小学五年级奥数:数的整除知识点汇总+例题解析 (2)

合集下载

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学小升初奥数知识:数的整除

小学小升初奥数知识:数的整除

小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。

同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。

这时a叫做b 的倍数,b叫做a的约数。

例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。

由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。

这三个条件只要有一个不满足,就不能叫整除。

例如,16÷5=3.2,商不是整数,所以不能说5整除16。

又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。

2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。

换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。

例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。

(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。

即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。

例如,7│28,28│84,那么就有7│84。

(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。

也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。

例如,13│39,39×4=156,因此13│156。

(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。

即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。

例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析数的整除数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。

它可记为:若m/a,m/b,则m/(a?b)。

m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。

如果两个数只有唯一的公约数1,则称这两个数互质。

例如1与12,4与5,5与9,3与25等。

性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。

例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。

性质2中,“两数互质”这一条件是必不可少的。

6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。

根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。

性质3 (传递性)如果c/b,且b/a,那么c/a。

特别是若b/a,m为整数,则有b/(a×m)。

1、形如1993 1993…1993 520,且能被11整除的最小数是。

n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。

最左边一个数字是3,且此六位数能被11整除。

这样的六位数中的最小的数是。

5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。

7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。

小学奥数教程之数的整除

小学奥数教程之数的整除

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

数的整除学生姓名授课日期教师姓名授课时长知识定位本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。

本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。

另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对与学生的代数思维是一个良好的训练也是一个不小的挑战。

知识梳理1.常见数字的整除判定方法(1). 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;(2). 一各位数数字和能被3整除,这个数就能比9整除;一个数各位数数字和能被9整除,这个数就能被9整除;(3). 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.(4). 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)注:在给学生讲解常见数字的判定性质时,要分系列来讲,例如有2系列,5系列,3系列和7,11,13系列,便于记忆。

对于11的单独判定特性需要重点讲解。

2.整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).注:在理解这个性质时,我们要注意,反过来是不成立的,即两数的和(a+b)或差(a-b)能被c整除,这两个数不一定能被c整除.如5 ︱(26+24),但526,524.可以引入下面的问题2∣12,12∣36.2能否整除36?显然,回答是肯定的.这是因为36是12的倍数,12又是2的倍数,那么36一定是2的倍数.由此我们又可以得出:性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am (m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;3.重点难点解析(1).常见数字的整除判定性质(2).将不具有整除判定性质的数字进行分解判定其整除性(3).代数式之间整除性的判断,代数思想的应用(4).试除法的理解和应用4.竞赛考点挖掘(1).与数字谜或算式迷结合的整除判断特性题目(2).代数式之间的整除性问题例题精讲【试题来源】【题目】已知道六位数20□279是13的倍数,求□中的数字是几?【解析】本题为基础题型,利用13的整除判定特征即可知道方格中填1。

奥数五年级第四课 :数的整除

奥数五年级第四课 :数的整除

第六课数的整除概念性质数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?例2在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?例3从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

例4五位数能被72整除,问:A与B各代表什么数字?例5 六位数是6的倍数,这样的六位数有多少个?例6要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?7.能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。

例7判断七位数1839673能否被11整除。

例8 用3,3,7,7四个数码能排出哪些能被11整除的四位数?随堂示例: 1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。

数的整除知识点总结数的整除知识整理

数的整除知识点总结数的整除知识整理

数的整除知识点总结数的整除知识整理数的整除知识点总结如下:1. 除数和被除数:一个数被另一个数整除时,被除数称为整数,除数称为除数。

2. 整除关系:如果一个数a能被另一个数b整除,即a ÷ b = c,则称a能被b整除,或者说b能整除a,记作b|a。

3. 余数:当一个数a被另一个数b整除时,如果除完后还有剩余部分,即a ÷ b = c 余 r(0 ≤ r < |b|),则r称为数a除以b的余数。

4. 因数:对于一个数a,如果存在一个数b,使得b能整除a,即a = b × c,则称b 是a的因数,c是a的倍数。

a的因数包括1和a本身。

5.倍数:对于一个数a,如果存在一个数b,使得a能整除b,即b = a × c,则称b 是a的倍数,c是a的因数。

a的倍数包括0和任意正负整数。

6.公约数:对于两个数a和b,如果存在一个数c,既能整除a又能整除b,即c|a 且c|b,则称c是a和b的公约数。

7.最大公约数:对于两个数a和b的公约数中,最大的一个公约数称为a和b的最大公约数,记作gcd(a, b)。

8.最小公倍数:对于两个数a和b的公倍数中,最小的一个公倍数称为a和b的最小公倍数,记作lcm(a, b)。

9.质数:一个大于1的自然数,除了1和它本身外,无法被其他自然数整除的数称为质数。

质数只有两个因数,即1和该数本身。

10.合数:一个自然数,除了1和它本身外,还有其他因数的数称为合数。

合数有多个因数。

11.互质:两个数的最大公约数为1时,称这两个数互质。

12.互质数性质:互质数的乘积等于它们的最小公倍数。

13.素数分解:将一个合数分解成质数的乘积的过程,这个过程叫做素数分解。

这些是数的整除的基本知识点。

五年级奥数第2讲-整除问题进阶

五年级奥数第2讲-整除问题进阶

知识精讲
二、阶段做差
能被7、11、13整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数 段之和的差能被7、11或13整除。
例题三:
阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59 与89之间,拼成一个五位数59 89,使得这个五位数能被7整除,请问小高写的是 多少? 分析:根据能被7整除的数的特征,末三位组成的数与末三位之前的数组成的数之 差能被7整除,我们可以由此将问题简化。
课堂检测
(1)在7315、58674、325702、96723、360360中,7的倍数有哪些?13的倍数有哪些?
(2)四位数 33 能同时被9和11整除,这个四位数是多少?
(3)四位数27 8能被7整除,那么这个四位数是多少?
(4)已知多位数81 258258...258,能同时被7和13整除,方格内的数字是多少?
现在我们再来学习一些新的判断方法。
知识精讲
一、截断作和
能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的 可以是一位数)之和,能被99整除。
例题一:
六位数 2008 ,能同时被9和11整除,这个六位数是多少? 分析:能同时被9和11整除,说明这个6位数能被99整除。想一想,99的整除特性是 什么?
挑战极限
例题六:
有一个五位数,它的末三位为999。如果这个数能被23整除,那么这个五位数最小 是多少? 分析:我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘 积,因此不可能根据整除特征来考虑,我们尝试从整除的定义来入手,这个五位数 能被23整除,就是说,它能写成23与另一个数的乘积,接下来大家想到该怎么办了 吗?
练习四:

五年级奥数第2讲-整除问题进阶

五年级奥数第2讲-整除问题进阶

课堂检测
(1)在7315、58674、325702、96723、360360中,7的倍数有哪些?13的倍数有哪些?
(2)四位数 33 能同时被9和11整除,这个四位数是多少?
(3)四位数27 8能被7整除,那么这个四位数是多少?
(4)已知多位数81 258258...258,能同时被7和13整除,方格内的数字是多少?
五年级奥数第2讲-整除问题进阶
第二讲
整除问题进阶
• 数论专题第2讲
知识精讲
上一讲我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用 数字和判断等。 1.尾数判断法 (1)能被2、5整除的数的特性:个位数字能被2、5整除. (2)能被4、25整除的数的特性:末两位能被4、25整除。 (3)能被8、125整除的数的特性:末三位能被8、125整除。 2.数字求和法 能被3、9整除得数的特性:各位数字之和能被3、9整除。 3.奇偶位求差法 能被11整除的数的特性:“奇位和”与“偶位和”的差能被11整除。
2012个258
(5)已知多位数11...1 33...3,能被7整除,那么中间方格内的数字是多少?
2011个1020/11/5
18
挑战极限
例题六:
有一个五位数,它的末三位为999。如果这个数能被23整除,那么这个五位数最小 是多少? 分析:我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘 积,因此不可能根据整除特征来考虑,我们尝试从整除的定义来入手,这个五位数 能被23整除,就是说,它能写成23与另一个数的乘积,接下来大家想到该怎么办了 吗?
现在我们再来学习一些新的判断方法。
知识精讲
一、截断作和
能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的 可以是一位数)之和,能被99整除。

小学奥数 数的整除之四大判断法综合运用(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  数的整除之四大判断法综合运用(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质知识点拨教学目标5-2-2.数的整除之四大判断法综合运用(二)性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()=⨯-+⨯++⨯-+⨯++⨯-+⨯110000114199992100118199511171()()11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】设原序数为abcd,则反序数为dcba,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()()10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列 【难度】3星 【题型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+(14210000000018579999993141001)(8575314)=⨯+⨯+⨯+-+- 因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题小学数的整除数论奥数知识讲解及习题小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的数的整除数论奥数知识讲解及习题,供大家参考。

一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:①末三位上数字所组成的'数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

数的整除知识点总结

数的整除知识点总结

数的整除知识点总结一、整除的概念。

1. 定义。

- 在整数除法中,如果商是整数而没有余数,我们就说被除数能被除数整除,或者说除数能整除被除数。

例如,15÷3 = 5,我们就说15能被3整除,或者说3能整除15。

2. 整除的表示方法。

- 若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。

二、数的整除特征。

1. 能被2整除的数的特征。

- 个位数字是0、2、4、6、8的整数能被2整除。

例如12、34、560等都能被2整除。

2. 能被3整除的数的特征。

- 一个数各位数字之和能被3整除,这个数就能被3整除。

例如123,各位数字之和为1 + 2+3 = 6,6能被3整除,所以123能被3整除。

3. 能被5整除的数的特征。

- 个位数字是0或5的整数能被5整除。

如10、15、205等都能被5整除。

4. 能被9整除的数的特征。

- 一个数各位数字之和能被9整除,这个数就能被9整除。

例如279,各位数字之和为2+7 + 9=18,18能被9整除,所以279能被9整除。

5. 能被11整除的数的特征。

- 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么原来这个数就一定能被11整除。

例如132,奇位数字之和为1+2 = 3,偶位数字是3,它们的差为0,0是11的倍数,所以132能被11整除。

三、整除的性质。

1. 传递性。

- 如果ab且bc,那么ac。

例如,如果3能整除6,6能整除18,那么3能整除18。

2. 可加性。

- 如果ab且ac,那么a(b + c)。

例如,5能整除10,5能整除15,那么5能整除10 + 15=25。

3. 可减性。

- 如果ab且ac,那么a(b - c)。

例如,7能整除21,7能整除14,那么7能整除21-14 = 7。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

知识点总讲解二:整除

知识点总讲解二:整除

奥数知识点总讲解二(五年级)●整除的性质◎性质1(整除的和差性)如果整数a 、b 都能被c 整除,那么,他们的和a+b 或a-b (a ≥b )也能被c 整除。

简称:如果c|a ,c|b ,那么,c|(a+b)◎性质2(整除的可乘性)如果m 能整除a ,n 能整除b ,那么,mn 能整除ab 。

简称:如果m|a ,n|b ,那么,mn|ab 。

◎性质3(整除的传递性)如果a 能整除b ,b 又能整除c ,那么,a 能整除c 。

简称:如果a|b ,b|c ,那么,a|c◎性质4(约数互质时的可乘性)如果b ,c 都能整除a ,且b 与c 互质(即b ,c 除1外再没有其他的相同的约数),那么,b 与c 的乘积也能整除a 。

简称:如果b|a ,c|a ,且b ,c 互质,那么,bc|a 。

●整除中的个数问题◎在整除中有如下两个常见的个数问题,它们相应的有两个计算公式(1)在1~n (n 为大于0的整除)这n 个整数中,能被a 整除的数有[]n =n a a ⎡⎤÷⎢⎥⎣⎦(个)。

(2)在-1-2321n n n ⨯⨯⨯⨯⨯⨯ ()()(简记为n ! n 为大于0的整数)中含因数p (p 为质数)的个数为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(个) ●数的整除特性◎个位数字是0 2 4 6 8的整除,能被2整除。

◎个位数字的0 5的整除,能被5整除。

◎一个整数的各位之和能被3(或9)整除,则这个数能被3(或9)整除。

◎若一个整除的最末两位数能被4(或25)整除,则这个数能被4(或25)乘除。

◎若两个整数的最末三位数能被8(或125)整除,则这个数能被8(或125)整除。

◎若一个整数的奇数上的数字之和与偶数位上的数字之和的差(大减小)能被11整除,则这个数能被11整除。

◎若一个整数的末三位数与末三位数以前的数字所组成的数之差(大减小)能被7(或11,或13)整除,则这个数能被7(或11,或13)整除。

五年级奥数归类详细讲解——数的整除性

五年级奥数归类详细讲解——数的整除性

第1讲数的整除性(一)三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。

这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。

数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

灵活运用以上整除性质,能解决许多有关整除的问题。

例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。

分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。

因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。

这个七位数是4735800。

例2由2000个1组成的数111…11能否被41和271这两个质数整除?分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。

按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。

例3 现有四个数:76550,76551,76552,76554。

能不能从中找出两个数,使它们的乘积能被12整除?分析与解:根据有关整除的性质,先把12分成两数之积:12=12×1=6×2=3×4。

数的整除特征(二)

数的整除特征(二)

第八讲数的整除特征(二)一、知识点梳理Ø奥数六大模块:计算,计数,应用题,行程,几何,数论。

Ø本讲属于:数论常见基本数的整除的判断方法:一、尾数判断法:(1)、被2,5整除的数的特征:看个位如果一个数的个位能被2或者5整除,则这个数能被2或者5整除(2)、被4,25整除的数的特征:看末两位如果一个数的末两位能被4或者25整除,则这个数能被4或者25整除(3)、被8,125整除的数的特征:看后三位如果一个数的后三位能被8或者125整除,则这个数能被8或者125整除二、求和判断法:判断被3和9整除的数(1)如果一个数的各位数字之和能被3或者9整除,则这个数能被3或者9整除。

三、分段求和法:判断被7,11,13整除的数(1)、把数从末三位开始,三位为一段断开,看奇数段的和与偶数段的和的差是否为7,(或者11,或者13)的倍数。

(2)、奇数段的和与偶数段的和的差被7(或者11,或者13)除余几就代表这个数除以7(或者11,或者13)余几四、奇偶位差法:判断被11整除的另外一种方法(1)从右开始数奇数位数字之和与偶数位数字之和的差是否为11的倍数即为是否被11整除五、了解:(1)试除法(2)割减法六、数的整除性质(1)、甲能被乙整除,乙能被丙整除,那么:甲能被丙整除(2)、两个数都能被另外一个自然数整除,那么:这两个数的和与差都能被这个数整除(3)、一个数能分别被几个两两互质的自然数整除,那么:这个数能被这几个两两互质的数的乘积整除(4)、一个质数能整除两个自然数的乘积,那么:这个质数至少能整除这两个自然数中的一个(5)、几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除二、重点例题讲解例题5:解析:对所求五位数有两个要求:(1)、数字和为43(2)、能被11整除从(1)看有两种情况:五位数可以由一个7和四个9组成,或者由两个8和三个9组成。

如何对以上数字进行排列,根据被11整除的数的特点:奇数位数字和减去偶数位数字和为11的倍数如果奇数位数字和为27,偶数位数字和为16,那么差为11经寻找,满足这些要求的五位数有:97999,99979,98989例题6:解析:首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对,否则,其中说的不对的编号乘以2后所得编号也将说的不对,这样就与“只有编号相邻的两位同学说得不对”不符合因此这个数能被2,3,4,5,6,7整除,从而这个数也能被25,34,27´´´整除,即编号为10,12,14的同学说的也对。

五年级奥数-数的整除问题

五年级奥数-数的整除问题

五年级奥数-数的整除问题介绍本文档将涵盖五年级奥数中与数的整除问题相关的内容。

数的整除是数学中的一项基本概念,它在解决实际问题和数学推理中起着重要的作用。

数的整除定义两个整数a和b,若存在整数c,使得c * b = a,则称a能被b 整除,记作b|a。

其中a称为被除数,b称为除数,c称为商。

整除的特性1. 如果a能被b整除,那么a的所有倍数也能被b整除。

2. 如果a能被b整除,b能被c整除,那么a也能被c整除。

3. 如果a能被b整除,b能被a整除,那么a和b相等。

判断一个数能否被另一个数整除的方法1. 试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

2. 质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

数的整除问题的应用数的整除问题在实际生活和数学中都有广泛的应用,例如:1. 分配问题:将一定数量的物品平均分给每个人,需要确定每个人能够得到多少个物品,就需要解决数的整除问题。

2. 判断质数:质数是只能被1和自身整除的数,通过判断能否被其他数整除,可以检验一个数是否为质数。

3. 数论问题:在数论研究中,数的整除问题是一个重要的主题,涉及到数的性质和结构等方面。

总结数的整除是五年级奥数中的基本概念之一,通过研究整除的定义、特性和判断方法,可以解决实际问题和进行数学推理。

在实际生活和数学领域中,数的整除问题有着广泛的应用,我们应该加强对该概念的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数:数的整除知识点汇总+例题解析(2).DOC
数的整除问题;内容丰富;思维技巧性强。

它是小学数学中的重要课题;也是小学数学竞赛命题的内容之一。

一、基本概念和知识
1.整除——约数和倍数
例如:15÷3=5;63÷7=9
一般地;如a、b、c为整数;b≠0;且a÷b=c;即整数a除以整除b(b不等于0);除得的商c正好是整数而没有余数(或者说余数是0);我们就说;a能被b整除(或者说b能整除a)。

记作b|a.否则;称为a不能被b整除;(或b不能整除a);记作ba。

如果整数a能被整数b整除;a就叫做b的倍数;b就叫做a的约数。

例如:在上面算式中;15是3的倍数;3是15的约数;63是7的倍数;7是63的约数。

2.数的整除性质
性质1:如果a、b都能被c整除;那么它们的和与差也能被c整除。

即:如果c|a;c|b;那么c|(a±b)。

例如:如果2|10;2|6;那么2|(10+6);
并且2|(10—6)。

性质2:如果b与c的积能整除a;那么b与c都能整除a.即:如果bc|a;那么b|a;c|a。

性质3:如果b、c都能整除a;且b和c互质;那么b与c的积能整除a。

即:如果b|a;c|a;且(b;c)=1;那么bc|a。

例如:如果2|28;7|28;且(2;7)=1,
那么(2×7)|28。

性质4:如果c能整除b;b能整除a;那么c能整除a。

即:如果c|b;b|a;那么c|a。

例如:如果3|9;9|27;那么3|27。

3.数的整除特征
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面;个位数字是偶数(包括0)的整数;必能被2整除;另一方面;能被2整除的数;其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64;因为100是4与25的倍数;所以1800是4与25的倍数.又因为4|64;所以1864能被4整除.但因为2564;所以1864不能被25整除.
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375;因为1000是8与125的倍数;所以29000是8与125的倍数.又因为125|375;所以29375能被125整除.但因为8375;所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?
解:这个数奇数位上的数字之和是9+7+5+3+1=25;偶数位上的数字之和是8+6+4+2=20.因为25—20=5;又因为115;所以11123456789。

再例如:判断13574是否是11的倍数?
解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数;所以11|0.因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?
解:把1059282分为1059和282两个数.因为1059-282=777;又7|777;所以7|1059282.因此1059282是7的倍数。

再例如:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数;因为821—2=819;又13|819;所以13|2821;进而13|3546725.
能被30以下质数整除的数的特征
大家知道;一个整数能被2整除;那么它的个位数能被2整除;反过来也对;也就是一个数的个位数能被2整除;那么这个数本身能被2整除。

因此;我们说“一个数的个位数能被2整除”
是“这个数能被2整除”的特征。

在这一讲中;我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的特征。

为了叙述起见;我们把讨论的数N记为:
我们已学过同余;用mod 2表示除以2取余数;有公式:
① N≡a0(mod 2)
② N≡a1a0(mod 4)
③ N≡a2a1a0(mod 8)
④ N≡a3a2a1a0(mod 16)
这几个公式表明一个数被2(4;8;16)整除的特性;而且表明了不能整除时;如何求余数。

此外;被3(9)整除的数的特征为:它的各位数字之和可以被3(9)整除。

我们借用同余记号及一些运算性质来重新推证一下。

如(mod 9);如果:
N= a3a2a1a0 = a3×1000+a2×100+a1×10+a0
= a3×(999+1)+a2×(99+1)+a1×(9+1)+a0
= (a3+a2+a1+a0)+(a3×999+a2×99+a1×9)
那么;等式右边第二个括号中的数是9的倍数;从而有
N≡a3+a2+a1+a0(mod 9)
对于mod 3;理由相仿;从而有公式:
⑤ N≡(…+a3+a2+a1+a0) (mod 9)
N≡(…+a3+a2+a1+a0) (mod 3)。

相关文档
最新文档