体外预应力混凝土连续刚构桥--Midas Civil实例
midas计算预应力连续刚构桥梁工程课程设计
预应力混凝土连续刚构桥结构设计书1.结构总体布置本部分结构设计所取计算模型为三跨变截面连续箱梁桥,根据设计要求确定桥梁的分孔,主跨长度为80m,取边跨46m,边主跨之比为0.575。
设计该桥为三跨的预应力混凝土连续梁桥(46m+80m+460m),桥梁全长为172m。
大桥桥面采用双幅分离式桥面,单幅桥面净宽20m (4X3.75行车道+1m左侧路肩+3.0m右侧路肩人行道+2X0.5m防撞护栏),两幅桥面之间的距离为1m,按高速公路设计,行程速度100Km/h。
桥墩采用单墩,断面为长方形,长14米,宽3.5米,高25米。
上部结构桥面和下部结构桥墩均采用C50混凝土,预应力钢束采用Strand1860钢材。
桥梁基本数据如下:桥梁类型 : 三跨预应力箱型连续梁桥(FCM)桥梁长度 : L =46 + 80 + 46 = 172 m桥梁宽度 : B = 20 m (单向4车道)斜交角度 : 90˚(正桥)桥梁正视图桥梁轴测图2.箱梁设计主桥箱梁设计为单箱单室断面,箱梁顶板宽20m,底板宽14m,支点处梁高为h支= (1/15 ~ 1/18)L中= 4.44 ~5.33m,取h支=5.0m,高跨比为1/16,跨中梁高为h中= (1/1.5~1/2.5) h 支= 2~ 3.33m,取h中=2.30m,其间梁底下缘按二次抛物线曲线变化。
箱梁顶板厚为27.5cm。
底板厚根部为54cm,跨中为27cm,其间分段按直线变化,边跨支点处为80cm,腹板厚度为80cm 具体尺寸如下图所示:箱梁断面图连续梁由两个托架浇筑的墩顶0号梁段、在两个主墩上按“T构”用挂篮分段对称悬臂浇筑的梁端、吊架上浇筑的跨中合拢梁段及落地支架上浇筑的边跨现浇梁段组成, 0号梁段长2m ,两个“T构”的悬臂各分为9段梁段,累计悬臂总长38m 。
全桥共有一个2m 长的主跨跨中合拢梁段和两个2m 长的边跨合拢梁段。
两个边跨现浇梁段各长4m ,梁高相同。
Midas预应力混凝土连续箱梁分析算例课件
定义主梁截面
14
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
定义主梁截面
15
2.7m
12.7/2=6.35m
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
定义主梁模型
16
在原点建立节点1
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
先定义一般支撑,再定义跨度信息
23
节点选择区
在节点选择区键入1 31 61按回车键, 即选择节点1、节点31和节点61
建立边界约束,Dx(开)等 这里可随意,仅配合跨度信 息的支撑定义
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
设置表单可以采用不同的参考线
32
2.7m
参考线s1
58m
7.13m
62m
2.7m
参考线s2 7.13m
-60m
-2m 2m
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
截面控制参数的含义
33
新版引入参考线:截面距离以参考线参定位
距离:距参考线的距离 尺寸:当前位置的截面尺寸 对称面距离:输入对称轴至参考线的距离
定义主梁模型单元
17
将节点1通过扩展单元 建立60个2m长的单元
窗口选择节点1
材料>1:C50
截面>1:跨中 复制和移动>等间距 dx,dy,dz>(2,0,0) 复制次数>60
Midas预应力混凝土连续箱梁分析算例课件
MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER
midas例题演示(预应力砼连续梁)
完成建模和定义施工阶段后,在施工阶段分析选项中选择是否考虑材料的时
间依存特性和弹性收缩引起的钢束应力损失,并指定分析徐变时的收敛
条件和迭代次数。
2
④ 时间依存效果 ⑤ 徐变 和收缩 (开) ; 类型
>徐变和收缩⑥ 源自变分析时得收敛把握 ⑦ 迭代次数 ( 5 ) ; 收敛误
4
)
5
② 模型 /边界条件 / 一般支
撑
③ 单项选择(节点 : 1)
2
④ 边界组名称>B-G1
⑤ 选择>添加
⑥ 支撑条件类型> Dy, Dz,
6
Rx (开)
⑦ 同上操作
⑧ 单项选择 (节点 : 16) ⑨ 边界组名称>B-G1 ⑩ 选择>添加 ⑪ 支撑条件类型>Dx, Dy,
Dz, Rx (开) ⑫ 单项选择 (节点 : 31) ⑬ 边界组名称>B-G2 ⑭ 选择>添加 ⑮ 支撑条件类型> Dy, Dz,
5 6
7 8
9
步骤 3.1 定义构造组
操作步骤 ① 模型>组>定义构造租 ② 定义构造组>名称( S-G )
; 后缀 ( 1to2 ) ③ 定义构造组>名称 ( All ) ④ 单元号显示 (on) ⑤ 窗口选择 (单元 : 1 to
18)
3
⑥ 组>构造组>S_G1 (拖& 放)
⑦ 同上操作 ⑧ 窗口选择 (单元 : 19 to
(N, R)
⑦ 开头收缩时的混凝土材龄
(3)
23 45 67
步骤 2.3 定义材料的时间依存性并连接
操作步骤 ① 模型 / 材料和截面特性 /
预应力混凝土连续箱梁桥MIDAS建模分析
g、钢筋回缩和锚具变形为 6mm 桥面净宽:16������55m=0������5m 护栏 +0������55m 路 缘 带 +2× 3������5m 行车道+2×3������75m 行车道+0������5m 路缘+0������5m 护栏. 结 构 重 要 性 系 数 :1������1. 1������2 桥 梁 线 型 布 置 桥面纵坡:0% (平坡);桥 面 横 坡:2%; 桥 轴 平 面 线 型:直线.
12345������7
竖向日照正温差 T1=14℃,T2=5������5℃ 竖向日照反温差 T1= -7℃,T2= -2������75℃
e、 支 座 不 均 匀 沉 降 :5mm f、 相 对 湿 度 :80%
收 稿 日 期 :2018-05-04 作者简介:王雪姣 (1984-),女 (汉族),辽宁鞍山人,中冶北方 工程技术有限公司土木设计院结构工程师.
0 引 言
虽然一直以来笔者公司在专业配备上以采矿、选矿、烧 结球团以 及 热 电 工 程 为 主 体 专 业,然 而 在 承 建 的 大 型 采、 选、烧等项目中,有很多项目规划中出现过桥梁,例如 “马 城铁矿”项目中跨滦河大桥, “镜 铁 山 铁 矿” 中 出 现 的 跨 线 桥等;而在矿山道路设置中出现桥梁的情况更是比较常见.
迈达斯midascivil 梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
基于Midas Civil的连续刚构桥受力分析
基于Midas Civil的连续刚构桥受力分析摘要:本案例通过Midas软件建立连续刚构桥受力结构模型,对连续刚构桥持久状况正常使用极限状态内力分析,清晰表达出其各使用阶段内力,从而更好地进行内力分析计算,为以后连续刚构桥施工受力分析方案提供理论依据。
关键词:Midas分析;连续刚构桥;内力分析1 工程概况本工程位于广东省,东莞麻涌至长安高速公路路线跨越漳彭运河后,于大娘涡、沙头顶之间跨越淡水河。
淡水河上游接东江北干流和中堂水道,下游汇入狮子洋。
淡水河特大桥设计起点从路线K20+060开始至K21+184终止。
其中主桥为(82+2×140+80)m的连续刚构桥,梁部采用C60混凝土,根部梁高8m,高跨比为1/17.5,跨中梁高为3m,高跨比为1/46.67,跨中根部梁高之比为1/2.67,底板按1.8次抛物线变化,桩基采用9根φ2.2m桩(半幅桥)。
2 主要技术标准本桥采用对称逐段悬臂灌注和支架现浇两种施工方法。
先托架浇注0号块,再对称逐段悬臂浇筑其它块件。
边跨端头块采用支架现浇法施工。
先合拢边跨,再合拢中跨。
中跨采用挂篮合拢。
边跨采用支架施工,先现浇端头块,然后浇筑2m 长合拢段进行边跨合拢。
相关计算参数如下所示:1、公路等级:高速公路,双向八车道。
2、桥面宽度:2×19.85m。
3、荷载等级:公路-I级。
4、设计时速:100km/h5、设计洪水频率:1/300。
6、设计通航水位:H5%=3.14m。
7、设计基本风速:V10%=31.3m/s3 计算理论构件纵向计算均按空间杆系理论,采用Midas Civil V7.41进行计算。
(1)将计算对象作为平面梁划分单元作出构件离散图,全桥共划分711个节点和676个单元;(2)根据连续刚构的实际施工过程和施工方案划分施工阶段;(3)根据规范规定的各项容许指标,验算构件是否满足规范规定的各项要求。
4建立计算模型及离散图4.1计算模型主桥主墩采用桩基采用9根φ2.2m桩(半幅桥)。
Midas预应力混凝土连续箱梁分析算例课件精要
43
顶部布置30根钢筋,间距0.5m,距顶部0.4m,从y轴 中心向两边展开。钢筋布置y向越界,z向也越界。
定义主梁截面
14
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
定义主梁截面
15
2.7m
12.7/2=6.35m
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
定义主梁模型
16
在原点建立节点1
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
2.7m
-60m 高度表单设置
35
参考线s2 7.13m
-2m 2m
下翼缘厚度表单设置
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
高度表单的细节操作
36
参考线的选择
曲线类型的选择
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
截面和钢筋对话框有两个页面
27
1 截面页面
定义截面各个部位的纵向变化位置,变化可以 用不同的曲线次数来模拟。可以对梁的高度、 厚度和宽度等参数进行控制。
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
节点1是单元1的 I端,节点 31是 单元31的I端, 节点61是单元60 的J端
节点 31是单元30的J端
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
midasCivil在桥梁承载能力检算和荷载试验中的应用(以Civil_V2012为例)
目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (2)2桥梁荷载试验 (7)2.1静载试验 (7)2.1.1确定试验荷载 (7)2.1.2试验荷载理论计算 (10)2.1.3试验及数据分析 (13)2.1.4试验结果评定 (16)2.2动载试验 (17)2.2.1自振特性试验 (17)2.2.2行车动力响应试验 (19)2.2.2.1移动荷载时程分析 (19)2.2.2.2动力荷载效率 (32)2.2.3试验数据分析及结构动力性能评价 (33)参考文献 (34)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
迈达斯Midas-civil-梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
(完整版)Midas计算实例
中南大学2010年1月1。
概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。
非预应力钢筋输入 (10)6。
输入荷载 (30)7. 定义施工阶段 (42)8。
输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。
图1。
分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。
5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。
【施工技术】混凝土预应力连续箱梁施工阶段工况分析(迈达斯建模实例)
混凝土预应力连续箱梁施工阶段工况分析(迈达斯建模实例)对超静定的桥梁其施工方法、顺序以及过程往往决定其成桥的内力,而我国桥梁规范中配筋是按内力进行的,所以桥梁的施工阶段分析是极其重要的。
预应力混凝土连续梁的施工过程中会发生体系转换,施工过程中临时墩、临时拉索等临时结构的设置与拆除、上部结构和桥墩的支承条件的变化对结构的内力和位移会产生非常大的影响。
另外施工过程中随着混凝土材料的材龄发生变化构件的弹性模量和强度也会发生变化。
混凝土徐变、收缩,预应力钢束的松弛等都会引起结构内力的重分配并对位移产生影响。
桥梁的最不利应力有可能发生在施工过程中,所以除了对桥梁的成桥阶段进行验算外,对桥梁的施工过程也应进行承载力验算。
一、工程简介某铁路梁桥为(40m+64m+40m)单线预应力混凝土连续梁桥。
结构形式为3跨预应力混凝土连续箱梁,桥梁全长145.2m,中支点处梁高5.2m,跨中3.2m,直线段高为3.2m。
梁底下缘按二次抛物线变化,边支座中心线至梁端距离0.75m。
箱梁采用单箱单室、变截面、变高度结构。
箱梁顶面宽4.9m,箱梁底面宽4m,顶板厚度除梁端附近外均为35cm;底板由跨中的30cm,按二次抛物线变化至根部70cm;腹板由40cm至60cm,按折线变化。
箱梁采用C50高性能混凝土。
预应力钢绞线采用抗拉强度标准值为f pk=1860MPa、弹公称直径为Φj15.20mm高强度、低松弛钢绞线。
桥梁的分段情况如图1所示,跨中及墩顶标准截面如图2所示,施工大致顺序为:下部结构→安装墩旁施工支架,安装主墩处永久支座、临时固结措施→在支架上现浇0号块→张拉0号块预应力→在0号块上拼装挂篮→浇筑1号块→张拉1号块预应力→移动挂篮……浇筑7号块,同时搭设并预压边跨现浇支架→张拉7号块预应力→拆除边跨现浇支架上的压重,浇筑边跨段混凝土,拆除所有挂篮→搭建边跨合龙吊架,同时加用水箱做的压重,中跨合龙段同步施加相应的压重→安装合龙段劲性骨架→浇筑边跨合龙段混凝土,同时卸载边跨相当于混凝土重量的压重→张拉边跨合龙钢束→拆除边跨现浇支架及边跨吊架,卸掉中跨合龙段的部分压重,每侧留下相当于中跨合龙段重量一半的压重→拆除墩顶临时固结措施→安装中跨合龙段吊架,安装中跨合龙段劲性骨架→浇筑中跨合龙段混凝土,同时卸载压重→张拉剩余预应力→拆除中跨合龙段吊架→施工桥面及其它附属设施。
midasCivil在桥梁承载能力检算与荷载试验中的应用(以CivilV2012为例)
目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (3)2桥梁荷载试验 (8)2.1静载试验 (8)2.1.1确定试验荷载 (8)2.1.2试验荷载理论计算 (11)2.1.3试验及数据分析 (14)2.1.4试验结果评定 (17)2.2动载试验 (18)2.2.1自振特性试验 (18)2.2.2行车动力响应试验 (20)2.2.2.1移动荷载时程分析 (20)2.2.2.2动力荷载效率 (34)2.2.3试验数据分析及结构动力性能评价 (34)参考文献 (36)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。
另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。
下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。
1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。
通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。
一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。
1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。
对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。
前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。
迈达斯Midas civil 梁格法建模实例
北京迈达斯技术有限公司目录概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC设计的方法。
本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m。
图1. 简支变连续分析模型桥梁的基本数据为了说明采用梁格法分析一般梁桥结构的分析的步骤,本例题采用了比较简单的分析模型——预应力T梁,可能与实际桥梁设计的内容有所不同。
本例题的基本参数如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:3@32=96m桥梁宽度:15m设计车道:3车道图2. T型梁跨中截面图图3. T梁端部截面图?分析与设计步骤预应力混凝土梁桥的分析与设计步骤如下。
1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料特性3.输入PSC截面钢筋4.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载温度荷载系统温度节点温度单元温度温度梯度梁截面温度5.定义施工阶段6.输入移动荷载数据选择规范定义车道定义车辆移动荷载工况7.支座沉降定义支座沉降组定义支座沉降荷载工况8.运行结构分析9.查看分析结果10.PSC设计PSC设计参数确定PSC设计参数PSC设计材料PSC设计截面位置运行设计查看设计结果使用材料以及容许应力> 混凝土采用JTG04(RC)规范的C50混凝土>普通钢筋普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)>预应力钢束采用JTG04(S)规范,在数据库中选Strand1860钢束(φ mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:管道每米局部偏差对摩擦的影响系数:(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%>徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作用时混凝土的材龄:=t5天o混凝土与大气接触时的材龄:=t3天s相对湿度: %RH=70大气或养护温度: CT=°20构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算荷载静力荷载>自重由程序内部自动计算>二期恒载桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。
midas建模计算(预应力混凝土连续箱梁桥)
midas建模计算(预应力混凝土连续箱梁桥)midas建模计算(预应力混凝土连续箱梁桥)纵向计算模型的建立1.设置操作环境1.1打开新项目,输入文件名称,保存文件1.2在工具-单位体系中将单位体系设置为“m”,“KN”,“kj”和“摄氏”。
2.材料与截面定义2.1 材料定义右键-材料和截面特性-材料。
C50材料定义如下图所示。
需定义四种材料:主梁采用C50混凝土,立柱、盖梁及桥头搭板采用C30混凝土,基桩采用C25混凝土。
预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。
钢绞线定义时,设计类型:钢材;规范:JTG04(S);数据库:strand 1860,名称:预应力钢筋2.2 截面定义2.2.1 利用SPC(截面特性值计算器)计算截面信息(1)在CAD中x-y平面内,以mm为单位绘制主梁所有的控制截面,以DXF 格式保存文件;绘图时注意每个截面必须是闭合的,不能存在重复的线段,并且对于组成变截面组的线段,其组成线段的个数应保持一致。
(2)在midas工具中打开截面特性计算器(SPC),在Tools-Setting中将单位设置为“KN”和“mm”;(3)从File-Import-Autocad DXF导入DXF截面;(4)从Model-Section-Generate中选择“Type-Plane”;不勾选“Merge Straight Lines”前面的复选框;Name-根据截面所在位置定义不同的截面名称从而生成截面信息;(5)在Property-Calculate Section Property 中设置划分网格的大小和精度,然后计算各截面特性;(6)从File-Export-MIDAS Section File导出截面特性文件,指定文件目录和名字,以备使用。
2.2.2 建立模型截面(1)右键-材料和截面特性-截面-添加-设计截面,选择设计用数值截面。
单击“截面数据”选择“从SPC导入”,选择刚导出的截面特性文件,并输入相应的设计参数。
钢桥、组合梁桥-midas操作例题资料-钢混组合梁
Civil&Civil Designer二、钢混组合梁操作例题资料1工程概况本桥为某高速路联络线匝道桥中的一联,桥宽6m。
上部结构采用38+33.5+37.5m钢混组合连续梁,下部结构桥墩为柱式。
主梁为单箱单室,梁高3.5m,预制高3.1m,钢箱底板厚50mm,上翼缘板厚50mm,腹板厚20mm,布置加劲肋。
钢材均采用Q345,分4段预制后现场采用高强螺栓拼接。
钢箱顶部混凝土桥面板厚0.2m,承托高0.2m,抗剪界面为c-c,采用C50混凝土现浇;横隔板等设置距离详见图2所示。
图1.1-1 钢箱梁构造图(一)钢混组合梁操作例题资料图1.1-2 钢箱梁构造图(二)2 建模步骤2.1定义材料特性>材料特性值>材料图2.1-1 材料定义图2.1-2 材料数据 《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01-2015)桥梁设计,需要定义组合材料,选择规范“JTG D64-2015(S)”。
2.2定义截面特性>截面特性值>组合梁截面组合梁截面支持“钢-箱型(Type1)”、“钢-I 型(Type1)、“钢-槽型(Type1)” 、“钢-箱型(Type2)、“钢-I 型(Type2)、“钢-槽型(Type2),共六种。
截面中可任意设置纵向加劲肋,支持“平板”、“T 形”、“U 肋”三种类型,截面特性值考虑了纵向加劲肋的影响。
图2.2-1 截面数据按照界面内辅助示意图,输入混凝土板和钢箱梁各段距离,顶底板、腹板厚度等。
输入Es/Ec(钢与混凝土弹性模量之比)、Ds/Dc(钢与混凝土容重之比)、Ps(钢梁泊松比)、Pc(混凝土板泊松比)、Ts/Tc(钢与混凝土线膨胀系数之比)。
点击“截面加劲肋”,进行加劲肋设置。
点击“定义加劲肋”,定义加劲肋尺寸,设置加劲肋布置位置及间距。
图2.2-2 加劲肋布置数据图2.2-3加劲肋截面数据2.3 建立结构模型导入DXF文件:Civil图标>导入>AutoCAD DXF文件图2.3-1导入DXF 文件 曲线桥梁可以通过导入CAD 线形的方法建立单元节点。
midas civil桥梁工程实例精解
Midas Civil桥梁工程实例精解一、引言Midas Civil是一款专门针对桥梁工程设计和分析的软件,其功能强大、应用广泛。
本文将重点讨论Midas Civil在桥梁工程实例中的应用和精解,以帮助读者更好地了解该软件的工程实践价值。
二、Midas Civil桥梁工程实例分析1. 拱桥设计与分析以某某大型拱桥工程为例,介绍Midas Civil在拱桥设计与分析中的具体应用。
包括结构建模、材料设定、荷载分析、抗震设计等方面。
2. 梁桥设计与分析以某某梁桥工程为例,介绍Midas Civil在梁桥设计与分析中的具体应用。
包括纵横断面设计、施工阶段分析、架设过程模拟等方面。
3. 悬索桥设计与分析以某某悬索桥工程为例,介绍Midas Civil在悬索桥设计与分析中的具体应用。
包括索塔设计、索缆分析、振动稳定性分析等方面。
4. 桥梁监测与维护介绍Midas Civil在桥梁监测与维护方面的应用,如结构健康监测、裂缝分析、加固方案评估等。
三、Midas Civil在桥梁工程中的优势和应用价值1. 强大的建模和分析功能Midas Civil具有强大的建模和分析功能,能够准确模拟各类桥梁结构,在设计和施工阶段提供可靠的分析结果。
2. 多场景下的适用性Midas Civil不仅适用于各类桥梁类型,还可以应用于不同地理、气候条件下的工程实践,具有较强的通用性和灵活性。
3. 创新的工程实践技术Midas Civil在桥梁工程实践中引入了许多创新的技术和方法,如基于BIM的协同设计、结构优化算法等,推动了桥梁工程实践的进步。
4. 提高工程质量和效率通过Midas Civil的应用,桥梁工程的设计质量和施工效率得到了有效提升,有力支撑了工程质量和进度的保障。
四、Midas Civil在桥梁工程中的应用案例1. 桥梁工程A案例介绍Midas Civil在桥梁工程A中的应用情况,包括具体的建模分析过程、工程效果和成果展示等。
基于Midas/Civil的大跨度预应力砼连续刚构桥的抗震分析与设计
地 震动参数 区划 图 ( GB 1 8 3 0 6 — 2 0 01 ) ,本项 目区地震 基
本烈度Ⅶ度 ( 地 震 动 峰值 加速 度 0 . 1 0 g ) 。依 据 交通 部 颁 发 的
主 桥 箱 梁 横 断 面 采 用单 箱 双 室 , 箱梁 顶宽 1 , 5 5 0 c m, 底
伤 ,经 临时加 固后可供维持应 急交通 使用 。结合本桥实 际情 况 ,设计 中按 E1与 E2地震作 用下 ,结构均 处于 弹性 阶段 ,
以 此验 算结 构 的 安全 性 。 根 据 细 则 的 9 . 3 . 6条 规 定 ,混 凝 土 梁 桥 、拱 桥 的 阻
第 1 3卷 第 6期
ห้องสมุดไป่ตู้201 3芷
中 国
水
运
V oI . 1 3
N o. 6 201 3
6月
Ch i na W ater Tr an sp or t
J un e
基于 Mi d a s / C i v i l 的大 跨度预应力砼 连 续刚构 桥的抗震分析 与设计
土变截面连续 刚构 ,下部结构采 用双肢 薄壁墩、钻孔桩 基础 ,
如 下 图 1所 示 。
公路桥梁 抗震 设计 细则 ( J T G/ T B0 21 — 0 1 — 2 0 0 8 )规定 , 按 照桥梁抗 震设 防等级 8级对 该区域内的桥梁 等构造 物进行
抗 震设 防 。
三 、计 算 参 数 1 . 主要 材料 及 计 算 参 数 收 稿 日期 :2 01 3 — 0 2 — 0 3
尼 比不宜大于 0 . 0 5 ,因此在这里取阻尼 比为 0 . 0 5 。按抗震 规范 9 . 3 . 1 条, 本次抗震计算采用多振型反应谱法进行 计算。