2020山东高考模拟卷数学
2020年山东省高考数学模拟试卷
2020年山东省高考数学模拟试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=()A.{(1,1)} B.{(﹣2,4)}C.{(1,1),(﹣2,4)} D.∅2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1 B.﹣C.D.13.设向量=(1,1),=(﹣1,3),=(2,1),且(﹣λ)⊥,则λ=()A.3 B.2 C.﹣2 D.﹣34.(﹣x)10的展开式中x4的系数是()A.﹣210 B.﹣120 C.120 D.2105.已知三棱锥S﹣ABC中,∠SAB=∠ABC=,SB=4,SC=2,AB=2,BC=6,则三棱锥S﹣ABC的体积是()A.4 B.6 C.4D.66.已知点A为曲线y=x+(x>0)上的动点,B为圆(x﹣2)2+y2=1上的动点,则|AB|的最小值是()A.3 B.4 C.3D.47.设命题p:所有正方形都是平行四边形,则¬p为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c二、多选题(共4小题)9.如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年()A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是()A.C的方程为﹣y2=1B.C的离心率为C.曲线y=e x﹣2﹣1经过C的一个焦点D.直线x﹣﹣1=0与C有两个公共点11.正方体ABCD﹣A1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等12.函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题(共4小题)13.某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.已知cos(α+)﹣sinα=,则sin(α+)=﹣.15.直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,+=.16.半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题(共6小题)17.在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=BC,求二面角B﹣SC﹣D的余弦值.20.下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得y i=1074,x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程中斜率和截距的最小二乘估计公式分别为:.21.设中心在原点,焦点在x轴上的椭圆E过点(1,),且离心率为,F为E的右焦点,P为E上一点,PF⊥x轴,⊙F的半径为PF.(1)求E和⊙F的方程;(2)若直线1:y=k(x﹣)(k>0)与⊙F交于A,B两点,与E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程:若不存在,说明理由.22.函数f(x)=(x>0),曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为.(1)求a;(2)讨论g(x)=x(f(x))2的单调性;(3)设a1=1,a n+1=f(a n),证明:2n﹣2|2lna n﹣ln7|<1.2020年山东省高考数学模拟试卷参考答案一、单选题(共8小题)1.【分析】可以选择代入选项中的元素.【解答】解:将(1,1)代入A,B成立,则(1,1)为A∩B中的元素.将(﹣2,4)代入A,B成立,则(﹣2,4)为A∩B中的元素.故选:C.【知识点】交集及其运算2.【分析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【解答】解:===﹣i,∴a+bi=﹣(﹣i)=i,∴a=0,b=1,∴a+b=1,故选:D.【知识点】复数代数形式的乘除运算3.【分析】利用(﹣λ)⊥,列出含λ的方程即可.【解答】解:因为﹣λ=(1+λ,1﹣3λ),又因为(﹣λ)⊥,所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A.【知识点】平面向量的坐标运算4.【分析】由二项式展开式通项公式可得:二项式(﹣x)10的展开式的通项为T r+1=,再令2r﹣10=4求解即可.【解答】解:由二项式(﹣x)10的展开式的通项T r+1=得,令2r﹣10=4,得r=7,即展开式中x4的系数是,故选:B.【知识点】二项式定理5.【分析】根据条件可以计算出AC,进而判断出SA⊥AC,所以SA⊥平面ABC,则三棱锥体积可表示为•SA•S△ABC,计算出结果即可.【解答】解:如图,因为∠ABC=,所以AC==2,则SA2+AC2=40+12=52=SC2,所以SA⊥AC,又因为∠SAB=,即SA⊥AB,AB∩AC=A,SA⊄平面ABC,所以SA⊥平面ABC,所以V S﹣ABC=•SA•S△ABC==4,故选:C.【知识点】棱柱、棱锥、棱台的体积6.【分析】作出对勾函数的图象,利用圆的性质,判断当A,B,C三点共线时,|AB|最小,然后进行求解即可.【解答】解:作出对勾函数y=x+(x>0)的图象如图:由图象知函数的最低点坐标为A(2,4),圆心坐标C(2,0),半径R=1,则由图象知当A,B,C三点共线时,|AB|最小,此时最小值为4﹣1=3,即|AB|的最小值是3,故选:A.【知识点】直线与圆的位置关系7.【分析】找出条件和结论,否定条件和结论.【解答】解:命题的否定为否定量词,否定结论.故¬p,有的正方形不是平行四边形.故选:C.【知识点】命题的否定8.【分析】通过和1比较大小判断,特殊值代入排除选项.【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.【知识点】对数值大小的比较二、多选题(共4小题)9.【分析】根据图分析每一个结论.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A对.由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B错.由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C错.由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D对.故选:AD.【知识点】进行简单的合情推理10.【分析】根据条件可求出双曲线C的方程,再逐一排除即可.【解答】解:设双曲线C的方程为,根据条件可知=,所以方程可化为,将点(3,)代入得b2=1,所以a2=3,所以双曲线C的方程为,故A对;离心率e====,故B错;双曲线C的焦点为(2,0),(﹣2,0),将x=2代入得y=e0﹣1=0,所以C对;联立,整理得y2﹣2y+2=0,则△=8﹣8=0,故只有一个公共点,故D错,故选:AC.【知识点】双曲线的简单性质11.【分析】取DD1中点M,则AM为AF在平面AA1D1D上的射影,由AM与DD1不垂直,可得AF与DD1不垂直;取B1C1中点N,连接A1N,GN,得平面A1GN∥平面AEF,再由面面平行的性质判断B;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积判断C;利用反证法证明D错误.【解答】解:取DD1中点M,则AM为AF在平面AA1D1D上的射影,∵AM与DD1不垂直,∴AF与DD1不垂直,故A错;取B1C1中点N,连接A1N,GN,可得平面A1GN∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积S=,故C正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG的中点,连接CG交EF于H,而H不是CG中点,则假设不成立,故D错.故选:BC.【知识点】直线与平面平行的判定12.【分析】利用已知条件推导出f(x)的周期,再利用周期即可得出f(x)与f(x+3)都为奇函数.【解答】解:∵f(x+1)与f(x+2)都为奇函数,∴f(﹣x+1)=﹣f(x+1)①,f(﹣x+2)=﹣f(x+2)②,∴由①可得f[﹣(x+1)+1]=﹣f(x+1+1),即f(﹣x)=﹣f(x+2)③,∴由②③得f(﹣x)=f(﹣x+2),所以f(x)的周期为2,∴f(x)=f(x+2),则f(x)为奇函数,∴f(x+1)=f(x+3),则f(x+3)为奇函数,故选:ABC.【知识点】函数的周期性、函数奇偶性的判断三、填空题(共4小题)13.【分析】先阅读题意,再结合排列组合中的分步原理计算即可得解.【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共=6种选法,从守擂选手中挑选1名选手为守擂者,共=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法,即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.【知识点】排列、组合及简单计数问题14.【分析】由条件利用两角和差的三角公式求得cos(α+)的值,再利用诱导公式求得sin(α+)的值.【解答】解:∵cos(α+)﹣sinα=cosα﹣sinα﹣sinα=(cosα﹣sinα)=cos(α+)=,∴cos(α+)=.则sin(α+)=sin(α﹣)=﹣cos(α﹣+)=﹣cos(α+)=﹣,故答案为:﹣.【知识点】两角和与差的余弦函数15.【分析】本题先根据抛物线焦点坐标可得p的值,然后根据抛物线的定义和准线,可知|AF|=x1+1,|BF|=x2+1.再根据直线斜率存在与不存在两种情况进行分类讨论,联立直线与抛物线方程,利用韦达定理最终可得结果.【解答】解:由题意,抛物线C的焦点F(1,0),∴=1,故p=2.∴抛物线C的方程为:y2=4x.则可设A(x1,y1),B(x2,y2).由抛物线的定义,可知:|AF|=x1+1,|BF|=x2+1.①当斜率不存在时,x1=x2=1.∴=+=+=1.②当斜率存在时,设直线l斜率为k(k≠0),则直线方程为:y=k(x﹣1).联立,整理,得k2x2﹣2(k2+2)x+k2=0,∴.∴=+===1.综合①②,可知:=1.故答案为:2;1.【知识点】直线与圆锥曲线的综合问题16.【分析】首先求出长方体的外接球的半径,进一步利用三角形的面积和基本不等式的应用求出结果.【解答】解:半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,如图所示则设四面体ABCD置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.【知识点】球内接多面体四、解答题(共6小题)17.【分析】利用等差数列、等比数列的通项公式和前n项和公式,先求出,等比数列{b n}的通项公式,再分别结合三个条件一一算出等差数列{a n}的通项公式,并判断是否存在符合条件的k.【解答】解:∵{b n}是等比数列,b2=3,b5=﹣81,∴,解得,∴b n=﹣(﹣3)n﹣1,∴a5=b1=﹣1,若S k>S k+1,即S k>S k+a k+1,则只需a k+1<0,同理,若S k+1<S k+2,则只需a k+2>0,若选①:b1+b3=a2时,a2=﹣1+(﹣9)=﹣10,又a5=﹣1,∴a n=3n﹣16,∴当k=4时,a5<0,a6>0,符合题意,若选②:a4=b4时,a4=b4=27,又a5=﹣1,∴d=﹣28,∴等差数列{a n}为递减数列,故不存在k,使得a k+1<0,a k+2>0,若选③:S5=﹣25时,S5===5a3=﹣25,∴a3=﹣5,又a5=﹣1,∴a n=2n﹣11,∴当k=4时,a5<0,a6>0,符合题意,综上所求:①,③符合题意.故答案为:①,③.【知识点】等差数列的前n项和、等比数列18.【分析】(1)直接利用三角形的面积公式的应用建立等量关系,进一步求出∠ABC.(2)利用三角形的边的关系式的应用和余弦定理的应用求出cos∠CFB.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以,,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=k,BD=,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则.且BF2=BD2+DF2,解得,在△CBF中,利用余弦定理==.【知识点】余弦定理19.【分析】(1)根据异面直线共垂线的定义进行证明即可.(2)建立空间直角坐标系,求出点的坐标,利用向量法求出平面的法向量,利用向量法进行转化求解即可.【解答】解:(1)取SD的中点H,连EH,FH,则EH∥SA,则EH⊥平面ABCD,∴EH⊥AD,∵FH∥CD,CD⊥AD,∴FH⊥AD,∴AD⊥平面EFH,∴AD⊥EF设BC=2,∴EF=1,EM=FM=,∴CD=AB=,SA=,建立如图的空间直角坐标系,则E(0,1,0),F(,1,),S(0,0,),C(,2,0),则=(,0,),=(,2,﹣),则=1﹣1=0,即EF⊥SC,即EF为异面直线AD与SC的公垂线.(2)若EF=BC,设BC=2,则EF=1,则EM=FM=,CD=AB=,SA=,D(0,2,0),B(,0,0),则=(,2,﹣),=(0,2,0),=(﹣,0,0),设面BCS的法向量为=(a,b,c),则,则,取a=c=1,则=(1,0,1)设面SCD的法向量为=(x,y,z),则,则,取z=,则y=1,则=(0,1,),则cosθ===,∴余弦值为.【知识点】与二面角有关的立体几何综合题20.【分析】(1)根据散点图可以看出,散点均匀的分布在一条直线附近,故y与x成线性相关;(2)根据给出信息,分别计算出x,y的平均值,代入最小二乘法估计公式,即可得到回归方程;(3)根据所给残差图分别区域的宽度分析即可.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x的增大,y增大,故y 与x成线性相关,且为正相关;(2)依题意,=(1+2+3+4+5+6+7)=4,=y i=1074≈153.43,===≈7.89,=﹣=154.43﹣7.89×4=121.87,所以y关于x的线性回归方程为:=7.89x+121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.【知识点】线性回归方程21.【分析】(1)根据离心率可得,代入a2=b2+c2得a=2b,再代点即可得出E的方程,再求出点F、P的坐标,从而求出圆F的方程;(2)设出C、D的坐标,求出|CF|、|DF|,根据条件得到|AB|=|CD|=1,利用韦达定理代入即可得到结论.【解答】解:(1)由题意可设椭圆的标准方程为,∵椭圆的离心率e=,∴,∵a2=b2+c2,∴a=2b,将点(1,)代入椭圆的方程得:,联立a=2b解得:,∴椭圆E的方程为:,∴F(),∵PF⊥x轴,∴P(),∴⊙F的方程为:;(2)由A、B再圆上得|AF|=|BF|=|PF|=r=,设C(x1,y1),D(x2,y2),|CF|=1同理:,若|AC|=|BD|,则|AB|=|CD|=1,∴4﹣,由得,∴∴4﹣=1得12k2=12k2+3,无解,故不存在.【知识点】直线与椭圆的位置关系22.【分析】(1)求得f(x)的导数,可得切线的斜率和切点,以及切线方程,代入(0,),解方程可得a;(2)求得g(x)的解析式和导数,分解因式可得导数的符号,进而判断单调性;(3)运用分析法证明,结合f(x)和g(x)的单调性,以及a n+1=f(a n),等比数列的性质,对a n与的大小关系讨论,即可得证.【解答】解:(1)函数f(x)=(x>0)的导数为f′(x)=,曲线y=f(x)在点(1,f(1))处的切线斜率为,切点为(1,),切线方程为y﹣=(x﹣1),代入(0,)可得﹣=(0﹣1),解得a=7;(2)g(x)=x(f(x))2=x•()2=,g′(x)=,当x>0时,g′(x)>0,可得g(x)在(0,+∞)递增;(3)要证2n﹣2|2lna n﹣ln7|<1,只需证|lna n﹣ln7|<,即为|ln|<,只要证|ln|<|ln|,由f(x)在(0,+∞)递减,a n>0,若a n>,a n+1=f(a n)<f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12>7,此时a n>,由(2)知a n a n+12=g(a n)>g()=7;若a n<,a n+1=f(a n)>f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12<7,此时a n<,由(2)知a n a n+12=g(a n)<g()=7;若a n=,不等式显然成立.综上可得|ln|<|ln|,(n≥1,n∈N*)成立,则|ln|<•|ln|=•ln7,由ln7<lne2=1,可得|ln|<,则2n﹣2|2lna n﹣ln7|<1成立.【知识点】利用导数研究函数的单调性。
山东省2020届高考模拟考试数学试题及答案word4.21
山东省2020届高考模拟考试数学试题 2020.4.21注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
本试卷共4页,分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(i 为虚数单位)等于()A .1B .1-C .iD .i -2.若集合}11,|{31≤≤-==x x y y A ,}1{x y x B -==,则A B =I () A .(]1,∞- B .]1,1[- C .φD .{1}3.若,则下列不等式成立的是( )A .y x )21(21<)(B .2121--<yxC .212212log log y x <D .321321log log y x <4.在ABC ∆中,M 是BC 的中点,AM=1,点P 满足2,()PA PM AM PB PC =⋅+=u u u r u u u u r u u u u r u u u r u u u r则( )A .2B .-2C .23D .23-5.设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 6.过点(2,0)-且倾斜角为4π的直线l 与圆225x y +=相交于M 、N 两点,则线段MN 的长为 )A.B .3C.D .67.一个各面都涂满红色的4×4×4(长、宽、高均为4)正方体,被锯成同样大小的单位(长宽高均为1)小正方体,将这些小正方体放在一个不透明的袋子中,充分混合后,从中任取一个小正方体,则取出仅有一面涂有色彩的小正方体的概率为 ( )A .14B .12C .18D .3801x y <<<8.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于A. B. C. D.二、多项选择题:(本大题共4小题,每小题5分,共20分。
山东省2020年普通高等学校招生全国统一考试模拟卷数学试题(含解析)
按秘密级事项管理★启用前2020 年普通高等学校招生考试全国统一考试(模拟卷)数 学注意事项:1.答卷前考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时 选出每个小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 用 橡皮擦干净后再选涂其他答案标号。
回答非选择题时将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后将本试卷和答题卡一并交回.一、单项选择题:本题共 8 小题每小题 5 分共 40 分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.设集合 A = {(x , y ) | x + y = 2} B = {(x , y ) | y = x 2}则 A B =A. {(1,1)}B. {(-2, 4)}C. {(1,1), (-2, 4)}D. ∅2.已知 a + bi (a , b ∈ R ) 是1- i的共轭复数 则 a + b =1+ iA. -1B. -1 2C. 1 2D. 13.设向量 a = (1,1) b = (-1, 3) c = (2,1)且 (a - b ) ⊥ c则=A. 3B. 2C. -24. ( 1 - x )10的展开式中 x 4的系数是xD. -3A. -210B. -120C. 120D. 2105.已知三棱锥 S - ABC 中 ∠SAB = ∠ABC =, S B = 4, S C = 22, AB = 2, BC = 6则三棱锥 S - ABC 的体积是133 2 A.4 B. 6C. 4D. 66.已知点 A 为曲线 y = x + 4(x > 0) 上的动点 xB 为圆 (x - 2)2 + y 2 = 1上的动点 则| AB | 的最小值是A. 3B. 4C. 3D. 47.设命题 P :所有正方形都是平行四边形。
则 ⌝p 为A. 所有正方形都不是平行四边形B. 有的平行四边形不是正方形C. 有的正方形不是平行四边形D. 不是正方形的四边形不是平行四边形8.若 a > b > c > 1 且 ac < b2则A. log a b > log b c > log c aB. log c b > log b a > log a cC. log b c > log a b > log c aD. log b a > log c b > log a c二、多项选择题:本题共 4 小题每小题 5 分共 20 分。
2020年山东省高考数学模拟试卷(含答案)20200610
2020年山东省高考数学模拟试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.(5分)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B =( ) A .{(1,1)}B .{(﹣2,4)}C .{(1,1),(﹣2,4)}D .∅2.(5分)已知a +bi (a ,b ∈R )是1−i 1+i的共轭复数,则a +b =( )A .﹣1B .−12C .12D .13.(5分)设向量a →=(1,1),b →=(﹣1,3),c →=(2,1),且(a →−λb →)⊥c →,则λ=( ) A .3B .2C .﹣2D .﹣34.(5分)(1x−x )10的展开式中x 4的系数是( ) A .﹣210B .﹣120C .120D .2105.(5分)已知三棱锥S ﹣ABC 中,∠SAB =∠ABC =π2,SB =4,SC =2√13,AB =2,BC =6,则三棱锥S ﹣ABC 的体积是( ) A .4B .6C .4√3D .6√36.(5分)已知点A 为曲线y =x +4x(x >0)上的动点,B 为圆(x ﹣2)2+y 2=1上的动点,则|AB |的最小值是( ) A .3B .4C .3√2D .4√27.(5分)设命题p :所有正方形都是平行四边形,则¬p 为( ) A .所有正方形都不是平行四边形B .有的平行四边形不是正方形C .有的正方形不是平行四边形D .不是正方形的四边形不是平行四边形 8.(5分)若a >b >c >1且ac <b 2,则( ) A .log a b >log b c >log c a B .log c b >log b a >log a c C .log b c >log a b >log c aD .log b a >log c b >log a c 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得09.(5分)如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年( ) A .财政预算内收入、城乡居民储蓄年末余额均呈增长趋势 B .财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C .财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D .城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.(5分)已知双曲线C 过点(3,√2)且渐近线为y =±√33x ,则下列结论正确的是( ) A .C 的方程为x 23−y 2=1B .C 的离心率为√3C .曲线y =e x ﹣2﹣1经过C 的一个焦点D .直线x −√2y −1=0与C 有两个公共点11.(5分)正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D.点C与点G到平面AEF的距离相等12.(5分)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题:本题共4小题,每小题5分,共20分13.(5分)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.(5分)已知cos(α+π6)﹣sinα=4√35,则sin(α+11π6)=.15.(5分)直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,1|AF|+1|BF|=.16.(5分)半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.(12分)在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC 且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=12BC,求二面角B﹣SC﹣D的余弦值.20.(12分)下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得∑7i=1y i=1074,∑7i=1x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程y=b x+a中斜率和截距的最小二乘估计公式分别为:b=∑n i=1(x i−x)(y i−y),a=y−b x.∑n i−1(x i−x)221.(12分)设中心在原点,焦点在x 轴上的椭圆E 过点(1,√32),且离心率为√32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,⊙F 的半径为PF . (1)求E 和⊙F 的方程;(2)若直线l :y =k (x −√3)(k >0)与⊙F 交于A ,B 两点,与E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程:若不存在,说明理由.22.(12分)函数f (x )=a+x1+x (x >0),曲线y =f (x )在点(1,f (1))处的切线在y 轴上的截距为112.(1)求a ;(2)讨论g (x )=x (f (x ))2的单调性;(3)设a 1=1,a n +1=f (a n ),证明:2n ﹣2|2lna n ﹣ln 7|<1.2020年山东省高考数学模拟试卷答案解析1.解:将(1,1)代入A ,B 成立,则(1,1)为A ∩B 中的元素.将(﹣2,4)代入A ,B 成立,则(﹣2,4)为A ∩B 中的元素.故选:C . 2.【解答】解:1−i 1+i=(1−i)2(1+i)(1−i)=−2i 2=−i ,∴a +bi =﹣(﹣i )=i , ∴a =0,b =1, ∴a +b =1,故选:D .3.【解答】解:因为a →−λb →=(1+λ,1﹣3λ),又因为(a →−λb →)⊥c →, 所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A . 4.【解答】解:由二项式(1x−x )10的展开式的通项T r +1=C 10r (1x)10−r (−x)r =(−1)r C 10r x2r−10得,令2r ﹣10=4,得r =7,即展开式中x 4的系数是(−1)7C 107=−120,故选:B .5【解答】解:如图,因为∠ABC =π2,所以AC =√AB 2+BC 2=2√10, 则SA 2+AC 2=40+12=52=SC 2,所以SA ⊥AC ,又因为∠SAB =π2,即SA ⊥AB ,AB ∩AC =A ,SA ⊄平面ABC ,所以SA ⊥平面ABC , 所以V S ﹣ABC =13•SA •S △ABC =13×2√3×12×2×6=4√3, 故选:C .6.【解答】解:作出对勾函数y =x +4x (x >0)的图象如图:由图象知函数的最低点坐标为A (2,4),圆心坐标C (2,0),半径R =1,则由图象知当A ,B ,C 三点共线时,|AB |最小,此时最小值为4﹣1=3, 即|AB |的最小值是3, 故选:A .7.【解答】解:命题的否定为否定量词,否定结论.故¬p ,有的正方形不是平行四边形. 故选:C .8.【解答】解:因为a >b >c >1,令a =16,b =8,c =2, 则log c a >1>log a b 所以A ,C 错, 则log c b =3>log b a =43故D 错,B 对. 故选:B .9.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A 对. 由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B 错. 由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C 错. 由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D 对. 故选:AD .10.【解答】解:设双曲线C 的方程为x 2a 2−y 2b 2=1,根据条件可知ba=√33,所以方程可化为x 23b 2−y 2b 2=1,将点(3,√2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23−y 2=1,故A对;离心率e =c a =√a 2+b 2a 2=√3+13=2√33,故B 错;双曲线C 的焦点为(2,0),(﹣2,0),将x =2代入得y =e 0﹣1=0,所以C 对;联立{x 23−y 2=1x −√2y −1=0,整理得y 2﹣2√2y +2=0,则△=8﹣8=0,故只有一个公共点,故D 错,故选:AC .11.【解答】解:取DD 1 中点M ,则AM 为AF 在平面AA 1D 1D 上的射影, ∵AM 与DD 1 不垂直,∴AF 与DD 1不垂直,故A 错;取B 1C 1中点N ,连接A 1N ,GN ,可得平面A 1GN ∥平面AEF ,故B 正确; 把截面AEF 补形为四边形AEFD 1,由等腰梯形计算其面积S =98,故C 正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立,故D 错.故选:BC .12【解答】解:∵f (x +1)与f (x +2)都为奇函数,∴f (﹣x +1)=﹣f (x +1)①,f (﹣x +2)=﹣f (x +2)②,∴由①可得f [﹣(x +1)+1]=﹣f (x +1+1),即f (﹣x )=﹣f (x +2)③, ∴由②③得f (﹣x )=f (﹣x +2),所以f (x )的周期为2, ∴f (x )=f (x +2),则f (x )为奇函数,∴f (x +1)=f (x +3),则f (x +3)为奇函数,故选:ABC .13【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共C 61=6种选法,从守擂选手中挑选1名选手为守擂者,共C 61=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法, 即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.14.【解答】解:∵cos (α+π6)﹣sin α=√32cos α−12sin α﹣sin α=√3(12cos α−√32sin α)=√3cos(α+π3)=4√35, ∴cos (α+π3)=45.则sin (α+11π6)=sin (α−π6)=﹣cos (α−π6+π2)=﹣cos (α+π3)=−45, 故答案为:−45.15.【解答】解:由题意,抛物线C 的焦点F (1,0), ∴p2=1,故p =2.∴抛物线C 的方程为:y 2=4x .则可设A (x 1,y 1),B (x 2,y 2).由抛物线的定义,可知:|AF |=x 1+1,|BF |=x 2+1. ①当斜率不存在时,x 1=x 2=1. ∴1|AF|+1|BF|=1x 1+1+1x 2+1=12+12=1.②当斜率存在时,设直线l 斜率为k (k ≠0),则直线方程为:y =k (x ﹣1). 联立{y =k(x −1)y 2=4x,整理,得k 2x 2﹣2(k 2+2)x +k 2=0,∴{△=4(k 2+2)2−4k 4=16(k 2+1)>0x 1+x 2=2(k 2+2)k 2x 1⋅x 2=1.∴1|AF|+1|BF|=1x 1+1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=x 1+x 2+2x 1+x 2+2=1.综合①②,可知:1|AF|+1|BF|=1.故答案为:2;1.16.【解答】解:半径为2的球面上有A ,B ,C ,D 四点,且AB ,AC ,AD 两两垂直, 如图所示则设四面体ABCD 置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=12yz+12xy+12xz,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.17.【解答】解:因为在等比数列{b n}中,b2=3,b5=﹣81,所以其公比q=﹣3,从而b n=b2(−3)n−2=3×(−3)n−2,从而a5=b1=﹣1.若存在k,使得S k>S k+1,即S k>S k+a k+1,从而a k+1<0;同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,从而a k+2>0.若选①:由b1+b3=a2,得a2=﹣1﹣9=﹣10,所以a n=3n﹣16,当k=4时满足a5<0,且a6>0成立;若选②:由a4=b4=27,且a5=﹣1,所以数列{a n}为递减数列,故不存在a k+1<0,且a k+2>0;若选③:由S5=−25=5(a1+a5)2=5a3,解得a3=﹣5,从而a n=2n﹣11,所以当n=4时,能使a5<0,a6>0成立.18.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以S△ABC=12⋅AB⋅AC,S△CDF=12⋅CD⋅DF,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=√2k,BD=3√24k,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则CF=3√24k.且BF2=BD2+DF2,解得BF=√344k,在△CBF中,利用余弦定理cos∠CBF=CF2+BF2−BC22⋅CF⋅BF=98k2+178k2−2k22⋅3√24k⋅√344k=5√1751.19.【解答】解:(1)取SB中点M,连接FM和MA,则四边形FMAE为平行四边形,∵EF与底面所成角度为45°,∴AM与底面所成角度为45°,即∠MAB=45°,则△SAB为等腰直角三角形,则AM ⊥SB ,AM ⊥BC ,即AM ⊥面SBC ,EF ⊥面SBC ,则EF ⊥SC ,EF ⊥BC ,EF ⊥AD ,即EF 为异面直线AD 与SC 的公垂线. (2)若EF =12BC ,设BC =2,则EF =1,则EM =FM =√22,CD =AB =√2,SA =√2,D (0,2,0),B (√2,0,0),则SC →=(√2,2,−√2),BC →=(0,2,0),CD →=(−√2,0,0),设面BCS 的法向量为n →=(a ,b ,c ),则{n →⋅SC →=√2a +2b −√2c =0n →⋅BC →=2b =0,则{b =0a =c ,取a =c =1,则n →=(1,0,1) 设面SCD 的法向量为m →=(x ,y ,z ),则{m →⋅SD →=√2x +2y −√2z =0m →⋅CD →=−√2x =0,则{x =02y =√2z,取z =√2,则y =1,则m →=(0,1,√2),则cos θ=m →⋅n→|m →||n →|=√2√2⋅√3=√33,由图象知二面角B ﹣SC ﹣D 为钝二面角.则二面角B ﹣SC ﹣D 的余弦值为−√33.20.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x 的增大,y 增大,故y 与x 成线性相关,且为正相关;(2)依题意,x =17(1+2+3+4+5+6+7)=4,y =17∑ 7i=1y i =17×1074≈153.43, b =∑ 71x i y i −7xy ∑ 71x i 2−7x2=∑ 71x 1y i −7x×y ∑ 71x i 2−7x2=4517−7×154.43×4140−7×42≈7.89, a =y −b x =154.43﹣7.89×4=121.87,所以y 关于x 的线性回归方程为:y =7.89x +121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.21.【解答】解:(1)由题意可设椭圆的标准方程为x 2a 2+y 2b 2=1,∵椭圆的离心率e =√32,∴c a =√32,∵a 2=b 2+c 2,∴a =2b ,将点(1,√32)代入椭圆的方程得:1a 2+34b2=1, 联立a =2b 解得:{a =2b =1,∴椭圆E 的方程为:x 24+y 2=1,∴F (√3,0),∵PF ⊥x 轴,∴P (√3,±12),∴⊙F 的方程为:(x −√3)2+y 2=14; (2)由A 、B 在圆上得|AF |=|BF |=|PF |=r =12,设C (x 1,y 1),D (x 2,y 2),|CF |=√(x 1−√3)2+y 12=2−√32x 1同理:|DF|=2−√32x 2,若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |,即|AB |=|CD |=1, ∴4−√32(x 1+x 2)=1,由{x 24+y 2=1y =k(x −√3)得(4k 2+1)x 2−8√3k 2x +12k 2−4=0, ∴x 1+x 2=8√3k24k 2+1∴4−12k24k 2+1=1得12k 2=12k 2+3,无解,故不存在.22.【解答】解:(1)函数f (x )=a+x 1+x (x >0)的导数为f ′(x )=1−a(x+1)2, 曲线y =f (x )在点(1,f (1))处的切线斜率为1−a 4,切点为(1,a+12),切线方程为y −a+12=1−a 4(x ﹣1), 代入(0,112)可得112−a+12=1−a 4(0﹣1),解得a =7;(2)g (x )=x (f (x ))2=x •(7+x 1+x)2=x 3+14x 2+49x(x+1)2,g ′(x )=(x+7)[(x−2)2+3](x+1)3,当x >0时,g ′(x )>0,可得g (x )在(0,+∞)递增;(3)要证2n ﹣2|2lna n ﹣ln 7|<1,只需证|lna n −12ln 7|<12n−1,即为|lnn √7|12n−1,只要证|lnn+1√7|12|lnn√7|由f (x )在(0,+∞)递减,a n >0,若a n >√7,a n +1=f (a n )<f (√7)=√7,此时n+1√7<1n √7, 只要证ln √7a n+1<ln (n √7)12,即为√7a n+1<(n √7)12,即a n a n +12>7√7,此时a n >√7,由(2)知a n a n +12=g (a n )>g (√7)=7√7; 若a n <√7,a n +1=f (a n )>f (√7)=√7,此时n √71n+1√7, 只要证ln n+1√7<ln (√7a n)12,即为n+1√7<(√7a n )12,即a n a n +12<7√7,此时a n <√7,由(2)知a n a n +12=g (a n )<g (√7)=7√7; 若a n =√7,不等式显然成立. 综上可得|ln n+1√7|12|lnn√7|(n ≥1,n ∈N *)成立,则|lnn√7|12n−1•|ln1√7|=12n−1•12ln 7,由12ln 7<12lne 2=1,可得|lnn√7|12n−1,则2n ﹣2|2lna n ﹣ln 7|<1成立.。
2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)
A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而
2020年山东省普通高等学校招生全国统一考试模拟数学试题一含答案
2020年山东省普通高等学校招生全国统一考试模拟数学试题(一)注意事项:1.答卷前,考生务必将自己的姓名,考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}20M x x x =-≥,{}2N x x =<,则MN =( )A .{}0x x ≤B .{}12x x ≤<C .{}012x x x ≤≤<或D .{}01x x ≤≤ 2.已知i 为虚数单位,则复数131ii-+的虚部为( ) A .2- B .2i - C .2 D .2i3.设a R ∈,则“1a =-”是“直线10ax y +-=与直线50x ay ++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.设向量a ,b 满足()3,1a b +=,1a b ⋅=,则a b -=( )A .2BC . D5.在6⎫⎝的二项展开式中,2x 的系数为( ) A .154 B .154- C .38 D .38-6.已知函数()()1f x x x =+,则不等式()()220f x f x +->的解集为( ) A .()2,1- B .()1,2- C .()(),12,-∞-+∞ D .()(),21,-∞-+∞7.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作直线与C 及其渐近线分别交于Q ,P 两点,且Q 为2PF 的中点.若等腰三角形12PF F 的底边2PF 的长等于C 的半焦距.则C 的离心率为( )A .27-+ B .43 C .27+ D .328.将函数sin 2y x =的图象向右平移02πϕϕ⎛⎫<<⎪⎝⎭个单位长度得到()y f x =的图象.若函数()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上单调递增,且()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上,则ϕ的取值范围是( ) A .,64ππ⎛⎤⎥⎝⎦ B .,62ππ⎛⎫ ⎪⎝⎭ C .,124ππ⎛⎤ ⎥⎝⎦ D .,122ππ⎛⎫⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、“90后”从事互联网行业岗位分布条形图,则下列结论中正确的是( )注:“90后”指1990年及以后出生的人,“80后”指1980-1989年之间出生的人,“80前”指1979年及以前出生的人.A .互联网行业从业人员中“90后”占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数“90后”比“80前”多D .互联网行业中从事技术岗位的人数“90后”比“80后”多 10.对于实数a ,b ,m ,下列说法正确的是( ) A .若22am bm >,则a b >B .若a b >,则a a b b >C .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞11.已知函数()122log x f x x =-,且实数a ,b ,()0c a b c >>>满足()()()0f a f b f c <.若实数0x 是函数()y f x =的一个零点,那么下列不等式中可能成立的是( ) A .0x a < B .0x a > C .0x b < D .0x c < 12.已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( )A12= B .12128x x < C .1232x x +< D .2212512x x +> 三、填空题:本题共4小题,每小题5分,共20分. 13.已知cos 5θ=-,且,2πθπ⎛⎫∈ ⎪⎝⎭,则tan2θ=________. 14.一组数据的平均数是8,方差是16,若将这组数据中的每一个数据都减去4,得到一组新数据,则所得新数据的平均数与方差的和是________.15.已知A ,B ,C 为球O 的球面上的三个定点.60ABC ∠=︒,2AC =,P 为球O 的球面上的动点,记三棱锥РABC -的体积为1V ,三棱锥O ABC -的体积为2V .若12V V 的最大值为3.则球O 的表面积为________.16.已知直线:2l y x b =+与抛物线()2:20C y px p =>相交于A ,B 两点,且5AB =,直线l 经过C的焦点.则p =________,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为________.(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,试从下列①②条件中任选一个作为已 知条件并完成下列(1)(2)两问的解答. ①sin sin in sin s C A A b a cB--=+; ②2cos cos cos c C a B b A =+.(1)求角C ;(2)若c =,a b +=ABC 的面积.注:如果选择两个条件分别解答,按第一个解答计分.18.(12分)已知数列{}n a 为公差不为0的等差数列.满足15a =.且2a ,9a ,30a 成等比数列. (1)求{}30a 的通项公式;(2)若数列{}n b 满足()*1n n n b b a n N +-=∈,且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)如图所示,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,2AB =,1AA =D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A .(1)求证:1BC AB ⊥;(2)若OC OA =,求二面角D BC A --的余弦值.20.(12分)设点()A ,)B ,直线AP 和BP 相交于点P ,且它们的斜率之积为23-. (1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M 和N 是轨迹C 上不同的两点,且满足//AP OM ,//BP ON ,求证:MON 的面积为定值.21.(12分)为了应对新型冠状病毒肺炎带来的强传染性,外出佩戴口罩成为必要.某工厂生产N 95型口罩并成箱包装,每箱200件,每一箱口罩出厂前要对产品进行检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件检验,再根据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率为()01p p <<,且每件产品是否为不合格品相互独立. (1)记20件产品中恰有两件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱口罩检验了20件,结果恰有2件不合格.以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的口罩做检验,这一箱口罩的检验费用和赔偿费用的和记为X ,求()E X . (ⅱ)以检验费用与赔偿费用和的期望值为依据,是否应该对该箱余下的所有口罩做检验? 22.(12分)已知定义在区间()0,2上的函数()ln mf x xx =+,m R ∈. (1)证明:当1m =时,()1f x ≥;(2)若曲线()y f x =过点()1,0A 的切线有两条,求实数m 的取值范围.参考答案1.C 由20x x -≥,解得1x ≥或0x ≤,所以集合{}10M x x x =≥≤或.因为{}2N x x =<,所以{}012MN x x x =≤≤<或.故选C .2.A()()()()1311324121112i i i i i i i i -----===--++-,∴复数131ii -+的虚部为2-.故选A . 3.A 直线10ax y +-=与直线50x ay ++=平行,则21a =且51a≠-,解得1a =±,所以当1a =±时,满足两直线平行,则“1a =-”是“两条直线平行”的充分不必要条件.故选A .4.B 因为()3,1a b +=,所以231a b +=+=22410416a b a b a b -=+-⋅=-⨯=,所以6a b -=.故选B .5. D 由二项式定理可得62⎛⎫- ⎝的通项为()()663166120,1,2,3,62r r rrr r rrT C C x r---+⎛⎛⎫==-=⎪⎝⎭⎝⎝⎭,令32r-=,则1r=,所以2x的系数为()6111613228C-⎛⎫⨯-=-⎪⎝⎭.故选D.6.D ()()1f x x x=+,()()()1f x x x f x∴-=-+=-,()f x∴为定义域R上的奇函数.又当0x>时,()()21f X x x x x=+=+为增函数,()f x∴在R上单调递增.由()()220f x f x+->知,()()()222f x f x f x>--=-,22x x∴>-,即220x x+->,解得2x<-或1x>.故选D.7.C 连接1QF,由12PF F为等腰三角形且Q为2PF的中点,由2PF c=知12QF PF⊥,且22cQF=.由双曲线的定义知122cQF a=+,在12Rt FQF中,()2222222c ca c⎛⎫⎛⎫++=⎪ ⎪⎝⎭⎝⎭,解得双曲线C的离心率e=.故选C.8.C 函数sin2y x=的图象向右平移02πϕϕ⎛⎫<<⎪⎝⎭个单位长度得到函数()()sin22f x xϕ=-的图象,则当0,4xπ⎡⎤∈⎢⎥⎣⎦时,222,22xπϕϕϕ⎡⎤-∈--⎢⎥⎣⎦.由函数()f x在区间0,4π⎡⎤⎢⎥⎣⎦上单调递增,可知,()2222222kk Zkππϕππϕπ⎧-+≤-⎪⎪∈⎨⎪-≤+⎪⎩,解得()4k k Zkππϕπ-≤-∈≤.又由02πϕ<<,可知04ππ<≤①.函数()f x的所有零点满足()22x k k Zϕπ-=∈,即()12k Zx kπϕ=+∈,由最大负零点在5,126ππ⎛⎫--⎪⎝⎭内,得()511226Zk kπππϕ-+<-∈<,即()51112262Zk k kπππϕπ--<<-∈-,由02πϕ<<可知,当1k=-时,123ππϕ<<②.由①②可得,ϕ的取值范围为,124ππ⎛⎤⎥⎝⎦.故选C.9.ABC 由题图可知,互联网行业从业人员中“90后”占总人数的56%,超过一半,A正确;互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,超过20%,所以互联网行业从业人员(包括“90后”“80后”“80前”)从事技术岗位的人数超过总人数的20%,B正确;互联网行业从业人员中“90后”从事运营岗位的人数占总人数的56%17%9.52%⨯=,超过“80前”的人数占总人数的比例,且“80前”中从事运营岗位的比例未知,C 正确;互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,小于“80后”的人数占总人数的比例,但“80后”中从事技术岗位的比例未知,D 不一定正确.故选ABC .10.ABCD 对实数a ,b ,m .22am bm >,a b ∴>,A 正确;a b >,分三种情况,当0a b >>时,a ab b >成立;当0a b >>时,a a b b >成立;当0a b >>时,a a b b >成立,a a b b ∴>成立,B 正确;0b a >>,0m >,()()()()()0()a m b a b m b a ma m a ab bm ab am b m b b b m b b m b b m +-+-++---===+++∴>+,C 正确;若0a b >>,且ln ln a b =,1a b ∴=,且1a >.122a b a a ∴+=+,设()()121f a a a a=+>,()2120a f a =-'>,()f a ∴在区间()1,+∞上单调递增,当1a →时,()3f a →,()3f a ∴>,即()23,a b +∈+∞,D 正确.11.ABC 由()122log x f x x =-,可知函数()f x 在区间()0,+∞上单调递增.因为实数a ,b ,()0c a b c >>>满足()()()0f a f b f c <,则()f a ,()f b ,()f c 可能都小于0或有1个小于0,2个大于0,如图.则A ,B ,C 可能成立,0x c >,D 不可能成立.12.AD 由题意知()()10f x x x'=->,因为()f x 在1x x =和()212x x x x =≠处切线平行,所以()()12f x f x ''=,1211x x =,12+=,A 正确;由基本不等式及12x x ≠,可得12=>,即12256x x >,B 错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确.故选AD .13.解析:(方法一)因为cos 5θ=-,,2πθπ⎛⎫∈ ⎪⎝⎭,所以sin 5θ=,所以22222sin 22sin cos 4an 2cos 2cos t sin 3θθθθθθθ⎛ ⎝⎭====-⎛- ⎝⎭⎝⎭.(方法二)因为cos θ=,且,2πθπ⎛⎫∈ ⎪⎝⎭,所以sin θ=,所以tan 2θ=-,所以()()22222tan 4tan 21tan 312θθθ⨯-===---. 答案:4314.解析:因为原数据平均数是8,方差为16,将这组数据中的每一个数据都减去4,所以新数据的平均数为4,方差不变仍为16,所以新数据的方差与平均数的和为20. 答案:2015.解析:如图所示,设ABC 的外接圆圆心为1O ,半径为r ,则1OO ⊥平面ABC .设球O 的半径为R ,1OO d =,则22sin sin 60ABC AC r ===︒∠,即r =.当P ,O ,1O 三点共线时,12max3V R d V d ⎛⎫+== ⎪⎝⎭,即2R d =.由222R d r =+,得2169R =,所以球O 的表面积26449S R ππ==. 答案:649π16.解析:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-.设()11,A x y ,()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由一元二次方程根与系数的关系得1232px x +=,又5AB =,12552x p p x ∴++==,则2p =,∴抛物线2:4C y x =.设()00,M x y ,由题意知204y x =,则()()()2222200000334188x y x x MN x =-+=-+=-+≥,当01x =时,2MN 取得最小值8,MN ∴的最小值为答案:2 17.解:(1)选择①, 根据正弦定理得a c a bb a c--=+, 从而可得222a c ab b -=-,根据余弦定理2222cos c a b ab C =+-, 解得1cos 2C =, 因为()0,C π∈, 故3C π=(5分)选择②, 根据正弦定理得sin cos sin cos 2sin cos A B B A C C +=.即()sin 2sin cos A B C C +=, 即sin 2sin cos C C C =, 因为()0,C π∈,所以sin 0C ≠,从而有1cos 2C =, 故3C π=. (5分)(2)根据余弦定理得2222cos c a b ab C =+-.得225a b ab =+-, 即()253a b ab =+-, 解得2ab =, 又因为ABC 的面积为12sin ab C , 所以ABC. (10分) 18.解:(1)设等差数列{}n a 的公差为()0d d ≠. 因为2a ,9a ,30a 成等比数列, 所以()()()2111298a d a d a d ++=+.又15a =,解得2d =或0d =(舍),所以23n a n =+. (4分) (2)依题意得123n n b b n +-=+,即121n n b b n --=+(2n ≥且*n N ∈), 所以()()()112211n n n n n b b b b b b b b ---=-+-++-+()()()221321215322n n n n n n ++=++-+++==+. (7分)13b =对上式也成立,所以()2n b n n =+,即()11111222n b n n n n ⎛⎫==- ⎪++⎝⎭. (9分) 所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()1113232124211122n nn n n ⎛⎫=+ +--=-+++⎝⎭+⎪. (12分) 19.(1)证明:因为侧面11ABBA 是矩形,2AB =,1AA =D 是1AA 的中点,所以AD =.在1Rt ABB 中,11tan 2AB AB B BB ∠==,在Rt ABD 中,tan ABD AD AB ==∠,所以1AB B ABD ∠=∠.又1190BAB AB B ∠+∠=︒,所以190BAB ABD ∠+∠=︒,所以在AOB 中,90BOA ∠=︒,即1BD AB ⊥,又CO ⊥平面11ABB A ,1AB ⊂平面11ABB A ,所以1CO AB ⊥,又BD CO O =,所以1AB ⊥平面BCD .又BC ⊂平面BCD ,所以1BC AB ⊥. (6分)(2)解:由(1)可知OD ,1OB ,OC 两两垂直.如图,以O 为坐标原点,分别以OD ,1OB ,OC 所在直线为x 轴、y 轴、z轴建立空间直角坐标系,则0,,03A ⎛⎫- ⎪ ⎪⎝⎭,,0,03B ⎛⎫- ⎪ ⎪⎝⎭,0,0,3C ⎛⎫ ⎪ ⎪⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭,所以33AB ⎛⎫- ⎪ ⎪⎝=⎭,0,33AC ⎛⎫= ⎪ ⎪⎝⎭,()DB =-,BC ⎛= ⎝⎭.设平面ABC 的一个法向量为()1,,n x y z =,则1100n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩,即0033x y y z ⎧=⎪⎪⎨⎪+=⎪⎩,令1x =,得y =,z =,则(11,2,n =.又平面BCD 的一个法向量为()20,1,0n =,设二面角D BC A --的大小为θ,由题图可知θ为锐角,则12122cos 55n n n n θ⋅===⋅,所以二面角D BC A --的余弦值是5. (12分) 20.(1)解:设点P 的坐标为(),x y ,由题意知23AP BP k k ==-⋅, 化简得点P的轨迹方程为(22132x y x +=≠. (4分) (2)证明:由题意知,直线AP ,BP 斜率存在且不为0, 又由已知得23AP BP k k =-⋅, 因为//AP OM ,//BP ON ,所以23OM ON k k =-⋅. 设直线MN 的方程为x my t =+,代入C 的方程得()222234260m y mty t +++-=,设()11,M x y ,()22,N x y , 则122423mt y y m +=-+,21222623t y y m -=+, (6分) 又()212122222121212262363OM ON y y y y t k x x m y y y t k mt y t m -⋅====-+++-,得22223t m =+. 所以12111222MONS t y y t t =-===,即MON 的面积为定值2(12分) 21.解:(1)从这箱产品中任取20件检验,每件产品为不合格品的概率为()01p p <<,且每件产品是否为不合格品相互独立.因此设X 为不合格口罩数,X 符合二项分布.所以()()1822201f p C p p =-,所以()()()1722021110f p C p p p '=--,故当00.1p =时,()f p 取最大值. (5分)(2)(ⅰ)设剩余180件口罩中不合格品为Y ,则()~180,0.1Y B ,()18E Y =,则检验费用和赔偿费用之和为20225X Y =⨯+,()()4025E X E Y =+,所以()490E X =. (9分)(ⅱ)整箱检验费用为2200400⨯=元,因为()490400E X =>,所以需要对余下的所有口罩做检验. (12分)22.(1)证明:当1m =时,()1ln f x x x=+ . ()22111x f x x x x-'=-+=, ()f x ∴在(]0,1上单调递减,在[)1,2上单调递增,()()min 11f x f ∴==,()1f x ∴≥. (3分)(2)解:当0m =时,()ln f x x =,()0,2x ∈,可知不符合题意.当0m ≠时,设切点为()()00,x f x (显然01x ≠),又切线过点()1,0A ,()()()00001f x f x x '∴-=-,即()()0001f x f x x '=-, 000200ln 1mx m x x x x +=∴--, 整理得0200l 10n 21x m m x x ++--=. (*) 由题意,得方程(*)在区间()0,2上有两个不同的实数解. (5分)(方法一)令()221ln 1m m g x x x x+=+--, ()()()321x m x g x x --'=.①当21m =,即12m =时,()g x 在()0,2上单调递增,∴此时不满足要求. (6分) ②当21m >,即12m >时,()g x 在()0,1上单调递增,在()1,2上单调递减或在()0,1,()2,2m 上单调递增,在()1,2m 上单调递减,而()()1120g me e e ⎛⎫=--< ⎪⎝⎭,()10g m =>,()3212ln 21ln 2048m g +=+->->,()12ln 204g m m m=+>, ()g x ∴在区间()0,1上有唯一的零点,在区间()1,2上无零点.∴此时不满足要求. (8分)③当021m <<,即102m <<,()g x 在()0,2m 上单调递增,在()2,1m 上单调递减,在()1,2上单调递增. ()21ln 10m e e m m g e e m +-⎛⎫=+-< ⎪⎝⎭,()10g m =>,()20g m >,()20g >, ()g x ∴在区间()0,2上有唯一的零点,∴此时不满足要求. (10分)④当0m <时,()g x 在()0,1上单调递减,在()1,2上单调递增.()()1120g me e e ⎛⎫=--> ⎪⎝⎭,()10g m =<,()322ln 24m g -=+. 当()20g ≤,即24ln 23m -≤时,()g x 在区间()0,2上有唯一的零点,此时不满足要求. 当()20g >,即24ln 203m -<<时,()g x 在区间()0,1和()1,2上各有一个零点,设为1x ,2x . 此时,()21m f x x x '=-,显然()f x '在区间()0,2上单调递减. ()()12f x f x ''∴≠,∴此时满足要求.综上所述,实数m 的取值范围是24ln 2,03-⎛⎫ ⎪⎝⎭. (12分) (方法二)关于0x 的方程()0020021110ln x x x m x -+-+=在区间()0,2内有两个不同的实数解,显然12不是方程的解,故原问题等价于22l 12n x x x x m x+-=-在区间()0,2内有两个不同的实数解. 设()()22112l 2ln 1n x x x x x x x s x x x x +-+-==--,02x <<,12x ≠, 则()()()2ln 11212x x x x s x x ⎛⎫-+ ⎪⎝⎭'=-,02x <<,12x ≠. 令()2ln 1h x x x =+,02x <<,12x ≠, 则()221221x h x x x x -'=-+=, 故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,当1,22x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()12ln 402h x h ⎛⎫∴>=-> ⎪⎝⎭. ∴当10,2x ⎛⎫∈ ⎪⎝⎭,1,12⎛⎫ ⎪⎝⎭时,()0s x '>.当()1,2x ∈时,()0s x '<, 从而当10,2x ⎛⎫∈ ⎪⎝⎭,1,12⎛⎫ ⎪⎝⎭时,()s x 单调递增, 当()1,2x ∈时,()s x 单调递减. (9分)令()1ln t x x x x =+-,02x <<,12x ≠,()ln t x x '∴=,当10,2x ⎛⎫∈ ⎪⎝⎭,1,12⎛⎫ ⎪⎝⎭时,()0t x '<,当()1,2x ∈时,()0t x '>, ()()10t x t ∴≥=.∴当10,2x ⎛⎫∈ ⎪⎝⎭时,()0s x >, 当1,22x ⎛⎫∈ ⎪⎝⎭时,()0s x ≤. 而当1,22x ⎛⎫∈⎪⎝⎭时,()()10s x s ≤=,当x 从12右侧趋近12时,()s x →-∞,作出()s x 的大致图象如图所示, 故22l 12n x x x x m x +-=-在区间()0,2内有两解()20s m ⇔<<,解得24ln 203m -<<,即实数m 的取值范围是24ln 2,03-⎛⎫ ⎪⎝⎭. (12分)。
山东省2020年高考模拟考试数学试题 Word版含答案
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
山东省2020年高考数学模拟考试题与答案
山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。
另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。
—、单项选择题:本趣共$小舐每小題§分・共豹分。
在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。
2020届山东省高三普通高等学校招生全国统一考试模拟卷数学试题
2020届山东省高三普通高等学校招生全国统一考试模拟卷数学试题2020.2注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.第Ⅰ卷(选择题 共60分)一、单项选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 11,0,2⎧⎫-⎨⎬⎩⎭D. 10,1,2⎧⎫⎨⎬⎩⎭2.若1iz i =+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.已知函数()(22)ln ||x x f x x -=+的图象大致为4.《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少 5. 若()2sin 75α︒+=,则()cos 302α︒-= A. 59- B. 49-C. 59D. 496.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是A. 甲B. 乙C. 丙D. 丁 7.若a ,b ,c ,满足23a =,2log 5b =,32c =,则A. c a b <<B. b c a <<C. a b c <<D. c b a <<8.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,圆222x y b +=与双曲线在第一象限内的交点为M ,若12||3||MF MF =,则双曲线的离心率为A.3B.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下表是某电器销售公司2019年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是A. 该公司2019年度冰箱类电器营销亏损B. 该公司2019年度小家电类电器营业收入和净利润相同C. 该公司2019年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2019年度空调类电器销售净利润占比将会降低10.已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是A. ()f x 不是周期函数B. ()f x 奇函数C. ()f x 的图象关于直线4x π=对称D. ()f x 在52x π=处取得最大值 11.设A,B 是抛物线2y x =上的两点,O 是坐标原点,下列结论成立的是A. 若OA OB ⊥,则||||2OA OB ≥B. 若OA OB ⊥,直线AB 过定点(1,0)C. 若OA OB ⊥, O 到直线AB 的距离不大于1D. 若直线AB 过抛物线的焦点F ,且1||3AF =,则||1BF = 12.如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法正确的是 A.存在某个位置,使得;B.翻折过程中,的长是定值;C.若,则;D.若,当三棱锥的体积最大时,三棱锥的外接球的表面积是. 第Ⅱ卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知两个单位向量,a b r r 的夹角为30o,(1)c ma m b =+-r r r ,0b c ⋅=r r ,则m =______.14.已知曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点2,6),则该双曲线的离心率为 .15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为__________.16. 已知函数()22,,x x af x x x a⎧≤=⎨>⎩,①若1a =,则不等式()2f x ≤的解集为__________;②若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是__________. 四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在①()222316 3c S b a =+-;②5cos 45b C c a +=,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,设ABC V 的面积为S ,已知 . (1)求tan B 的值;(2)若42,10S a ==,求b 的值.注:如果选择多个条件分别解答,按第一个解答计分.18. (12分)已知在四棱锥P ABCD -中,//AD BC ,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD . (Ⅰ)求证:CD ⊥平面GAC ; (Ⅱ)求二面角P AG C --的余弦值.19.(12分)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-()*n ∈N ,数列{}n b 满足16b =,14n n nb S a =++()*n ∈N . (I )求数列{}n a 的通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 20.(12分)某销售公司在当地A 、B 两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了A 、B 两家超市往年同期各50天的该食品销售记录,得到如下数据:销售件数 8 9 10 11 频数20402020以这些数据的频数代替两家超市的食品销售件数的概率,记X 表示这两家超市每日共销售食品件数,n 表示销售公司每日共需购进食品的件数. (1)求X 的分布列;(2)以销售食品利润的期望为决策依据,在19n =与n 20=之中选其一,应选哪个?21. (12分)已知椭圆()2222:10x y C a b a b +=>>,椭圆C 截直线1y =所得的线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,点D 是椭圆C 上的点,O 是坐标原点,若OA OB OD +=uu r uur uuu r ,判定四边形OADB 的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.22.(12分)已知函数2()2ln ()f x x ax x a R =-+∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.高三数学模拟题二参考答案一、CDBB ABAC二、9.ACD 10.AC 11.ACD 12.BD三、13. 4+ 14. 2 15. 8π 16. (1). (-∞ (2). (,2)(4,)-∞⋃+∞ 17.解: 17.解: (1)选择条件①.由題意得()2228 3acsin B a c b =+-.即2224sin 32a c b B ac+-=g整理可得344 cosB sinB sin B -=,…………4分 又 0sin B >.所以 0cos B >,所以sin 3cos 4B tan B B ==.…………5分 选择条件②.因为5cos 45b C c a +=,由正弦定理得,5sin cos 4sin 5sin B C C A +=,5sin cos 4sin 5sin()B C C B C +=+,即sin (45cos )0C B -=,…………3分 在ABC V 中,sin 0C ≠,所以4cos 5B =,3sin 5B ==,所以3tan 4B =.…………5分(2)由3 4tan B =,得35sin B =,又42, 10S a ==,则1131042225S acsin B c ==⨯⨯=,解得14c =.…………7分将42, 10,14S a c ===代入()222261636c S c a =++-中, 得()2222614164231410b ⨯=⨯++-,解得b =.…………10分18.(Ⅰ)证明:取AD 的中点为O ,连结OP ,OC ,OB ,设OB 交AC 于H ,连结GH . 因为//AD BC ,12AB BC CD AD ===, 四边形ABCO 与四边形OBCD 均为菱形,OB AC ∴⊥,//OB CD ,CD AC ⊥,…………2分因为PAD V 为等边三角形,O 为AD 中点,PO AD ∴⊥,因为平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =.PO ⊂平面PAD 且PO AD ⊥,PO ∴⊥平面ABCD ,…………4分因为CD ⊂平面ABCD ,PO CD ∴⊥,因为H ,G 分别为OB , PB 的中点, //GH PO ∴,GH CD ∴⊥.………………5分又因为GH AC H ⋂= ,,AC GH ⊂平面GAC ,CD \^平面GAC .…………6分(Ⅱ)取BC 的中点为E ,以O 为空间坐标原点,分别以,,OE OD OP uu u r uuu r uur的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -. 设4=AD ,则()0,0,23P ,()0,2,0A -,()3,1,0C,()0,2,0D ,31,,32G ⎛⎫- ⎪ ⎪⎝(0,2,23)AP =u u u r ,33(,,3)22AG =uuu r ,…………8分设平面PAG 的一法向量(),,n x y z →=.由00n AP n AG ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu r 2230333022y z x y z ⎧+=⎪⇒⎨++=⎪⎩ 3y z x z ⎧=-⎪⇒⎨=⎪⎩.令1z =,则(1,3,1)n =-r . 由(Ⅰ)可知,平面AGC 的一个法向量(3,1,0)CD =-u u u r,…………10分 15cos ,||||n CD n CD n CD ⋅<>==-r uu u rr uu u r r uu u r∴二面角P AG C --的平面角的余弦值为15-.…………12分19.解析:(I )由12n n S a a =-, 当2n ≥时,1112n n S a a --=-, 两式相减得12n n a a -=,…………3分 因为14n n nb S a =++, 所以11164a a =++,解得11a =,……4分 所以数列{}n a 是公比为2,11a =的等比数列,{}n a 的通项公式为12n n a -=.…………6分(Ⅱ)由1221nn n S a a =-=-,得11232nn n b -=++,……7分 即()()11122121n n n n b --=++1112121n n -=-++,………………9分 所以011211111111212121212121n n n T --⎛⎫⎛⎫⎛⎫=-+-++-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭L 1112212n =-<+. ……………………12分 20.解:(1)由已知一家超市销售食品件数8,9,10,11的概率分别为12115555,,, .X 取值为16,17,18,19,20,21,22. ………………1分()111165525P X ==⨯=,()1241725525P X ==⨯⨯=;()22116182555525P X ==⨯+⨯⨯=; ()121161922555525P X ==⨯⨯+⨯⨯=;()11215202555525P X ==⨯+⨯⨯=; ()1122125525P X ==⨯⨯=()111225525P X ==⨯=,………………5分所以X 的分布列为………………6分(2) 当19n =时,记1Y 为A B ,销售该食品利润,则1Y 的分布列为()11466521145016001750190019502000205025252525252525E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯1822=. ………………9分当20n =时,记2Y 为,A B 销售该食品利润,则2Y 的分布列为()21466521140015501700185020002050210025252525252525E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯1804=.因为()()12E Y E Y > ,故应选19n =.………………12分21. 解:(Ⅰ)由22222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2,a b c ===………………3分得椭圆C 的方程为22142x y +=. ………………4分(Ⅱ)当直线l 的斜率不存在时,直线AB 的方程为1x =-或1x =, 此时四边形OADB .………………5分当直线l 的斜率存在时,设直线l 方程是y kx m =+,联立椭圆方程22142y kx m x y =+⎧⎪⎨+=⎪⎩ ()222124240k x kmx m ⇒+++-= ()228420k m∆=+->,2121222424,1212km m x x x x k k--+==++ , ………………7分 ()121222212m y y k x x m k +=++=+AB =,点O 到直线AB的距离是d =………………9分由OA OB OD +=uu r uur uuu r 得,2242,1212D D km mx y k k-==++, 因为点D 在曲线C 上,所以有2222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,………………11分由题意四边形OADB 为平行四边形,所以四边形OADB 的面积为OADBS AB d === 由22122k m +=得OADB S =, 故四边形OADB.………………12分22.解:(1)由2()2ln f x x ax x =-+得2()2f x x a x'=-+; 因为0x >,所以224x x+≥; 因此,当4a ≤时,2()20f x x a x'=-+≥在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递增;………………2分当4a >时,由2()20f x x a x '=-+>得2220x ax -+>,解得x >或0x <<;由2()20f x x a x '=-+<x <<所以()f x在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;在⎝⎭上单调递减;………………4分综上,当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x在0,4a ⎛- ⎪⎝⎭,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减. ………………5分 (2)若()f x 有两个极值点()1212,x x x x <,由(1)可得, 12,x x 是方程2220x ax -+=的两不等实根, 所以122a x x +=,121x x =,………………6分 因此()()2221222111(2ln )(2ln )f x f x x ax x x ax x -=-+--+222222211212122222211212()()2ln 2ln 2ln x x x x x x x x x x x x x x x -++=-+=-+=+-,…7分 令22t x =,则2222222111()()2ln 2ln f x f x t t x x x t-=-+=-+; 由(1)可知2x =,当a ≥24x a +=≥= 所以[)22,e t x ∈=+∞,………………10分 令1()2ln g t t t t =-+,[),t e ∈+∞, 则222221221(1)()10t t t g t t t t t-+-'=--+=-=-<在[),t e ∈+∞上恒成立;所以1()2ln g t t t t =-+在[),t e ∈+∞上单调递减, 故max 1()()2g t g e e e==-+. 即()()21f x f x -的最大值为12e e -+.………………12分。
山东省2020年高考数学模拟考试试题及答案
山东省2020年高考数学模拟考试试题及答案参考答案一、单项选择题1. 一看就是两个交点,所以需要算吗?C2. 分母实数化,别忘了“共轭”,D3. 简单的向量坐标运算,A4. 球盒模型(考点闯关班里有讲),37分配,B5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C6. 画个图,一目了然,A7. 关键是把“所有”翻译成“任取”,C8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B二、多项选择题9. 这个,主要考语文,AD10. 注意相同渐近线的双曲线设法,2222x y a bλ-=,D 选项可用头哥口诀(直线平方……)AC11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG中点明显不在面上,BC12. 利用函数平移的思想找对称中心,ABC三、填空题13. 确定不是小学题?3614. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45- 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,116. 根据对称之美原则(绝招班有讲),8(老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~)四、解答题17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k =18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°(2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余弦19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证(2)可设AB=AS=a ,,建系求解即可,20. (1)正相关(2)公式都给了,怕啥,但是需要把公式自己化简一下,ˆ121.867.89yx =+ (3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好21. (1)没啥可说的,2214x y +=,(2214x y -+= (2)单一关参模型,条件转化为AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在22. (1)送分的(求导可用头哥口诀),7(2)考求导,没啥意思,注意定义域,单增()0,+∞(3)有点意思,详细点写由递推公式易知1n a ≥由(11711n n n n n a a a a a +-+-==++知若n a,则1n a +;若n a >,则1n a +<又11a =<,所以n为奇数时n a <,n为偶数时n a >1)n为奇数时,n a <,1n a +>,由(2)的单增可知 ()2221n n n n a a a f a +=<=可知22111ln ln 0ln 277n n n n a a a a ++<<⇒>>⇒>2)n为偶数时,n a >,1n a +<2)的单增可知()2221n n n n a a a f a +=>=2211771ln 02ln n n a a ++>>⇒>>⇒>由1)212<所以111117ln ln22lnn nna---⎛⎫⎛⎫=≤<⎪⎪⎝⎭⎝⎭所以222ln ln71nna-⋅-<证毕注:奉劝大家千万不要求通项公式,当然利用不动点也能求出来)(((117711nn na--⎛⎫-⎝⎭=-,只是接下来你就要崩溃了吧~~~。
2020届山东省高三高考模拟数学试题(附带详细解析)
……外…………○…………装…学校:___________姓名:……内…………○…………装…绝密★启用前 2020届山东省高三高考模拟数学试题 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( ) A .11,2⎧⎫⎨⎬⎩⎭ B .11,2⎧⎫-⎨⎬⎩⎭ C .10,1,2⎧⎫⎨⎬⎩⎭ D .11,0,2⎧⎫-⎨⎬⎩⎭ 2.若1iz i =+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()()22ln x x f x x -=+的图象大致为( ) A . B . C . D . 4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A .甲付的税钱最多 B .乙、丙两人付的税钱超过甲 C .乙应出的税钱约为32 D .丙付的税钱最少 5.若()sin 753α︒+=,则()cos 302α︒-=( ) A .49 B .49- C .59 D .59- 6.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是( ) A .甲 B .乙 C .丙 D .丁7.若a ,b ,c 满足23a =,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a << 8.已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为 A .2 B .3 C D二、多选题9.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是()A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同…○…………装…………○学校:___________姓名:___________班…○…………装…………○D .剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 10.已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是( ) A .()f x 不是周期函数 B .()f x 奇函数 C .()f x 的图象关于直线4x π=对称 D .()f x 在52x π=处取得最大值 11.设A ,B 是抛物线2y x =上的两点,O 是坐标原点,下列结论成立的是( ) A .若OA OB ⊥,则2OA OB ≥ B .若OA OB ⊥,直线AB 过定点(1,0) C .若OA OB ⊥,O 到直线AB 的距离不大于1 D .若直线AB 过抛物线的焦点F ,且13AF =,则||1BF = 12.如图,矩形ABCD 中,M 为BC 的中点,将ABM V 沿直线AM 翻折成1AB M V ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( ) A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值 C .若AB BM =,则1AM B D ⊥ D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 第II 卷(非选择题)………○…………※※请※※不………○…………三、填空题 13.已知两个单位向量a b v v ,的夹角为30o ,(1),0c ma m b b c =+-⋅=v v v v v ,则m =______. 14.已知曲线22221x y a b -=(0a >,0b >)的一条渐近线经过点,则该双曲线的离心率为____________. 15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为_______.16.已知函数()22,,x x af x x x a ⎧≤=⎨>⎩,若1a =,则不等式()2f x ≤的解集为__________,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是__________. 四、解答题17. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S ,()2223163c S b a +=-.(1)求tan B 的值;(2)若42S =,10a =,求b 的值.18.已知在四棱锥P ABCD -中,//AD BC ,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD .(1)求证:CD ⊥平面GAC ;(2)求二面角P AG C --的余弦值.19.已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈).(Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12n T <. 20.某销售公司在当地A 、B 两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了A 、B 两家超市往年同期各50天的该食品销售记录,得到如下数据:以这些数据的频数代替两家超市的食品销售件数的概率,记X 表示这两家超市每日共销售食品件数,n 表示销售公司每日共需购进食品的件数. (1)求X 的分布列; (2)以销售食品利润的期望为决策依据,在19n =与n 20=之中选其一,应选哪个? 21.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆C 截直线1y =所得的线段的长度为(Ⅰ)求椭圆C 的方程; (Ⅱ)设直线l 与椭圆C 交于,A B 两点,点D 是椭圆C 上的点,O 是坐标原点,若OA OB OD +=u u u v u u u v u u u v ,判定四边形OADB 的面积是否为定值?若为定值,求出定值;如果不是,请说明理由. 22.已知函数2()2ln ()f x x ax x a R =-+∈. (1)讨论()f x 的单调性; (2)若()f x 有两个极值点()1212,x x x x <,当a ≥求()()21f x f x -的最大值.参考答案1.D【解析】【分析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果.【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆,若B 为空集,则方程1ax =无解,解得0a =;若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =, 综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D【点睛】本题主要考查由集合间的关系求参数的问题,熟记集合间的关系即可,属于基础题型. 2.D【解析】分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.点睛:本题主要考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,意在考查学生对基础知识掌握的熟练程度,属于简单题.3.B【解析】【分析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x Q 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+= ()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .本题正确选项:B【点睛】本题考查函数图象的辨析,关键是能够通过函数的奇偶性、特殊值的符号来进行排除. 4.B【解析】【分析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。
山东省2020新高考模拟考试数学答案
山东省模拟考试答案解析1、C[解析]C y x y x xy y x ,故选或解得根据题意⎩⎨⎧=-=⎩⎨⎧==⎩⎨⎧==+421122本题考查集合运算以及求解曲线的交点,本质是解一元二次方程,属于基础题。
2、D [解析]Db a b a i bi a i i i i i i 故选所以,所以根据题意,1,1,0,)1)(1()1(112=+===+-=-+-=+-本题考查复数的运算以及共轭复数的概念,属于基础题。
3、A [解析]Ac b c a c b a ,故选所以根据题意0,0)32(3)(==+--=∙-∙=∙-λλλλ本题考查向量垂直的坐标运算,属于基础题。
4、B [解析]()()BT x r r x C x C T r x x r r r r rr r 故选的系数所以得到由项是的展开式中第根据题意,120,74102,1211)1(84102101010110-===--=-⎪⎭⎫ ⎝⎛=+---+本题考查二项式定理中二项展开式的系数问题,属于基础题。
5、C [解析]CV ABC S AS ABCAS AS AC SC AS AC SC AS SB AB AS AB SAB AC BC AB BC AB ABC ABC S ,故选的高为三棱锥面得再由又,又3432631,32,32,4,2,2,102,6,22222=⨯⨯=∴-∴⊥∴⊥∴=+==∴==⊥∴=∠=∴==⊥∴=∠- ππ本题考查立体几何中求三棱锥的体积,考查同学们的空间想象能力,属于基础题。
6、A [解析]()A AB B A y x x xx y 故选有最小值时,由数形结合易知当的图象,和圆(角坐标系中作出根据题意,可在同一直,3)1,2(),4,2(2)20422=+->+=本题考查圆锥曲线中圆的最值问题,属于基础题。
7、C [解析]根据全称命题和特称命题的关系,全称命题的否定是特称命题,故选C 本题考查全称命题的否定,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为
A. 9 3 2
B. 6 3
C. 18
D. 27
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分 .在每小题给出的选项中,有多项符合题目要求
.
全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分。
9.
10.已知双曲线
x2 a2
y2 b2
1(a
0, b
0) 的左、右焦点分别为
附:相关系数公式 r
n
xi x yi y
i1
n
n
2
2
xi x
yi y
i1
i1
n
xi yi
i1
n
xi2
i1
nx2
nxy
B . x ( , 2), x2 4 D. x0 [2, ), x02 4 ( 2,﹣ 2), c ( m, 1).若 c∥ (2 a b ),则 m=
A.0
B.1
C.2
5.二项式 ( x 1)n (n
N * ) 的展开式中
3
x
项的系数为
10,则 n
D. 3
A.8
B.6
C.5
D. 10
6.已知 a log 0.2 2 , b 0.22 , c 30.2 ,则
2
4
0, f x m n ;③函数 f x cos x sin x
1
64
0 这三个条件中任选一个,补充在下面问题中,并解答.
已知 _________,函数 f x 的图象相邻两条对称轴之间的距离为
.
2
(1)若 0
,且 sin 2
2 ,求 f 2
的值; (2)求函数 f x 在 0,2 上的单调递减区间.
uuur uuur 且点 P 恰为 AB 的中点, F 为抛物线的焦点, 则 | AF | | BF | _____(本题第一空 2 分, 第二空 3 分)
16.在直三棱柱 ABC A1B1C1 中, BAC 90 且 AB 3 , BB1 4 ,设其外接球的球心为
O 的表面积为 28π,则 △ ABC 的面积为 __________.
1i
2.已知 i 为虚数单位, a, b R ,复数
i a bi ,则 a bi
2i
12
A.
i
55
12
B.
i
55
21
C.
i
55
21
D.
i
55
3.命题 “ x [2, ), x2 4 ”的否定是
A . x [2, ), x2 4 C. x0 [2, ), x02 4 4.已知向量 a ( 1, 2), b
A .任意的 x1 , x2
R 且 x1
x2 ,都有
f ( x1) x1
f ( x2) x2
0
B .任意的 x1 , x2 R 且 x1
x2 ,都有
g ( x1) x1
g ( x2 ) x2
0
C. f ( x) 有最小值,无最大值
D. g (x) 有最小值,无最大值
12.如图 ,正方体 ABCD A1B1C1D1 的棱长为 1, 动点 E 在线段 A1C1 上 ,F 、
A . a b c B . a c b C. c a b D. b c a
7.已知圆 C : x2
y2
2x 4 y
0 关于直线 3x
2ay 11
0 对称,则圆
a C 中以 ( ,
a ) 为中点的弦
22
长为
A.1
B.2
C.3
D. 4
8.用一个体积为 36 的球形铁质原材料切割成为正三棱柱的工业用零配件,则该零配件体积的最大值
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤
.
O ,且球
17.( 10 分)在①函数 f x
1 sin 2 x
2
0,
的图象向右平移
个单位长度得到 g x
2
12
的 图 象 , gx 图 象 关于 原 点 对称 ; ②向 量 m
3 sin x,cos 2 x ,
n 1 cos x, 1 ,
F1, F2 , P 为双曲线上一点,且
PF1 2 PF2 ,若 sin F1PF2
15 ,则对双曲线中 a, b, c, e 的有关结论正确的是 4
A . e=3 B. e 2
C. b 5a
D. b 3a
11.已知函数 f (x) ex e x , g ( x) ex e x ,则以下结论错误的是
π) 的值为 __________. 4
14.甲、乙等 5 名同学参加志愿者服务 ,分别到三个路口疏导交通 ,每个路口有 1 名或 2 名志原者 ,则甲、
乙在同一路口的分配方案共有种数 ________(用数字作答) .
15.抛物线 C :y 2 2 x 的焦点坐标是 ________;经过点 P(4,1) 的直线 l 与抛物线 C 相交于 A ,B 两点,
M 分别是 AD、 CD 的中点 ,则下列结论中正确的是
A . FM ∥ A1C1
B . BM 平面 CC1F
C.存在点 E,使得平面 BEF // 平面 CC1D1D
D .三棱锥 B CEF 的体积为定值
三、填空题:本题共 4 小题,每小题 5 分,共 20 分 .
sin 2
13.若 tan
3 ,则 tan(
2020 山东高考模拟卷数学
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合 题目要求的 .
1.设集合 A { x | x2 A . (0, 1]
x} , B
1 {x|
x
1} ,则 A I B=
B . [0, 1]
C. ( , 1]
D. ( , 0) U (0, 1]
18.( 12 分)已知首项为 1的等比数列 { an} 的前 3 项和为 3 .
( 1)求 { an} 的通项公式;
( 2)若 a2
1, bn
1
log 2 | an
| ,求数列
{ bn
1bn
} 的前 n 项和
2
Tn .
19.( 12 分)如图,在四棱锥 P ABCD 中,平面 PAD 底面 ABCD ,其中底面 ABCD 为等腰梯形,
( 1)依据数据的散点图可以看出, 可用线性回归模型拟合 y 与 x 的
关系, 请计算相关系数 r 并加以说明(若 | r | 0.75,则线性相关程度很
高,可用线性回归模型拟合) ;
( 2)求 y 关于 x 的回归方程,并预测液体肥料每亩使用量为 克时,西红柿亩产量的增加量 y 约为多少?
12 千
AD∥BC , PA AB BC CD , PA PD , PAD 60 , Q 为 PD 的中点 .
( 1)证明: CQ∥ 平面 PAB ;
( 2)求二面角 P AQ C 的余弦值 .
20.( 12 分) 根据统计,某蔬菜基地西红柿亩产量的增加量
y (百千克)与某种液体肥料每亩使用量
之间的对应数据的散点图,如图所示 .