平面向量基础试题(一)
平面向量经典试题(含答案)
平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
名校平面向量精选试题
第五章 平面向量一、基础题1.若向量)6,12(),2,4(),6,3(--==-=,则下列结论中错误的是( ) A .v u ⊥ B .w v //C .v u w 3-=D .对任一向量AB ,存在实数b a ,,使v b u a AB +=2.已知a =(-3,2),b =(-1,0),向量a λ+b 与a -2b 垂直,则实数λ的值为( ) A .71-B .71C .61- D .613.己知平面向量满足,与的夹角为60°,则“1m =”是 “()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是( ) A .4πB .2πC .43πD .π5.已知(2,)a m =,(1,)b m =-,若(2)a b b -⊥,则||a =( )A .4B .3C .2D .16.若向量)2,1(),1,1(),1,1(--=-==c b a ,则=c ( )A .2321--B .2321+-C .2123-D .2123+- 7.已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A .5B .10C .5D .25 8.若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为3π,则|a +b |=________. 9.把点A (2,1)按向量a =(-2,3)平移到B ,若2OB BC =-,则C 点坐标为_____.10.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()//a b c λ+,则λ的值为 . 11.向量,满足()(2)4a b a b -+=-,且,,则,夹角的等于______.12.已知)2,(cos x a =,)3,sin 2(x b = ,b a //,则=-x x 2cos 22sin .二.能力题13.定义:||||||sin a b a b θ⨯=,其中θ为向量a 与b 的夹角,若||2a =,||5b =,6a b ⋅=-,则||a b ⨯等于( )A .8-B .8C .8-或8D .614.已知向量),sin ,(cos θθ=向量),1,3(-=则|2|-的最大值、最小值分别是( ) A .24 ,0 B .4,24 C .16,0D .4,015.已知向量,,a b c 中任意两个都不共线,且a b +与c 共线, b c +与a 共线,则向量a b c ++=( )A .aB .bC .cD .016.若是所在平面内的一点,且满足()()0BO OC OC OA +-=,则一定是( )A .等边三角形B .等腰直角三角形C .直角三角形D .斜三角形 17.设Q P 、为△ABC 内的两点,且5121,2534AP AB AC AQ AB AC =+=+,则△ABP 的面积与△ABQ 的面积之比为 ( )A .58 B .35 C .54D .4518.已知|OP ―→|=1,|OQ ―→|=3,OP ―→⊥OQ ―→,点R 在△POQ 内,且∠POR =30°,OR ―→=m OP ―→+n OQ ―→(m ,n ∈R ),则mn等于( )A .13B .3C .33D . 319.向量)0,2(=a,b =(x ,y )若b 与b -的夹角等于6π,则b 的最大值为( )A .2B .32C .4D .334 20.在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .19 B .31C. 1D. 3 21.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = .三.拔高题22.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰三角形但不是等边三角形.23.函数y =tan(π4x -π2)的部分图像如图所示,则(OB ―→-OA ―→)·OB ―→=( )A .-4B .2C .-2D .424.在平面内,点A 、B 、C 分别在直线l 1、l 2、l 3上,l 1∥l 2∥l 3(l 2在l 1与l 3之间),l 1与l 2之间距离为1,l 2与l 3之间距离为2,且2AB =AB ―→·AC ―→,则△ABC 的面积最小值为( )A .4B .433C .2D .23325.在四边形ABCD 中,()1 1A B DC ==,,113BA BC BD BABCBD+=,则四边形ABCD 的面积为 .26.平面上的向量与满足24MA MB +=,且0=⋅,若点C 满足3231+=,的最小值为________.27.已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.28.已知向量2(2sin ,2sin 1),(cos ,3)444x x xm n =-=-,函数()f x m n =⋅. (1)求函数()f x 的最大值,并写出相应x 的取值集合; (2)若()3f πα+=,且(0,)απ∈,求tan α的值.29.已知向量2(cos,1),(3sin ,cos )222x x xm n =-=,设函数()f x m n =∙+12(1)若[0,]2x π∈,)(x f 求cos x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足2cos 2b A c ≤,求)(B f 的取值范围.30.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , q=(a 2,1),p=(c b -2, C cos )且q p //.求:(1)求sin A 的值; (2)求三角函数式1tan 12cos 2++-CC的取值范围.CACAB DC 8.7 9.)2,0( 10.21 11.0120 12.258- BDDCD BCA 21.6π ADC 25.3 26.4727.(Ⅲ)==,=1++=.28.29.解:(1)依题意得()sin()6f x x π=-,………………………………2分由[0,]2x π∈得:663x πππ-≤-≤,sin()063x π-=>,从而可得cos()63x π-=,………………………………4分则cos cos[()]cos cos()sin sin()66666626x x x x ππππππ=-+=---=-……6分(2)由2cos 2b A c ≤得:cos 2B ≥,从而06B π<≤,……………………10分故f(B)=sin(6B π-)1(,0]2∈- ………………………………12分30.。
平面向量单元测试题及答案
平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。
已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
第五章《平面向量》基础测试题.doc(最新)
平面向量测试题(一)选择题(第题5分,共50分)1.下列命题正确的是 ( ))(A 单位向量都相等 )(B 任一向量与它的相反向量不相等 )(C 平行向量不一定是共线向量 )(D 模为0的向量与任意向量共线2. 已知正六边形ABCDEF 中,若=a ,=b ,则= ( ))(A )(21b a - )(B )(21b a + )(C b a - )(D b a +213.计算BA CD DB AC +++等于( ).(A )0 (B ) (C )2 (D )24.若向量=(3,2),=(0,-1),则向量2-的坐标是( ).(A )(3,-4) (B )(-3,4) (C )(3,4) (D )(-3,-4) 5.已知点P 1(-2,4),P 2(5,3),点P 在P 1 P 2的延长线上,且 P P 1=2P P 2,则点P 的坐标为 ( ) A .(38,310) B .(310,38) C .(12,2) D .(2,12) 6.a ·b =0 是a =0或b =0的( )A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件 7.下列各组向量中,共线的是( ).(A )=(-2,3),=(4,6) (B )a =(1,-2),b =(7,14)(C )=(2,3),=(3,2) (D )=(-3,2),=(6,-4)8.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为( ).(A )5 (B )6 (C )7 (D )89.设|a|=1,|b|=2,且a 、b 夹角120°,则|2a +b|等于 ( )2 .A4 .B21 .C32 .D10.设s 、t 为非零实数,与均为单位向量时,若|s +t |=|t -s |,则与的夹角θ 的大小为( ).(A )30° (B )45° (C )60° (D )90°(二)填空题(每题4分,共20分)11.已知a )0,1(+=x ,b ),0(y x -=,c )1,2(=,则满足等式x c b a =+的x 、y 的值分别为 .12.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.13.已知点P 1(1,2),P 2(-2,1),直线P 1P 2与x 轴相交于点P ,则点P 分21P P 所成的比λ 的值为_____.()_.__________向量,则k的值为__且a与b为互相平行的,k,8b ,k ,29已知a 14.=⎪⎭⎫⎝⎛=15.把一个函数图像按向量)2,3(-=π平移后,得到的图象的表达式为2)6sin(-+=πx y ,则原函数的解析式为(三)解答题(16、17每题10分,18、19每题15分)16.已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求及D点坐标.17.已知点A 、B 的坐标分别为(2,-2)、(4,3),向量(21,2)a λ=- .按下列条件分别求λ的值(1)a AB ⊥ ; (2) //a AB ;(3) ||||a AB = 。
平面向量高考试题精选(含详细答案)
平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是.21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值X围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF与其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值X围是(0,]故答案:(0,]21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值X围是.。
高一数学平面向量基本定理试题答案及解析
高一数学平面向量基本定理试题答案及解析1.(本小题满分14分)在四边形中,已知,,.(1)若四边形是矩形,求的值;(2)若四边形是平行四边形,且,求与夹角的余弦值.【答案】(1)18;(2)【解析】(1)由四边形是矩形知,再通过构造三角形,利用向量加法与减法将,用和表示出来,利用向量数量积的运算法则求出的值;(2)过构造三角形,利用向量加法与减法将,用和表示出来,利用向量数量积的运算法则通过计算的值列出关于与数量积的方程,求出与数量积,再利用向量夹角公式求出与的夹角的余弦值.试题解析:(1)因为四边形是矩形,所以由得:,. 3分∴. 7分(2)由题意,∴10分又,∴,∴.又∴,即.(利用坐标法求解,同样给分) 14分考点:向量的加法运算;向量数量积的运算法则和性质;向量夹角;方程思想;转化与化归思想2.如图,在△中, ,是上的一点,若,则实数的值为( )A.B.C.D.【答案】C【解析】如下图,∵B,P,N三点共线,∴,∴,即,∴①,又∵,∴,∴②,对比①,②,由平面向量基本定理可得:.【考点】1.平面向量的线性运算;2.平面向量基本定理.3.下列命题中,正确的是.①平面向量与的夹角为,,,则;②已知,是平面内两个非零向量,则平面内任一向量都可表示为,其中;③已知,,其中,则;④是所在平面上一定点,动点P满足:,,则直线一定通过的内心.【答案】①③④【解析】①:,①正确;②:根据平面基本定理的描述,作为基底的两个向量必须保证不共线才行,②错误;③:∵,,其中,∴,③正确;④:由,又∵,∴平分,即直线一定通过的内心.【考点】1.平面向量基本定理;2.平面向量的线性运算;3.平面向量的数量积.4.如图,在平行四边形中,,,,则()(用,表示)A.B.C.D.【答案】D【解析】.【考点】平面向量的基本定理,三角形法则.5.在平面直角坐标系中,给定,点为的中点,点满足,点满足.(1)求与的值;(2)若三点坐标分别为,求点坐标.【答案】(1);(2)点的坐标为.【解析】先引入平面向量的基底,如,然后将分别用基底表示,最后得到,而另一方面,再根据平面向量的基本定理得到方程组,求解方程组即可;(2)先确定的坐标,设,再结合,得到,从而得到,求解即可得到点的坐标.试题解析:(1)设则 2分,,故 4分而由平面向量基本定理得,解得 6分(2)、、,由于为中点, 9分设,又由(1)知所以可得,解之得所以点的坐标为 12分.【考点】1.平面向量的线性运算;2.平面向量的基本定理;3.平面向量的坐标运算.6.如图,向量若则【答案】-.【解析】由题,BP=BA,所以BO+OP=(B0+OA),整理得OP=OA-OB+OB, OP=OA+OB,所以x=,y=,x-y=-.【考点】向量.7.若,且,则四边形的形状是________.【答案】等腰梯形【解析】,共线,所以平行且不等,又有,所以四边形为等腰梯形【考点】向量共线点评:若两向量共线,则满足关系式,由向量共线可判定直线平行8.已知,,当=时,(1) 与垂直;当=时, (2) 与平行。
平面向量测试题及答案
平面向量测试题及答案 This model paper was revised by LINDA on December 15, 2012.平面向量测试题一.选择题1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .MD .3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .4 5.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a 6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。
(常考题)北师大版高中数学必修四第二章《平面向量》测试(包含答案解析)(1)
【分析】
设 , ,设 ,则 ,由 ,得到 , ,再利用 ,得到 ,再设 ,得到 ,根据 ,可解得结果.
【详解】
因为 ,所以可设 , ,
设 ,则 ,
由 ,得 ,所以 ,
由 ,得 ,化简得 ,所以 ,
所以由 ,得 ,
所以 ,
设 ,则 ,所以 ,
所以 ,
由 ,得 ,解得 ,
所以 ,
所以 ,
所以 ,
故答案为: .
15.已知正方形 的边长为4,若 ,则 的值为_________________.
16.已知圆 , 点为圆上第一象限内的一个动点,将 逆时针旋转90°得 ,又 ,则 的取值范围为________.
17.已知平面非零向量 ,满足 且 ,已知 ,则 的取值范围是________
18. 中, , ,且 ,则 ______.
6.C
解析:C
【详解】
由题意可得 ,所以 ,又因为 ,所以 ,选C.
7.B
解析:B
【分析】
根据方程有实根得到 ,利用向量模长关系可求得 ,根据向量夹角所处的范围可求得结果.
【详解】
关于 的方程 有实根
设 与 的夹角为 ,则
又
又
本题正确选项:
【点睛】
本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.
此时,符合条件的点 有 个.
综上所述,满足题中条件的点 的个数为 .
故选:D.
【点睛】
本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.
9.B
解析:B
【分析】
由 知, ,根据平面向量的线性运算可推出
平面向量经典测试题
平面向量测试题新泰一中闫辉一.选择题(5分×10=50分)1.下列命题中正确的是( )A.单位向量都相等B.长度相等且方向相反的两个向量不一定是共线向量C.若a,b满足|a|>|b|且a与b同向,则a>bD.对于任意向量a、b,必有|a+b|≤|a|+|b|2.下列向量给中,能作为表示它们所在平面内所有向量的基底的是()A.e1=(0,0), e2 =(1,-2) ; B.e1=(-1,2),e2 =(5,7);C.e1=(3,5),e2 =(6,10); D.e1=(2,-3) ,e2 =3.如果e1、 e2是平面α内两个不共线的向量,那么在下列各说法中错误的有()①λe1+μe2(λ, μ∈R)可以表示平面α内的所有向量;②对于平面α中的任一向量a,使a=λe1+μe2的λ, μ有无数多对;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数k,使λ2e1+μ2e2=k(λ1e1+μ1e2);④若实数λ, μ使λe1+μe2=0,则λ=μ=0.A.①② B.②③ C.③④ D.仅②4.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3)若点C(x, y)满足=α+β,其中α,β∈R且α+β=1,则x, y所满足的关系式为()A.3x+2y-11=0 B.(x-1)2+(y-2)2=5 C.2x-y=0 D.x+2y-5=05.已知是所在平面内一点,为边中点,且,那么( )A.B.C.D.6.若三点P(1,1),A(2,-4),B(x,-9)共线,则( )A.x=-1B.x=3C.x=D.x=517.设四边形ABCD中,有=,且||=||,则这个四边形是( )A.平行四边形B.矩形C.等腰梯形D.菱形8.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是( )A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a)9.三角形ABC,已知=a,=b,=3,用a,b表示,则等于( ) A.a+b B.a+b C.a+b D.a+b10.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且=a,=b,=c,则下列各式:①c -b②=a+b ③a+b ④=0其中正确的等式的个数为( )A.1B.2C.3D.4二.填空题(4分5=20分)11.已知A(2,3),B(1,4)且=(sinα,cosβ), α,β∈(-,),则α+β=12.已知ABCDEF为正六边形,且=a,=b,则用a,b表示为______.13.e1,e2不共线,当k=_____时,a=k e1+e2,b=e1+k e2共线.14.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,,,则的值为 2三.解答题(10分×5=50分)15.(10分)如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB的中点,已知=a,=b,试用a、b分别表示、、。
此处试题- 测试1 平面向量1
测试1 平面向量11.若AB =(2,4),AC =(1,3),则BC = ( ) A .(1,1) B .(-1,-1)C .(3,7)D .(-3,-7)2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |= ( )A .1B .2C .2D .43.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b = ( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4)4.在△ABC 中,b AC c AB ==,.若点D 满足DC BD 2=,则=AD ( )A .c b 3132+ B .b c 3235-C .c b 3132-D .c b 3231+ 5.已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线测试2 平面向量21.向量a ·c =b ·c 是a =b 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知D 、E 、F 分别是三角形ABC 的边长的边BC 、CA 、AB 的中点,且c b a ===AB CA BC ,,,则①b c 2121-=EF ,②b a 21+=BE ,③b a 2121+-=CF ,④a +b +c =0中正确的等式的个数为 ( )A .1B .2C .3D .43.已知平面向量a =(3,1),b =(x ,-3),且a ⊥b ,则x = ( )A .-3B .-1C .1D .34.直角坐标系xOy 中,i ,j 分别是与x ,y 轴正方向同向的单位向量.在直角三角形ABC 中,若j i j i k +=+=3,2,则k 的可能值个数是 ( )A .1B .2C .3D .45.若非零向量a ,b 满足|a +b |=|b |,则 ( )A .|2a |>|2a +b |B .|2a |<|2a +b |C .|2b |>|a +2b |D .|2b |<|a +2b |测试3 平面向量31.已知a =(1,2),b =(x ,1),且a +2b 与2a -b 平行,则x 等于 ( )A .1B .2C .31D .21 2.已知|a |=5,|b |=4,a 与b 的夹角是60°,若(k a -b )⊥(a +2b ),则k = ( )A .1312B .1413C .1514D .1615 3.设a ,b 是非零向量,若函数f (x )=(x a +b )·(a -x b )的图象是一条直线,则必有 ( )A .a ⊥bB .a ∥bC .|a |=|b |D .|a |≠|b |4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C .2D .22 5.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OA OC α=OB β+,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为 ( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5C .2x -y =0D .x +2y -5=0测试4 点、直线、平面之间的位置关系1.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①γβγαβα//////⇒⎭⎬⎫;②βαβα⊥⇒⎭⎬⎫⊥m m //;③βαβα⊥⇒⎭⎬⎫⊥//m m ;④αα////m n n m ⇒⎭⎬⎫⊂. 其中为真命题的是 ( )A .①、④B .②、③C .①、③D .②、④2.已知三条不同直线m ,n ,l ,两个不同平面α,β,有下列命题,其中正确的命题是 ( )A .m ⊂α,n ⊂α,m ∥β,n ∥β ⇒α∥βB .m ⊂α,n ⊂α,l ⊥m ,l ⊥n ⇒l ⊥αC .m ∥n ,n ⊂α⇒m ∥αD .α⊥β,α∩β=m ,n ⊂β,n ⊥m ⇒n ⊥α3.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱DD 1,BC 中点,G 为棱A 1B 1上任意一点,则直线AE 与直线FG ( )A .是异面直线,且互相垂直B .是异面直线,且不互相垂直C .是相交直线,且互相垂直D .是相交直线,且不互相垂直4.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线 ( )A .不存在B .有且只有一条C .有且只有两条D .有无数条测试5 空间几何体的结构1.正四棱锥的侧棱长和底面边长都是2,则它的体积是 ( )A .24B .324C .34D .334 2.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为 ( )A .模块①,②,⑤B .模块①,③,⑤C .模块②,④,⑥D .模块③,④,⑤3.将正三棱柱截去三个角(A ,B ,C 分别是△GHI 三边的中点)得到一个几何体,则该几何体按图中所示方向的侧视图(或称左视图)为 ( )4.如果圆柱轴截面(经过上、下底面圆心的平面与圆柱相交所得的截面)的周长为6,那么圆柱体积的最大值是 ( )A .π3227B .8πC .π827D .π测试6 立体几何初步综合练习1.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β ⇒l ⊥m ; ②α⊥β ⇒l ∥m ;③l ∥m ⇒α⊥β; ④l ⊥m ⇒α∥β.其中正确的两个命题是 ( )A .①与②B .③与④C .②与④D .①与③2.在正三棱锥P -ABC 中,D ,E 分别是AB ,BC 的中点,有下列三个论断:①AC ⊥PB ②AC ∥平面PDE ③AB ⊥平面PDE其中正确论断的序号为 ( )A .①、②B .①、③C .②、③D .①、②、③3.在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =1,BC =2,AA 1=3,D ,E 分别在棱A 1A ,C 1C 上,且AD =C 1E ,则四棱锥B -ADEC 的体积是 ( )A .21B .1C .23D .24.已知经过球面上三点A ,B ,C 的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球的表面积是 ( )A .3π8 B .9π16 C .9π64 D .81π256 5.平面α 的斜线AB 交α 于点B ,过定点A 的动直线l 与AB 垂直,且交α 于点C ,则动点C 的轨迹是 ( )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支 测试7 直线与线性规划1.若直线x =1的倾斜角为α,则α ( )A .等于0B .等于4πC .等于2πD .不存在2.“a =2”是“直线ax +2y =0平行于直线x +y =1”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数z =2x +y 的最小值为 ( )A .2B .3C .4D .94.如果直线l 过点(1,2),且不通过第四象限,那么直线l 的斜率的取值范围是 ( )A .[0,2]B .[0,1]C .[0,21]D .[0,21) 5.设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A|=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是 ( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0测试8 圆的方程1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为 ( ) A .-2或2 B .21或23 C .2或0D .-2或0 2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( )A .相离B .相交C .外切D .内切3.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于 ( )A .3或-3B .-3或33C .-33或3D .-33或334.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( )A .]3,3[-B .)3,3(-C .)33,33(-D .]33,33[- 5.如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为 ( )A .23B .154-C .122-D .12-测试9 椭 圆1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( )A .31 B .33 C .21 D .23 2.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于 ( )A .-1B .1C .5D .-53.椭圆131222=+y x 的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是 ( )A .43±B .23±C .22±D .43±4.设椭圆的两个焦点分别是F 1、F 2,过F 1作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2是等腰直角三角形,则椭圆的离心率为 ( ) A .22 B .212- C .22- D .12-5.已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为 ( )A .23B .62C .72D .24测试10 双曲线1.双曲线898222=-y x 的渐近线方程是 ( ) A .x y 34±= B .x y 43±= C .x y 169±= D .x y 916±= 2.双曲线)0,0(12222>>=-b a bx a y 的两条渐近线互相垂直,那么该双曲线的离心率是( ) A .2 B .3 C .2 D .23 3.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是 ( )A .1B .25C .2D .54.已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么双曲线的渐近线方程是 ( )A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 5.设a >1,则双曲线1)1(2222=+-a y a x 的离心率e 的取值范围是 ( )A .)2,2(B .)5,2(C .(2,5)D .)5,2(测试11 抛物线1.抛物线y 2=-8x 的焦点坐标是 ( )A .(-2,0)B .(2,0)C .(-4,0)D .(4,0)2.设椭圆)0,0(12222>>=+n m n y m x 的右焦点与抛物线y 2=8x 的焦点相同,离心率为21,则此椭圆的方程为 ( )A .1161222=+y x B .1121622=+y x C .1644822=+⋅y x D .1486422=+y x 3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为 ( )A .)22,2(±B .(1,±2)C .(1,2)D .)22,2(4.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(1,1)的距离与P 到该抛物线焦点的距离之和的最小值为 ( )A .2B .3C .2D .23 5.过抛物线y 2=4x 的焦点做一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在测试12 圆锥曲线综合1.抛物线y 2=8x 的准线方程是 ( )A .x =-2B .x =-4C .y =-2D .y =-42.双曲线112422=-y x 的焦点到渐近线的距离为 ( ) A .23 B .2 C .3 D .13.已知双曲线1222=-y ax (a >0)的一个焦点与抛物线y 2=-6x 的焦点重合,则该双曲线的离心率为 ( )A .45B .59C .49D .553 4.已知定点A 、B ,且|AB |=4,动点P 满足|P A |-|PB |=3,则|P A |的最小值是 ( )A .21B .23C .27D .55.设椭圆)0(12222>>=+b a b y a x 的离心率为21=e ,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) ( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能测试13 算 法1.以下对算法的描述正确的有 ( )①对一类问题都有效;②算法可执行的步骤必须是有限步;③计算可以一步步进行,每一步都有确切的含义.A .0个B .1个C .2个D .3个2.秦九韶算法与直接计算比较,下列说法错误的是 ( )A .秦九韶算法与直接计算相比,大大减少了乘法的次数,使计算量减小,并且逻辑结构简单B .秦九韶算法减少乘法的次数,在计算机上就加快了运算速度C .秦九韶算法减少乘法的次数,在计算机上就降低了运算速度D .秦九韶算法避免对x 单独做幂的运算,而是与系数一起逐渐增长幂次,从而可提高计算的精度3.如图1所示的程序框图的功能是 ( )A .求a 、b 、c 三数中的最大数B .求a 、b 、c 三数中的最小数C .将a 、b 、c 三数按从小到大排序D .将a 、b 、c 三数按从大到小排序4.某程序框图如图2,该程序运行后输出的k 的值是 ( )A .4B .5C .6D .75.阅读图9-3的程序框图,输出的S = ()A .14B .20C .30D .55 6.给出程序如下:执行程序后,输出的数值为 ( ) A .-1 B .0 C .1 D .2测试14 概 率1.某人连续射击2次,事件“至少一次中靶”的互斥事件为 ( )A .至多一次中靶B .两次均中靶C .两次都不中靶D .只有一次中靶2.从甲乙丙三人中人选两名代表,甲被选中的概率为 ( )A .21 B .31 C .32 D .13.掷一枚均匀的硬币两次,事件A “朝上面一正一反”,事件B “朝上面至少一正”,则下列结果正确的是 ( )A .21)(,31)(==B P A P B .21)(,21)(==B P A P C .43)(,31)(==B P A P D .43)(,21)(==B P A P 4.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三n =5,s =0;while s <15;s =s +n ;n =n -1;endprint(%io (2),n );角形,则所得的两个三角形全等的概率等于 ( )A .1B .21C .31D .0 5.在区间]2π,2π[上随机取一个数x ,则cos x 的值介于0到21之间的概率是 ( ) A .31 B .π2 C .21 D .32 测试15 统 计1.采用简单随机抽样从含有6个个体的总体中抽取1个容量为3的样本,个体a 在第三次被抽到的概率是 ( )A .21B .31 C .51 D .61 2.某校共有学生 一年级二年级 三年级 女生 373x y 男生 377 370 z已知在全校学生中随机抽取1名,抽到二年级女生的概率是.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 ( )A .24B .18C .16D .123环数7 8 9 人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是 ( )A .4B .5C .6D .74.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为35.对变量x 、y 有观测数据(x i ,y i )(i =1,2,3,…,10),得到散点图1:对变量u 、v 有观测数据(u i ,v i )(i =1,2,3,…,10),得到散点图2,由这两个散点图可以判断 ( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关测试16 复 数1.若(a +i)2i(a ∈R )为正实数,则a = ( )A .2B .1C .0D .-1 2.复数2i(1+i)2= ( )A .-4B .4C .-4iD .4i 3.设z 的共轭复数是z ,若z +z =4,z ·z =8,则zz 等于 ( ) A .1 B .-i C .±1D .±i 4.复数2i 1i)i(2-+等于 ( )A .1B .-1C .iD .-i 5.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A .-1 B .1 C .2 D .1或2。
平面向量测试题及详解
平面向量一、选择题1.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .22.已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .23.如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17 D.174.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( ) A.25a -45b B.25a +45b C .-25a +45b D .-25a -45b5.已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( )A .-3B .-1C .1D .3 6.已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( )A .最大值为8B .是定值6C .最小值为2D .与P 的位置有关 7.设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°9.设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数10.a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=011.如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53D .1 12.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( ) A .等腰非等边三角形 B .等边三角形 C .三边均不相等的三角形D .直角三角形第Ⅱ卷(非选择题 共90分)二、填空题13.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.14.已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________. 15.已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________. 16.已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________. 三、解答题17.已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小.18.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.19.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B 2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.20.已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |; (2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值.21.已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB→+b ,b >a . (1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.22.已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.平面向量答案1.[解 a +b =(3,x +1),4b -2a =(6,4x -2),∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.[解AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.[解由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa +⎝⎛⎭⎫1-12λb ,∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b . 5.[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.[解析]设BC 边中点为D ,则AP →·(AB →+AC →)=AP →·(2AD →) =2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.13.[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12,∴|a +2b |=2 3.14.[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0,∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3),∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c ,∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522. 17.[解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12,∴α=π3.因此,两向量a 与b 的夹角为π3. 18.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ,∵过(4,-10)点,∴16-10=λ,即λ=6,∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ), ∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.[解析](1)∵m ⊥n ,∴m ·n =0,∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0,∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B ,∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =a sin A ,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π,若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1.综上c =2或c =1.20.[解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22=2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x 2=2+2cos2x =2|cos x |,∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x . (2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12]当a >0时,f (x )∈[-2a +b ,a +b ] ∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧ a =1b =4,当a <0时,f (x )∈[a +b ,-2a +b ] ∴⎩⎪⎨⎪⎧a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =422.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0. 因为N 在椭圆内,所以Δ>0.所以⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1] =(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2,所以-187≤-9(1+k 2)3+4k2≤-125.解得1≤k 2≤3.所以-3≤k ≤-1或1≤k ≤ 3.。
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
《平面向量》基础测试题
基础测试(一)选择题(第题4分,共24分)1.计算BA++等于().DBAC+CD(A)0 (B)0(C)2DB(D)2 AC【提示】+=(CDAC+)+(BABA+AC+CDDBAD+=0.DB+)=DA【答案】(B).【点评】本题考查向量的加法及运算律,相反向量,零向量的表示方法.2.若向量a=(3,2),b=(0,-1),则向量2b-a的坐标是().(A)(3,-4)(B)(-3,4)(C)(3,4)(D)(-3,-4)【提示】2b-a=2(0,-1)-(3,2)=(-3,-4).【答案】(D).【点评】本题考查向量的坐标运算.3.下列各组向量中,共线的是().(A)a=(-2,3),b=(4,6)(B)a=(1,-2),b=(7,14)(C)a=(2,3),b=(3,2)(D)a=(-3,2),b=(6,-4)【提示】若a=(x,y),b=(x2,y2),则a与b共线的充要条件是x1 y2-x2 y1 =0.这里(-3)×(-4)-2×6=0.故选(D).【答案】(D).【点评】本题以坐标的形式考查向量共线的充要条件.对于(A),(-2)×6-3×4=-24≠0,排除(A);对于(B),1×14-(-2)×7=28≠0,排除(B);对于(C),2×2-3×3=-5≠0,排除(C).4.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为( ).(A )5 (B )6 (C )7 (D )8 【提示】∠ABC =90°,即AB ⊥BC ,因AB =(1,-1),BC =(5,x -2),得1×5+(-1)×(x -2)=0,解出x =7. 【答案】(C ).【点评】本题考查向量的坐标运算及向量垂直的充要条件.5.设s 、t 为非零实数,a 与b 均为单位向量时,若|s a +t b |=|t a -s b |,则a 与b 的夹角θ 的大小为( ).(A )30° (B )45° (C )60° (D )90° 【提示】由|s a +t b |=|t a -s b |,得s 2a 2+t 2b 2+2 st a · b =t 2a 2+s 2b 2-2 st a b . 又a 、b 均为单位向量,|a |=1,|b |=1, 即a 2=1,b 2=1.∴ 4 s t a ·b =0,有|a |·|b |cos θ =0,得cos θ =0.∴ θ =90°. 【答案】(D ).【点评】本题主要考查平面向量的数量积及运算律.6.如图,D 、C 、B 三点在地面同一条直线上,从C 、D 两点测得A 点仰角分别为α、β, (α >β),则A 点距地面高度AB 等于( ).(A ))sin(cos sin βαβα-m (B ))cos(cos sin βαβα-m(C ))sin(cos cos βαβα-m (D ))cos(cos cos βαβα-m【提示】在△ACD 由正弦定理,得AC =)(sin sin βαβ-s m ,再在直角三角形中求AB .【答案】(A ).【点评】本题主要考查应用正弦定理解三角形的有关知识.(二)填空题(每题4分,共20分)1.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________.【提示】 2a -21b=2(1,2)-21(3,1)=(2,4)-(23,21)=(2-23,4-21)=(21,321). 【答案】(21,321).【点评】本题考查平面向量的坐标运算.2.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.【提示】由AB 与CD 共线,先得x =10,再求|BD |的长. 【答案】73.【点评】本题考查向量的模、向量的坐标运算及向量共线的充要条件.3.已知点P 1(1,2),P 2(-2,1),直线P 1P 2与x 轴相交于点P ,则点P 分21P P 所成的比λ 的值为_____.【提示】由直线P 1P 2与x 轴相交于点P ,得点P 的纵坐标为0,于是0=λλ+⨯+112,即λ =-2.【答案】-2.【点评】本题考查线段的定比分点的坐标公式.4.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______. 【提示】由已知,x =2,y =4,h =-5,k =-2,代入平移公式⎩⎨⎧+='+='ky y h x x ,得x ′=-3,y ′=2. 【答案】(-3,2).【点评】本题考查点的平移公式.主要应分清平移前后点的坐标.5.在△ABC 中,已知a =2,b =22,c =6+2.则这个三角形的最小角的度数是___________. 【提示】先由已知条件判断△ABC 三条边中的最短的边,它所对的角便是该三角形的最小角.由于c >b >a ,则a 对的角A 为最小.利用余弦定理,得cos A =bcac b 2222-+=)26(2222)26()22(222+⨯⨯-++=23,∴ A =30°. 【答案】30°.【点评】本题主要考查应用余弦定理解决三角形的有关问题.(三)解答题(每题14分,共56分)1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角; (3)试求与BC 垂直的单位向量的坐标. 【提示】AB 、AC 的坐标为终点坐标与始点坐标的差,求出AB 、AC 的坐标后,可得2AB +AC 的坐标,(1)可解,对于(2),可先求AB 、AC 的值,代入 cos θ ,即可;对于(3),设所求向量的坐标为(x ,y ),根据题意,可得关于x 、y 的二元方程组,解出x ,y . 【答案】(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7). ∴ |2AB +AC |=227)1(+-=50. (2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos θ AC AB ⋅=2624⋅=13132.(3)设所求向量为m =(x ,y ),则 x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得 2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x∴ (552,-55)或(-552,55)即为所求.【点评】本题考查向量的模,向量的坐标运算、向量的数量积,向量垂直的充要条件以及运算能力.2.如图,已知AB =DC =a ,BC =b ,且|a |=|b |.(1)用a ,b 表示AD ,AO ,OB ; (2)求AC ·BD .【提示】由AB =DC ,可判定四边形ABCD 为平行四边形,于是利用平行四边形的性质.可求AD ,AO ,OB .又AC =AB +BC .BD =AD -AB ,AD =BC 利用数量积的运算性质及已知条件|a |=|b |.可求AC ·BD . 【答案】(1)∵ AB =DC ,∴ 四边形ABCD 为平行四边形. ∴ AD =BC =b .∴ AC =AB +BC =a +b ,BD =AD -AB =b -a , 而 AO =21AC ,OB =-21BD ,∴ AO =21a +21b ,OB =21a -21b .(2)∵ AC =a +b ,BD =b -a ,∴ AC ·BD =(b +a )(b -a ) =b 2-a 2=|b |2-|a |2=0.【点评】本题考查平面向量的加减法,基本定理、数量积及运算律.解题时注意结合平面图形的几何特征,寻求向量之间的联系.由题目的条件及结论可知,四边形ABCD 为菱形. 3.一只船按照北偏西30°方向,以36海里/小时的速度航行,一灯塔M 在船北偏东15°,经40分钟后,灯塔在船北偏东45°.求船与灯塔原来的距离. 【提示】先画船航行的示意图,将题目的已知条件分别与三角形内的边、角对应起来,从而确定三角形内的边角关系,运用正弦定理或余弦定理解决.【答案】如图,设船原来的位置为A ,40分钟后的位置为B ,则AB =36×32=24(海里).在△ABM 中,∠BAM =30°+15°=45°. ∠ABM =180°-(45°+30°)=105°,∴ ∠AMB =180°-(∠ABM +∠BAM )=30°. 由正弦定理,得 AM =AMB AB ∠sin · sin ∠ABM=︒30sin 24· sin 105°=12(2+6)(海里).答:船与灯塔原来的距离为12(2+6)海里. 【点评】本题考查解斜三角形的应用问题.关键是画出示意图(这里必须弄清方位角的概念),建立数学模型,将实际问题转化为解斜三角形的问题.4.在□ABCD 中,对角线AC =65,BD =17,周长为18,求这个平行四边形的面积. 【提示一】要求得平行四边形的面积,须知两条邻边及它的夹角.由周长为18,知两条邻边的和为9,可据两条已知的对角线,利用余弦定理求得两条邻边及夹角. 【提示二】在△AOB 和△BOC 中利用余弦定理求解.【解法一】如图,在□ABCD 中,设AB =x ,则BC =9-x ,在△ABC 中,据余弦定理,得 AC 2=AB 2+BC 2-2 AB BC cos ABC . 在△ABD 中,据余弦定理,得 BD 2=AB 2+AD 2-2 AB · AD cos DAB .由已知 AC =65,BD =17,∠DAB +∠ABC =180°,BC =AD . 故角 65=x 2 +(9-x ) 2-2 AB BC cos ABC , 17=x 2 +(9-x 2)+2 AB BC cos ABC , 二式相加,得 82=4 x 2-36 x +162 即 x 2-9 x +20=0 解得 x =4,或x =5, 在△ADB 中,由余弦定理,得 cos ∠DAB =ABAD BDAB AD ⋅-+2222=542175422⨯⨯-+=53.∴ s in ∠DAB =54.∴ sin □ABCD =AB · AD s in DAB=4×5×54=16.【解法二】在△AOB 和△BOC 中,由余弦定理,得AB 2=OA 2+OB 2-2 OA · OB cos ∠AOB , BC 2=OC 2+OB 2-2 OC · OB cos ∠BOC , 可设 AB =x ,则BC =9-x , 而OA =OC =21AC ,OB =21BD ,∠AOB +∠BOC =180°,代入后化简,可求得 x =4或x =5.在△ADB 中,由余弦定理,得 cos ∠DAB =ABAD BDAB AD ⋅-+2222=542175422⨯⨯-+=53.∴ s in ∠DAB =54.∴ sin □ABCD =AB · AD s in DAB=4×5×54=16.【点评】本题考查余弦定理的灵活运用.3.如图,某观测站C 在城A 的南偏西20°方向上,从城A 出发有一条出路,走向是南偏东40°,在C 处测得距C 处31千米的公路上的B 处有一人正沿着公路向城A 走去.走20千米后到达D 处.测得CD =21千米,这时此人距城A 多少千米.【提示】要求AD 的长,在△ACD 中,应用正弦定理,只需求∠ACD ,而∠CDB 是△ACD 的一个外角,∠CAD 已知,故只需求∠CDB ,在△CDB 中,已知两边,可利用余弦定理求角.【答案】由已知,在△CDB 中,CD =21,DB =20,BC =31,据余弦定理,有 cos ∠CDB =DBCD BCDBCD⋅-+2222=-71.∴ sin ∠CDB =CDB 2cos 1-=374.在△ACD 中,∠CAD =20°+40°=60°, ∴ ∠ACD =∠CDB -∠CAD =∠CDB -60°. ∴ sin ∠ACD =sin (∠CDB -60°)=sin ∠CDB cos 60°-cos ∠CDB sin 60° =374×21-(-71)×23=1435.由正弦定理,得 AD =CADCD ∠sin · sin ∠ACD =15(千米).答:此人距A 城15千米. 【点评】本题结合三角函数的知识,主要考查了正弦、余弦定理的应用.解此类应用问题的关键是正确理解题意,建立数学模型,将实际问题转化为解斜三角形的问题,再根据正弦、余弦定理予以解决.4.已知平面向量a =(7,9),若向量x 、y 满足2x +y =a ,x ⊥y ,|x |=|y |,求x 、y 的坐标.【提示】设x =(x 1,x 2),y =(y 1,y 2),由已知,可以得到含有x 1,x 2,y 1,y 2的四个关系式,建立方程组,解之即可. 【答案】设x =(x 1,x 2),y =(y 1,y 2).由2x +y =a ,得 2(x 1,x 2)+(y 1,y 2)=(7,9), 即⎩⎨⎧=+=+)2(92)1(722211y x y x 由x ⊥y ,得x 1y 1+x 2y 2=0. ③ 由 |x |=|y |,得 x 12+x 22=y 12+y 22=0. ④ 将(1)式化为 y 1=7-2 x 1,(2)式化为 y 2=9-2 x 2, 代入③式,得 x 1(7-2 x 1)+x 2(9-2 x 2)=0, 即 2(x 12+x 22)=7 x 1+9 x 2, ⑤ 代入④式,得 x 12+x 22=(7-2 x 1) 2 +(9-2 x 2) 2, 即 3(x 12+x 22)=28 x 1+36 x 2-130. ⑥ 由⑤、⑥,得⎩⎨⎧=+=+.529726212221x x x x 解之得,⎪⎪⎩⎪⎪⎨⎧==51152321x x 或⎩⎨⎧==.5121x x 分别代入(1)、(2),得⎪⎪⎩⎪⎪⎨⎧=-=52351121y y 或⎩⎨⎧-==.1521y y ∴ x =(523,511),y =(-511,523).或 x =(1,5),y =(5,-1)即为所求.【点评】本题考查向量的坐标运算,向量垂直的充要条件,两点间距离公式及运算能力.。
平面向量试题附答案
1.下列结论正确的是(②③ )①若,a b 都是单位向量,则a b =。
②物理学中的作用力与反作用力是一对共线向量。
③方向为南偏西60的向量与北偏东60的向量是共线向量。
④直角坐标平面上的x 轴、y 轴都是向量。
2.如图,ABCD 的两条对角线相交于点M , 且AB a =,AD b =,则MA =1122a b --, MC =1122a b +,MB =1122a b -,MD =1122a b -+。
3.(3,2),(0,1)a b ==-,则24a b -+=(6,8)--。
4.已知点(0,1),(1,0),(1,2),(2,1)A B C D ,则AB 与CD 的位置关系是//AB CD 。
5.已知向量(2,3),(6,3)OA OB ==-,点P 是线段AB 的三等分点,则点P 的坐标是10(,1)3或14(,1)3-。
6.已知ABCD 的顶点(1,2),(3,1),(5,6)A B C ---则点D 的坐标是(1,5)。
7.已知(2,3),(,6)a b x ==-,若a 与b 共线,则x =4-若a b ⊥,则x =9。
8.已知6,4a b ==,a 与b 的夹角为60,则(2)(3)a b a b +⋅-=72-,a b+=。
9.设a 是非零向量,λ是非零实数,下列说法正确的是( C ) A .a 与a λ的方向相反 B .a a λ-≥C .a 与2a λ的方向相同 D .a a λλ-=⋅10.已知ABC ∆的顶点坐标分别为(1,1),(4,1),(4,5)A B C 则cos A =35,cos B =0, ABDMabcos C =45。
11.等边三角形ABC 的边长为1,,,BC a CA b AB c ===,那么a b b c c a ⋅+⋅+⋅=32-. 12.设12,e e →→是两个不共线的向量,1212122,3,2,AB e ke CB e e CD e e =+=+=-若A 、B 、D 三点共线,则k= -813.已知O 为四边形ABCD 所在平面内的一点,且向量,,,OA OB OC OD 满足OA OC OB OD +=+,试判断四边形ABCD 的形状。
《平面向量》测试题及答案
《(一)平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( )A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k 4) C.(-10,2) D.(5k,4k)3.若点P 分AB 所成的比为43,则A 分BP 所成的比是( ) A.73B. 37C.-37D.-734.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( )A.60°B.-60°C.120°D.-120°5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =()A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A.323B.233C.2D.-528.设点P 分有向线段21P P的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21)9.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是( )A.平行四边形B.矩形C.等腰梯形D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( )A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( )A.(2a,b)B.(a-b,a+b)C.(a+b,b-a)D.(a-b,b-a)二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b=。
(完整版)平面向量基础试题(一)(可编辑修改word版)
下列四式不能化简为AD 的是( )11. 平面向量基础试题(一)已知向量二 Y 满足 a =lr 1>= (2, 1),且a ・l>=0,则 a-'l>i=(已知向量和(i, 2) , b=(2, 3),若3 线,则实数01=(一・选择题(共12 小题)A. 2. A. 3. A. 已知向量驴(1- (1, 5)B. 2) , b= (•I, 4) 若向量:a ,b 满足丄Idld 90" B. 60"C. 45°D. 30°已知a 与b 均为单位向量, V T B . VT O C- VT SD . 4(-1,C ・ b= (0, 3) D- (2, 1) (•2, 1) , a*b=5r 则詁亍的夹角为(它们的夹角为60。
,那么I a + 3b F (4. A. B. V5 C. 2 D. Vs5. A.已知A (3, 0) , B (2, 1),则向量曲的单位向量的坐标是((1,-1) B. (-1, 1) C.(爭,警)D. 您,爭)6. 已知点P (3 5) , Q (2, 1),向量匸(■入,1),若PQ//ir,则实数入等 于() 4.4 5 B ・-5 A. S 知向量竽 U i D.号(1, 2) , b= (2» X).若Mb 与平行,则实数X 的值是(A. 4B. -1C ・A 8. A. 已知平面向量a= (1, 2), b=C-2, ID ),且a“b,则| b |为(2^56. V B C- 3A /5D. 19. 已知向量鼻(3, 1) . b=(X, -1),若7 也诀线,则X 的值等于(A. •3B. 1 C ・ 2 D. 1 或 2ID.A. —•需D.磊A. HB+AD-BKB. (AD+MB)+(BC+CH)C ・(AB+CD)+BCD- OC-OA+CD0A= a* OB^ b* 0C= c ,则下列等式中成立的是二・选择题(共10小题)12•如图所示,已知AC 二3BC , ■* 3_ I T * 2 213. 已知向量驴(2, 6), b= (-1, X),14. 已知向量竽(2 3), b= (3, m),15. 已知向量于(-1, 2). b= (tTb 1) r 若向量a+b 与直,则 m=16-已知 1=(2, 1), b 二(3, ID ),若a 丄(3・b ),则I 自+b I 等于17.设 mER,向量护(m 十2. 1) , b= <lr -2m),且 a 丄 b,贝!)la+b =18・若向量ir=(2, 1) , n= (3, 2A.) T 且<2ir-n )〃 <ir+3n ),则实数入二 19. 设向量a ,b 不平行,向量屮mb 与C2-m ) a+b 平行,则实数m 二20. 平面内有三点A (O 3) , B (3, 3) , C(X, 1),且A£〃 AG 则x 为21•向量匸(入+1, 1),;二(入+3, 2),若mPm 则入二22.设 B (2, 5) , C (4, .3) , AD= Cl ,4),若BCJAD ,则入的值为三•选择题(共8小题)23.在△ABC 中,A84, BC=6, ZACB=120\ 若赢.2丽,则 AC*^=24.已知a EFJ 夹角为120\且|a =4r b=2.求:c-2a~bD-(1) ( a2b)• ( a+b);(2) 3各4b・25.已知平面向量a,b满足la =1» I b'=2.(1)若:与亍的夹角e=120\求寫+W的值;(2)若(扁+亍)丄(kab),求实数k的值.26-已知向量芋(3, 4) , b= (4, 2) •<1)求向量亏与亍夹角的余弦值;(2)若向量aAb与a+2b平行r求入的值•27-已知向量驴(2, 2) , b= (3 4)・(1)求与三亍的夹角:(2)若:满足7丄(壬亍),(舌环〃瓦求坐标.28・平面内给定三个向量驴(1, 3) , b= (-1, 2) , c= (2, 1).<1)求满足a=mb+n<:的实数m, n;(2)若(a+kc)〃(2l>n),求实数k・29.已知△ABC的顶点分别为A (2r 1) , B (3, 2) , C (3, -1) , D在直线BC 上・(I)若BO2BD,求点D的坐标;(D)若AD丄BC,求点D的坐标•30.已知a=(l, t),b=(-5, 2 )Ma*b=b 求当k 为何值时,(1)ka+b*^a-3bS直;(2) 1<8+1>与3-31>平行・平面向量基础试题(一)参考羞案与试题解析-•选择题(共12小题)1- (2017*天津学业考试)已知向量鼻(1. 2) r b= (.1, 1).则2a+b 的坐标(•1, 4) C - (0, 3) D ・(2, 1)(1, 2) , b= (4, 1),C-lr 1) = <1,5)-故选:A.2- (2017*天津学业考试)若向量亏,亍满足I al=VTo ,b= (2 1) , a*b=5. 则?与亍的夹角为(A. 90"B. 60°C. 45°D. 30°【解答】解:(.2, 1) , ••• lb |=A /(-2)^+1 2=75X ! a ; =VT6T a*b=5»两向量的夹角6的取值范圉是,06 [0, n],与b 的夹角为 45°.故选:C.3. (2017•甘肃一模)已知a 与b 均为单位向量,它们的夹角为60。
平面向量基础试题
平面向量基础试题(一)•选择题(共12小题)1 •已知向量;=(1, 2), b = (- 1, 1),则 書兀的坐标为( )A . (1,5)B.(- 1,4)C .(0,3)D.(2, 1)2•若向量£ K 满足禹 颉I , b = (-2, 1),厉兀=5,贝叮与;的夹角为( )A . 90° B. 60° C. 45° D . 30°3. 已知总与匕均为单位向量,它们的夹角为60°,那么 冷+3b | =( )A. -B.I H C.再;D. 44. 已知向量;,可满足|创=1,耐=(2, 1),且;• b=0,则=( )( )A .半 B.-丄 C. 4 D .-匸5 5 447.已知向量i=( 1 , 2) , 1=(- 2 , x ).若.>+与i-l 平行,则实数x 的值是( )A . 4 B.- 1 C. - 48已知平面向量 £ (1,刃.b=(-厶m),且 "b ,贝U |b |为( ) A . 2 口 B.仃 C. 3 仃 D. 19. 已知向量■= (3, 1), I ■= (x ,- 1),若一 I ■与I ■共线,则x 的值等于( ) A .- 3 B. 1C. 2 D . 1 或 210.已知向量口= (1,2),国=(2, - 3),若m ^+b 与3已-b 共线,则实数m=( )A .C. 2 D .乔5. 已知A (3, A . (1,- 1)0), B (2 , 1),贝U 向量-的单位向量的坐标是( ) 爭B. 6. 已知点P (- 3, (-1, 1) C二/ D . : _:5), Q (2, 1),向量二(J 、1),若況/心,贝U 实数入等于25 A.- 3B 3C -二A.「「I '1B. "C.「「; 1 丨'D. 「,- :I二.选择题(共10小题)13. 已知向量a= (2, 6), b= (- 1,) 若畀b,贝U入_____________ .14. 已知向量-1= (- 2, 3),卜=(3, m),且则m= _______________ .15. 已知向量3= (- 1, 2), b = ( m, 1),若向量自+b与n垂直,则m= ______16. ________________________________________________________ 已知1), b=(3s m),若已丄(厲兀),贝叮自+bl等于 _____________________________ .17. 设m € R,向量a= (m+2, 1), b = (1,- 2m),且丄电,贝山3花| _______18. 若向量二(2, 1),7=(- 3, 2R,且(2:-n) // (7 +站),则实数入____________19. 设向量-i,l,不平行,向量r+ml■与(2- m) 一1 + ■平行,则实数m= _____20. 平面内有三点A(0, - 3), B(3 , 3) , C(x, - 1),且汀 ,则x 为__________21. __________________________________________________ 向量:.:,若,则入_____________________________________________________ .22. 设B (2 , 5), C(4, - 3) , _______________ '= (- 1 , 4),若I「二兀丨,贝U 入的值为______________________________________三.选择题(共8小题)23. 在△ ABC 中,AC=4 BC=6, / ACB=120 ° 若■「二-2 ',则占‘? '= _______24. 已知J ,[的夹角为120° ° 且| i|=4 ,|「,|=2.求:(1)(工2© ? G+E);(2) | 3:-乖;| .25•已知平面向量满足|口=1, |1,|=2.(1)若「与I】的夹角9 =120;求| . .+ J的值;(2)若(k#+b)丄(心-b),求实数k的值.26. 已知向量:=(3, 4),b= (- 1,2).(1)求向量c与I ■夹角的余弦值;(2)若向量.I -入与.i+2平行,求入的值.27. 已知向量:=(1, 2), b= (- 3, 4).(1)求一+ 1,与-I •的夹角;(2)若c满足Q丄(3+b) ,(Q+呂)// b,求C的坐标.28. 平面内给定三个向量a= (1, 3), b = (- 1, 2), 2 = (2, 1).(1)求满足+ n・的实数m, n;(2)若(;a+kc)//( 2b - a),求实数k.29. 已知△ ABC的顶点分别为A (2, 1), B (3, 2), C (- 3,- 1), D在直线BC上.(I )若<'=2 ",求点D的坐标;(U )若AD丄BC,求点D的坐标.30. 已知「1. , —:-•、”,.::且:—L求当k为何值时,(1)k - I与-:垂直;(2)k- I 与二、I平行.平面向量基础试题(一)参考答案与试题解析一•选择题(共12小题)1. (2017?天津学业考试)已知向量行=(1, 2),闪=(-1 , 1), 为( )A. (1, 5)B. (- 1, 4)C. (0, 3)D. (2, 1)【解答】解:•••;= (1, 2), b = ( - 1, 1),••• 2 卄1= (2, 4) + (- 1, 1) = (1, 5).故选:A.2. (2017?天津学业考试)若向量 \满足IF= J 1】=(-2,•与[的夹角为()A. 90°B. 60°C. 45°D. 30°【解答】解:•••&(- 2, 1),二而国3+1丸,又|j=. 口,,?[,=5,两向量的夹角B的取值范围是,氏[0,•••「与I的夹角为45°.故选:C.3. (2017?甘肃一模)已知无与b均为单位向量,它们的夹角为| a +3 b | =()A. .B. I"C. I::D. 4【解答】解:Td,,均为单位向量,它们的夹角为60°,1), a元=5,则cosv] :1> =a * b|l||b|Vio^V5 2 -60°,那么二 I &+3 b |^G 十元)?七况十 9捫寸- 故选C .” _ _ —* "~~► ―► ■—* —•- ―►4.(2017?龙岩二模)已知向量匚..]满足| i| =1,‘=(2,1),且 =0,则| | =( ) A .: B •仃 C. 2 D..【解答】解:| 彳=1,,=( 2, 1),且;-.=0,则 |匸刁|2= 厂-=1+5 - 0=6,所以|尸-卜| = |.; 故选A5. (2017?山东模拟)已知A (3, 0), B (2, 1),则向量25的单位向量的坐标是【解答】解::A (3, 0), B (2, 1),6. (2017?日照二模)已知点 P(-3, 5) , Q(2 , 1),向量.,若■;' ' , 则实数入等于()D .【解答】解:氏1= (5, - 4). •••PQ"此••- 4X(-为-5=0 , 解得:魯 故选:C.7. (2017?金凤区校级一模)已知向量& = (1, 2), b = (-2, x ).若;可与;-W 平行,则实数x 的值是()A . (1,- 1)B. (- 1, 1)C.:二—•••・ ・=(-1, 1),「.l 「|= / , •••向量「’的单位向量的坐标为(-1 |AB IV2 :/2 2]' \ 2).A. 4B.- 1C. - 4【解答】解:.;+[ ・=(-1, 2+x).L — [ = (3, 2 - x),••] +丨‘与I-丨‘平行,••• 3 (2+x) + (2 - x) =0,解得x=- 4.故选:C.&(2017?西宁二模)已知平面向量沪山乩b =(-2,叩),且呂P b,贝U|b| 为( ) A. 2 口B.仃C. 3 仃D. 1【解答】解:I启// b,平面向量a= (1, 2) , b = (- 2, m),•••- 2X 2 - m=0,解得m=- 4.•- 1= (-2,- 4),•I l・|= I ' = :,=2 ",故选:A.9. (2017?三明二模)已知向量:=(3, 1), b = (x,- 1),若;与匸共线,则x的值等于( )A.- 3B. 1C. 2D. 1 或2【解答】解:沪(3, 1), b= (x,- 1),故 3 -b= (3 - x, 2)若a-b与;共线,则 2x=x- 3,解得:x=- 3, 故选:A .10. (2017?汕头二模)已知向量a = (1, 2),闫=(2,- 3),若启与3> -电共 线,贝U 实数m=( )【解答】解:向量.i=( 1, 2), ..= (2,- 3), 则 m i+[・=(m+2, 2m - 3), 31 - I = (1 , 9); 又m +1与3 I - I ■共线, ••• 9 (m+2)-( 2m - 3) =0, 解得m= - 3. 故选:A .11. (2017?可东区模拟)下列四式不能化简为 X 的是( )A.丽 +兀-SB.〔五 + 而]+1 転+M )C.(瓦十可)+ 瓦D. 0C-0A+C15【解答】解:由向量加法的三角形法则和减法的三角形法则,(匚6+而)+(衣十死十(证十反)+ES 尿十旋十&=5,故排除B :“丨 |故排除 C 0C-0AMD =AC+CD =AD ,故排除 D故选A12. (2017?海淀区模拟)如图所示,已知 X 心',,贝U 下 列等式中成立的是()A .- 3 B. 3 C.25 19故选:A.二•选择题(共10小题)13. (2017?山东)已知向量:=(2, 6), b = (- 1, R,若萄用,贝U X= - 3 【解答】解:•••;lll,「.- 6 - 2入=0解得入=3.故答案为:-3.14. (2017?新课标IH)已知向量吕=(-2, 3), = (3, m),且:丄E, J贝m= 2 .【解答】解:•••向量-'.=(-2, 3), 1.= (3, m),且一 _】,.••・=-6+3m=0,解得m=2.故答案为:2.15. (2017?新课标I )已知向量-'=(-1,2), ■= (m , 1),若向量• >+,与小垂直, 贝U m= 7 .【解答】解::向量二(-1 , 2) , b= (m , 1),且+b= (— 1 +m, 3),'••向量.+ 1与• I垂直,••(:=--、)? = (- 1+m)x( - 1) +3X 2=0,解得m=7.故答案为:7.16. ( 2017?龙凤区校级模拟)已知^=(2, 1), &⑶ 皿),若;丄G4),则応|等于 5 .【解答】解:•••;= (2, 1), b = (3, m),•—I = (- 1, 1 - m),T ;3丄(3- b),•3? (z-b) =- 2+1 - m=0,解得,m=- 1,I __ f d ■•2+b= (5, 0),•I .i+l‘I =5,故答案为:5.17. (2017?芜湖模拟)设m€ R,向量a= ( m+2, 1), b = (1,- 2m),且:丄L , 则| . + |】|=_丄_.【解答】解:•;= (m+2, 1), : - (1,- 2m),若-1 丄I,,则m+2- 2m=0,解得:m=2,故酣t>= (5 , - 3),故| +l,| = -「「i .:=. _ -,故答案为:一;.18. (2017?南昌模拟)若向量卞=(2, 1), n=(-3,2》,且(石-卞)// G +石),则实数入=-厶.--- 「【解答】解:瑶= (7, 2-2》,匚+3>(- 7, 1+6入),(2IT-□)//( 1?+3口),•'• 7 (1+6》+7 (2 - 2》=0,故答案为:-_.19. (2017?武昌区模拟)设向量i,〔不平行,向量与(2-m) r + ■平行,则实数m= 1 .【解答】解:’••向量mb不平行,向量已+口1>与(2 - m) y+b平行,2F11 'm解得实数m=1.故答案为:1.20. (2017?龙岩一模)平面内有三点A (0,- 3), B (3, 3), C (x,- 1),且一/ <;,贝U x 为 1 .【解答】解:■-上(3, 6),『=(x, 2),•••」・ //』,••• 6x- 6=0,可得x=1.故答案为:1.21. (2017?海淀区校级模拟)向量,;:1. 1 .',■:■■ I::, _:,若'| ,则》= 【解答】解:•••;「,••• 2 ( 2+1)-( 2+3) =0,解得入=1故答案为:1.22. (2017?重庆二模)设B (2, 5), C (4,—3), 15 = (- 1, 4),若反二茹, 则入的值为 -2 .【解答】解:衣=(2,- 8), •••反二血,■'■( 2,- 8)=入(-1, 4),二2=-入解得入=—2. 故答案为:-2.三.选择题(共8小题)23. (2017?临汾三模)在厶ABC 中,AC=4, BC=6 / ACB=120° 若汕=-21「,则….【解答】解::八=-2 H ,(疋-反).•••・(—-虛)引'(兰J址)=-報匸劭5顽" X 42-"4X 6X(-=)故答案为:24. (2017春?宜昌期末)已知“,I,的夹角为120° °且| i|=4 , p-|=2.求:(1)(二2局)?(币+E);(2)|3;- 4^| .【解答】解:, I的夹角为120°°且h'i| =4 , | I J =2 ,•••£?匚=| 刁?cos120°=4X2X(-吉)=-4 ,(1)(Z-2b)?(吕+b) =| a| 2- 2Z 词+^?b - 2|b|2=16+4-2X 4=12;(2)|3- 4,|2=9| 叫2-24 i?h+16| ・| 2=9X 42- 24X(- 4)+16X 22=16X 19 ,I 3.1 - 4 .| =4 丨 <i.25. (2017春?荔湾区期末)已知平面向量满足|冷=1, ||】|=2・(1) 若「与I 的夹角9 =120;求| ..+'|的值;(2) 若(煜+匸)丄(薦-b ),求实数k 的值.【解答】解:(1) |引=1, |b|=2,若3与b 的夹角9 =120;贝临• b=1?2?cos120° = -1,•••|.卄| = ;「- = ,;_「r ・=.i 二■=二.(2)v(屈+1>)丄(k ai - b ), •( k n +b ) ? (ka - b) =k 2需'-孑=k 2 - 4=0,• k=± 2.26. (2017春?赣州期末)已知向量“=(3, 4),,= (- 1 , 2).(1) 求向量•与I •夹角的余弦值;(2) 若向量..-入与"2平行,求入的值.【解答】解:向量■)= (3, 4) , . ■= ( - 1, 2).(2)若向量方-归=(3+ A, 4 - 2入)与;a +2H= (1, 8)平行,贝U 8 (3+入)=4 - 2入解得入=2.27. (2017春?郑州期末)已知向量1= (1 , 2),】=(-3, 4).(1)求一卄[与十1・的夹角;【解答】解:(I ) T 」二• I …_ I ,• •.:二• I : ,• _ 】..一 1 ,(1)向量J 与I 夹角的余弦值 a " b = -34 8Hl lb 1 V3£ + 4Vl 2+22(2)若・满足,丄(卄1 ) C +")// I 爲求的坐标.I :+7 1=7 (-2)2 + 62=2VT O[Ta-t l=J" +(-刃生2篦・又••• 9€ [0, n ,••• B 仝二. 4(II )设 UJ ,则云上齢 1, y+2),••诵丄(;+> ),(2 需)//「 (-39+力-4衣十1)二『(^--2 .解得: 丄,即:二(-2, -|).28. (2017春?巫溪县校级期中)平面内给定三个向量 ;=(1, 3),〔= (- 1, 2), '=(2, 1).(1) 求满足p=ml+ n 的实数m , n ;(2) 若(3+kc )//( 2b -3),求实数 k .【解答】解:(1).=m'.+n ,•( 1 , 3) =m (- 1 , 2) +n (2, 1). ..JF2E ,解得 口=门=1.1.2nri-n=3(2) 7k ;= (1+2k , 3+k ), 2. -a = (- 3 , 1),•••(:+k ;)//( 2^-:),•- 3 (3+k ) =1+2k ,解得 k=- 2.29. (2017春?原州区校级期中)已知△ ABC 的顶点分别为A (2 , 1), B (3 , 2), C (- 3, - 1) , D 在直线 BC 上.(I)若'=2 I',求点D 的坐标;(U)若AD 丄BC,求点D 的坐标.【解答】解:(I)设点D (x , y ),则心(-6, - 3),匕(x -3 , y -2). 设1 •.与匚丫的夹角为 9,则 Q (a+bX^-b) -20cos y =—^ —_ 十也 討「旳五片廉-2恃2五,弋鳥二,解得X =0, •••点D 的坐标为(0,寺).(U)设点 D (x , y ), : AD 丄 BC,又••• C, B , D 三点共线,• |「// j.而・ i= (x — 2, y - 1), LJ. = (x — 3, y - 2).P5(x-2)-3(y-l)=i>|-6(y-2)+3(x-3)=030. (2017春?南岸区校级期中)已知;门 f ,;厂一、 「且:--,求当k 为何值时, (1) k 丨与_ .一 L .垂直;(2) k -丨与_ .一 i.平行.【解答】解:(1) 1, • — 5+2t=1,解得 t=2.■/ k 忍+ b 与 a-3b 垂直,・•( k &+ b ) ? (^-3b )科;'十〔—3k)且疔=k (1+t 2) + (1 — 3k )— 3X( 25+4) =0,联立解得:—.(2)再甬=(k — 5, 2k+2),;-3?=( 16,— 4).• 16 (2k+2) +4 (k — 5) =0,解得:-二丄.R-i? ・••D 的坐标为解方程组,得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础试题(一)一.选择题(共12小题)1.已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)2.若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°3.已知均为单位向量,它们的夹角为60°,那么=()A.B. C.D.44.已知向量满足||=l,=(2,1),且=0,则||=()A.B.C.2 D.5.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.6.已知点P(﹣3,5),Q(2,1),向量,若,则实数λ等于()A.B.﹣C.D.﹣7.已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是()A.4 B.﹣1 C.﹣48.已知平面向量,且,则为()A.2B.C.3 D.19.已知向量=(3,1),=(x,﹣1),若与共线,则x的值等于()A.﹣3 B.1 C.2 D.1或210.已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.11.下列四式不能化简为的是()A.B. C.D.12.如图所示,已知,=,=,=,则下列等式中成立的是()A.B.C.D.二.选择题(共10小题)13.已知向量=(2,6),=(﹣1,λ),若,则λ=.14.已知向量=(﹣2,3),=(3,m),且,则m= .15.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .16.已知,若,则等于.17.设m∈R,向量=(m+2,1),=(1,﹣2m),且⊥,则|+|= .18.若向量=(2,1),=(﹣3,2λ),且(2﹣)∥(+3),则实数λ=.19.设向量,不平行,向量+m与(2﹣m)+平行,则实数m= .20.平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为.21.向量,若,则λ=.22.设B(2,5),C(4,﹣3),=(﹣1,4),若=λ,则λ的值为.三.选择题(共8小题)23.在△ABC中,AC=4,BC=6,∠ACB=120°,若=﹣2,则•= .24.已知,的夹角为120°,且||=4,||=2.求:(1)(﹣2)•(+);(2)|3﹣4|.25.已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.26.已知向量=(3,4),=(﹣1,2).(1)求向量与夹角的余弦值;(2)若向量﹣λ与+2平行,求λ的值.27.已知向量=(1,2),=(﹣3,4).(1)求+与﹣的夹角;(2)若满足⊥(+),(+)∥,求的坐标.28.平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.29.已知△ABC的顶点分别为A(2,1),B(3,2),C(﹣3,﹣1),D在直线BC上.(Ⅰ)若=2,求点D的坐标;(Ⅱ)若AD⊥BC,求点D的坐标.30.已知,且,求当k为何值时,(1)k与垂直;(2)k与平行.平面向量基础试题(一)参考答案与试题解析一.选择题(共12小题)1.(2017•天津学业考试)已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)【解答】解:∵=(1,2),=(﹣1,1),∴2+=(2,4)+(﹣1,1)=(1,5).故选:A.2.(2017•天津学业考试)若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°【解答】解:∵=(﹣2,1),∴,又||=,•=5,两向量的夹角θ的取值范围是,θ∈[0,π],∴cos<>===.∴与的夹角为45°.故选:C.3.(2017•甘肃一模)已知均为单位向量,它们的夹角为60°,那么=()A.B. C.D.4【解答】解:∵,均为单位向量,它们的夹角为60°,∴====.故选C.4.(2017•龙岩二模)已知向量满足||=l,=(2,1),且=0,则||=()A.B.C.2 D.【解答】解:||=l,=(2,1),且=0,则||2==1+5﹣0=6,所以||=;故选A5.(2017•山东模拟)已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.6.(2017•日照二模)已知点P(﹣3,5),Q(2,1),向量,若,则实数λ等于()A.B.﹣C.D.﹣【解答】解:=(5,﹣4).∵,∴﹣4×(﹣λ)﹣5=0,解得:λ=.故选:C.7.(2017•金凤区校级一模)已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是()A.4 B.﹣1 C.﹣4【解答】解:+=(﹣1,2+x).﹣=(3,2﹣x),∵+与﹣平行,∴3(2+x)+(2﹣x)=0,解得x=﹣4.故选:C.8.(2017•西宁二模)已知平面向量,且,则为()A.2B.C.3 D.1【解答】解:∵∥,平面向量=(1,2),=(﹣2,m),∴﹣2×2﹣m=0,解得m=﹣4.∴=(﹣2,﹣4),∴||==2,故选:A.9.(2017•三明二模)已知向量=(3,1),=(x,﹣1),若与共线,则x 的值等于()A.﹣3 B.1 C.2 D.1或2【解答】解:=(3,1),=(x,﹣1),故=(3﹣x,2)若与共线,则2x=x﹣3,解得:x=﹣3,故选:A.10.(2017•汕头二模)已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.【解答】解:向量=(1,2),=(2,﹣3),则m+=(m+2,2m﹣3),3﹣=(1,9);又m+与3﹣共线,∴9(m+2)﹣(2m﹣3)=0,解得m=﹣3.故选:A.11.(2017•河东区模拟)下列四式不能化简为的是()A.B. C.D.【解答】解:由向量加法的三角形法则和减法的三角形法则,===,故排除B==故排除C==,故排除D故选A12.(2017•海淀区模拟)如图所示,已知,=,=,=,则下列等式中成立的是()A.B.C.D.【解答】解:===.故选:A.二.选择题(共10小题)13.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=﹣3 .【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.14.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m= 2 .【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.15.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= 7 .【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.16.(2017•龙凤区校级模拟)已知,若,则等于 5 .【解答】解:∵=(2,1),=(3,m),∴﹣=(﹣1,1﹣m),∵⊥(﹣),∴•(﹣)=﹣2+1﹣m=0,解得,m=﹣1,∴+=(5,0),∴|+|=5,故答案为:5.17.(2017•芜湖模拟)设m∈R,向量=(m+2,1),=(1,﹣2m),且⊥,则|+|= .【解答】解:=(m+2,1),=(1,﹣2m),若⊥,则m+2﹣2m=0,解得:m=2,故+=(5,﹣3),故|+|==,故答案为:.18.(2017•南昌模拟)若向量=(2,1),=(﹣3,2λ),且(2﹣)∥(+3),则实数λ=﹣.【解答】解:2﹣=(7,2﹣2λ),+3=(﹣7,1+6λ),∵(2﹣)∥(+3),∴7(1+6λ)+7(2﹣2λ)=0,解得λ=﹣.故答案为:﹣.19.(2017•武昌区模拟)设向量,不平行,向量+m与(2﹣m)+平行,则实数m= 1 .【解答】解:∵向量,不平行,向量+m与(2﹣m)+平行,∴,解得实数m=1.故答案为:1.20.(2017•龙岩一模)平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为 1 .【解答】解:=(3,6),=(x,2),∵∥,∴6x﹣6=0,可得x=1.故答案为:1.21.(2017•海淀区校级模拟)向量,若,则λ= 1 .【解答】解:∵,∴2(λ+1)﹣(λ+3)=0,解得λ=1.故答案为:1.22.(2017•重庆二模)设B(2,5),C(4,﹣3),=(﹣1,4),若=λ,则λ的值为﹣2 .【解答】解:=(2,﹣8),∵=λ,∴(2,﹣8)=λ(﹣1,4),∴2=﹣λ,解得λ=﹣2.故答案为:﹣2.三.选择题(共8小题)23.(2017•临汾三模)在△ABC中,AC=4,BC=6,∠ACB=120°,若=﹣2,则•= .【解答】解:∵=﹣2,∴AD==(﹣).∴•=(﹣)=(﹣﹣)=﹣﹣•=﹣×42﹣×4×6×(﹣)=,故答案为:.24.(2017春•宜昌期末)已知,的夹角为120°,且||=4,||=2.求:(1)(﹣2)•(+);(2)|3﹣4|.【解答】解:,的夹角为120°,且||=4,||=2,∴•=||•||cos120°=4×2×(﹣)=﹣4,(1)(﹣2)•(+)=||2﹣2•+•﹣2||2=16+4﹣2×4=12;(2)|3﹣4|2=9||2﹣24•+16||2=9×42﹣24×(﹣4)+16×22=16×19,∴|3﹣4|=4.25.(2017春•荔湾区期末)已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.【解答】解:(1)||=1,||=2,若与的夹角θ=120°,则=1•2•cos120°=﹣1,∴|+|====.(2)∵(k+)⊥(k﹣),∴(k+)•(k﹣)=k2•﹣=k2﹣4=0,∴k=±2.26.(2017春•赣州期末)已知向量=(3,4),=(﹣1,2).(1)求向量与夹角的余弦值;(2)若向量﹣λ与+2平行,求λ的值.【解答】解:向量=(3,4),=(﹣1,2).(1)向量与夹角的余弦值==;(2)若向量﹣λ=(3+λ,4﹣2λ)与+2=(1,8)平行,则8(3+λ)=4﹣2λ,解得λ=﹣2.27.(2017春•郑州期末)已知向量=(1,2),=(﹣3,4).(1)求+与﹣的夹角;(2)若满足⊥(+),(+)∥,求的坐标.【解答】解:(I)∵,∴,∴,∴,∴,∴.设与的夹角为θ,则.又∵θ∈[0,π],∴.(II)设,则,∵⊥(+),(+)∥,∴,解得:,即.28.(2017春•巫溪县校级期中)平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.【解答】解:(1)=m+n,∴(1,3)=m(﹣1,2)+n(2,1).∴,解得m=n=1.(2)+k=(1+2k,3+k),2﹣=(﹣3,1),∵(+k)∥(2﹣),∴﹣3(3+k)=1+2k,解得k=﹣2.29.(2017春•原州区校级期中)已知△ABC的顶点分别为A(2,1),B(3,2),C(﹣3,﹣1),D在直线BC上.(Ⅰ)若=2,求点D的坐标;(Ⅱ)若AD⊥BC,求点D的坐标.【解答】解:(Ⅰ)设点D(x,y),则=(﹣6,﹣3),=(x﹣3,y﹣2).∵=2,∴,解得x=0,y=.∴点D的坐标为.(Ⅱ)设点D(x,y),∵AD⊥BC,∴=0又∵C,B,D三点共线,∴∥.而=(x﹣2,y﹣1),=(x﹣3,y﹣2).∴解方程组,得x=,y=.∴点D的坐标为.30.(2017春•南岸区校级期中)已知,且,求当k 为何值时,(1)k与垂直;(2)k与平行.【解答】解:(1),∴﹣5+2t=1,解得t=2.∵k与垂直,∴(k)•()=﹣3=k(1+t2)+(1﹣3k)﹣3×(25+4)=0,联立解得.(2)k=(k﹣5,2k+2),=(16,﹣4).∴16(2k+2)+4(k﹣5)=0,解得.。