一元一次不等式、因式分解专题练习
含详细解析答案 初中数学一元一次不等式组解法练习40道
.初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2)..19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:.34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.【答案】由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.【答案】由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:由x-3(x-2)≤8得x≥-1由>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1(2【答案】解:(1)解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,(2解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a【答案】0,两边同乘以6得3x+2(x+1)>0,解得x>由x x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【答案】解:由①得4x+4+3>x解得x>由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(12x-13x+2(2【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)6分)(2解①得,x<1,解②得,x≥-4.5在数轴上表示出来:.不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. .【答案】解:由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.【答案】解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x求实数a的取值范围.【答案】由①得:x>,由②得:x<2a,则不等式组的解集为:x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a故答案为:1<a【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不.了.14.【答案】解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】解:解不等式2x+9<5x+3,得:x>2,,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,(2)∵x>y>0,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.;【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,.解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.【答案】,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】2m-1<m+8,m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解①得:x≤2,解②得:x>则不等式组的解:x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1(2【答案】解:(1,,(2解①得:,【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可..24.已知关于x,y-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.【答案】解:解不等式2x+1≥x-1,得:x≥-2,3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1(2【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.【答案】,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.【答案】解不等式①得,,解不等式②得,x>-1,.∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.【答案】解:解不等式1-x>3,得:x<-2,x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1(2【答案】解:(1)解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.a,b的值.【答案】解:解第一个不等式,得:∵不等式组的解集为1≤x≤6,2b=1,解得:a=12,b【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1(2【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:.【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.【答案】解:解不等式-2x+1>-11,得:x<6,1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.【答案】,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.负整数解.【答案】由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为,,.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1(2【答案】解:()①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,(2)解不等式x-2x-1),得:x解不等式2x<1,得:x<3,则不等式组的解集为x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y x<0且y<0,求m的范围.【答案】,①+②,得:6x=3m-18,解得:x.. ②-①,得:10y =-m -18,解得:yy <0,解得:-18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.【答案】解不等式①,得,解不等式②,得x <2,∴它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)
七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式组(计算题共50题)1.(2022秋•越秀区校级期末)解不等式组:5−1>4+2≥2−4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5−1>4+2①≥2−4②,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(20231≤3+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.1−≤3+2,由3K23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(20233−1−2<K56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥−12,解不等式r23−2<K56得:x<3,则不等式组的解集为−12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(20231≤−+1+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤−+1①+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2+5≤3(+2)−1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2+5≤3(+2)①−1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2+1≤4−−1<32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2+1≤4−s−1<32②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023≥+1≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3K42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023−3)≤−1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−3)≤s−1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−1)≤4−1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:≥−12,不等式②得:x<4,∴不等式组的解集为:−12≤<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(20233≤13−2<−1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①−2<−1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023+2)≥2+51<K22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(20232)>8+9①2>r23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023−7<3(+1)−1≥7−32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−7<3(+1)①−1≥7−32t,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(−2)≤3−1−2r13>+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(−2)≤3−①1−2r13>+1②,解①得:x≤73,解②得x<−15.故不等式组的解集是:x<−15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023−1)<72≥.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.−1)<7①+2≥t,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4−2≤3(+1)①1−K12<4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(20231<−+21+23.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式K12<1+23,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(20232≥4+1K32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4+1①K32+1②解不等式①得:x≥﹣1,解不等式②得:x<3.∴不等式组的解集为﹣1≤x<3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(20233)<41≤2r13.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.3)<4s−1≤2r13②,由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(20231≤7−32K12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7−32①K12+1②解不等式①,得:x≤4,解不等式②,得:x>﹣1,∴不等式组的解集是﹣1<x≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.1.(2023•河北区一模)解不等式组2>−4①+3≤5②.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2>−4①+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组+5≥4,①4≥7−6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:+5≥4①4≥7−6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023<7①2≥+1②请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3<92>−3+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023+3>−K13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由2−K13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3−2<42(−1)≤3+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3−2<4①2(−1)≤3+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(20232>3(−1)≤7−,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(−1)①≤7−t,解不等式①得:x>−12,解不等式②得:x≤5,∴不等式组的解集为:−12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•鼓楼区校级模拟)解不等式组,并把它的解集表示在数轴上:−1)≤3(1+p①−K12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023<6K12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①K12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023>3(−1).【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8r29>,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3−1≥+1+4<4−2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(20234≥2−1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2−1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023−3<4s14≤r12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.−3<4①14≤r12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022−1<3(−1)K22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由23−K22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(20231)<3−2①1≤r22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3−2①−1≤r22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(20233)≤−4在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤−4①t ,由①得:x ≤2,由②得:x >﹣2,∴不等式组的解集为﹣2<x ≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(−1)>3−22−3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(−1)>3−2①2−3≤5②,解①得x >2,解②得x ≤4.则不等式组的解集是:2<x ≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3−2<4①2(−1)≤3+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022≤3(+1)≥−1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x﹣1≤3(x+1),得:x≤2;由1+23≥−1,得:x≤4;∴不等式组的解集为:x≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4−7<5(−1)2≤18−3+7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4−7<5(−1)①2≤18−3+7②,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+>7−4<4+2,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<4+2,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023−1)≥1−1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.−1)≥1①−1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:−4<2+3−2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3−2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−2)>4≥3r26−1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2K13≥3r26−1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023−1)≥1−5r12<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.−1)≥1①−5r12<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022+22r15,并直接写出这个不等式组的所有负整数解.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.+2①2r15②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(+1)≤7+10−5<K83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(+1)≤7+10①−5<K83②,解不等式①得:x≥﹣2,解不等式②得:x<72,所以不等式组的解集为:−2≤<72,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023−5r12≤1<3(+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.−5r12≤1①<3(+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(−1)<5+1(−1)≥2−4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(−1)<5+1①(−1)≥2−4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(+1)≤7+102−3<K12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(+1)≤7+10①2−3<K12②,解不等式①得,x≥﹣2,解不等式②得,x<53,所以不等式组的解集为﹣2≤x<53,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
一元一次不等式求解练习题
一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。
2. 第二题:解方程 2x - 5 ≤ 7。
首先,我们需要将方程中的x系数与常数项分开。
将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。
3. 第三题:解不等式 3 - x < 9。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。
4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。
首先,我们分别求解两个方程。
第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。
第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。
由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。
以上就是题目中的四道一元一次不等式求解练习题的解答。
中考数学《方程与不等式》专题知识训练50题(含参考答案)
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。
解一元一次不等式专项练习 (80题,附答案)
解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。
解一元一次不等式专项练习50题(有答案)ok
解一元一次不等式专项练习50题(有答案)之老阳三干创作1.,2.﹣(x﹣1)≤1,3.﹣1>.4.x+2<,5..6.,7.≥,8.9.10.>, 11.,12..13.,14.3x ﹣,15.3(x﹣1)+2≥2(x﹣3).16., 17.10﹣4(x﹣4)≤2(x﹣1), 18.﹣1<.19..20.≤.21.,22.,23.≥.24.>1.25..26.,27.≥, 28.;29. .30.≤31., 32.(x+1)≤2﹣x33.2(5x+3)≤x﹣3(1﹣2x)34.≤+1.35.;36. .37..38.4x+3≥3x+5.39.2(x+2)≥4(x﹣1)+7.40.>x﹣141.2(3﹣x)<x﹣3.42.3(x+2)≤5(x﹣1)+7,43.1﹣≥44.2(x+3)﹣4x>3﹣x.45.2(1﹣2x)+5≤3(2﹣x)46.,47..48.2﹣>3+.49.4(x+3)﹣<2(2﹣x)﹣(x ﹣)50..解不等式50题参考答案:1.解:去分母得:3(x+1)>2x+6,去括号得:3x+3>2x+6,移项、合并同类项得:x>3,∴不等式的解集为x>32.解:去分母得:x+1﹣2(x﹣1)≤2,∴x+1﹣2x+2≤2,移项、合并同类项得:﹣x≤﹣1,不等式的两边都除以﹣1得:x≥13.解:去分母得2(x+4)﹣6>3(3x﹣1),去括号得2x+8﹣6>9x﹣3,移项得2x﹣9x>﹣3﹣8+6,合并同类项得﹣7x>﹣5,化系数为1得x <4.解; x+2<,去分母得:3x+6<4x+7,移项、合并同类项得:﹣x<1,不等式的两边都除以﹣1得:x>﹣1,∴不等式的解集是x>﹣15.解:去分母,得 6x+2(x+1)≤6﹣(x﹣14)去括号,得 6x+2x+2≤6﹣x+14…(3分)移项,合并同类项,得 9x≤18 …(5分)两边都除以9,得 x≤26.解:去分母得:2(2x﹣3)>3(3x﹣2)去括号得:4x﹣6>9x﹣6移项合并同类项得:﹣5x>0∴x<07.解:去分母得,3(3x﹣4)+30≥2(x+2),去括号得,9x﹣12+30≥2x+4,移项,合并同类项得,7x≥﹣14,系数化为1得,x>﹣28.解:x﹣3<24﹣2(3﹣4x),x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,x>﹣39.解:化简原不等式可得:6(3x﹣1)≤(10x+5)6,即8x≥﹣16,可求得x≥﹣210.解:去分母,得3(x+1)﹣8>4(x﹣5)﹣8x,去括号,得3x+3﹣8>4x﹣20﹣8x,移项、合并同类项,得7x>﹣15,系数化为1,得x >﹣11.解:去分母,得x+5﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,化系数为1,得x >12.解:去分母,得3(x+1)≥2(2x+1)+6,去括号,得3x+3≥4x+2+6,移项、合并同类项,得﹣x≥5,系数化为1,得x≤﹣513.解:去分母,得2(2x﹣1)﹣24>﹣3(x+4),去括号,得4x﹣2﹣24>﹣3x﹣12,移项、合并同类项,得 7x>14,两边都除以7,得x>214.解:去分母得,6x﹣1<2x+7,移项得,6x﹣2x<7+1,合并同类项得,4x<8,化系数为1得,x<215.解:3(x﹣1)+2≥2(x﹣3),去括号得:3x﹣3+2≥2x﹣6,移项得:3x﹣2x≥﹣6+3﹣2,解得:x≥﹣516.解:去分母得:2(x﹣1)﹣3(x+4)>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12,移项得:2x﹣3x>﹣12+2+12,合并得:﹣x>2,解得:x<﹣217.解:去括号得:10﹣4x+16≤2x﹣2,移项合并得:﹣6x≤﹣28,解得:x ≥18.解:去分母得,3(x+5)﹣6<2(3x+2),去括号得,3x+15﹣6<6x+4,移项、合并同类项得,5<3x,把x的系数化为1得x >.19.解:∵∴3(x+5)﹣6<2(3x+2)∴3x+15﹣6<6x+4∴3x﹣6x<4﹣15+6∴﹣3x<﹣5∴x20.解:去分母得30﹣2(2﹣3x)≤5(1+x),去括号得30﹣4+6x≤5+5x,移项得6x﹣5x≤5+4﹣30,合并得x≤﹣2121.解:去分母得,2(2x﹣1)﹣6x<3x+3,去括号得,4x﹣2﹣6x<3x+3,移项得,4x﹣6x﹣3x<3+2,合并同类项得,﹣5x<5,系数化为1得,x>﹣1.故此不等式的解集为:x>﹣122.解:去分母得,2(2x﹣5)>3(3x+4)+18,去括号得,4x﹣10>9x+12+18,移项得,4x﹣9x>12+18+10,合并同类项得,﹣5x>40,系数化为1得,x<﹣823.解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣724.解:原不等式可变成:2(x+4)﹣3(3x﹣1)>6,2x+8﹣9x+3>6,﹣7x>﹣5,x <25.解:原不等式可化为,6(2x﹣1)≥10x+1,去分母得,12x﹣6≥10x+1,合并同类项得,2x≥7,把系数化为1得,x ≥26.解:去分母得,2(2x﹣1)﹣6≤3(5x﹣1),去括号得,4x﹣2﹣6≤15x﹣3,移项得,4x﹣15x≤﹣3+2+6,合并同类项得,﹣11x≤5,化系数为1得,x≥﹣27.解:去分母,得32﹣2(3x﹣1)≥5(x+3)+8;去括号,得32﹣6x+2≥5x+15+8;移项,得﹣6x﹣5x≥15+8﹣32﹣2;合并同类项,得﹣11x≥﹣11;系数化为1,得x≤128.解:(1)在不等式的左右两边同乘以2得,(3﹣x)﹣6≥0,解得:x≤﹣3,29. (2)在不等式的左右两边同乘以12得,6(2x﹣1)﹣4(2x+5)<3(6x﹣7),解得:x30.解:不等式两边都乘以8得,32﹣2(3x﹣1)≤5(x+3)+8,去括号得,32﹣6x+2≤5x+15+8,移项得,11≤6x+5x,∴x≥131.解:∵,∴12x﹣6﹣8x﹣20<18x﹣21﹣12,∴14x>7,∴32.解:不等式两边同时乘以2,得:x+1≤4﹣2x,移项,得:x+2x≤4﹣1,合并同类项,得:3x≤3,解得:x≤133.解:去括号得,10x+6≤x﹣3+6x,移项合并同类项得,3x≤﹣9,解得x≤﹣334.解:去分母,得3(x+2)≤4﹣x+6(2分)去括号,得3x+6≤4﹣x+6移项,得3x+x≤4+6﹣6(4分)合并同类项,得4x≤4两边同除以4,得x≤135.解:(1)去分母,得5(x﹣1)>2(3x+1),去括号,得5x﹣5>6x+2,移项,得5x﹣6x>2+5,合并同类项,得﹣x>7,系数化为1,得x<﹣7.36. 去分母,得5(3x+1)﹣3(7x﹣3)≤30+2(x﹣2),去括号,得15x+5﹣21x+9≤30+2x﹣4,移项,得15x﹣21x﹣2x≤30﹣4﹣5﹣9,合并同类项,得﹣8x≤12,系数化为1,得x≥﹣1.537.解:原不等式的两边同时乘以4,并整理得x﹣7<3x﹣2,移项,得﹣2x<5,不等式的两边同时除以﹣2(不等式的符号的标的目的产生改动),得x >,故原不等式的解集是x >38.4x+3≥3x+5.解:移项、合并得x≥2.39.解:2(x+2)≥4(x﹣1)+7,2x+4≥4x﹣4+7,2x﹣4x≥﹣4+7﹣4,﹣2x≥﹣1,40.解:去分母得1+2x>3x﹣3,移项得2x﹣3x>﹣3﹣1,合并同类项得﹣x>﹣4,解得x<441.解:去括号,得6﹣2x<x﹣3,移项、合并同类项,得﹣3x<﹣9,化系数为1,得x>342.解:去括号得,3x+6≤5x﹣5+7,移项得,3x﹣5x≤2﹣6,合并同类项得,﹣2x≤﹣4系数化为1,得x≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3x+1≥2x+2,移项、合并同类项,得5x≤5,不等式的两边同时除以5,得x≤144.解:去括号,得:2x+6﹣4x>3﹣x,移项,得:2x﹣4x+x>﹣6,合并同类项,得:﹣x>﹣6,则x<645.解:去括号,得:2﹣4x+5≤6﹣3x,移项,得:﹣4x+3x≤6﹣2﹣5,合并同类项,得﹣x≤1,解得x≥﹣146.解;去分母得:x+1﹣6≤6x移项得:x﹣6x≤6﹣1合并同类项得:﹣5x≤5系数化1得:x≥﹣147.解:去分母得:7x+4﹣12>12(x+1),去括号得:7x+4﹣12>12x+12,移项得:7x﹣12x>12+12﹣4,合并同类项得:﹣5x>20,系数化为1得:x<﹣448.解:去分母得:16﹣(3x﹣2)>24+2(x﹣1)16﹣3x+2>24+2x﹣2﹣3x﹣2x>24﹣2﹣16﹣2﹣5x>4x <﹣49.解;去括号得,4x+12﹣<4﹣2x﹣x+,移项合并同类项得,7x<﹣1,把x的系数化为1得,x <﹣,50.解:不等式的两边同时乘以12,得3(x+1)﹣2(2x﹣3)≤12,即﹣x+9≤12,不等式的两边同时减去9,得﹣x≤3,不等式的两边同时除以﹣1,得x≥﹣3,∴原不等式的解集是x≥﹣3时间:二O二一年七月二十九日。
九年级中考数学专题练习解一元一次不等式组(含解析)
中考数学专题练习-解一元一次不等式组(含解析)一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤72.不等式组的解集在数轴上表示为()A. B.C. D.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-14.不等式组的解集是()A.x>﹣9B.x≤2C.﹣9<x≤2D.x≥25.若不等式组有解,则k的取值范围是()A.k<2B.k≥2C.k<1D.1≤k <26.不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥47.不等式组的解集是()A. -1<x≤2B. -2≤x<1C.x<-1或x≥2D.2≤x <-18.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A. B. C. D.9.若一元一次不等式组有解,则m的取值范围是()A.m≤6B.m≥6C.m<6D.m >610.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤211.若关于x的一元一次不等式组有解,则m的取值范围为()A. B. C. D.12.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤ C.D.m≤-13.已知不等式组,其解集正确的是()A.﹣1≤x<3B.﹣1<x≤3C.x>3D.x≤﹣114.不等式组的解集是()A.x≤1B.x>﹣7C. -7<x≤1D.无解二、填空题15.若不等式组的解集为,那么的值等于________.16.若不等式组的解集是﹣1<x<1,则(a+b)2019________17.已知不等式组的解集为﹣1<x<2,则(m+n)2019________.18.不等式组的解集为________.19.不等式组的解集是________.20.若不等式组的解集是﹣1<x<1,那么(a+b)2019=________.21.已知关于x的不等式组无解,则a的取值范围为________.三、计算题22.解不等式组.23.24.解不等式组.25.解不等式组.26.解方程(1)解方程:(x﹣4)2=x﹣4;(2)解不等式组:.四、解答题27.解不等式组:.28.解不等式组:,并把解集在数轴上表示出来.五、综合题29.解方程与不等式组(1)解方程:x2+4x﹣5=0;(2)解不等式组.答案解析部分一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤7【答案】C【考点】解一元一次不等式组【解析】【分析】解出不等式组的解集,与不等式组有解相比较,得到m的取值范围.【解答】由(1)得x<7,由(2)得x>m,∵不等式组有解,∵m<x<7;∵m<7,故选C.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.2.不等式组的解集在数轴上表示为()A. B.C. D.【答案】B【考点】解一元一次不等式组【解析】【解答】解不等式∵得:x>-1,解不等式∵得:x1,∵原不等式组的解集为:-1<x 1.故答案为:B.【分析】依次解出不等式∵及不等式∵的解集,再在数轴上分别表示出来,找到解集的公共部分即可.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-1【答案】C【考点】解一元一次不等式组【解析】【解答】解:由∵得:x≥4-a由∵得:-3x>-9解之:x<3∵原不等式组无解∵4-a≥3解之:a≤1故答案为:C【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。
人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (35)
人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)开学初,李芳和王平去文具店购买学习用品,李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔笔记本共36件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不多于钢笔数的2倍,共有多少种购买方案?请你一一写出.【答案】(1)每支钢笔9元,每本笔记本3元;(2)共有4种购买方案,见解析.【解析】【分析】(1)设每支钢笔x元,每本笔记本y元,根据“李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买钢笔m支,则购买笔记本(36−m)本,根据奖品的总价不超过200元及笔记本数不多于钢笔数的2倍,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【详解】解:(1)设每支钢笔x元,每本笔记本y元,依题意,得:318 2430x yx y+=⎧⎨+=⎩,解得:93x y =⎧⎨=⎩, 答:每支钢笔9元,每本笔记本3元;(2)设购买钢笔m 支,则购买笔记本(36−m )本,依题意,得:()9336200362m m m m ⎧+-≤⎨-≤⎩, 解得:112153m ≤≤. ∵m 为整数,∴m =12,13,14,15.∴共有4种购买方案,方案1:购买12支钢笔,24本笔记本;方案2:购买13支钢笔,23本笔记本;方案3:购买14支钢笔,22本笔记本;方案4:购买15支钢笔,21本笔记本.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.42.(1)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. (2)解不等式组:()33121318x x x x -⎧+>+⎪⎨⎪--≤-⎩.【答案】(1)6024x y =⎧⎨=-⎩(2)21x【解析】【分析】 (1)方程组整理后,利用加减消元法求出解即可;(2)根据不等式的性质求出两个不等式的解集,根据找不等式组解集的规律解答即可.【详解】解:(1)方程组整理得:34842348x y x y +=⎧⎨+=⎩①②, ②×3−①×2得:y =−24,把y =−24代入②得:x =60,则方程组的解为6024x y =⎧⎨=-⎩; (2)解:()33121318x x x x -⎧+>+⎪⎨⎪--≤-⎩①②, 由①得:x <1,由②得:x ≥−2,∴不等式组的解集是−2≤x <1.【点睛】此题考查了解二元一次方程组以及解一元一次不等式组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法;解不等式组的关键是根据不等式的解集求出各不等式的解集.43.解不等式组513(1)1242x x x x +>-⎧⎪⎨-≥-⎪⎩,并求出它的整数解. 【答案】不等式组的解集是723x -<≤,它的整数解为1-,0,1,2. 【解析】【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:由①,得 5133x x +>-5331x x ->--24x >-2x >-由②,得148x x -≥-481x x -≥-+,37x -≥-73x ≤ ∴此不等式组的解集是723x -<≤∴它的整数解为1-,0,1,2.【点睛】此题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.44.(1)解不等式组:203(51)48x x x -≤⎧⎨+>-⎩(2)分解因式:22m m -(3)解分式方程:6122x x x +=-+ 【答案】(1)x ⩾2;(2)m(m −2);(3)x=1.【解析】【分析】(1)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.(2)直接把公因式m 提出来即可.(3)去分母后得出整式方程,求出方程的解,再进行检验即可.【详解】(1)203(51)48x x x -≤⎧⎨+>-⎩①② ∵解不等式①得:x ⩾2,解不等式②得:x>−1,∴不等式组的解集为x ⩾2.(2)m 2−2m=m(m −2).(3)方程两边都乘以(x+2)(x-2)得:x (x+2)+6(x-2)=(x+2)(x-2), 解这个方程得:x=1,检验:∵把x=1代入(x+2)(x-2)≠0,∴x=1是原方程的解,即原方程的解为:x=1.故答案为:x=1.【点睛】此题考查解分式方程,因式分解-提公因式法,解一元一次不等式组,解题关键在于掌握运算法则.45.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[][]5.754π=-=-,.(1)如果[]2a =-,求a 的取值范围;(2)如果132x +⎡⎤=⎢⎥⎣⎦,求满足条件的所有整数x . 【答案】(1)21a -≤<-;(2)所有整数x 的值为5,6.【解析】【分析】(1)根据[a]=-2,得出-2≤a <-1,求出a 的解即可;(2)根据题意得出1342x +≤<,求出x 的取值范围,从而得出满足条件的所有正整数的解.【详解】解:(1)∵[a]=-2,∴a 的取值范围是:-2≤a <-1;故答案为:21a -≤<-.(2)由题意得:1342x +≤< 解得57x ≤<,∴所有整数x 的值为5,6.【点睛】此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.46.(1;(2)解不等式组21040x x -≥⎧⎨->⎩①②,并把解集在数轴上表示出来.【答案】(1)15;(2)142x ≤<,见解析. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:(1)原式5113415=++-=, (2)21040x x -≥⎧⎨->⎩①② 由①得:x ≥12, 由②得:x <4,∴不等式组的解集为142x ≤<, 数轴如围所示.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.47.解不等式组:-103-13(1)x x x ⎧⎪⎨⎪≤+⎩<①②,并把解集在数轴上表示出来. 【答案】−2⩽x<3,数轴见解析;【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】-103-13(1)x x x ⎧⎪⎨⎪≤+⎩<①②, 解不等式①得,x<3,解不等式②得,x ⩾−2,所以,不等式组的解集是−2⩽x<3在数轴上表示如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.48.解不等式组:2543422133x x x x +⎧<-⎪⎪⎨⎪+>-⎪⎩,并写出其整数解. 【答案】不等式组的整数解为0,1.【解析】【分析】 对不等式2543x x +<-,两边乘以3,去分母,然后通过去括号、移项、系数化为1求出不等式的解,对不等式422133x x +>-两边乘以3,然后再通过移项、合并同类项,系数化为1,求出不等式解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解,然后把它的整数解写出来.【详解】 解:由不等式2543x x +<-, 两边乘以3可得:25123x x +<- 解得75x <; 由不等式422133x x +>-,两边乘以3可得:4632x x +>- 解得12x ->; ∴1725x -<<. ∴不等式组的整数解为0,1.【点睛】主要考查了一元一次不等式组解集的求法及其整数解,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,来求出不等式组的解.49.(1)因式分解:()222224a b a b +-; (2)解分式方程:21133x x x-=---; (3)解不等式组:()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩;【答案】(1)()()22a b a b -+;(2)2x =;(3)12x -≤<. 【解析】【分析】(1)先用平方差公式分解,再用完全平方公式分解;(2)根据解分式方程的方法求解即可,并注意检验;(3)先解不等式组中的每一个不等式,再取其解集的公共部分即可.【详解】解:(1)()222224a b a b +-=2222(2)(2)a b ab a b ab +-++=()()22a b a b -+ (2)方程两边同时乘以(x -3),得231x x -=-+解得:2x =经检验,2x =是原方程的根.所以,原方程的根是2x =.(3)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①②, 解不等式①,得x <2,解不等式②,得x ≥-1,∴不等式组的解集是12x -≤<.【点睛】本题考查了多项式的因式分解、分式方程的解法和一元一次不等式组的解法,属于基础题型,熟练掌握分解因式的方法、分式方程和一元一次不等式组的解法是解题的关键.50.解方程组、不等式:(1)解方程组5212237x y x y +=⎧⎨+=⎩; (2)解不等式912311632x x x +---≤+. 【答案】(1)21x y =⎧⎨=⎩;(2)1x ≥. 【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【详解】解:(1)5212237x y x y +=⎧⎨+=⎩①② ①×3-②×2得:11x=22解得:x=2把x=2代入②得:y=1∴方程组的解为:21x y =⎧⎨=⎩; (2)去分母得,()()92126331x x x +--≤+-,去括号,得924693x x x +-+≤+-,移项,得496329x x x +-≤-+-,合并同类项,得44x -≤-,系数化为1,得1x ≥.【点睛】此题考查了解一元一次不等式,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.。
一元一次不等式(组)的解法
期末复习专项综合练习(3)一元一次不等式(组)的解法(解析版)(时间45分钟总分100分)一.选择题(共6小题,每小题4分,共24分)1.(2021•南充)不等式x12>2x23−1的正整数解的个数是( )A.1个B.2个C.3个D.4个思路引领:根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5,故不等式的正整数解有1、2、3、4这4个,故选:D.解题秘籍:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.(2021•南昌)将不等式组x+2≥12(x+3)−3>3x的解集在数轴上表示出来,正确的是( )A.B.C.D.思路引领:求出两个不等式的解集,然后表示在数轴上即可.解:x+2≥1①2(x+3)−3>3x②,解不等式①得,x≥﹣1,解不等式②得,x<3,在数轴上表示如下:.故选:D.解题秘籍:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(2022春•薛城区期中)已知点P(a+1,−a2+1)关于原点的对称点在第三象限,则a的取值范围在数轴上表示正确的是( )A.B.C.D.思路引领:根据关于原点对称的点的横坐标、纵坐标都互为相反数,根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.解:由题意,得P(a+1,−a2+1)关于原点的对称点在第三象限,得﹣a﹣1<0,且a2−1<0,解得﹣1<a<2,如图,故选:B.解题秘籍:本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点的横坐标、纵坐标都互为相反数.4.(2021•x−1≤7−3 2 x>3(x+1)的解集表示在数轴上,正确的是( )A.B.C.D.思路引领:分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.解:解不等式12x﹣1≤7−32x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>5 2,∴不等式组的解集为:52<x≤4,故选:A.解题秘籍:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022•绵阳)在关于x、y的方程组2x+y=m+7x+2y=8−m中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为( )A.B.C.D.思路引领:把m看作已知数表示出方程组的解,根据x≥0,y>0求出m的范围,表示在数轴上即可.解:2x+y=m+7①x+2y=8−m②,①×2﹣②得:3x=3m+6,即x=m+2,把x=m+2代入②得:y=3﹣m,由x≥0,y>0,得到m+2≥0 3−m>0,解得:﹣2≤m<3,表示在数轴上,如图所示:,故选:C.解题秘籍:此题考查了解一元一次不等式组,二元一次方程组的解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.(2021春•大竹县校级月考)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3≤b<﹣2C.﹣3≤b≤﹣2D.﹣3<b≤﹣2思路引领:首先解不等式,然后根据条件即可确定b的值.解:∵x﹣b>0,∴x>b,∵不等式x ﹣b >0恰有两个负整数解,∴﹣3≤b <﹣2.故选:B .解题秘籍:本题考查不等式的整数解问题,解题的关键是利用数轴分析,其次解题时必须理解题意,属于基础题,中考常考题型.二.填空题(共5小题,每题4分,共20分)7.(2021春•万州区校级期中)若﹣3是关于x 的方程x−a 3−2−x 4=1的解,则x−a 3−2−x 4≥1的解集是 x ≥﹣3 .思路引领:根据方程解的定义,将方程的解代入方程可得关于字母系数a 的一元一次方程,从而可求出a 的值,再解不等式即可.解:把x =﹣3代入方程x−a 3−2−x 4=1,可得:a =−394,把a =−394代入x−a 3−2−x 4≥1,解得:x ≥﹣3,故答案为:x ≥﹣3.解题秘籍:此题考查不等式的解法,关键是根据已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母a 的方程进行求解.8.(2021春•x +1≥−3>0的最大整数解为 .思路引领:分别求出两个不等式的解集,可得不等式组的解集,即可求最大整数解.解:解12x +1≥﹣3,解得:x ≥﹣8,解x ﹣2(x ﹣3)>0,解得:x <6,∴不等式的解集为:﹣8<x <6∴最大整数解为:x =5故答案为:x =5,解题秘籍:本题考查了一元一次不等式组的整数解,解答本题的关键是掌握一元一次不等式组的解法.9.(2021•2(x−3)−2x−13>−1的所有整数解的和是 .思路引领:首先分别计算出两个不等式的解集,再根据不等式组解集的确定规律可得x 的解集,再在解集的范围内找出符合条件的整数,算出答案即可.2(x−3)①−2x−13>−1②,由①得:x≤3,由②得:x>−115,不等式组的解集为:−115<x≤3,则不等式组的整数解为:﹣2,﹣1,0,1,2,3,所有整数解的和:﹣2﹣1+0+1+2+3=3.故答案为:3.解题秘籍:此题主要考查了一元一次不等式组的整数解,关键是正确解出不等式,确定出不等式组的解集.10.(2020春•回民区期末)若关于x的不等式组x+a≥01−2x≥x−2的解集当中有3个整数解,则a的取值范围是 1≤a<2 .思路引领:先根据一元一次不等式组解出x的取值,再根据不等式组只有3个整数解,求出a的取值范围.解:x+a≥0①1−2x≥x−2②,由①得:x≥﹣a,由②得:x≤1,∴不等式组的解集为:﹣a≤x≤1,∵有3个整数解,∴整数解为:﹣1,0,1,∴﹣2<﹣a≤﹣1,∴1≤a<2,故答案为1≤a<2.解题秘籍:此题考查的是一元一次不等式的解法,根据x的取值范围,得出x的取值范围,然后根据不等式组只有3个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(2021秋•普陀区期末)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是 .(2)如果[x12]=3,满足条件的所有正整数x为 .思路引领:(1)根据定义:对于实数a,符号[a]表示不大于a的最大整数,即可解答;(2)根据定义:对于实数a,符号[a]表示不大于a的最大整数,先求出x的取值范围,然后在其范围内找出满足条件的所有正整数即可.解:(1)∵[a]=﹣2,∴a的取值范围是:﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1;(2)由题意得:3≤x12<4,解得:5≤x<7,∴满足条件的所有正整数x为:5,6,故答案为:5,6.解题秘籍:本题考查了解一元一次不等式组,根据题目的已知理解定义是解题的关键.三.解答题(共6小题,共54分)12.(2021秋•江东区校级期中)(1)解不等式:2x−13−9x26≤1,并把解集表示在数轴上(2≤2(x+3)>x2,并写出不等式组的整数解.思路引领:(1)首先去分母,然后去括号,移项、合并同类项,系数化成1即可求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.解:去分母,得:2(2x﹣1)﹣(9x+2)≤6,去括号,得:4x﹣2﹣9x﹣2≤6,移项,得:4x﹣9x≤6+2+2,合并同类项,得:﹣5x≤10,系数化成1得:x≥﹣2.把解集表示在数轴上为:;(22(x+3)⋯①>x2⋯②,解①得:x≤4,解②得:x>2,则不等式组的解集是:2<x≤4.则不等式组的整数解是:3,4.解题秘籍:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.(2021春•广饶县校级月考)若代数式3(2k5)2的值不大于代数式5k+1的值,求k的取值范围.思路引领:根据题意列出不等式,求出不等式的解集即可得到k的范围.解:根据题意得:3(2k5)2≤5k+1,去分母得:3(2k+5)≤2(5k+1),去括号得:6k+15≤10k+2,移项合并得:4k≥13,解得:k≥13 4.解题秘籍:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集.14.(2021春•高明区校级期末)解不等式组2x+5≤3(x+2)2x−13x2≤1,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.思路引领:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解:2x+5≤3(x+2)①2x−13x2≤1②,由①得:x≥﹣1,由②得:x≤3,不等式组的解集为:﹣1≤x ≤3.在数轴上表示为:.不等式组的非负整数解为3,2,1,0.解题秘籍:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.15.(2021春•浦东新区期末)先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3x ﹣2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”有①3x−2>02x +1>0或②3x−2<02x +1<0解不等式组①得x >23,解不等式组②得x <−12.所以一元二次不等式(3x ﹣2)(2x +1)>0的解集是x >23或x <−12.作业题:(1)求不等式5x 12x−3<0的解集;(2)通过阅读例题和做作业题(1),你学会了什么知识和方法?思路引领:由不等式组分别解出x 的取值范围,写出x 的公共部分就是不等式组的解集.解:(1)由有理数的除法法则“两数相除,异号得负”有①5x +1>02x−3<0或②5x +1<02x−3>0解不等式组①,得−15<x <32;解不等式组②,得不等式组②无解,所以不等式5x 12x−3<0的解集为−15<x <32.(2)运用有理数的乘法法则,把一元二次不等式转化为一元一次不等式组来解决;运用有理数的除法法则,把分母中含有未知数的不等式转化为一元一次不等式(组)来解决.解题秘籍:本题考查的是一元一次不等式组的解,本题比较新颖,也不是很难.16.(2013•扬州)已知关于x 、y 的方程组5x +2y =11a +182x−3y =12a−8的解满足x >0,y >0,求实数a 的取值范围.思路引领:先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.解:5x+2y=11a+18①2x−3y=12a−8②,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是x=3a+2y=−2a+4,∵x>0,y>0,∴3a+2>0①−2a+4>0②,由①得,a>−2 3,由②得,a<2,所以,a的取值范围是−23<a<2.解题秘籍:本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2018•南通三模)若关于x+x13>0+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.思路引领:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.+x13>0①+5a+4>4(x+1)+3a②,由①得:x>−2 5,由②得:x<2a,则不等式组的解集为:−25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤3 2,故答案为:1<a≤3 2.解题秘籍:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
一元一次不等式试题(大全5篇)
一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。
【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。
故选A。
11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。
【考点】解一元一次不等式组。
【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。
⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。
故选A。
12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。
【考点】解一元一次不等式组。
【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。
∵此不等式组有解,∴a﹣1<2,解得a<3。
故选B。
20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。
30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。
一元一次不等式(组)计算类练习(带解析)
一元一次不等式(组)计算类练习(带解析)1.解不等式组.2.解不等式:.2.解不等式(组):(1)解不等式2x+3>7;(2)解不等式组.3.解下列不等式(组):(1)3x﹣4>2;(2).5.解下列一元一次不等式组,并把不等式组的解在数轴上表示出来.6.解不等式(组):(1)2x+3>﹣5;(2).7.解不等式组并把解集在数轴上表示出来.8.解不等式组:.9.解下列不等式(组):(1)2x﹣1>x﹣3;(2).10.解下列不等式(组):(1)3x﹣6≥x;(2).11.解下列不等式(组):(1)5x+3<3(2+x)(2)12.解不等式组,并求出它的非负整数解.13.解下列不等式(组),并把解集在数轴上表示出来.(1)解不等式:5x+3<3(2+x).(2)解不等式组:.14.求不等式组的最大整数解.15.解不等式组,并将解集在数轴上表示出来.16.求不等式组的正整数解.17.解不等式组,并把解集在数轴上表示.18.解不等式组:,并把解集在数轴上表示出来.19.解不等式(组):(1);(2).19.(1)解不等式≥1;(2)解不等式组.21.解一元一次不等式组,并把解表示在数轴上.22.解不等式组:.23..24..25.解不等式(组),并把解集在数轴上表示出来.(1)1+2(x﹣1)≤5;(2).26.解下列不等式和不等式组:(1)2(x+1)>3x﹣4;(2).27.解下列不等式(组):(1)10﹣5(2x﹣1)≥3﹣x;(2).28.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.29.解不等式组,并写出它所有的整数解.30.解不等式组:,并把不等式组的解集表示在数轴上.31.解不等式组:,并求出不等式组的整数解.32.解不等式组.33.解不等式组,并写出它的所有整数解.34.解不等式组,并写出这个不等式组的非负整数解.35.解不等式组:,并写出它的最大整数解.36.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.。
一元一次不等式与因式分解练习题
1、下列不等式一定成立的是( )A .a a 34>B .a a 2->-C .x x -<-43D .aa 23> 2、下列不等式解法正确的是( )A .如果221>-x ,那么1-<x .B .如果x x 3223->,那么0<x .C .如果33-<x ,那么1->x .D .如果0311<-x ,那么0>x .3、三个连续自然数的和小于11,这样的自然数组共有( )组 A .1 B .2 C .3 D .44、如果不等式 ⎩⎨⎧><m x x 8无解,那么m 的取值范围是( )A .m>8B .m ≥8C .m<8D .m ≤8 5、若|2 x -5|=5-2 x ,则x 的取值是 ( )A. x >25B. x ≥25C. x <25D. x ≤256、不等式组⎪⎩⎪⎨⎧<->+x x x 410316103的最小整数解是( )A.-4B.-3C.-2D.77、如图1,在数轴上所表示的是哪一个不等式的解集( ) A.121->x B.323-≥+x C.11-≥+x D.42>-x 8、使代数式129+-x 的值不小于代数式131-+x 的值,则x 应为( ) A 、x >17 B 、x ≥17 C 、x <17 D 、x ≥279、右图为一次函数323+-=x y 的图象,当-3<y <3时,x 的取值范围是( )A 、x >4B 、0<x <2C 、0<x <4D 、2<x <410、若直线y =x +k 与直线y =-21x +2的交点在y 轴右侧,则k 的取值范围是( )A 、-2<k <2B 、-2<k <0C 、k >2D 、k <2 11、若n mx x ++2是一个完全平方式,则n m 、的关系是 12、若⎩⎨⎧-=--=+.3,1b a b a ,则a 2-b 2=13、如果。
解一元一次不等式专项练习50题(有答案)-不等式去分母的题
解一元一次不等式专项练习50题(有答案)-不等式去分母的题1.解:去分母得 3(x+1)。
2x+6,去括号得 3x+3.2x+6,移项合并同类项得 x。
3,因此不等式的解集为 x。
3.2.解:去分母得 x+1-2(x-1) ≤ 2,化简得 -x ≤ -1,两边同乘-1得x ≥ 1,因此不等式的解集为x ≥ 1.3.解:去分母得 2(x+4)-6.3(3x-1),化简得 2x+8-6.9x-3,移项合并同类项得 -7x。
-5,化系数为1得 x < 5/7.4.解:去分母得 3x+6.-1,因此不等式的解集为 x。
-1.5.解:去分母得6x+2(x+1) ≤ 6-(x-14),化简得8x+8 ≤ 20-x,移项合并同类项得9x ≤ 12,因此不等式的解集为x ≤ 4/3.6.解:去分母得 2(2x-3)。
3(3x-2),化简得 4x-6.9x-6,移项合并同类项得 -5x。
0,化系数为1得 x < 0.7.解:去分母得 3(3x-4)+30 ≥ 2(x+2),化简得 9x-12+30 ≥2x+4,移项合并同类项得7x ≥ -14,化系数为1得x ≥ -2.8.解:将原不等式化简得:x-3<24-2(3-4x)。
x-3<24-6+8x。
x<21。
x>-3.9.解:将原不等式化简得:6(3x-1)<(10x+5)-6。
8x>=-16。
x>=-2.10.解:将原不等式化简得:3(x+1)-8>4(x-5)-8x。
3x+3-8>4x-20-8x。
7x>-15。
x>-15/7.11.解:将原不等式化简得:x+5-2<3x+2。
x-3x<2+2-5。
2x<-1。
x>1/2.12.解:将原不等式化简得:3(x+1)>=2(2x+1)+6。
3x+3>=4x+2+6。
x>=5。
x<=-5.13.解:将原不等式化简得:2(2x-1)-24>-3(x+4)。
解一元一次不等式专项练习50题(有答案)
解一元一次不等式专项练习50题(有答案)1.,2.﹣(x﹣1)≤1,3.﹣1>.4.x+2<,5..6.,7.≥,8.9.10.>,11.,12..第1 页共7 页14. 3x ﹣,15.3(x﹣1)+2≥2(x﹣3).16.,17.10﹣4(x﹣4)≤2(x﹣1),18.﹣1<.19..21.,22.,23.≥.24.>1.25..26.,28.;29..30.≤31.,32.(x+1)≤2﹣x33.2(5x+3)≤x﹣3(1﹣2x)35.;36..37..38.4x+3≥3x+5.39.2(x+2)≥4(x﹣1)+7.40.>x﹣141.2(3﹣x)<x﹣3.42.3(x+2)≤5(x﹣1)+7,43.1﹣≥44.2(x+3)﹣4x>3﹣x.45.2(1﹣2x)+5≤3(2﹣x)46.,47..48.2﹣>3+.49.4(x+3)﹣<2(2﹣x)﹣(x ﹣)50..解不等式50题参考答案:1.解:去分母得:3(x+1)>2x+6,去括号得:3x+3>2x+6,移项、合并同类项得:x>3,∴不等式的解集为x>32.解:去分母得:x+1﹣2(x﹣1)≤2,∴x+1﹣2x+2≤2,移项、合并同类项得:﹣x≤﹣1,不等式的两边都除以﹣1得:x≥13.解:去分母得2(x+4)﹣6>3(3x﹣1),去括号得2x+8﹣6>9x﹣3,移项得2x﹣9x>﹣3﹣8+6,合并同类项得﹣7x>﹣5,化系数为1得x <4.解;x+2<,去分母得:3x+6<4x+7,移项、合并同类项得:﹣x<1,不等式的两边都除以﹣1得:x>﹣1,∴不等式的解集是x>﹣15.解:去分母,得6x+2(x+1)≤6﹣(x﹣14)去括号,得6x+2x+2≤6﹣x+14…(3分)移项,合并同类项,得9x≤18 …(5分)两边都除以9,得x≤26.解:去分母得:2(2x﹣3)>3(3x﹣2)去括号得:4x﹣6>9x﹣6移项合并同类项得:﹣5x>0∴x<07.解:去分母得,3(3x﹣4)+30≥2(x+2),去括号得,9x﹣12+30≥2x+4,移项,合并同类项得,7x≥﹣14,系数化为1得,x>﹣28.解:x﹣3<24﹣2(3﹣4x),x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,x>﹣39.解:化简原不等式可得:6(3x﹣1)≤(10x+5)﹣6,即8x≥﹣16,可求得x≥﹣210.解:去分母,得3(x+1)﹣8>4(x﹣5)﹣8x,去括号,得3x+3﹣8>4x﹣20﹣8x,移项、合并同类项,得7x>﹣15,系数化为1,得x >﹣11.解:去分母,得x+5﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,化系数为1,得x >12.解:去分母,得3(x+1)≥2(2x+1)+6,去括号,得3x+3≥4x+2+6,移项、合并同类项,得﹣x≥5,系数化为1,得x≤﹣513.解:去分母,得2(2x﹣1)﹣24>﹣3(x+4),去括号,得4x﹣2﹣24>﹣3x﹣12,移项、合并同类项,得7x>14,两边都除以7,得x>214.解:去分母得,6x﹣1<2x+7,移项得,6x﹣2x<7+1,合并同类项得,4x<8,化系数为1得,x<215.解:3(x﹣1)+2≥2(x﹣3),去括号得:3x﹣3+2≥2x﹣6,移项得:3x﹣2x≥﹣6+3﹣2,解得:x≥﹣516.解:去分母得:2(x﹣1)﹣3(x+4)>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12,移项得:2x﹣3x>﹣12+2+12,合并得:﹣x>2,解得:x<﹣217.解:去括号得:10﹣4x+16≤2x﹣2,移项合并得:﹣6x≤﹣28,解得:x ≥18.解:去分母得,3(x+5)﹣6<2(3x+2),去括号得,3x+15﹣6<6x+4,移项、合并同类项得,5<3x,把x的系数化为1得x >.19.解:∵∴3(x+5)﹣6<2(3x+2)∴3x+15﹣6<6x+4∴3x﹣6x<4﹣15+6∴﹣3x<﹣5∴x20.解:去分母得30﹣2(2﹣3x)≤5(1+x),去括号得30﹣4+6x≤5+5x,移项得6x﹣5x≤5+4﹣30,合并得x≤﹣2121.解:去分母得,2(2x﹣1)﹣6x<3x+3,去括号得,4x﹣2﹣6x<3x+3,移项得,4x﹣6x﹣3x<3+2,合并同类项得,﹣5x<5,系数化为1得,x>﹣1.故此不等式的解集为:x>﹣122.解:去分母得,2(2x﹣5)>3(3x+4)+18,去括号得,4x﹣10>9x+12+18,移项得,4x﹣9x>12+18+10,合并同类项得,﹣5x>40,系数化为1得,x<﹣823.解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣724.解:原不等式可变为:2(x+4)﹣3(3x﹣1)>6,2x+8﹣9x+3>6,﹣7x>﹣5,x <25.解:原不等式可化为,6(2x﹣1)≥10x+1,去分母得,12x﹣6≥10x+1,合并同类项得,2x≥7,把系数化为1得,x ≥26.解:去分母得,2(2x﹣1)﹣6≤3(5x﹣1),去括号得,4x﹣2﹣6≤15x﹣3,移项得,4x﹣15x≤﹣3+2+6,合并同类项得,﹣11x≤5,化系数为1得,x≥﹣27.解:去分母,得32﹣2(3x﹣1)≥5(x+3)+8;去括号,得32﹣6x+2≥5x+15+8;移项,得﹣6x﹣5x≥15+8﹣32﹣2;合并同类项,得﹣11x≥﹣11;系数化为1,得x≤128.解:(1)在不等式的左右两边同乘以2得,(3﹣x)﹣6≥0,解得:x≤﹣3,29. (2)在不等式的左右两边同乘以12得,6(2x﹣1)﹣4(2x+5)<3(6x﹣7),解得:x30.解:不等式两边都乘以8得,32﹣2(3x﹣1)≤5(x+3)+8,去括号得,32﹣6x+2≤5x+15+8,移项得,11≤6x+5x,∴x≥131.解:∵,∴12x﹣6﹣8x﹣20<18x﹣21﹣12,∴14x>7,∴32.解:不等式两边同时乘以2,得:x+1≤4﹣2x,移项,得:x+2x≤4﹣1,合并同类项,得:3x≤3,解得:x≤133.解:去括号得,10x+6≤x﹣3+6x,移项合并同类项得,3x≤﹣9,解得x≤﹣334.解:去分母,得3(x+2)≤4﹣x+6(2分)去括号,得3x+6≤4﹣x+6移项,得3x+x≤4+6﹣6(4分)合并同类项,得4x≤4两边同除以4,得x≤135.解:(1)去分母,得5(x﹣1)>2(3x+1),去括号,得5x﹣5>6x+2,移项,得5x﹣6x>2+5,合并同类项,得﹣x>7,系数化为1,得x<﹣7.36. 去分母,得5(3x+1)﹣3(7x﹣3)≤30+2(x﹣2),去括号,得15x+5﹣21x+9≤30+2x﹣4,移项,得15x﹣21x﹣2x≤30﹣4﹣5﹣9,合并同类项,得﹣8x≤12,系数化为1,得x≥﹣1.537.解:原不等式的两边同时乘以4,并整理得x﹣7<3x﹣2,移项,得﹣2x<5,不等式的两边同时除以﹣2(不等式的符号的方向发生改变),得x >,故原不等式的解集是x >38.4x+3≥3x+5.解:移项、合并得x≥2.39.解:2(x+2)≥4(x﹣1)+7,2x+4≥4x﹣4+7,2x﹣4x≥﹣4+7﹣4,﹣2x≥﹣1,40.解:去分母得1+2x>3x﹣3,移项得2x﹣3x>﹣3﹣1,合并同类项得﹣x>﹣4,解得x<441.解:去括号,得6﹣2x<x﹣3,移项、合并同类项,得﹣3x<﹣9,化系数为1,得x>342.解:去括号得,3x+6≤5x﹣5+7,移项得,3x﹣5x≤2﹣6,合并同类项得,﹣2x≤﹣4系数化为1,得x≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3x+1≥2x+2,移项、合并同类项,得5x≤5,不等式的两边同时除以5,得x≤144.解:去括号,得:2x+6﹣4x>3﹣x,移项,得:2x﹣4x+x>﹣6,合并同类项,得:﹣x>﹣6,则x<645.解:去括号,得:2﹣4x+5≤6﹣3x,移项,得:﹣4x+3x≤6﹣2﹣5,合并同类项,得﹣x≤1,解得x≥﹣146.解;去分母得:x+1﹣6≤6x移项得:x﹣6x≤6﹣1合并同类项得:﹣5x≤5系数化1得:x≥﹣147.解:去分母得:7x+4﹣12>12(x+1),去括号得:7x+4﹣12>12x+12,移项得:7x﹣12x>12+12﹣4,合并同类项得:﹣5x>20,系数化为1得:x<﹣448.解:去分母得:16﹣(3x﹣2)>24+2(x﹣1)16﹣3x+2>24+2x﹣2﹣3x﹣2x>24﹣2﹣16﹣2﹣5x>4x <﹣49.解;去括号得,4x+12﹣<4﹣2x﹣x+,移项合并同类项得,7x<﹣1,把x的系数化为1得,x <﹣,50.解:不等式的两边同时乘以12,得3(x+1)﹣2(2x﹣3)≤12,即﹣x+9≤12,不等式的两边同时减去9,得﹣x≤3,不等式的两边同时除以﹣1,得x≥﹣3,∴原不等式的解集是x≥﹣3。
人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________ (2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)20x -= ;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)先求出不等式组的解集,求出不等式组的整数解,再写出方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)解方程3x ﹣1=0得:x =13,解方程23x +1=0得:x =﹣32,解方程x ﹣(3x +1)=﹣5得:x =2,解不等式组25312x x x x -+-⎧⎨--+⎩>>得:34<x <72,所以不等式组25312x xx x-+-⎧⎨--+⎩>>的关联方程是③.故答案为③;(2)解不等式组112132xx x⎧-⎪⎨⎪+-+⎩<>得:14<x<32,这个关联方程可以是x﹣1=0.故答案为x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+12)得:x=2,解不等式组22x x mx m-⎧⎨-≤⎩<得:m<x≤2+m.∵方程3﹣x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m-⎧⎨-≤⎩<的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.【点睛】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式组等知识点,能理解关联方程的定义是解答此题的关键.92.(1)分解因式:3x3﹣27x;(2)解不等式组:21111(21)3x xx x+>-⎧⎪⎨-≤-⎪⎩【答案】(1)3x(x+3)(x﹣3);(2)不等式组的解集为﹣2<x≤3.【解析】分析:(1)先提取公因式3x,再利用平方差公式分解可得;(2)分别求出各不等式的解集,再求出其公共解集.详解:(1)原式=3x(x2-9)=3x(x+3)(x-3);(2)解不等式①,得:x >-2,解不等式②,得:x ≤2,则不等式组的解集为-2<x ≤2.点睛:本题考查的是因式分解和解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.93.解不等式组:426113x x x x >-⎧⎪+⎨≥-⎪⎩,并把解集表示在数轴上.【答案】32x -<≤,将不等式组解集表示在数轴上如图见解析.【解析】【分析】先分别解不等式,再求不等式组的解集,再在数轴上表示解集.【详解】解:解不等式426x x >-,得:3x >-, 解不等式113x x +≥-,得:2x ≤, ∴不等式组的解集为:32x -<≤,将不等式组解集表示在数轴上如图:【点睛】本题考核知识点:解不等式组.解题关键点:分别求不等式的解集.94.(1)计算:2sin45°+(π﹣1)0﹣2|;(2)解不等式组:35131 212 x xxx-<+⎧⎪⎨--≥⎪⎩【答案】(1)1;(2)不等式组的解集为1≤x<3.【解析】分析:(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.详解:(1)原式=2×2+1﹣+1=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥312x-,得:x≥1,则不等式组的解集为1≤x<3.点睛:本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.95.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x6=0-的解为x=3,不等式组x20,x5->⎧⎨<⎩的解集为2x5<<,因为235<<,所以,称方程2x6=0-为不等式组x20,x5->⎧⎨<⎩的关联方程.(1)在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号) (2)若不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<,>的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程21+2x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m-⎧⎨-≤⎩<,的关联方程,求m 的取值范围. 【答案】(1)③;(2)答案不唯一,只要所给一元一次方程的解为1x =即可,如方程:211x -=(3)m 的取值范围是1≤m <2.【解析】分析:(1)求出所给的3个方程的解及所给不等式组的解集,再按“关联方程”的定义进行判断即可;(2)先求出所给不等式组的整数解,再结合“关联方程”的定义进行分析解答即可;(3)先求出所给不等式组的解集和所给的两个方程的解,再结合“关联方程的定义”和“已知条件”进行分析解答即可.详解:(1)解方程 ①520x -=得 :25x =;解方程②3104x +=得:43x =-; 解方程③()315x x -+=-得:2x =;解不等式组 2538434x x x x ->-⎧⎨-+<-⎩ 得:735x <<, ∵上述3个方程的解中只有2x =在735x <<的范围内, ∴不等式组 2538434x x x x ->-⎧⎨-+<-⎩的关联方程是方程③; (2)解不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<>得:1594x <<, ∴原不等式组的整数解为1,∵原不等式组的关联方程的解为整数,∴解为1x =的一元一次方程都是原不等式组的关联方程,∴本题答案不唯一,如:211x -=就是原不等式组的一个关联方程;(3)2? 2? x x m x m -⎧⎨-≤⎩<①② 解不等式①,得:x >m ,解不等式②,得:x ≤m+2,∴原不等式组的解集为m <x ≤m+2,解方程:2x-1= x+2得:x=3,解方程:1322x x ⎛⎫+=+ ⎪⎝⎭ 得:x=2, ∵方程2x-1= x+2和方程方程1322x x ⎛⎫+=+ ⎪⎝⎭都是原不等式组的关联方程, ∵2x =和3x =都在m <x ≤m+2的范围内,∵m 的取值范围是1≤m <2.点睛:“读懂题意,理解“关联方程”的定义,熟练掌握一元一次不等式组的解法”是解答本题的关键.96.解不等式组:3(1)5192.4x x x x -≤+⎧⎪⎨-<⎪⎩, 【答案】-2≤x <1.【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式①,得:x ≥-2.解不等式②,得:x <1.∴不等式组的解集为-2≤x <1.点睛:熟练掌握“解一元一次不等式组的一般步骤及确定不等式组解集的方法:同大取大;同小取小;大小小大,中间找;大大小小,找不了(无解)”是解答本题的关键.97.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩. 【答案】23x -<<.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()311922x x x x ⎧+>-⎪⎨+>⎪⎩①②由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.98.解不等式组:()()202130x x x -≤⎧⎨---⎩> 【答案】-1<x ≤2.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()202130x x x ,①>,②-≤⎧⎪⎨---⎪⎩解不等式∵得:x ≤2 ,解不等式由∵得:x > –1,∴原不等式组的解集为:-1<x ≤2.点睛:熟记“解一元一次不等式组的方法和一般步骤”是解答本题的关键.99.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可. 详解:解不等式x+3≥2x-1,可得:x ≤4;解不等式3x-5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.100.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. 【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可. 详解:解不等式12(x+1)≤2,得:x ≤3, 解不等式2323x x ++≥,得:x ≥0, 则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=6.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
押广东省卷第11-15题(因式分解、二次根式的运算、一元二次方程、不等式的应用、图形面积)(解析版)
押广东省卷第11-15题押题方向一:因式分解3年广州省卷真题考点命题趋势2023年广州省卷第11题因式分解从近年广州省卷中考来看,因式分解是近几年广州深圳的常考题,考查比较简单;预计2024年广州省卷还将继续重视因式分解的考查。
1.(2023·广东·中考真题)因式分解:2.9x -=.【答案】()()33x x -+【分析】本题考查了因式分解,根据算术平方根因式分解,即可求解.【详解】解:29x -=()()33x x -+,故答案为:()()33x x -+.因式分解是核心考点,常在填空题中出现。
多项式的因式分解,先提取公因式,再利用平方差、完全平方公式分解即可.1.因式分解:22024-=x x .【答案】()2024-x x 【分析】本题考查了分解因式.根据式子的特点将公因数提取出来即可.【详解】解:22024x x -式子中含有公因数x ,∴()220242024x x x x -=-,故答案为:()2024-x x .2.分解因式2363a a -+的结果是.【答案】()231a -/()231a -+【分析】本题考查了综合提取公因式法和公式法因式分解,解题的关键是正确找出公因式,熟练掌握完全平方公式()2222a b a ab b +=++.先提取公因式3,再利用完全平方公式进行因式分解即可.【详解】解:2363a a -+()2321a a =-+()231a =-,故答案为:()231a -.3.因式分解:()()224ax y b y x -+-=.【答案】()()()22x y a b a b -+-【分析】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.先提取公因式,再用平方差公式分解.【详解】解:()()224ax y b y x -+-()()224a x y b x y =---()()224x y a b =--()()()22x y a b a b =-+-.故答案为:()()()22x y a b a b -+-.6,7x y x y +=-=,则22.【答案】42【分析】本题考查因式分解,代数式求值,利用平方差公式法进行因式分解后,代值计算即可,掌握平方差公式法因式分解,是解题的关键.【详解】解:∵6,7x y x y +=-=,∴()()226742x y x y x y -=+-=⨯=;故答案为:42.5.若5x y -=,6xy =则22x y xy -=,2222x y +=.【答案】3074【分析】第一个空先利用提公因式法因式分解,再代入计算即可;第二个空利用完全平方公式变形后,代入计算即可.【详解】解:22()6530x y xy xy x y -=-=⨯=;()222222()22251274x y x y xy ⎡⎤+=-+=⨯+=⎣⎦.故答案为:30,74.【点睛】本题考查代数式求值,掌握因式分解法和熟练利用完全平方公式是解题关键.押题方向二:二次根式的运算3年广东省真题考点命题趋势2023年广东省卷第12题二次根式的运算从近年广东省中考来看,二次根式的运算是常考题型,难度简单;预计2024年广东省卷还将继续重视对二次根式的运算的考查。
因式分解专题
因式分解专类型一.整除问题1、-X205.75 +1X(-2.25) + ix6.5 能被35 整除吗?2、199,一199能被298整除吗?能被100整除吗?3、若多项式x2 + px+\2能被x + 3整除,求p的值4、320,5-4X320,4+10X32013能被7 整除吗?为什么?5、已知n为整数,证明:⑺+ 13)2—川能被13整除。
6、已知5"-1能被070之间的数整除,求这两个数类型二、提公因式法分解因式A组题1、16严-张"3、m2(a - 2) + m(2 - a) 5、Sab2 -16aV7、6x4y3-3x2y2z-2x3y22、兰肿+%c27 94、Q(x_y)_x(y6、-lOx2y-5xy2 +15xy 8、—30+2+9/22—27F9、3x(x_y)‘_6y(y _x)“10 x 4"(“ —b)‘ -6b(b-af11> a(x- y) -b(y-x) + c(x- y)12、x2y2 {m - /?) - xy(n -m)B组题d(x+y-z)-b(z-x-y)-c(x-z + y)2、ax(a _b +1)_ay(a _Z? +1) _az(b_a _ 1)3、(b-a)(z一y - x) - (a-b)(2x+y _ z) _ (a -b)(y - 2x)类型三.公式法分解因式A组题一、平方差分解因式1、(l)t/2-4b2(2)一/+*,(6)4/ -64 (4)(2x-3y)2-4x2(5)9X2-812、(V)3m(2x—y)2 -3mn2(2)(x + 2)(x + 3) + x,-4(3)t/2 -Z?2+ac+bc(4)x5y-xy5二、完全平方分解因式lx (l)f/2-6a+ 9i 2(2)—nr +^nm + ir(3)y" +4y" +4(4)-i2xy-x2 - 36y2(5)3/ + 6a + 3 (6)4 + 12(x - y) + 9(x 一y)2 B组题1、(m + 7/)? + + n)2 + m2(m + n)类型三、十字相乘法A组题1、— 2x — 32、〃广一7〃2 +12 2、(x* — 2x)~ + 2(%2— 2兀)+13、(x+ y)2一6x2 + 6y2 + 9(x 一y)24、x2(r-l) + 2x(y2-l) + (r-l)3、5-4/z-n24、x2 _6小_7y25、3s —— 26、/ —5/+47、(x —2)~ —5(x —2) + 48、3ni一2 \m2 + 36m9、一3u'b一15crlr + 42cd>10、(x一y)2一2x + 2y - 3B组题1. X2-140.V +4875类型四.分组分解法A组题2、x+ y-xy-x23、ab-2a — 2b + 44、3ax一3ay —6by + 6bx 5. 2A2一X6、6xy2-9x2y-y23、(X + 1)4-4X (X + 1)2+4X 24、(x + y),-4(x + y-l)5、(X 2+3X )2-22(X 2+3X ) + 726、(x* — 2x)( — 2x + 2) + 1B 组题1、m + m 2 一 2/nn + n 2 一n3、4屛一/「一4〃? + 15、(x+y),+4(x+y + 4) 2、25(x — y)2 + 10y — 10x + l6、2x(x —3) —8类型五.换元法1、(x-y),-4(x-y) + 42、(F+2尸—12(/+2) + 367、(x,-4x)(+-4x + 6) + 5类型六.拆项、添项法例题1、分解因式:(1)疋一3% + 2类型七、二次三项式的分解例:6x 2 + 7xy + 2y 2-8x-5y+ 2 变式训练:1、x 2 +2xy-Sy 2 +2x + \4y-3变式训练:(1) x 4+x 2+l ⑵ x 4 + 64 ⑶ X 4-7X -2(2) X 4+4 (3) 2X 2+X -\2、3疋+5xy-2尸+x + 9y-4类型八.综合应用一、在方程、不等式中的应用A 组题2〃? _31.不解方程组{ ,求5〃(2加一仍2-2⑺一 2〃沪的值 4/?? + 3/7 = 12、解关于 x 的方程 5x(x — 2)—4(2 — x) = 0B 组题1. 已知:求X 的取值范围。
一元一次不等式、分解因式及分式的全面复习含经典例题
个性化教学辅导教案学科: 任课教师:刘老师授课时间:2013 年月日(星期) 姓名年级:初二教学课题前三章综合复习阶段基础()提高()强化()课时计划第()次课共()次课教学目标知识点:不等式、不等关系、分解因式、分式考点:不等式及其性质综合运用、分解因式、分式计算方法:讲练法重点难点重难点:不等式及其性质、分解因式的常用方法、分式基本性质教学内容与教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________一、作业检查与分析二、知识梳理第一章一元一次不等式和一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,cbca>.(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cbca<※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0三. 不等式的解集※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四. 一元一次不等式※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3. 解一元一次不等式的步骤:①去分母; ②去括号; ③移项;④合并同类项;⑤系数化为1(不等号的改变问题)※4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. ※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.一元一次不等式 解集 图示叙述语言表达 ⎩⎨⎧>>b x ax x>bba两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找⎩⎨⎧><b x ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. ※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+※2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ ※3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. ※2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.※4. 运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++※2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. ※3. 注意: 分组时要注意符号的变化. 五. 十字相乘法※1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= ,21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ ※2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++ab q b a p =+= ※3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. ba 11(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.※2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.)0(,≠÷÷=⨯⨯=M MB MA B A M B M A B A ※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即: BD AC D C B A =⋅, CB D ACD B A D C B A ⋅⋅=⋅=÷※2. 分式乘方,把分子、分母分别乘方.即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.※3. 分子与分母没有公因式的分式,叫做最简分式.三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. ※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减. (1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:CBA CBC A ±=±(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±※3. 概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小则首先对多项式进行因式分解. 四. 分式方程※1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2. 列分式方程解应用题的一般步骤:①审清题意; ②设未知数;③根据题意找相等关系,列出(分式)方程; ④解方程,并验根; ⑤写出答案.【课堂讲解】1. 当x= _____ 时,分式x+21有意义; 分解因式:a x 2-4ax+4a =______________;2. 不等式组⎩⎨⎧--≥)7(321,1x x x 的整数解集是3. 一次函数y= —x+2中,若y ﹥0,则x 的取值范围是 4. 若43==d c b a 则=++db c a 226.如果关于x 的方程31132--=-ax 有增根,则a 的值为7.如果不等式组 m x x x >-<+148 的解集是x>3,则m 的取值范围是( )A m ≥3B m ≤3C m=3D m <38.简便计算:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共计30分) 1、不等式234mx x -<+的解集是6
3
x m >
-,则m 的取值范围是( ) A 3m 、 B 、3m C 、3m - D 、3m -
2、关于x 的不等式组0
321x a x -≥⎧⎨->-⎩的整数解共有5个,则a 的取值范围( )
A 、a=—3
B 、—4<a <—3
C 、—4≤a <—3
D 、—4<a ≤—3
3、不等式组⎩⎨
⎧>-<3
1
2x a x 无解,则( )
A 、2<a
B 、2≤a
C 、1>a
D 、1≥a 4、方程组⎩⎨
⎧+=-=+1
2,
a y x a y x 的解0,0><y x y x 适合、,则a 的取值( ).
(A )3
1->a (B )1->a (C )3
11-<<-a (D )1-<a 5、如果2592
++kx x 是一个完全平方式,那么k 的值是( )
A. 15 ;
B. ±5;
C. 30;
D. ±30;
6、下列因式分解正确的是( )
A. B.
C.
D.
7、代数式4
81x -,2
9x - 与2
69x x -+的公因式为( ) A .3x +
B .2(3)x +
C .3x -
D .2
9x +
8、满足2
2
26100m n m n ++-+=的是( )
A .13m n ==,
B .13m n ==-,
C .13m n =-=,
D .13m n =-=-,
9、下列各式中,分式的个数为:( )
3x y -,21a x -,1
x π+,3a
b -,
1
2x y +,12
x y +,2123x x =-+; A 、5个; B 、4个; C 、3个; D 、2个;
10、小明通常上学时走上坡路,通常的速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时
A 、2n m +
B 、 n m mn +
C 、 n m mn +2
D 、mn n m +
二、填空题(每小题3分,共计30分)
11、分式3
92
--x x 当x __________时分式的值为零。
12、当≠x 时,分式
x
-13有意义。
当________________x 时,分式
8
x 32x +-无意义;
13、
m ,n 满足|2|0m +=,分解因式22()()x y mxy n +-+=
.
14、因式分解:944222
a b bc c -+-=_________
15、若||x x xy y -+-+=214
022,则x =_______,y =________
16、若a b ==9998,,则a ab b a b 22
255-+-+=_________
17、计算12798
012501254798....⨯-⨯=________ 18、已知关于x 的不等式组21
23
x a x b -<⎧⎨
->⎩的解集是-1<x<1,那么(a+1)(b-2)的值等于______.
19、若不等式组1,
21x m x m <+⎧⎨
>-⎩
无解,则m 的取值范围是______.
20、若不等式组2,20
x a b x ->⎧⎨
->⎩的解集是-1<x<1,则(a+b )2006
=______.
三、计算题(每小题4分,共计24分)
21、(1)3(1)(3)8,
211 1.32x x x x
-+--<⎧⎪+-⎨-≤⎪⎩(用数轴表示) (2)2(3)35(2)121132x x x x +≤--⎧⎪++⎨-<⎪⎩(用数轴表示)
(3)-8ax
2
+16axy-8ay 2 (4)(a 2-4a+4)-c 2
四、解答题(每小题6分,共计18分)
22、已知0253213=-+++-b a b a ,求不等式组⎪⎩⎪
⎨⎧>-+>--6)3(219)(72x b x a b x ax 的解集。
23、已知:96=a ,92=b ,求251010222++-+-b a b ab a 的值。
24、已知:多项式ax 2
+bx+c 可以分解为因式(x-2)(x+3)的积,试求(a-c)b 的值.
五、应用题(8分)
25、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李. (1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.
1.若k-12xy+9x 2
是一个完全平方式,那么k 应为( )
A.2
B.4
C.2y 2
D.4y 2
2.在实数范围内,下列多项式不能因式分解的有( )
①(4x 2-25); ②x 3+64x ; ③x 2+64; ④x 4
-64
A.②和③
B.③和④
C.①和③
D.仅③ 3.多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A.-a
B.))((b x x a a ---
C.)(x a a -
D.)(a x a -- 4.若22)32(9-=++x kx mx ,则m ,k 的值分别是( )
A.m=—2,k=6
B.m=2,k=12
C.m=—4,k=—12
D.m=4,k=12、
5.用分组分解法分解多项式x 2-y 2
+2y-1时,下列分组方法正确的是( )
A.(x 2-1)-(y 2-2y)
B.(x 2-y 2)+(2y-1)
C.x 2-(y 2-2y+1)
D.(x 2+2y)-(y 2
+1) 6、如果一元一次不等式组3x x a
>⎧⎨
>⎩的解集为3x >.则a 的取值范围是( )
A .3a >
B .a ≥3
C .a ≤3
D .3a <
7、若不等式组0,122
x a x x +⎧⎨
->-⎩≥有解,则a 的取值范围是( )
A .1a >-
B .1a -≥
C .1a ≤
D .1a <
8、不等式x x --<
-32
131
3的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个
9、下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)-≤-ac bc 22
中,能推出a>b 的有( )
A. 1个
B. 2个
C. 3个
D. 4个
10、若不等式组x x t
-<->⎧⎨
⎩10的解集是
x <1,则t 的取值范围是( )
A. t<1
B. t>1
C. t ≤-1
D. t ≥1
二、填空题(每题3分)
1、关于x 的不等式组12
x m x m >->+⎧⎨
⎩的解集是1x >-,则m = . 2、已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________. (2)若0b >,且2
2
5a b +=,则a b +=____________. 3、如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式
1
22
x kx b >+>-的解集为 . 4.若25)(162++-M b a 是完全平方式M=______ 5、若442
-+x x 的值为0,则51232
-+x x 的值是_____ 三、解答题(共55分)
(1)yz z y x 2222--- (2)2
ax a b ax bx bx -++--2
(3) 12222
2
++-+-ab b b a a (4)24)4)(3)(2)(1(-++++x x x x
2、(共10分)(1)解关于x 的不等式组()0
2114x k x k ->⎧⎪⎨+>-⎪⎩
(2)解不等式组2(2)33
1
3
4x x x x +≤+⎧⎪
⎨+<⎪⎩并写出不等式组的整数解.
3、(7分)已知c b a 、、是△ABC 的三边的长,且满足0)(222
2
2
=+-++c a b c b a ,试判断此三角形的形状。
6、(12分)某工厂有甲种原料360kg ,乙种原料290kg ,计划用这两种原料生产A 、B 两种产品共50件。
已知生产一件A 种产品,需用甲种原料9kg ,乙种原料3kg ,可获利润700元:生产一件B 种产品,需用甲种原料4kg ,乙种原料10kg ,可获利润1200元。
(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来。
(2)设生产A 、B 两种产品获总利润W (元),采用哪种生产方案获总利润最大?最大利润为多少?。