热质交换原理与设备习题答案第版
(完整版)《热质交换原理与设备》习题答案(第版)
流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,
由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:
16、解: CO2和N2在25 0C时,扩散系数 D 0.167 104 m2 / s
PA1 PA2 (100-50)103 13.6103 9.8 6664Pa
GA
NAA
D(PA1 PA2 ) RT z
1.67 105 6664
4
8314 2981
8.81011koml / s
18、解、该扩散为组分通过停滞组分的扩散过程
/
s
Re
uod v
4 0.08 15.53 106
20605
Sc
v D
15.53 106 0.25 104
0.62
用式子(2-153)进行计算
shm
0.023Re
S 0.83 c
0.44
0.023 206050.83
0.620.44
70.95
hm
shm D d
70.95 0.25104 0.08
0.0222m / s
1.293kg / m,3 1.72105 Pa s,
Pr 0.708, cp 1.005103 J /(kg k)
Sc
D
1.72 105 1.293 1.24 109
10727.74
由热质交换类比律可得
2
hm h
1 cp
《热质交换原理与设备》第三版习题答案
第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀); 质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
● 间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
● 直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
● 蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
● 热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
热质交换原理与设备课后习题答案
7.04 10 5 m / s
1)(第 3 版 P25)用水吸收氨的过程,气相中的 NH3 (组分 A)通过不扩散的空气
(组分 B),扩散至气液相界面,然后溶于水中,所以
D 为 NH3 在空气中的扩散。
2)刘易斯关系式只对空气 —— 水系统成立, 本题为氨 —— 空气系统, 计算时类比关 系不能简化。
Re uod v
4 0.08 15.53 10 6
20605
v 15.53 10 6 Sc D 0.25 10 4 0.62
用式子( 2-153)进行计算
shm
0.023
R 0.83 e
S 0.44 c
0.023 206050.83 0.620.44
4
hm shmD 70.95 0.25 10 0.0222m / s
热,使蓄热体壁温升高, 把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通
道壁放出的热量。
热管换热器是以热管为换热元件的换热器, 由若干热管组成的换热管束通过中隔板置于 壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,
热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础
3
D DO P0 T 2 0.2 10 4 P T0
3
350 2
273
0.29 10 4m2 / s
氢— 空气
DO 0.511 10 4m2 / s
3
D DO P0 T 2 0.511 10 4 P T0
3
350 2
273
0.742 10 4m2 / s
2-14 溶解度 s 需先转化成摩尔浓度:
CA1 sPA1 5 10 3 0.03 1.5 10 4 kmol / m3
《热质交换原理与设备》习题答案(第3版)
第二章 传质的理论基础3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273PPa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=52115233 1.5410/1.013210(25.6)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯错误!未找到引用源。
m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===第3章传热传质问题的分析和计算5、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mLL D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯6、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P=于是 325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=第四章 空气的热湿处理1、(1)大气是由干空气和一定量的水蒸汽混合而成的。
《热质交换原理与设备》习题答案分析
第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
热质交换原理与设备习题答案(供参考)
第一章 第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A A B B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c G J J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔ ③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m h h Le e φ-=⋅5:答:斯密特准则c i v S D = 表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c vS D a Le v Da ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 32000P T D D P T ⎛⎫= ⎪⎝⎭ (1)氧气和氮气:(2)氨气和空气:7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 用式子(2-153)进行计算设传质速率为A G ,则9、解:200C 时的空气的物性:(1)用式0.830.440.023m e c sh R S =计算m h(2)用式13340.0395e c sh R S =计算m h10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为; 由热质交换类比律可得11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s 查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=用式(2--153)计算设传质速率为A G ,则020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=∴ 代入上面的式子得:230.01193/A kg m ρ= 12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s 转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯===因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c L R S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s 每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=- 300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热 又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P =于是14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当020S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H O S S s P M kg RT ρ⨯===⨯当026t C ∞=,时定性温度为023,2s t t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅ 由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol m RT ===+16、解:(a )已知A M ,B M ,A x ,B x已知B a ,A a ,A M ,B M(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++ 若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动:(b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
《热质交换原理与设备》第三版习题答案
第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀); 质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
● 间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
● 直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
● 蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
● 热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
中石油《热质交换原理与设备》2019年春学期在线作业(一)试卷满分答案
中石油《热质交换原理与设备》2019年春学期在线作业(一)
一、单选题共20题,100分
1、( )反映了流体动量扩散能力与质量扩散能力的相对大小。
A普朗特准则数
B斯坦顿准则数
C施密特准则数
D舍伍德准则数
【答案选择】:C
2、当传质方向从流体主流到壁面,此时壁面上的导热量()。
[第3章第3节]
A正,减小为0
B正,增大
C负,减小
D负,增大
【答案选择】:D
3、下列关于绝热饱和温度说法错误的是( )。
A绝热饱和温度和湿球温度在数值上近似相等,而且物理的湿球温度比绝热饱和温度低。
B绝热饱和温度是指有限量的空气和水接触,接触面积较大,接触时间足够充分,在绝热的情况下,当湿空气达到饱和状态时,其温度不再降低时的温度。
C绝热饱和温度完全取决于进口湿空气及水的状态与总量,不受其它任何因素的影响,是湿空气的状态参数。
D绝热饱和温度与湿球温度物理概念不同。
【答案选择】:A
4、关于顺流和逆流换热器书法错误的是()。
[第1章]
A在相同进出口温度下,逆流比顺流平均温差大
B顺流时冷流体的出口温度一定小于热流体的出口温度
C逆流换热器高温部分集中换热器一端,对材料要求较高
D交叉流、混合流的对数平均温差先按照顺流方式计算,然后予以温度修正
【答案选择】:D
5、()反映了流体的边界扩散阻力与对流传质阻力之比。
[第2章第3节]。
热质交换原理与设备答案
第一章 第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c G J J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m hh Le e φ-=⋅5:答:斯密特准则c i v S D =表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c v S D a Le v D a ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰9、解:200C 时的空气的物性:353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯ 由热质交换类比律可得231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=33224400 1.0132980.22100.2510/1.0132273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭02220209.48/3.140.0253600 1.195360044u m s d πρ===⨯⨯⨯⨯⨯0e 9.480.025R 15488u d υ⨯===⨯-615.2951040.25100.61c D S υ-⨯⨯===-615.29510用式(2--153)计算0.830.440.830.440.0230.023154880.6155.66,m e c sh R S ==⨯⨯=4255.660.2410 5.56610/0.025m m sh D h m sd --⨯⨯===⨯设传质速率为A G ,则 20()()()4A m A s A A dG d dx h d u d ππρρρ⋅=-=21004A A lAm A s A du d dx h ρρρρρ⋅=-⎰⎰1204exp()A s A A A s m h du ρρρρ⋅⋅-=-020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=11AAdρρρ=-1330.003 1.1953.5710/110.003A d kg m d ρρ-⋅⨯∴===⨯++∴ 代入上面的式子得:230.01193/A kg m ρ=112.23/A Ad g kgρρρ==-12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mL L D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m AA S A n h ρρ⋅∞=- 300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时 ()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H Oh T T h n ∞-=其中fgh 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808SP =于是325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当20S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H OS S s P M kgRT ρ⨯===⨯2454.3/r kJ kg =1V d d ρρρ∞⋅==+当026t C ∞=,时定性温度为023,2st t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭()1S s m h d T T d rh ρρ∞⋅=--+ 41.19326200.0172712454700905910d d-⨯-=-+⨯⨯ d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol m RT ===+22N CO C C =222220.5N N CO N CO C x x C C ===+322544101.776/8314298CO iCO M P kg m RT ρ⨯⨯===⨯32252810 1.13/8314298N i N M P kg mRT ρ⨯⨯===⨯22220.611COCO CO Na ρρρ==+20.389N a =16、解:(a )已知A M ,B M ,A x ,B xA A A A AA AB A A B B A A B B M n M x M a M M n M n M x M x M ===+++ B B B B BB A B A A B B A A B B M n M x M a M M n M n M x M x M ===+++ 已知B a ,A a ,A M ,B MA A AAAA AB A B A B A B A Bm a n M M x m m a a n n M M M M ===+++B B BBBB AB A B A B A B A B m a n M M x m m a a n n M M M M ===+++(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++20.2692N a =20.4231CO a =若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++20.3982N x =20.2534CO x =17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
热质交换基本原理与设备习题集答案解析(第3版)
第一章绪论1答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在)热量传递:温度梯度的存在(或温度分布不均匀)质量传递:物体的浓度分布不均匀(或浓度梯度的存在)2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道, 热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小, 顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流, 但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端, 为了降低这里的壁温,有时有意改为顺流。
热质交换原理与设备第三版习题答案
AaV
2 L(r2 r1) ln r2
2
0.5103 ln 20
0.124m2
2-15、解、
r1
19.5
质量损失 GA 1.357 106 2 2.714 106 kg / s
16、解: CO2和N2在25 0C时,扩散系数 D 0.167 104 m2 / s
18、解、该扩散为组分通过停滞组分的扩散过程
1)柱形:
Aav
2L(r2 r1) ,V ln r2
1 d 2L 4
r1
球形:
Aav
4r1r2 ,V
4 d 3 3
2)d=100mm 为内径,所以 r1=50,r2=52 若为球形 Aav=0.033,质量损失速率为 1.46×10-12kg/s;压力损失速率 3.48×10-2Pa/s
2-12、解:
正解:组分 A 为 NH3,组分 B 为空气,空气在 0℃时物性参数查附录 3-1
8、解: CCO2
Pi RT
105 8314(273 25)
0.04036kmol / m 3
9、解:(a)已知 M A , M B , xA , xB
已知 aB , aA , M A , M B
aO2
(b)
x M O2 O2
整理得
NA
DP RT (P
PA )
dPA drGART dr 0 dPA分离变量,并积分得 4 DP r0 r 2
PAS P PA 得
第 3 章传热传质问题的分析和计算
1、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现 象。动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由 旋涡混合造成的流体微团的宏观运动引起的湍流传递)
(完整版)《热质交换原理与设备》习题答案(第版).doc
第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点, 即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
热质交换原理与设备复习题一及答案
一、填空题
1、流体的黏性、热传导和质量()通称为流体的分子传递性质。
2、将热质交换设备系统由于过程不可逆而产生的熵增与两种流体中热容量较大的流体的热容量之比称之为(),常用来作为热质交换设备的评价指标。
3、按不同的工作原理,热质交换设备可分为:()、()、蓄热式和热管式。
4、()是产生质交换的驱动力,质交换有两种基本方式为分子扩散和对流扩散。
2、浓度边界层:在流体表面处,存在一个浓度梯度很大的流体薄层区域,这个区域就称为浓度边界层。
换热扩大系数:在热湿交换中,把总热交换量与显热交换量之比称为换热扩大系数。
3、斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A和组分B发生扩散。其中组分A向组分B的扩散通量与组分A的浓度梯度成正比,这就是斐克定律。
7、水在冷却塔中进行蒸发冷却,其温度只能被冷却到空气的最初温度,此时水温称为水的冷却极限。()
8、表冷器用来减湿冷却,喷淋室可以完成除减湿冷却以外的所有空气处理过程。()
9、湿式冷却塔和喷淋室都属气水直接接触式热质交换设备,均是用来处理空气用的。()
10、预混燃烧热强度比扩散燃烧高很多,燃烧完全程度也高,燃烧火焰的稳定性也好,不易产生回火。()
4、析湿系数:在热湿交换中,把总热交换量与显热交换量之比称为换热扩大系数,也称为析湿系数。
四、简答题
1、
条件:(1)0.6<Pr<60;(2)0.6<Sc<3000;(3) ;(4)湍流
2、
意义:湿空气在冷却表面进行冷却降湿过程中,使空气主流与紧靠水膜饱和空气的焓差是热、质交换的推动势。
3、由于传质的存在,传质速率的大小和方向影响了壁面上的温度梯度,从而影响了壁面上的总传热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热质交换原理与设备习题答案第版Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
●间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
●直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
●蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
●热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
●逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
● 叉流式又称错流式,两种流体的流动方向互相垂直交叉。
● 混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
● 顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
第二章 传质的理论基础1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气: (2)氨气和空气:2-4、解:气体等摩尔互扩散问题×10−3=2.59×10−5kmol/m 2s R 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅用式子(2-153)进行计算设传质速率为A G ,则2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)(1)用式0.830.440.023m e c sh R S =计算m h(2)用式13340.0395e c sh R S =计算m h2-7、错解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为; 由热质交换类比律可得✧ 1)(第3版P25)用水吸收氨的过程,气相中的NH3(组分A )通过不扩散的空气(组分B ),扩散至气液相界面,然后溶于水中,所以D 为NH3在空气中的扩散。
✧ 2)刘易斯关系式只对空气——水系统成立,本题为氨——空气系统,计算时类比关系不能简化。
✧ 3)定压比热的单位是J/kgK正解:组分A 为NH3,组分B 为空气,空气在0℃时物性参数查附录3-1 ρ=1.293 kgm 3;c p =1.005kJ/kg?K8、解:325100.04036/8314(27325)i CO P C kmol mRT ===+9、解:(a )已知A M ,B M ,A x ,B x 已知B a ,A a ,A M ,B M(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++10、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
2-11、解;12()aVA A aV A A DA G N A C C z ==-∆21212()ln aV L r r A r r π-=✧ 1)柱形:L d V r r r r L A av 2121241,ln )(2ππ=-=球形:32134,4d V r r A av ππ==✧ 2)d=100mm 为内径,所以r 1=50,r 2=52若为球形A av =,质量损失速率为×10-12kg/s ;压力损失速率×10-2Pa/s2-12、解:9812310(0.020.005)() 1.510/()110A A A D N C C kmol m s z ---⨯-=-==⨯⋅∆⨯✧ 1)j A 为A 的质量扩散通量,kg/m 2s ;J A 为A 的摩尔扩散通量kmol/m 2s ; ✧ 2)题中氢氦分子量不同 2-13、解: 氨---空气 氢—空气2-14溶解度s 需先转化成摩尔浓度:2-15、解、3221212()20.5100.12420ln ln 19.5aV L r r A m r r ππ--⨯⨯===质量损失661.3571022.71410/AG kg s --=⨯⨯=⨯ 16、解:02225CO N C 和在时,扩散系数420.16710/D m s -=⨯18、解、该扩散为组分通过停滞组分的扩散过程整理得()A A A dP DPN RT P P dr =-- 分离变量,并积分得0024AS A Ar P AG RT dP dr DP r P P π∞=--⎰⎰得第3章传热传质问题的分析和计算1、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
2、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c GJ J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m hh Le e φ-=⋅3:答:斯密特准则c i v S D =表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c v S D a Le v D a ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系4、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s 查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ= 用式(2--153)计算 设传质速率为A G ,则020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=∴ 代入上面的式子得:230.01193/A kg m ρ=5、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s 转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯===因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时6、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h为水的蒸发潜热又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P =于是 3-7、三种方法✧ 1)含湿量是什么d 与相对湿度的区别 ✧ 2)主体空气为湿空气,其C f 不等于0。
✧ 2-14分析方法3解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当20S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H OS S sP M kgRT ρ⨯===⨯当026t C ∞=,时定性温度为023,2st t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭ d=12.5g/kg3-8、解:()A m A S A n h ρρ⋅⋅∞=-查表得当温度为270C 时,30.026446/A S kg m ρ⋅=3-9、解:(a )当温度为230C 时,A S ρ⋅=3/kg m 0A ρ⋅∞=(b) 2()170.270.0230.021214(10.5)0.075/4A m A S A S n h A kg sπρϕρ⋅⋅=-=⨯⨯⨯⨯⨯-=(c) 当温度为470C ,A S ρ⋅=3/kg m求h m 时需除以面积A3-10、解:320.1110 2.7810/3600A n kg s-=⨯⨯=⨯ 当温度为305K 时,A S ρ⋅=3/kg m11、解:244612()10(610510)10A m A A m h ρρ----=-=⨯⨯-⨯=第四章 空气的热湿处理1、(1)大气是由干空气和一定量的水蒸汽混合而成的。