全国初中数学竞赛二次函数历届考题

合集下载

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。

8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。

9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。

答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。

2. 求函数 $y = -x^2 + 4x + 1$ 的零点。

答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。

3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。

答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。

4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。

答案:由于两个函数有相同的图像,所以它们的系数相等。

比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。

5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。

答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。

代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。

整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。

由于该方程为二次方程,必然存在实数解。

初中数学二次函数测试卷

初中数学二次函数测试卷

一、选择题(每题4分,共40分)1. 下列函数中,不是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = x^3 + 2x^2 - x + 1D. y = -x^2 + 4x - 52. 已知二次函数y = ax^2 + bx + c(a≠0),下列说法正确的是()A. a > 0时,函数的图像开口向上,对称轴为y轴B. a < 0时,函数的图像开口向下,对称轴为y轴C. b > 0时,函数的图像开口向上,对称轴为x轴D. b < 0时,函数的图像开口向下,对称轴为x轴3. 二次函数y = x^2 - 4x + 3的图像与x轴的交点坐标是()A. (1, 0), (3, 0)B. (2, 0), (3, 0)C. (1, 0), (2, 0)D. (1, 3), (2, 0)4. 二次函数y = -x^2 + 4x + 3的图像的顶点坐标是()A. (1, 4)B. (2, 4)C. (1, 3)D. (2, 3)5. 已知二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,2),则下列说法正确的是()A. a > 0,b < 0,c > 0B. a < 0,b > 0,c < 0C. a > 0,b > 0,c < 0D. a < 0,b < 0,c > 06. 二次函数y = x^2 - 6x + 9的图像与x轴的交点坐标是()A. (1, 0), (5, 0)B. (2, 0), (4, 0)C. (1, 3), (3, 0)D. (2, 3), (3, 0)7. 二次函数y = 2x^2 - 4x + 3的图像的对称轴方程是()A. x = 1B. x = 2C. x = 3D. x = 48. 二次函数y = -x^2 + 2x + 1的图像的顶点坐标是()A. (1, 2)B. (2, 1)C. (1, 1)D. (2, 2)9. 二次函数y = ax^2 + bx + c(a≠0)的图像开口向下,且顶点坐标为(-1,3),则下列说法正确的是()A. a > 0,b < 0,c > 0B. a < 0,b > 0,c < 0C. a > 0,b > 0,c < 0D. a < 0,b < 0,c > 010. 二次函数y = x^2 - 8x + 12的图像与x轴的交点坐标是()A. (2, 0), (6, 0)B. (3, 0), (5, 0)C. (2, 3), (4, 0)D. (3, 2), (5, 0)二、填空题(每题5分,共20分)11. 二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,-2),则该函数的解析式为______。

初中数学二次函数经典测试题及答案解析

初中数学二次函数经典测试题及答案解析

初中数学二次函数经典测试题及答案解析一、选择题1.已知二次函数y = ad —2〃x —3。

(。

工0),关于此函数的图象及性质,下列结论中不一定成立的是()A.该图象的顶点坐标为(1,—4。

)B.该图象与x轴的交点为(一1,0),(3,0)C.若该图象经过点(—2,5),则一定经过点(4.5)D.当x>l时,>随工的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x2-2x-3)=a (x-3)(x+l)令y=o,x=3 或x=-l,・••抛物线与x轴的交点坐标为(3, 0)与(-1, 0),故B成立;,抛物线的对称轴为:x=l,令x=l 代入y=ax2-2ax-3a,.*.y=a-2a-3a=-4a,,顶点坐标为(1, -4a),故A成立;由于点(-2, 5)与(4, 5)关于直线x=l对称,・•・若该图象经过点(-2, 5),则一定经过点(4, 5),故C成立;当x>l, a>0时,y随着x的增大而增大,当x>l, aVO时,y随着x的增大而减少,故D不一定成立;故选:D.【点睛】本题考杳二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.2.如图,二次函数),=4/+区+,= 0(。

0)的图象与工轴正半轴相交于4、3两点,与了轴相交于点C,对称轴为直线x = 2,且OA = OC,则下列结论:①i〃c>0;②9a + 3b+cvO; @o-l;④关于工的方程权?+h丫+。

= 0(。

0)有一个根为-其中正确的结论个数有(aA. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由二次图像开口方向、对称轴与y轴的交点可判断出a、b、c的符号,从而可判断①;由图像可知当x=3时,y<0,可判断②:由OA=OC,且0AV1,可判断③;把-J代入方程整理得ac2 —bc + c=O,结合③可判断④:从而得出答案.【详解】由图像开门向下,可知aVO,与y轴的交点在x轴的下方,可知cVO,又对称轴方程为x=2, - - >0, .\b>0, Aabc>0,故①正确;由图像可知当x=3 时,y>0, 9a +2cl3b + c>0,故②错误;由图像可知OAV1, ・・,OA=OC,,OCV1,即-cVl,故③正确;假设方程的一个根为X=- 1,把代入方程,整理得配2 —bc + c = O,即方程有一a a个根为x=-c,由②知-c=OA,而当x=OA是方程的根,・・・x=-c是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.3.如图,抛物线y=ax2+bx+c ("0)与x轴交于点4 (1, 0),对称轴为直线x=-l,当V>0时,x的取值范围是()A. -1<X<1B. -3<x< - 1C. x<lD. - 3<x<l【答案】D【解析】【分析】根据已知条件求出抛物线与x轴的另一个交点坐标,即可得到答案.【详解】解:•・•抛物线y=ax2+bx+c与x轴交于点4 (1, 0),对称轴为直线x=-l,・•・抛物线与x轴的另一交点坐标是(-3, 0),・•・当y>0时,x的取值范围是-3VxVl.所以答案为:D.【点睛】此题考查抛物线的性质,利用对称轴及图象与x轴的一个交点即可求出抛物线与x轴的另一个交点坐标.4.方程x? + 3x — l = 0的根可视为函数> =x + 3的图象与函数y = 2的图象交点的横坐X标,则方程x3 + 2x —1 = 0的实根xo所在的范围是()A 1 1 1 1 1 1A. 0<X o<-B. -<X0<-C. -<X0<- D, -<X O<1° 4 4 0 3 3 0 2 2 0【答案】c【解析】【分析】首先根据题意推断方程X3+2X-1=0的实根是函数y=x?+2与y =,的图象交点的横坐标,再根x据四个选项中X的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x-l=o的实根x所在范围.【详解】解:依题意得方程x$+2x —1 = 0的实根是函数V = x? + 2与y = L的图象交点的横坐标, x这两个函数的图象如图所示,它们的交点在第一象限.X当x=L时,y = x2 + 2 = 2—, y=- = 4,此时抛物线的图象在反比例函数下方; 4 16 x当X=:时,> =炉+2 = 2《,y = - = 3,此时抛物线的图象在反比例函数下方;3 9 x当x=2时,y = x2 + 2 = 2~, y = - = 2,此时抛物线的图象在反比例函数上方;2 4 x当x=l时,y = x? + 2 = 3, y=- = l,此时抛物线的图象在反比例函数上方.X:.方程父+ 2x — 1 = 0的实根X。

(完整版)初中数学二次函数试题及答案

(完整版)初中数学二次函数试题及答案

(完整版)初中数学⼆次函数试题及答案⼀、选择题(每题3分,共30分)1.下列关系式中,属于⼆次函数的是(x为⾃变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第⼀象限B. 第⼆象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知⼆次函数y=ax2+bx+c的图象如图所⽰,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. ⼆次函数y=ax2+bx+c的图象如图所⽰,则点在第___象限()A. ⼀B. ⼆C. 三D. 四7. 如图所⽰,已知⼆次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若⼀次函数y=ax+b的图象经过第⼆、三、四象限,则⼆次函数y=ax2+bx 的图象只可能是()9. 已知抛物线和直线在同⼀直⾓坐标系中的图象如图所⽰,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1系是()A. y1B. y2C. y3D. y210.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.⼆、填空题(每题4分,共32分)11. ⼆次函数y=x2-2x+1的对称轴⽅程是______________.12. 若将⼆次函数y=x2-2x+3配⽅为y=(x-h)2+k的形式,则y=________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知⼆次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直⾓三⾓形,请写出⼀个符合要求的⼆次函数解析式________________.16. 在距离地⾯2m⾼的某处把⼀物体以初速度v0(m/s)竖直向上抛物出,在不计空⽓阻⼒的情况下,其上升⾼度s(m)与抛出时间t(s)满⾜:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最⾼点距地⾯_________m.17. 试写出⼀个开⼝⽅向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若⼆次函数的图象的对称轴⽅程是,并且图象过A(0,-4)和B(4,0)(1)求此⼆次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此⼆次函数的解析式;20.在直⾓坐标平⾯内,点O为坐标原点,⼆次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求⼆次函数解析式;(2)将上述⼆次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的⾯积.21.已知:如图,⼆次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的⾯积S△MCB22.某商店销售⼀种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满⾜如下关系:在⼀段时间内,单价是13.50元时,销售量为500件,⽽单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最⼤.答案与解析:⼀、选择题1.考点:⼆次函数概念.选A.2.考点:求⼆次函数的顶点坐标.解析:法⼀,直接⽤⼆次函数顶点坐标公式求.法⼆,将⼆次函数解析式由⼀般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:⼆次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进⾏判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,⼆次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利⽤公式,其对称轴所在直线为答案选B.5.考点:⼆次函数的图象特征.解析:由图象,抛物线开⼝⽅向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上⽅,答案选C.6.考点:数形结合,由抛物线的图象特征,确定⼆次函数解析式各项系数的符号特征.解析:由图象,抛物线开⼝⽅向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上⽅,在第四象限,答案选D.7.考点:⼆次函数的图象特征.解析:因为⼆次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的⼤致形状.解析:因为⼀次函数y=ax+b的图象经过第⼆、三、四象限,所以⼆次函数y=ax2+bx的图象开⼝⽅向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:⼀次函数、⼆次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y随x的增⼤⽽减⼩,所以y210.考点:⼆次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.⼆、填空题11.考点:⼆次函数性质.解析:⼆次函数y=x2-2x+1,所以对称轴所在直线⽅程.答案x=1.12.考点:利⽤配⽅法变形⼆次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:⼆次函数与⼀元⼆次⽅程关系.解析:⼆次函数y=x2-2x-3与x轴交点A、B的横坐标为⼀元⼆次⽅程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求⼆次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是⼀道开放题,求解满⾜条件的⼆次函数解析式,答案不唯⼀.解析:需满⾜抛物线与x轴交于两点,与y轴有交点,及△ABC是直⾓三⾓形,但没有确定哪个⾓为直⾓,答案不唯⼀,如:y=x2-1.16.考点:⼆次函数的性质,求最⼤值.解析:直接代⼊公式,答案:7.17.考点:此题是⼀道开放题,求解满⾜条件的⼆次函数解析式,答案不唯⼀.解析:如:y=x2-4x+3.18.考点:⼆次函数的概念性质,求值.答案:.三、解答题19.考点:⼆次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:⼆次函数的概念、性质、图象,求解析式. 解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根⼜∵(x1+1)(x2+1)=-8∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0∴k=5∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0时y=-5∴C(0,-5),P(2,-9).21. 解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,则=15.可得S△MCB22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最⼤利润,并不是单独提⾼单个商品的利润或仅⼤幅提⾼销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最⼤.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利⽤这个等式寻找出所求的问题,这⾥我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.利⽤上⾯的等量关式,可得到y与x的关系式了,若是⼆次函数,即可利⽤⼆次函数的知识,找到最⼤利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最⼤利润9112.5元。

完整)历年全国初中数学联赛试题总汇

完整)历年全国初中数学联赛试题总汇

完整)历年全国初中数学联赛试题总汇1991年全国初中数学联合竞赛决赛试题第一试一、选择题1.设等式 $a(x-a)+a(y-a)=x-a-a-y$ 在实数范围内成立,其中 $a$,$x$,$y$ 是两两不同的实数,则 $\dfrac{3x^2+xy-y^2}{2x-xy+y}=$ (A)3;(B)$\dfrac{1}{3}$;(C)2;(D)$\dfrac{15}{33}$。

答案:(B)2.如图,$AB\parallel EF\parallel CD$,已知 $AB=20$,$CD=80$,$BC=100$,那么$EF$ 的值是(A)10;(B)12;(C)16;(D)18.答案:(C)3.方程 $x^2-x-1=0$ 的解是 $\dfrac{-1\pm\sqrt{5}}{2}$;$\dfrac{-1\pm i\sqrt{3}}{2}$ 或 $\dfrac{1\pm i\sqrt{3}}{2}$。

答案:(A)4.已知:$x=(1991-1991n)$($n$ 是自然数)。

那么 $(x-1+x^2)^n$ 的值是(A)$1991^{-1}$;(B)$-1991^{-1}$;(C)$(-1)^n1991$;(D)$(-1)^n1991^{-1}$。

答案:(B)5.若$1\times2\times3\times\cdots\times99\times100=12^nM$,其中$M$ 为自然数,$n$ 为使得等式成立的最大的自然数,则$M$ 能被(A)2 整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除。

答案:(D)6.若 $a$,$c$,$d$ 是整数,$b$ 是正整数,且满足$a+b=c$,$b+c=d$,$c+d=a$,那么 $a+b+c+d$ 的最大值是(A)$-1$;(B)$-5$;(C)$0$;(D)$1$。

答案:(B)7.如图,正方形 $OPQR$ 内接于 $\triangle ABC$。

二次函数经典考题 (20)

二次函数经典考题 (20)

二次函数经典考题21.如图1,二次函数y=ax2﹣ax+4的图象与x轴交于A(﹣3,0)、B两点,与y轴交于点C.(1)求抛物线的函数关系式;(2)点P是抛物线第一象限上一点,设点P的横坐标为m(0<m<4),连接AP,如果点C关于直线AP的对称点D落在x轴下方(含x轴),求m的取值范围;(3)如图2,连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1点A、O、C的对应点分别是点A1、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标(−32,234)或(−38,24564).【解答】解:(1)∵二次函数y=ax2﹣ax+4的图象过点A(﹣3,0),∴9a+3a+4=0,∴a=−1 3,∴抛物线解析式为y=−13x2+13x+4;(2)如图1,连接AC,当点C关于直线AP的对称点恰好落在x轴上时,设AP与CO 交于点E,∵二次函数y =−13x 2+13x +4的图象与x 轴交于A (﹣3,0)、B 两点,与y 轴交于点C , ∴点B (4,0),点C (0,4),∴AO =3,CO =4,∴AC =√AO 2+CO 2=√9+16=5,∵当点C 关于直线AP 的对称点恰好落在x 轴上,∴AC =AD =5,CE =DE ,∴OD =2,∵DE 2=OE 2+OD 2,∴(4﹣OE )2=OE 2+4,∴OE =32,∴点E (0,32), ∵点A (﹣3,0),点E (0,32), ∴直线AP 解析式为:y =12x +32,联立方程组可得:{y =12x +32y =−13x 2+13x +4, 解得:{x 1=−3y 1=0或{x 2=52y 2=114,∴当点C 关于直线AP 的对称点恰好落在x 轴上时,m =52,∴当点C 关于直线AP 的对称点D 落在x 轴下方(含x 轴)时,52≤m <4; (3)设点A 1的坐标为(x ,y ),当O 1,C 1在二次函数y =−13x 2+13x +4的图象上,则点O 1的坐标为(x ,y ﹣3),点C 1的坐标为(x +4,y ﹣3),由题意可得:{−13x 2+13x +4=y −3−13(x +4)2+13(x +4)+4=y −3, 解得{x =−32y =234, ∴点A 1的坐标为(−32,234);当A 1,C 1在二次函数y =−13x 2+13x +4的图象上,则点C 1的坐标为(x +4,y ﹣3),由题意可得:{−13x 2+13x +4=y −13(x +4)2+13(x +4)+4=y −3, 解得:{x =−38y =24564, ∴点A 1的坐标为(−38,24564);综上所述:点A 1的坐标为(−32,234)或(−38,24564). 故答案为:(−32,234)或(−38,24564).。

二次函数竞赛题

二次函数竞赛题

二次函数竞赛题1.二次函数c bx x y ++=2的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则=+c b 2 .2.在直角坐标系中有三点A (0,1),B (1,3),C (2,6);已知直线b ax y +=上横坐标为0、1、2的点分别为D 、E 、F .试求b a ,的值使得AD 2+BE 2+CF 2达到最小值.3.(2004年“TRULY @信利杯”全国初中数学竞赛试题)实数x 、y 、z 满足x +y +z =5,xy +yz +zx =3,则z 的最大值是_______.4.已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。

5.(2003年“TRULY @信利杯”全国初中数学竞赛试题)已知二次函数y =ax 2+bx +c (其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x •轴有两个不同的交点,则b +c 的最大值为________.6.设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值.7. 通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y 越大表示学生注意力越集中). 当100≤≤x 时,图象是抛物线的一部分,当2010≤≤x 和4020≤≤x 时,图象是线段.(1)当100≤≤x 时,求注意力指标数y 与时间x 的函数关系式; (2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排, 使学生在听这道题时,注意力的指标数都不低于36.8.课题研究:现有边长为120厘米的正方形铁皮,准备将它设计并制成一个开口..的水槽,使水槽能通过的水的流量最大.初三(1)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,•水槽的横截面面积越大,则通过水槽的水的流量越大.为此,•他们对水槽的横截面进行了如下探索: (1)方案①:把它折成横截面为直角三角形的水槽(如图a ).若∠ACB =90°,设AC =x 厘米,该水槽的横截面面积为y 厘米2,请你写出y 关于x 的函数关系式(不必写出x 的取值范围),并求出当x 取何值时,y 的值最大,最大值又是多少?方案②:把它折成横截面为等腰梯形的水槽(如图b ).若∠ABC =120°,•请你求出该水槽的横截面面积的最大值,并与方案①中的y 的最大值比较大小.(2)假如你是该兴趣小组中的成员,请你再提供两种方案,•使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).9.如图,抛物线2(0)y ax bx a =+>与双曲线ky x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满 足△EOC ∽△AOB 的点E 的坐标.10.如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.12.已知0<a ,0≤b ,0>c ,且ac b ac b 242-=-,求ac b 42-的最小值.13. 在自变量x 的取值范围59≤x ≤60内,二次函数212y x x =++的函数值中整数的个数是( ) A .59 B .120 C .118 D .6014. 在直角坐标系中,抛物线223(0)4y x mx m m =+->与x 轴交于A ,B 的两点.若A ,B 两点到原点的距离分别为OA ,OB ,且满足1123OB OA -=,则m =__ ___.15. Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2 (D )h >216. 设0<k <1,关于x 的一次函数)1(1x kkx y -+=,当1≤x ≤2时的最大值是( ) (A )k (B )k k 12- (C )k1(D )k k 1+17. 平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数1212-+=x x y 的图象上整点的个数是 ( )(A )2个 (B )4个 (C )6个 (D )8个18. 函数1422-+=x x y 的最小值是 .19.对220b a ab ≠≠,,二次函数))((b x a x y --=的最小值为 ( )A . 2)2(b a + B . 2)2(b a +- C . 2)2(b a - D . 2)2(b a --20.两抛物线222b ax x y ++=和222b cx x y -+=与x 轴交于同一点(非原点),且a 、b 、c 为正数,a ≠c ,则以a 、b 、c 为边的三角形一定是 ( ) A . 等腰直角三角形 B . 直角三角形 C . 等腰三角形 D . 等腰或直角三角形21.当n =1,2,3,……,2003,2004时,二次函数1)12()(22++-+=x n x n n y 的图象与x 轴所截得的线段长度之和为( ) A . 20032002B .20042003C .20052004D .2006200522.已知二次函数c bx ax y ++=2图象如图6-2所示,则下列式子: ab ,ac ,a +b +c ,a -b +c ,2a +b ,2a -b 中,其值为正的式子共有 个.23.如果当m 取不等于0和1的任意实数时,抛物线mm x m x m m y 3212--+-=在平面直角坐标系上都过两个定点,那么这两个定点间的距离为_______24.已知抛物线1)1(2+++=x k x y 与x 轴两个交点A 、B 不全在原点的左侧,抛物线顶点为C ,要使△ABC 恰为等边三角形,那么k 的值为_______25.设x 为实数,则函数12156322++++=x x x x y 的最小值是______26.设二次函数q px x y ++=2的图象经过点(2,-1), 且与x 轴交于不同的两点A (x 1,0) B (x 2,0),M为二次函数图象的顶点,求使△AMB 面积最小时的二次函数的解析式.27.已知:3x 2+2y 2=6x , x 和y 都是实数,求:x 2+y 2的最大、最小值.28.ABC ∆中,∠B =60,AC =1,求BA +BC 的最大值及这时三角形的形状.29.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b ∥,Rt GEF ∆从如图所示 的 位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF ∆与矩形ABCD 重合部分....的面积()S 随时间()t 变化的图象大致是( )FEGABCD N MH GFEDC BAkg )30.(南京)如图,E 、F 分别是边长为4的正方形ABCD 的边BC CD ,上的点,413CE CF ==,,直线EF 交AB 的延长线于G ,过线段FG 上的一个动点H 作HM AG ⊥,HN AD ⊥,垂足分别为M N ,,设HM x =,矩形AMHN 的面积为y⑴ 求y 与x 之间的函数关系式;⑵ 当x 为何值时,矩形AMHN 的面积最大,最大面积为多少?31.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.32.函数623)12(222+-+--=k k x k x y 的最小值为m ,则当m 达到最大时,x =______ (2004年全国初中数学联赛)33.设a ,b 为实常数,k 取任意实数时,函数)3()(2)1(2222b ak k x k a x k k y ++++-++=的图像与x 轴-2-1O1x2交于点A (1,0)(1)求a ,b 的值(2)若函数与x 轴的另一个交点为B ,当k 变化时,求AB 的最大值34.(2007年福州)如图所示,二次函数2y ax bx c =++(a ≠0)的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x 、2x ,其中-2<1x <-1,0<2x <1,下列结论:①420a b c -+<;②20a b -<;③a <-1;④284b a ac +>.其中正确的有:( )A 、1个B 、2个C 、3个D 、4个35.(2007年天门)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米,现在O点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示). (1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少?请你帮施工队计算一下.36.(2009年天津市)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.37. 已知点A (0,3),B (-2,-1),C (2,-1) P (t ,t 2)为抛物线y =x 2上位于三角形ABC 内(包括边界)的一动点,BP 所在的直线交AC 于E , CP 所在的直线交AB 于F 。

(专题精选)初中数学二次函数经典测试题附答案

(专题精选)初中数学二次函数经典测试题附答案

(专题精选)初中数学二次函数经典测试题附答案一、选择题1.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A .5,5,15,12-+-B .5,51-+C .1D .5,15--【答案】B 【解析】 【分析】由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值. 【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1, ∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大, ∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小, ∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5, 综上可知m 的值为1+5或﹣5. 故选B . 【点睛】本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.2.对于二次函数()21202y ax a x a ⎛⎫=+-<⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<; ③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个 B .2个C .3个D .4个【答案】B 【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可. 【详解】 对于()21202y ax a x a ⎛⎫=+-<⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1 当0x =时,0y =,则二次函数的图象都经过点()0,0 则说法①正确此二次函数的对称轴为1212124ax a a-=-=-+ 0a <Q 1114a∴-+> 01x ∴>,则说法②错误由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个 故选:B . 【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D 【解析】 【分析】根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断. 【详解】 由题可知22ba-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =, 故可得4,0a b c -== ①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确; ③当1x =-时,函数值为0a b c -+<,故③正确; ④由图可知,当04x <<时,0y <,故④正确; ⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误; 故选:D. 【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A 【解析】 【分析】①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误; ③对称轴:直线12bx a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确. 【详解】解:①∵抛物线与x 轴由两个交点, ∴240b ac ->, 即24b ac >, 所以①正确;②由二次函数图象可知, 0a <,0b <,0c >,∴0abc >, 故②错误;③∵对称轴:直线12bx a=-=-, ∴2b a =,∴24a b c a c +-=-, ∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-, ∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<, 故④正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.5.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位 【答案】A 【解析】 【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法. 【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A . 【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.6.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数by x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=bx图象分布在第二、四象限, 故选D . 【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确.当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( ) A .5 B .52-C .52D .-5【答案】A 【解析】 【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果. 【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等, ∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5, 故选:A . 【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.10.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .11.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .a B .bC .cD .d【答案】D 【解析】 【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决. 【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0), ∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点, ∴a <0,b <0,c=0,d >0, 故选:D . 【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.12.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201bb c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.13.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a>0,∴m+n<2a;∴D正确,故选:C.【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.14.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系15.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.16.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba >0,且a >0,则b <0,但B 中,一次函数a >0,b >0,排除B .故选C .17.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2ba -<0,∴b <0,故B 错误;C.由对称轴可知:x =2ba -=﹣1,∴b =2a ,∵x=1时,y=0,∴a+b+c=0,∴c=﹣3a,∴a+c=a﹣3a=﹣2a>0,故C错误;故选D.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18.如图1,△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A→C→B运动,点Q从点A出发以vcm/s的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,有下列结论:①v=1;②sin B=13;③图象C2段的函数表达式为y=﹣13x2+103x;④△APQ面积的最大值为8,其中正确有()A.①②B.①②④C.①③④D.①②③④【答案】A【解析】【分析】①根据题意列出y=12AP•AQ•sin A,即可解答②根据图像可知PQ同时到达B,则AB=5,AC+CB=10,再代入即可③把sin B=13,代入解析式即可④根据题意可知当x=﹣522ba时,y最大=2512【详解】①当点P在AC上运动时,y=12AP•AQ•sin A=12×2x•vx=vx2,当x=1,y=12时,得v=1,故此选项正确;②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,当P 在BC 上时y =12•x •(10﹣2x )•sin B , 当x =4,y =43 时,代入解得sin B =13, 故此选项正确;③∵sin B =13, ∴当P 在BC 上时y =12•x (10﹣2x )×13=﹣13x 2+53 x , ∴图象C 2段的函数表达式为y =﹣13x 2+53x , 故此选项不正确;④∵y =﹣13x 2+53x , ∴当x =﹣522b a =时,y 最大=2512, 故此选项不正确;故选A .【点睛】 此题考查了二次函数的运用,解题关键在于看图理解19.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴32a-<应在y轴左侧,故此选项错误;B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴32a->在y轴右侧,故此选项正确;D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;故选:C.【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.20.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.。

全国初中数学竞赛二次函数历届考题

全国初中数学竞赛二次函数历届考题

《全国初中数学竞赛》二次函数历届考题11(2008)、已知一次函数12y x =,二次函数221y x =+,是否存在二次函数c bx ax y ++=23,其图象经过点(-5,2),且对于任意实数x 的同一个值,这三个函数所对应的函数值12,y y ,3y ,都有123y y y ≤≤成立?若存在,求出函数3y 的解析式;若不存在,请说明理由。

解:存在满足条件的二次函数。

因为222122(1)21(1)0y y x x x x x -=-+=-+-=--≤,所以,当自变量x 取任意实数时,12y y ≤均成立。

由已知,二次函数c bx ax y ++=23的图象经过点(-5,2),得2552a b c -+= ①当1x =时,有122y y ==,3y a b c =++由于对于自变量x 取任实数时,132y y y ≤≤均成立,所以有2≤a b c ++≤2, 故 2a b c ++= ②由①,②,得4b a =,25c a =-,所以234(25).y ax ax a =++- ……5分 当13y y ≤时,有224(25)x ax ax a ≤++-,即2(42)(25)0ax a x a +-+-≥ 所以,二次函数2(42)(25)y ax a x a =+-+-对于一切实数x ,函数值大于或等于零,故20(42)4(25)0a a a a ⎧⎨---≤⎩ 即20,(31)0,a a ⎧⎨-≤⎩ 所以13a = 当23y y ≤时,有224(25)1ax ax a x ++-≤+,即2(1)4(51)0a x ax a --+-≥, 所以,二次函数2(1)4(51)y a x ax a =--+-对于一切实数x ,函数值大于或等于零,故210,(4)4(1)(51)0,a a a a -⎧⎨----≤⎩即21,(31)0,a a ⎧⎨-≤⎩所以13a = 综上,141,4,25333a b a c a ====-=所以,存在二次函数23141333y x x =++,在实数范围内,对于x 的同一个值,都有132y y y ≤≤成立。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。

A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。

A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。

答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。

答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。

答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。

2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。

答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。

又抛物线经过点(0,3),代入解析式得c=3。

设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。

四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。

答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。

全国初中数学竞赛二次函数历届考题

全国初中数学竞赛二次函数历届考题

《全国初中数学比赛》二次函数历届考题11( 2008)、已知一次函数y 12x ,二次函数y 2x 21 ,能否存在二次函数y 3ax 2bxc ,其 象 点(-5,2),且 于随意 数x 的同一个 , 三个函数所 的函数y 1 , y 2 ,y 3 ,都有y 1y 2y 3 建立?若存在,求出函数 y 3 的解析式;若不存在, 明原因。

解:存在 足条件的二次函数。

因 y 1 y 2 2x ( x 2 1)x 2 2 x 1 ( x 1)2 0 ,因此,当自 量x 取随意 数 , y 1y 2 均建立。

由已知,二次函数 y 3 ax 2 bx c 的 象 点(- 5,2),得25 a 5b c 2①当 x 1 ,有 y 1 y 22 , y3 a b c因为 于自 量 x 取任 数 , y 1 y 3y 2 均建立,因此有 2≤ ab c ≤2,故a b c 2②由①,②,得 b 4a , c 25a ,因此 y 3 ax 2 4ax (2 5a).⋯⋯ 5 分当 y 1y 3 ,有 2xax 24ax (2 5a) ,即 ax 2(4a 2) x (2 5a)因此,二次函数 yax 2 (4a 2)x(2 5a) 于全部 数 x ,函数 大于或等于零,故a 0即a 0,1(4a 2)2 4a(2 5a) 0 (3a 1)2因此 a0, 3当 y 3y 2 ,有 ax 24ax(2 5a) x 2 1 ,即 (1a) x 2 4ax (5a 1)0 ,因此,二次函数 y(1 a) x 24ax (5a 1) 于全部 数x ,函数 大于或等于零,故1 a 0,即a 1,1( 4a) 2 4(1 a)(5a 1) (3a 1)2因此 a0, 0,3上, a1, b4a4, c 25a 1333因此,存在二次函数 y31x24x 1,在数范内,于 x 的同一个,333都有 y1 y3 y2建立。

⋯⋯⋯⋯⋯ 15 分11(2009).函数 y x2(2k 1)x k 2的象与 x 的两个交点能否都在直x1的右?假如,明原因;若不用然是,求出两个交点都在直x 1 的右k 的取范.解:不用然,比方,当 k=0 ,函数的象与x 的交点( 0, 0)和( 1,0),不都在直x 1的右.⋯⋯⋯⋯⋯⋯ 5 分函数与 x 的两交点的横坐x, x, x x(2k 1), xx k 2 ,当1212 1 2且当足以下条件≥0,( x11)(x21) 0,⋯⋯⋯⋯⋯⋯ 10 分( x11)( x2 1) 0,抛物与 x 的两交点都在直x 1 的右.(2 k1)24k 2≥ 0,由2k10,k 22k0,k≤1 , 4解之,得k 1 ,⋯⋯⋯⋯⋯⋯ 15 分2k 2 或 k0 .因此当k 2 ,抛物与x 的两交点在直x1的右.⋯⋯⋯⋯⋯⋯20 分12( 2010).如图,抛物线y ax2bx (a0)与双曲线y k订交于点A, B.已知点A x的坐标为(1, 4),点 B 在第三象限内,且△AOB的面积为3(O为坐标原点).(1)务实数 a, b, k 的值;(2)过抛物线上点 A 作直线 AC∥ x 轴,交抛物线于另一点 C ,求全部 足△EOC ∽△ AOB 的点 E 的坐 .解:( 1)因 点 A (1, 4)在双曲 yk 上,x 因此 k= 4. 故双曲 的函数表达式 y4 .x(第 12 题)点 B ( t , 4), t0 , AB 所在直 的函数表达式y mx n , 有t4 m ,n4 4(t 1)4, 解得 m , n .mtt ttn于是,直 AB 与 y 的交点坐0, 4(t 1) ,故tSAOB1 ( ) 1 t 3 ,整理得 2t23t2 0 ,4 t 12 t解得 t2 ,或 t =1(舍去).因此点 B 的坐 (2 , 2 ).2因 点 A ,B 都在抛物 yax 2 bx (a0)上,因此a b,a ,4解得1⋯⋯⋯⋯( 10 分)4a 2b,b 3.2( 2)如 ,因 AC ∥ x ,因此 C (4 ,4),于是 CO=42 . 又 BO=22,因此 CO2 .BO抛物 yax 2 bx (a 0)与 x 半 订交于点D ,点 D 的坐 (3 , 0) .(第 12 题)因 ∠ COD =∠ BOD = 45 ,因此∠ COB= 90 .( i )将△ BOA 点 O 旋 90,获得△ B OA 1 . ,点 B (2 , 2)是 CO 的中点,点 A 1 的坐 ( 4,1) .延 OA 1 到点 E 1 ,使得 OE 1 = 2OA 1 , 点 E 1 ( 8, 2 )是符合条件的点 .( ii )作△ BOA 对于 x 的 称 形△B OA 2 ,获得点 A 2(1, 4 );延 OA 2 到点 E 2 ,使得 OE 2 = 2OA 2 , 点 E 2( 2,8 )是符合条件的点.因此,点 E 的坐 是( 8, 2 ),或( 2,8 ) .⋯⋯⋯⋯( 20 分)13(2011).点A为 y 轴正半轴上一点, A, B 两点对于x轴对称,过点 A 任作直线交抛物线 y2x2于P,Q两点 .3(1)求证:∠ABP =∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60o,试求全部知足条件的直线PQ的函数解析式 .解:(1)如图,分别过点P, Q 作 y 轴的垂线,垂足分别为C, D .设点 A 的坐标为(0,t),则点 B 的坐标为(0,- t).设直线 PQ 的函数解析式为 y kx t ,并设 P, Q 的坐标分别为(x P,y P),( x Q,y Q). 由y kx t,得于是x P x Qy2x2,32 x2kx t33t ,即 t2x P x Q.232 x2t2x 20,(第 13 题)22x x x ( x x )于是BCBD y P t3P3Py Q t22223x Q t3x Q3P Q3P P Q x P.2x P x Q2x Q( x Q x P )x Q33又因为PCx P,因此BCPC . QD x Q BD QD因为∠ BCP∠ BDQ90 ,因此△ BCP ∽△ BDQ ,故∠ ABP =∠ ABQ .()设 PC a,DQ b ,不如设a≥ b,由()可知2>01∠ ABP =∠ ABQ30 , BC =3a, BD =3b,因此AC =3a 2 ,AD=23b .因为 PC∥ DQ ,因此△ACP ∽△ ADQ .于是PCAC ,即 a3a 2 ,DQ ADb 23b因此 a b3ab .由( 1)中于是可求得x P x Q3t ,即 ab3,因此 ab3, a b 3 3 ,2222a 2b 3.将 b 3代入 y2x2,获得点Q的坐标(3,1). 2322再将点 Q 的坐标代入 y kx 1 ,求得 k 3. 3因此直线 PQ 的函数解析式为y31 . x3()、已知抛物线C 1:yx23x4和抛物线 C2:y x23x 4 订交于112007A,B 两点。

初中数学竞赛二次函数习题

初中数学竞赛二次函数习题

§6.3二次函数6.3.11.设抛物线y=2x2,把它向右平移P个单位,或向下平移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p、q的值;2.把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值。

3.把抛物线y=ax2+bx+c向左平移三个单位后,所得的图像是经过点(−1,)的抛物线y=ax2,求原二次函数的解析式。

−126.3.2 已知抛物线y=ax2+bx+c的一段图像如图所示(1)确定a,b,c的符号;(2)求a+b+c的取值范围6.3.3 一条抛物线y=ax2+bx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则a、b、c中为正数的()6.3.4已知二次函数y=ax2+bx+c(其中a是正整数)的图像经过点A(-1,4)与点B(2,1),并且与x 轴有两个不同的交点,求b+c的最大值。

6.3.5 RT三角形ABC,的三个顶点A、B、C均在抛物线y=x2上,并且斜边AB 平行于X轴,若斜边上的高位h,则()A.h<1 B.h=1 c. 1<h<2 d. h>26.3.6 在直角坐标系中,抛物线y=x2+mx−34m2(m>0)与X轴交与A、B两点,若A、B两点到原点的距离分别为OA,OB,且满足1OB −1OA=23,求M的值。

6.3.7不论M取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,求这条直线的函数解析式。

6.3.8设a、b为常数,并且b<0,抛物线y=ax2+bx+a2+√2a−4的图像为图中的四个图像之一,求a的值。

6.3.9已知抛物线y=ax2−(a+c)x+c(其中a≠c)不经过第二象限。

(1)判断这条抛物线的顶点A(x0,y0)所在象限,并说明理由。

(2)若经过这条抛物线顶点A(x0,y0)的直线y=−x+k与抛物线的另一个交点为B(a+c,−c),求抛物线的解析式a6.3.10设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=−1,且其图像在X 轴上所截得的线段长为2√2,求这个二次函数的表达式。

1991年—1999年全国初中数学竞赛试题及答案

1991年—1999年全国初中数学竞赛试题及答案

1991年全国初中数学联合竞赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式ya a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是(A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12; (C )16; (D )18.答( ) 3. 方程012=--x x 的解是(A )251±;(B )251±-;(C )251±或251±-;(D )251±-±.答( ) 4.已知:)19911991(2111nnx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( )6. 若a ,c ,d 是整数,b 是正整数,且满足cb a=+,d c b =+,a d c =+,那么d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( )7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8.在锐角ΔABC 中,1=AC,cAB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21<c < 2 ;(B)0<c ≤21;答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是.2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32.3.设m ,n ,p ,q 为非负数,且对一切x >0,qpnmxx xx )1(1)1(+=-+恒成立,则=++qp n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,11=S 3S =132=SCD = 6,则AD = .第二试x + y , x -y , x y ,yx四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且 BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正方形ABCD 分割为2n 个相等的小方格(n 是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛试题第一试一.选择题120135本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是(A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .(A)1:2 (B)1:3 (C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x,则xxxx 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(b a a b . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,z A.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( ) 7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

初中数学竞赛练习第07讲 二次函数(含解析)

初中数学竞赛练习第07讲 二次函数(含解析)

第7讲二次函数。

022·广东,九年级统考觉赛〉如图,在四边形ABCD中,ADI/BC, LA=45°, LC=90。

,AD=4cm, 一、单选题CD=3cm.动点M,N同时从点A出发,点M以.ficm怜的速度?的AB向终点B运动,点N以2cm/s的速度沿拆线AD-即向终点C运动.设点N的运动时间为ts,AMN的面积为Scm2,则下列图象自巨大致反映S与t之间函数关系的是(BS/cm2 S/cm2A. B。

S/cm2 S/cm2c. D.。

7s2.(2021·全国九年级党赛)一条抛物线y= ax2 +hx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则。

,b, c中为正数的(A. 只有aB.只有b c.只有c D.只有。

和b3.(2021·全国九年级党赛)己知二次i1E1数y=ax2+bx+己的图象如图所示,则下列代数式:ab,ac, a+b+c, a-b+c, 2a吨,2a-b中,其值为正的代数式的个数为(}\1A.2个B.3个 c.4个 D.4个以上4.(2021·全国九年级党赛〉在平面直角坐标系z句中,作抛物线A关于x轴对称的抛物线B,再将抛物线B向在平移2个单位,向上半移1个单位,得到的抛物线C的两数负析式是y=2(λ+1)2-1,贝!|抛物线A所对应的的函数解析式是(A. y=-2(x+3)2-2B.y=-2(x+3)2 +2C. y=-2(x-1)1-2D.y=-2(x-1)1+25.(2021 ·全国丸年级竞赛〉己知α-b=4,ab+c2÷4=0,则α+b=( ) .A.4B.0C.2D.-26.(2021·全国九年级党赛)在平丽直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次27函数y=-x1+6x-4的图象与X车rb所围成的封闭图形染成红色,则在此红色区域内部及其边界上的孩点的个数是(〉A.5B.6 c.7 D.87.(2023春·浙江宁波九年级校联考竞赛〉二次函数y=x2+2x+c的图象与x轴的两个交点为A(码,0). B(句,o),且λ}〈毛,点P(m,n)是囱象上一点,那么下列判断正确的是〈〉A.当n>O时,川〈λlB.当n>O时,m>λ;2c.当n.<0时,m<O D.当n<O时,x1<m<x18.(2017秋·江苏镇江·九年级党赛)函数y=ax1+bx+c图像的大致位置如|到所示,则忡,bc,2α忡,(a+c)2-b2,“+ b)2 -c1, l l-a2等代数式的值中,正数有(〉xA. 2个B.3个 c.4个 D. 5个9.(2022·福建·九年级统考竞赛)已知二次函数y=ax气的+c的图象交x轴于A(刀,0),β(λz,0)两点,交y轴于点C(O,匀,若X1+ X2 = 4,且b.ABC的丽积为3,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国初中数学竞赛》二次函数历届考题
2
11(2008)、已知一次函数y1 2x ,二次函数y2 x2 1 ,是否存在二次函数y3 ax2bx
c ,其图象经过点(-5,2),且对于任意实数x 的同一个值,这三个函数所对应的函数值y1, y2,y3 ,都有y1 y2 y3成立?若存在,求出函数y3的解析式;若不存
在,请说明理由。

解:存在满足条件的二次函数。

因为y1 y2 2x (x2 1) x2 2x 1 (x 1)2 0 ,所以,当自变量x 取任意实数时,y1 y2 均成立。

由已知,二次函数y3 ax2bx c 的图象经过点(-5,2),得
25 a 5b c 2 ①
当x 1 时,有y1 y2 2 ,y3 a b c
由于对于自变量x取任实数时,y1 y3 y2均成立,所以有2≤ a b c ≤2,
故 a b c 2 ②
由①,②,得 b 4a ,c 2 5a,所以y3 ax2 4ax (2 5a). ⋯⋯5 分
当y1 y3 时,有2x ax2 4ax (2 5a) ,即ax2 (4 a 2) x (2 5a) 0
所以,二次函数y ax2 (4a 2) x (2 5a)对于一切实数x,函数值大于或
等于零,故
a0
即(3a 1)20, 所以a 3
2
(4a 2)24a(2 5a) 0
当y3 y2时,有ax2 4ax (2 5a) x2 1,即(1 a)x2 4ax (5a 1) 0,
所以,二次函数y (1 a) x2 4ax (5a 1)对于一切实数x,函数值大于或
等于零,故
1( 4a a)20,4(1 a)(5a 1) 0, 即a 1,2 所以a1
(3a 1)20, 3
综上, a 13,b 4a 43,c 2 5a 13
20分
1 4 1
所以,存在二次函数 y 3 13x 2 34x 31,在实数范围内,对于 x 的同一个值,
都有 y 1 y 3 y 2 成立。

⋯⋯⋯⋯⋯ 15 分
11(2009).函数 y x 2 (2k 1)x k 2的图象与 x 轴的两个交点是否都在直线 x 1
的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线 x 1 的右 侧时 k 的取值范围.
解:不一定,例如,当 k =0时,函数的图象与 x 轴的交点为( 0,0)和 (1,0),不都在直线 x 1的右侧.
⋯⋯⋯⋯⋯⋯ 5 分
设函数与 x 轴的两交点的横坐标为 x 1 ,x 2,则x 1 x 2
(2k 1), xx 12 k 2,当
且仅当满足如下条件
≥0,
( x 1 1) ( x 2 1) 0, ( x 1 1)( x 2 1) 0
10分
时,抛物线与 x 轴的两交点都在直线 x 1的右侧.
22
(2k 1)2 4k 2≥0, 2k 1 0,
2
k 2 2k 0,
解之,得
k ≤14,
1 k 1 ,
2 k 2或 k 0 .
15分
所以当 k 2时,抛物线与 x 轴的两交点在直线 x 1 的右侧.
O 为坐标原点)
的坐标为( 1, 4),点 B 在第三象限内,且△ AOB 的面积为
2
12( 2010).如图,抛物线 y ax bx (a 0)与双曲线
(1)求实数 a ,b ,k 的值;
2)过抛物线上点 A 作直线 AC ∥ x 轴,交抛物线于

k
y 相交于点 A , B. 已知点 A
所以 AC= 3a 2, AD=2 3b .
于是,直线 AB 与 y 轴的交点坐标为 0, 4(t 1)
,故
t
S AOB
1 (4 t 1)
1 t 3,整理得 2t
2 3t 2 0 , 1
解得 t 2 ,或 t = (舍去).所以点 B 的坐标为( 2 , 2 ).
2
因为点 A ,B 都在抛物线 y ax 2 bx (a 0)上,所以
a b 4, a 1,
解得 ⋯⋯⋯⋯( 10 分)
4a 2b 2, b 3.
(2)如图,因为 AC ∥x 轴,所以 C ( 4,4),于是 CO
CO
=4 2 . 又 BO=2 2 ,所以 CO 2.
BO
设抛物线 y ax 2 bx (a 0)与 x 轴负半轴相交于点 D , 则点
D 的坐标为( 3, 0).
因为∠ COD =∠ BOD = 45 ,所以∠ COB= 90 .
i )将△ BOA 绕点 O 顺时针旋转 90 ,得到△ B OA 1.这时,点 B ( 2 ,2)是 CO 的
中点,点 A 1 的坐标为( 4, 1)
延长 OA 1到点 E 1,使得 OE 1 = 2OA 1 ,这时点 E 1 (8, 2)是符合条件的点 . (ii )作△ BOA 关于 x 轴的对称图形△ B OA 2 ,得到点 A 2(1, 4);延长OA 2到点 E 2,
点C ,求所有满足△ EOC ∽△ AOB 的点 E 的坐标. k
解:( 1)因为点 A (1, 4)在双曲线 y 上, x
4 所以 k=4. 故双曲线的函数表达式为 y .
x
4
设点 B (t , ), t 0 ,AB 所在直线的函数表达式为
t
第 12 题)
y mx n ,则有
4 m n , 4
, mt n , t
解得 m 4,n 4(t 1)
tt
使得OE2=2OA2,这时点E2(2,8)是符合条件的点.所以,点E的坐标是(8,2),或(2,8).20 分)
13(2011).点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直
22
线交抛物线y 23x2于P,Q两点.
1)求证:∠ ABP=∠ ABQ;
2)若点A的坐标为(0,1),且∠ PBQ =60o,试求所有满足条件的直线PQ
的函数解析式.
解:(1)如图,分别过点P,Q作y轴的垂线,垂足分别为C,D.
设点A的坐标为(0,t),则点B的坐标为(0,- t ).
设直线PQ的函数解析式为y kx t,并设P,Q的坐
y kx t ,
y 23x2,
∠ ABP=∠ ABQ 30 ,BC= 3a,BD= 3b,
标分别为x P,y P),(x Q,y Q). 由
于是
于是
2x2kx t 0 ,
3
32
x P x Q t ,即t x P x Q.
23
2 2 2 2 2
BC y P t 3x P2 t3x P23x P x Q
BD y
Q
t
3
2x Q2t 23x Q2 23 x P x Q 32 x Q( x Q x P)
2
3
x
P
(x
P
x
Q
)
3
第13 题)
x
P
x
Q
又因为P C x P
,所以BC
QD x
Q
BD
因为∠B CP∠ BDQ 90 ,
故∠
A BP=∠ABQ.
(2)设PC
a
,DQ
b
,不妨设a≥ b >0,由(1)可知
PC
QD
所以△ BCP ∽△

所以AC= 3a 2,AD=2 3b.
因为PC ∥ DQ ,所以△ ACP∽△ ADQ .
于是PC AC a 3a 2 ,即,
DQ AD b 2 3b
所以 a b 3ab .
由(1)中x P x Q3t ,即ab 3,所以ab 3,
2 2 2
于是可求得 a 2b 3.
将b 3代入y 2x2,得到点Q的坐标(3,1).
2 3 2 2
3
再将点Q的坐标代入y kx 1,求得k 3.
3
所以直线PQ的函数解析式为y 3 x 1.
3
22
11(2007)、已知抛物线C1:y x 3x 4和抛物线C2:y x 3x 4相交于A,B 两点。

点P在抛物线C1上,且位于点A 和点 B 之间;点Q 在抛物线C2 上,也位于点 A 和点 B 之间。

(1)求线段AB 的长; 4 10
(2)当PQ∥ y轴时,求PQ长度的最大值。

t=0 时,PQ=8。

相关文档
最新文档