【解析】【分析】如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,再证明经过圆心,,分别求解AC,BC,CF,设的半径为再分别表示再利用勾股定理求解半径r即可.【详解】解:如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,过圆心O,,设的半径为∴整理得:解得:不符合题意,舍去,∴当等弦圆最大时,这个圆的半径为故答案为:【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.三.解答题19. 计算:【答案】【解析】分析】原式分别化简,再进行合并即可得到答案.【详解】解:==【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20. 解关于x的不等式组【答案】-2<x<-1【解析】【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.【详解】解:,解①得:x>-2,解②得:x<-1,∴-2<x<-1.【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.21. 一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.【答案】(1)y=x+1(2)【解析】【小问1详解】解:设这个一次函数的解析式y=kx+1,把A(2,3)代入,得3=2k+1,解得:k=1,∴这个一次函数的解析式为y=x+1;【小问2详解】解:如图,设反比例函数解析式为y=,把A(2,3)代入,得3=,解得:m=6,∴反比例函数解析式为y=,当x=6时,则y==1,∴B(6,1),∴AB=,∵将点B向上平移2个单位得到点C,∴C(6,3),BC=2,∵A(2,3),C(6,3),∴AC x轴,∵B(6,1),C(6,3),∴BC⊥x轴,∴AC⊥BC,∴∠ACB=90°,∴△ABC是直角三角形,∴cos∠ABC=.【点睛】本题考查待定系数法求函数解析式,点的平移,解三角形,坐标与图形,求得AC⊥BC是解题的关键.22. 我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度【答案】(1)a tanα+b米(2)3.8米【解析】【分析】(1)由题意得BD=a,CD=b,∠ACE=α,根据四边形CDBE为矩形,得到BE=CD=b,BD=CE=a,在Rt∆ACE中,由正切函数tanα=,即可得到AB的高度;(2)根据AB∥ED,得到∆ABF~∆EDF,根据相似三角形的对应边成比例得到,又根据AB∥GC,得出∆ABH~∆GCH,根据相似三角形的对应边成比例得到联立得到二元一次方程组解之即可得;【小问1详解】解:如图由题意得BD=a,CD=b,∠ACE=α∠B=∠D=∠CEB=90°∴四边形CDBE为矩形,则BE=CD=b,BD=CE=a,在Rt∆ACE中,tanα=,得AE=CE=CE×tanα=a tanα而AB=AE+BE,故AB= a tanα+b答:灯杆AB的高度为a tanα+b米【小问2详解】由题意可得,AB∥GC∥ED,GC=ED=2,CH=1,DF=3,CD=1.8由于AB∥ED,∴∆ABF~∆EDF,此时即①,∵AB∥GC∴∆ABH~∆GCH,此时,②联立①②得,解得:答:灯杆AB的高度为3.8米【点睛】本题考查了相似三角形的应用,锐角三角函数的应用,以及二元一次方程组,解题的关键是读懂题意,熟悉相似三角形的判定与性质.23. 如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB 求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ【答案】(1)见解析(2)见解析【解析】【分析】(1)利用SAS证明△ACE≌△ABF即可;(2)先证△ACE∽△AFQ可得∠AEC=∠AQF,求出∠BQF=∠AFE,再证△CAF∽△BFQ,利用相似三角形的性质得出结论.【小问1详解】证明:∵AB=AC,∴∠B=∠C,∵CF=BE,∴CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;【小问2详解】证明:∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE²=AQ·AB,AC=AB,∴,即,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴,即CF·FQ=AF·BQ.【点睛】本题考查了等腰三角形性质,全等三角形的判定和性质以及相似三角形的判定和性质,熟练掌握相关判定定理和性质定理是解题的关键.24. 已知:经过点,.(1)求函数解析式;(2)平移抛物线使得新顶点为(m>0).①倘若,且在的右侧,两抛物线都上升,求的取值范围;②在原抛物线上,新抛物线与轴交于,时,求点坐标.【答案】(1)(2)①k≥2②P的坐标为(2,3)或(-2,3)【解析】【分析】(1)把,代入,求解即可;(2)①由,得顶点坐标为(0,-3),即点B是原抛物线的顶点,由平移得抛物线向右平移了m个单位,根据,求得m=2,在的右侧,两抛物线都上升,根据抛物线的性质即可求出k取值范围;②把P(m,n)代入,得n=,则P(m,),从而求得新抛物线解析式为:y= (x-m)2+n=x2-mx+m2-3,则Q(0,m2-3),从而可求得BQ=m2,BP2=,PQ2=,即可得出BP=PQ,过点P作PC⊥y轴于C,则PC=|m|,根据等腰三角形的性质可得BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,再根据tan∠BPC= tan 60°=,即可求出m值,从而求出点P坐标.【小问1详解】解:把,代入,得,解得:,∴函数解析式为:;【小问2详解】解:①∵,∴顶点坐标为(0,-3),即点B是原抛物线的顶点,∵平移抛物线使得新顶点为(m>0).∴抛物线向右平移了m个单位,∴,∴m=2,∴平移抛物线对称轴为直线x=2,开口向上,∵在的右侧,两抛物线都上升,又∵原抛物线对称轴为y轴,开口向上,∴k≥2,②把P(m,n)代入,得n=,∴P(m,)根据题意,得新抛物线解析式为:y=(x-m)2+n=x2-mx+m2-3,∴Q(0,m2-3),∵B(0,-3),∴BQ=m2,BP2=,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵BP=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC= tan 60°=,解得:m=±2,∴n==3,故P的坐标为(2,3)或(-2,3)【点睛】本题考查待定系数法求抛物线解析式,抛物线的平移,抛物线的性质,解直角三角形,等腰三角形的性质,本题属抛物线综合题目,属中考常考试题目,难度一般.25. 平行四边形,若为中点,交于点,连接.(1)若,①证明为菱形;②若,,求的长.(2)以为圆心,为半径,为圆心,为半径作圆,两圆另一交点记为点,且.若在直线上,求的值.【答案】(1)①见解析;②(2)【解析】【分析】(1)①连接AC交BD于O,证△AOE≌△COE(SSS),得∠AOE=∠COE,从而得∠COE=90°,则AC ⊥BD,即可由菱形的判定定理得出结论;②先证点E是△ABC的重心,由重心性质得BE=2OE,然后设OE=x,则BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,从而得9-x2=25-9x2,解得:x=,即可得OB=3x=3,再由平行四边形性质即可得出BD长;(2)由⊙A与⊙B相交于E、F,得AB⊥EF,点E是△ABC的重心,又在直线上,则CG是△ABC的中线,则AG=BG=AB,根据重心性质得GE=CE=AE,CG=CE+GE=AE,在Rt△AGE中,由勾股定理,得AG2=AE2-GE E=AE2-(AE)2=AE2,则AG=AE,所以AB=2AG=AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=AE2+(AE)2=5AE2,则BC=AE,代入即可求得的值.【小问1详解】①证明:如图,连接AC交BD于O,∵平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵平行四边形,∴四边形是菱形;②∵OA=OC,∴OB是△ABC的中线,∵为中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,∴9-x2=25-9x2,解得:x=,∴OB=3x=3,∵平行四边形,∴BD=2OB=6;【小问2详解】解:如图,∵⊙A与⊙B相交于E、F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又在直线上,∴CG是△ABC的中线,∴AG=BG=AB,GE=CE,∵CE=AE,∴GE=AE,CG=CE+GE=AE,在Rt△AGE中,由勾股定理,得AG2=AE2-GE E=AE2-(AE)2=AE2,∴AG=AE,∴AB=2AG=AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=AE2+(AE)2=5AE2,∴BC=AE,∴.【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.。
2024年上海市中考数学试卷正式版含答案解析
绝密★启用前2024年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如果x>y,那么下列正确的是( )A. x+5≤y+5B. x−5<y−5C. 5x>5yD. −5x>−5y的定义域是( )2.函数f(x)=2−xx−3A. x=2B. x≠2C. x=3D. x≠33.以下一元二次方程有两个相等实数根的是( )A. x2−6x=0B. x2−9=0C. x2−6x+6=0D. x2−6x+9=04.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )A. 甲种类B. 乙种类C. 丙种类D. 丁种类5.四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6.在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )A. 内含B. 相交C. 外切D. 相离第II 卷(非选择题)二、填空题:本题共12小题,每小题4分,共48分。
7.计算:(4x 2)3= ______. 8.计算(a +b)(b −a)= ______. 9.已知√ 2x −1=1,则x = ______.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的______倍.(用科学记数法表示)11.若正比例函数y =kx 的图象经过点(7,−13),则y 的值随x 的增大而______.(选填“增大”或“减小”) 12.在菱形ABCD 中,∠ABC =66°,则∠BAC = ______°.13.某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为______万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有______个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC ⃗⃗⃗⃗⃗ =a ⃗ ,BE ⃗⃗⃗⃗⃗ =b ⃗ ,若AE =2EC ,则DC ⃗⃗⃗⃗⃗ = ______(结果用含a ,b ⃗ 的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR 增强讲解的人数约有______人.17.在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cos∠ABC=______.18.对于一个二次函数y=a(x−m)2+k(a≠0)中存在一点P(x′,y′),使得x′−m=y′−k≠0,则称2|x′−m|为该抛物线的“开口大小”,那么抛物线y=−12x2+13x+3“开口大小”为______.三、解答题:本题共7小题,共78分。
2023年上海市中考数学考试卷及答案解析
2023年上海市中考数学考试卷及答案解析一、选择题:(本大题共6题,每题4分,共24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上】1.下列运算正确的是()A.523a a a ÷=B.336a a a +=C.()235a a =D.a=【答案】A【解析】【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意;B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.2.在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A.2550y y ++= B.2550y y -+= C.2510y y ++= D.2510y y -+=【答案】D【解析】【分析】设221x y x-=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x -=,则原方程可变形为15y y +=,即2510y y -+=;故选:D .【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.3.下列函数中,函数值y 随x 的增大而减小的是()A.6y x= B.6y x =- C.6y x = D.6y x=-【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A 、6y x =,60k =>,y 随x 的增大而增大,不符合题意;B 、6y x =-,60k =-<,y 随x 的增大而减小,符合题意;C 、6y x =,60k =>,在每个象限内,y 随x 的增大而减小,不符合题意;D 、6y x =-,60k =-<,在每个象限内,y 随x 的增大而增大,不符合题意;故选:B .【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.4.如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【解析】【分析】根据折线统计图逐项判断即可得.【详解】解:A 、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B 、小车的车流量的平均数较大,则此项正确,符合题意;C 、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D 、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B .【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.5.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是()A.AB CDB.AD BC =C.A B ∠=∠D.A D ∠=∠【答案】C【解析】【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A : AB CD ,,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故A 不符合题意B : AD BC =,,AD BC AB CD=∥∴ABCD 为平行四边形而非矩形故B 不符合题意C : AD BC∥180A B ∴∠+∠=︒A B∠=∠∴90A B ∠=∠=︒AB CD= ∴AB ∥CD∴四边形ABCD 为矩形故C 符合题意D : AD BC∥180A B ∴∠+∠=︒A D∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6.已知在梯形ABCD 中,连接AC BD ,,且AC BD ⊥,设,AB a CD b ==.下列两个说法:①()2AC a b =+;②AD =则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误【答案】D【解析】【分析】根据已知及结论,作出图形,进而可知当梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,①()2AC a b =+;②AD =,其余情况得不出这样的结论,从而得到答案.【详解】解:过B 作BE CA ∥,交BC 延长线于E ,如图所示:若梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,∴四边形ACEB 是平行四边形,,CE AB AC BE ∴==,AB DC ∥,DAB CBA ∴∠=∠,AB AB =Q ,()SAS DAB CBA ∴△≌△AC BD ∴=,即BD BE =,又 AC BD ⊥,∴BE BD ⊥,在Rt BDE △中,BD BE =,,AB a CD b ==,则DE DC CE b a =+=+,)22AC BE DE a b ∴====+,此时①正确;过B 作BF DE ⊥于F ,如图所示:在Rt BFC △中,BD BE =,,AB a CD b ==,DE b a =+,则()1122BF FE DE a b ===+,()()1122FC FE CE a b a b a =-=+-=-,BC ∴===,此时②正确;而题中,梯形ABCD 是否为等腰梯形,并未确定;梯形ABCD 是AB CD 还是AD BC ∥,并未确定,∴无法保证①②正确,故选:D .【点睛】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,熟练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)【请将结果直接填入答题纸的相应位置上】7.分解因式:x 2-9=______.【答案】(x +3)(x -3)【解析】【详解】解:x 2-9=(x +3)(x -3),故答案为:(x +3)(x -3).8.化简:2211x x x---的结果为________.【答案】2【解析】【分析】根据同分母分式的减法计算法则解答即可.【详解】解:2211x x x ---()2122211x x x x--===--;故答案为:2.【点睛】本题考查了同分母分式减法计算,熟练掌握运算法则是解题关键.9.已知关于x2=,则x =________【答案】18【解析】【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.10.函数()123f x x =-的定义域为________.【答案】23x ≠【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由()123f x x =-可知:230x -≠,∴23x ≠;故答案为23x ≠.【点睛】本题主要考查函数及分式有意义的条件,熟练掌握函数的概念及分式有意义的条件是解题的关键.11.已知关于x 的一元二次方程2610ax x ++=没有实数根,那么a 的取值范围是________.【答案】9a >【解析】【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x 的一元二次方程2610ax x ++=没有实数根,∴243640b ac a ∆=-=-<,解得:9a >;故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.【答案】25【解析】【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为42105P ==,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.13.如果一个正多边形的中心角是20︒,那么这个正多边形的边数为________.【答案】18【解析】【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷,则3602018n =÷=,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.14.一个二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.【答案】21y x =-+(答案不唯一)【解析】【分析】根据二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,可确定a<0,对称轴02b x a=-=,0c >,从而确定答案.【详解】解:∵二次函数2y ax bx c =++的对称轴左侧的部分是上升的,∴抛物线开口向上,即a<0,∵二次函数2y ax bx c =++的顶点在y 轴正半轴上,∴02b a-=,即0b =,0c >,∴二次函数的解析式可以是21y x =-+(答案不唯一).【点睛】本题考查二次函数的性质,能根据增减性和二次函数图象与y 轴的交点确定系数的正负是解题的关键.15.如图,在ABC 中,点D ,E 在边AB ,AC 上,2,AD BD DE BC =∥,联结DE ,设向量AB a =,AC b = ,那么用a ,b 表示DE = ________.【答案】1133b a - 【解析】【分析】先根据向量的减法可得BC b a =-,再根据相似三角形的判定可得ADE ABC ,根据相似三角形的性质可得13DE BC =,由此即可得.【详解】解:∵向量AB a = ,AC b = ,BC AC AB b a ∴=-=- ,2AD BD = ,13AD AB ∴=,DE BC ∥,ADE ABC ∴ ,13DE AD BC AB ∴==,13DE BC ∴=,111333DE BC b a ∴==- ,故答案为:1133b a - .【点睛】本题考查了向量的运算、相似三角形的判定与性质,熟练掌握向量的运算是解题关键.16.垃圾分类(Refuse sorting ),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为________.【答案】1500吨【解析】【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解.【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷---=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨);故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.17.如图,在ABC 中,35C ∠=︒,将ABC 绕着点A 旋转(0180)αα︒<<︒,旋转后的点B 落在BC 上,点B 的对应点为D ,连接AD AD ,是BAC ∠的角平分线,则α=________.【答案】1103⎛⎫︒⎪⎝⎭【解析】【分析】如图,AB AD =,BAD ∠=α,根据角平分线的定义可得CAD BAD α∠=∠=,根据三角形的外角性质可得35ADB α∠=︒+,即得35B ADB α∠=∠=︒+,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD =,BAD ∠=α,∵AD 是BAC ∠的角平分线,∴CAD BAD α∠=∠=,∵35ADB C CAD α∠=∠+∠=︒+,AB AD =,∴35B ADB α∠=∠=︒+,则在ABC 中,∵180C CAB B ∠+∠+∠=︒,∴35235180αα︒++︒+=︒,解得:1103α⎛⎫=︒ ⎪⎝⎭;故答案为:1103⎛⎫︒⎪⎝⎭【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.18.在ABC 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B 过点A ,E 过点D ,若B 与E 有公共点,那么E 半径r 的取值范围是________.1010r <≤【解析】【分析】先画出图形,连接BE ,利用勾股定理可得294BE r =+,210AC =,从而可得1010r <≤,再根据B 与E 有公共点可得一个关于r 的不等式组,然后利用二次函数的性质求解即可得.【详解】解:由题意画出图形如下:连接BE ,B 过点A ,且7AB =,B ∴e 的半径为7,E 过点D ,它的半径为r ,且CD DE =,2CE CD DE r ∴=+=,3,90BC C =∠=︒,BE ∴==,AC ==,D 在边AC 上,点E 在CA 延长线上,CD AC CE AC ≤⎧∴⎨>⎩,即2r r ⎧≤⎪⎨>⎪⎩,r <≤B 与E 有公共点,AB DE BE AB DE ∴-≤≤+,即77r r ≤+-≤⎪⎩①,不等式①可化为2314400r r --≤,解方程2314400r r --=得:2r =-或203r =,画出函数231440y r r =--的大致图象如下:由函数图象可知,当0y ≤时,2023r -≤≤,即不等式①的解集为2023r -≤≤,同理可得:不等式②的解集为2r ≥或203r ≤-,则不等式组的解集为2023r ≤≤,又r <≤,半径r的取值范围是r <≤,故答案为r <≤.【点睛】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.2133-⎛⎫-+ ⎪⎝⎭【答案】6-【解析】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=+-+-6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.20.解不等式组36152x x x x >+⎧⎪⎨<-+⎪⎩【答案】1033x <<【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:36152x x x x >+⎧⎪⎨<-+⎪⎩①②,解不等式①得:3x >,解不等式②得:103x <,则不等式组的解集为1033x <<.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.21.如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【解析】【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【小问1详解】解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.【小问2详解】解:如图,过点C 作CE AB ⊥于点E,O 的半径为5,5OB ∴=,12OC OB = ,31522BC OB ∴==,4cos 5ABC ∠= ,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,92CE ==,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900(2)0.90.27y x =-(3)1.00【解析】【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【小问1详解】解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;【小问2详解】解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;【小问3详解】解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ∠∠,AC AD =(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行线的性质可得DAE ACF ∠=∠,再根据三角形的全等的判定可得DAE ACF ≅ ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC DEA ∠=∠,从而可得AFB CED ∠=∠,再根据相似三角形的判定可得ABF CDE ,然后根据相似三角形的性质即可得证.【小问1详解】证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.【小问2详解】证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠,在ABF △和CDE 中,AFB CED ABF CDE ∠=∠⎧⎨∠=∠⎩,ABF CDE ∴ ,AF BF CE DE∴=,由(1)已证:DE AF =,AF BF CE AF∴=,2AF BF CE =∴⋅.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.24.在平面直角坐标系xOy 中,已知直线364y x =+与x 轴交于点A ,y 轴交于点B ,点C 在线段AB 上,以点C 为顶点的抛物线M :2y ax bx c =++经过点B .(1)求点A ,B 的坐标;(2)求b ,c 的值;(3)平移抛物线M 至N ,点C ,B 分别平移至点P ,D ,联结CD ,且CD x ∥轴,如果点P 在x 轴上,且新抛物线过点B ,求抛物线N 的函数解析式.【答案】(1)()8,0A -,()0,6B (2)32b =,6c =(3)(2316y x =-或(2316y x =+【解析】【分析】(1)根据题意,分别将0x =,0y =代入直线364y x =+即可求得;(2)设3,64C m m ⎛⎫+ ⎪⎝⎭,得到抛物线的顶点式为()2364y a x m m +-+=,将()0,6B 代入可求得34m a =-,进而可得到抛物线解析式为2362y ax x =++,即可求得b ,c ;(3)根据题意,设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,根据平移的性质可得点B ,点C 向下平移的距离相同,即列式求得4m =-,316a =,然后得到抛物线N 解析式为:()2316y x p =-,将()0,6B 代入可得p =±即可得到答案.【小问1详解】解:∵直线364y x =+与x 轴交于点A ,y 轴交于点B ,当0x =时,代入得:6y =,故()0,6B ,当0y =时,代入得:8x =-,故()8,0A -,【小问2详解】设3,64C m m ⎛⎫+ ⎪⎝⎭,则可设抛物线的解析式为:()2364y a x m m +-+=,∵抛物线M 经过点B ,将()0,6B 代入得:23664am m ++=,∵0m ≠,∴34am =-,即34m a =-,∴将34m a =-代入()2364y a x m m +-+=,整理得:2362y ax x =++,故32b =,6c =;【小问3详解】如图:∵CD x ∥轴,点P 在x 轴上,∴设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,∵点C ,B 分别平移至点P ,D ,∴点B ,点C 向下平移的距离相同,∴3366644m m ⎛⎫+=-+ ⎪⎝⎭,解得:4m =-,由(2)知34m a =-,∴316a =,∴抛物线N 的函数解析式为:()2316y x p =-,将()0,6B 代入可得:p =±∴抛物线N 的函数解析式为:(2316y x =-或(2316y x =+.【点睛】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,平移的性质,二次函数的图象和性质等,解题的关键是根据的平移性质求出m 和a 的值.25.如图(1)所示,已知在ABC 中,AB AC =,O 在边AB 上,点F 为边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG 是以OB 为腰的等腰三角形,且AO OF =,求OG OD 的值.【答案】(1)见解析(2)1+(3)12【解析】【分析】(1)根据等边对等角得出B C ∠=∠,ODB B ∠=∠,等量代换得出C ODB ∠=∠,则OD AC ∥,根据F 是OB 的中点,OG DG =,则FG 是OBD 的中位线,则FG BC ∥,即可得证;(2)设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a ==,由(1)可得OD AC ∥则AEO DOE α∠=∠=,等量代换得出OFE AEO α∠=∠=,进而证明AEO AFE ∽,得出2AE AO AF =⋅,在Rt AEO △中,222AE EO AO =-,则22EO AO AO AF -=⨯,解方程即可求解;(3)OBG 是以OB 为腰的等腰三角形,分为①当OG OB =时,②当BG OB =时,证明BGO BPA ∽,得出2=3OG AP ,设2,3OG k AP k ==,根据OG AE ∥,得出FOG FAE ∽,可得24AE OG k ==,PE AE AP k =-=,连接OE 交PG 于点Q ,证明QPE QGO ∽在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,得出14PQ QE OQ BQ ==,可得PQE OQB ∽,根据相似三角形的性质得出2a k =,进而即可求解.【小问1详解】证明:∵AC AB=∴ABC C∠=∠∵OD OB=∴ODB ABC ∠=∠,∴C ODB∠=∠∴OD AC ∥,∵F 是OB 的中点,OG DG =,∴FG 是OBD 的中位线,∴FG BC ∥,即GE CD ,∴四边形CEDG 是平行四边形;【小问2详解】解:∵,4OFE DOE AO ∠=∠=,点F 边OB 中点,设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a==由(1)可得OD AC∥∴AEO DOE α∠=∠=,∴OFE AEO α∠=∠=,又∵A A∠=∠∴AEO AFE ∽,∴AE AOAF AE=即2AE AO AF =⋅,∵90A ∠=︒,在Rt AEO △中,222AE EO AO =-,∴22EO AO AO AF -=⨯,∴()()222444a a -=⨯+解得:1332a =或1332a -=(舍去)∴21OB a ==;【小问3详解】解:①当OG OB =时,点G 与点D 重合,舍去;②当BG OB =时,如图所示,延长BG 交AC 于点P ,∵点F 是OB 的中点,AO OF =,∴AO OF FB ==,设AO OF FB ==a =,∵OG AC∥∴BGO BPA ∽,∴2233OG OB a AP AB a ===,设2,3OG k AP k ==,∵OG AE∥∴FOG FAE ∽,∴122OG OFaAE AF a ===,∴24AE OG k ==,∴PE AE AP k =-=,连接OE 交PG 于点Q ,∵OG PE ∥,∴QPE QGO∽∴22GO QG OQ k PE PQ EQ k ====,∴12,33PQ a QG a ==,24,33EQ a OQ a==在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,∴14PQ QEOQ BQ ==,又PQE BQO ∠=∠,∴PQE OQB ∽,∴14PE OB =,∴124k a =,∴2a k =,2,2OD OB a OG k === ,∴2122OG k k OD a a ===.【点睛】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定,第三问中,证明PQE OQB ∽是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年上海市初中毕业生统一学业考试数学试卷
数学注意事项:
1. 本试卷共4页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,
答在本试卷上无效.
2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,
再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干
净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.
4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、填空题(本大题共14题,满分42分) 1、 计算:()2
2x
=
2、 分解因式:2
2a a -= 3、
计算:
)
1
1=
4、
函数y =的定义域是
5、 如果函数()1f x x =+,那么()1f =
6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是
7、 如果将二次函数2
2y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是
8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方
程) 9、 如果关于x 的方程2
40x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和
AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC = 12、 如图1,自动扶梯AB 段的长度为20
米,倾斜角A 为α,高度BC 为 米
(结果用含α的三角比表示).
13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是 14、 在三角形纸片ABC 中,∠C =90°,
∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为
图1
二选择题:(本大题共4题,满分12分) 15、 在下列实数中,是无理数的为 ( ) A 、0 B 、-3.5 C
D
16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中
位数为 ( )
A 、3
B 、4
C 、5
D 、6 17、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( ) A 、2sin 3B =
B 、2cos 3B =
C 、23tgB =
D 、2
3
ctgB = 18、 在下列命题中,真命题是 ( )
A 、两个钝角三角形一定相似
B 、两个等腰三角形一定相似
C 、两个直角三角形一定相似
D 、两个等边三角形一定相似 三、(本大题共3题,满分24分) 19、 (本题满分8分)
解不等式组:(
)315216x x x x +>-⎧⎨+-<⎩,并把解集在数轴上表示出来.
20、
(本题满分8分)
解方程:
2
28
124
x x x x x +-=+--
21、 (本题满分8分,每小题满分各为4分)
(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; (2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1
x
-5
-4
-3
-2
-1
5
4
3
2
O
1
四、(本大题共4题,满分42分) 22、 (本题满分10分,每小题满分各为5分)
在直角坐标平面中,O 为坐标原点,二次函数2
y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO
(1) 求这个二次函数的解析式;
(2) 设这个二次函数的图象的顶点为M ,求
AM 的长.
23、 (本题满分10分)
已知:如图6,圆O 是△ABC 的外接圆,圆心O
这个三角形的高CD 上,E 、F 分别是边AC 和的中点,求证:四边形CEDF 是菱形.
24、 (本题满分10分,第(1)、(2)、(3)小题满分各为2分,第(4)小题满分4分) 小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1) 根据上述信息,解答下列问题:
(1) 计算5月份的用电量和相应电费,将所得结果填入表1中; (2) 小明家这5个月的月平均用电量为 度;
(3) 小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这
5个月每月电费呈 趋势(选择“上升”或“下降”);
(4) 小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243
元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.
25、
(本题满分12分,每小题满分各为4分)
用电量(度)
月份
5月
4月
3月2月1月
在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。
(1) 如图8,求证:△ADE ∽△AEP ;
(2) 设OA =x ,AP =y ,求y 关于x 的函数解析式,并写出它的定义域; (3) 当BF =1时,求线段AP 的长.
图9(备用图)
图8
P
F D
B
C
C
参考答案
()4221.;2.(2);3.1;4.0;5.2;6.()2;7.()21;8.0;9.4;10.7;11.6;12.20sin ;13.5;14.1;15.16.17.18..315119.2162:144,1;222-6,414
x a a x f x x f x x x x C B C D x x x x x x x x x x α-≥==+-=+>-⎧⎨
+-<⎩>>+<<∴<<一.填空
二.选择
三解答
()
()解由()得由()得原不等式组的解集为
2
3322222820.
124
(1)(2)(2)(2)(2)(2)(1)(2)8(1)44444889161209161200,x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=+--++-+--+++=+-------=+---=++=∆<∴解:两边同乘以,整理得:原方程无解
21.(1):(1),(2);(1),(3)(2)如图:
22222.1(0,3),|3|3,3,3,(3,0)9330,630,2()23
2(2)1
22
(1)1234,(1,0)(1,4)2425
C OC c OC BO BO B b b b f x x x b a f A M AM -=-=∴=-=∴=∴+-=+==-∴=----=-==--=---∴=+=解:()又
23.11
22
AB CD AB CD AD BD CD CD CAD CBD A B AC BC E F AC BC D AB DF CE AE DE CF BC DE DF CE CF CEDF ⊥∴==∴∆≅∆∴∠=∠⇒=∴====∴===∴证明:为弦,为直径所在的直线且又又
,分别为,的中点,为中点,,四边形为菱形
24、
1110,53.15(2)99(3)4500-)0.610.3(500-)2430.611500.32430.3193
300,500-200
300200x x x x x x x x x +=++-====解:()上升,上升
()设平时段度,谷时用(度答:平时段度,谷时用度
25.1909090AP D ODA PED OD OE ODE OED
ODE OED EDA PEA A A ADE AEP
∴∠=∠=︒=∴∠=∠∴︒+∠=︒+∠∴∠=∠∠=∠∴∆∆()证明:连结OD
切半圆于,又,,又
22334
,555846416584525555
(0)
OD CB OA AC OD OD x OE AD x x ADE AEP x
AP AE y xy x y x
AE AD x x x =
=⇒===∆∆∴=⇒=⇒=⇒=>()同理可得:
(3)5
(4
6
,905
12661255
E C x AP AB DO BE H DHE DJE
HD x PBE PDH PFB PHD PB PB AP x x >>∆≅∆∴=∠=∠=︒∴∆∆∴
=⇒=⇒=由题意可知存在三种情况
但当在点左侧时BF显然大于4所以不合舍去当时如图)
延长,交于易证
5
4
,1261255
422
x P B DO PE H DHE EJD PBF PDH
BP BP x x AP <∆≅∆∆∆∴
=⇒=∴=-=当时点在点的右侧
延长交于点同理可得
J。