最新初中数学相似三角形-难题-易错题(附详解)
相似三角形难题集锦(含问题详解)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。
〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
相似三角形易出题、易错题(附参考答案)
相似三角形易出、易错题一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________°,BC=_________;(2)判断△ABC与△DEC是否相似,并证明你的结论.7.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.8.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.9.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.10.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.11.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?12.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.13.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.14.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?15.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.16.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.17.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA 所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?18.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.19.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)20.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.21.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.22.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.23.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.24.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.6.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC=;(2)判断△ABC与△DEC是否相似,并证明你的结论.解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.(8 解:(1)∵AB∥MP,QM∥AC,∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM..解解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立..解解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD..解解:设经过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似..解解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似..解解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分).解解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处..解解:以点Q、A、P为顶点的三角形与△ABC相似,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似..解解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米..解解:(1)皮尺,标杆;∴,∴,∴.(7分).解解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)(解解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m..解解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3..解解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm.。
相似三角形难题
相似三角形难题难题1题目:在△ABC中,D、E分别是AB、AC的中点,BE、CD相交于点O,AO的延长线交BC于点F,求证:AF:AO=2:1。
解答思路:1.连接DE:由于D、E分别是AB、AC的中点,根据三角形的中位线定理,DE∥BC且DE=21BC。
2.利用相似三角形:由于DE∥BC,根据平行线的性质,我们有△ADE∼△ABC和△DOE∼△COB。
3.找出比例关系:由于DE=21BC,则BCDE=21。
由于△ADE∼△ABC,则AFAO=ACAE=21(因为E是AC的中点)。
4.计算AF:AO:由于AFAO=21,则AF:AO=2:1。
难题2题目:在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,DBAD=32,△ABC的面积为S,求△ADE的面积。
解答思路:1.利用相似三角形:由于DE∥BC,根据平行线的性质,我们有△ADE∼△ABC。
2.找出比例关系:由于DBAD=32,则ABAD=52。
3.计算面积比:由于△ADE∼△ABC,则S△ABC S△ADE=(ABAD)2=(52)2=254。
4.计算△ADE的面积:由于S△ABC=S,则S△ADE=254S。
难题3题目:在△ABC中,D、E分别是AB、AC上的点,且∠ADE=∠B,AE=6,AD=4,AC=9,求AB的长。
解答思路:1.利用相似三角形:由于∠ADE=∠B且∠A=∠A(公共角),根据相似三角形的判定定理,我们有△ADE∼△ACB。
2.找出比例关系:由于△ADE∼△ACB,则ACAD=ABAE。
3.代入已知值求解:代入已知值AE=6,AD=4,AC=9,得到94=AB6。
4.计算AB:解这个方程得到AB=227。
专题02相似三角形的判定(六个知识点八大题型二个易错点 )(解析版)
专题02相似三角形的判定(六个知识点八大题型二个易错点)【目录】【学习目标】1.了解相似三角形的定义,掌握相似三角形的判定定理,能正确地找出相似三角形的对应边和对应角。
2.能灵活地运用三角形相似的判定定理,证明和解决有关问题,提升逻辑推理的核心素养。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1相似三角形及其表示方法在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.例1:下列说法一定正确的是()(A)有两边对应成比例且一角相等的两个三角形相似(B)对应角相等的两个三角形不一定相似(C)有两边对应成比例且夹角相等的两个三角形相似(D)一条直线截三角形两边所得的三角形与原三角形相似【答案】C【解析】根据判定定理2可知A 错误,C 正确;根据判定定理1可知B 错误,根据相似三角形预备定理可知只有直线与底边平行时才相似.【总结】考查相似三角形的判定定理掌握情况和相关条件.知识点2相似三角形的预备定理(重点)平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.如图,已知直线l 与ABC D 的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE D ∽ABC D .例2:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度( )A .增大1.5米B .减小1.5米C .增大3.5米D .减小3.5米【答案】D 试题分析:设小明在A 处时影长为x ,B 处时影长为y .∵AC ∥OP ,BD ∥OP ,∴△ACM ∽△OPM ,△BDN ∽△OPN ,∴BD BN OP ON =,,则,∴x=5;,∴y=1.5,∴x ﹣y=3.5,故变短了3.5米.故选D .知识点3判定两个三角形相似定理1(重点)如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似.可简述为:两角对应相等,两个三角形相似.如图,在ABC D 与111A B C D 中,如果1A A Ð=Ð、1B B Ð=Ð,那么ABC D ∽111A B C D .常见模型如下:例3:如图,在Rt ABC D 中,90BAC Ð=°,AD BC ^于点D ,点O 是AC 边上一点,联结BO 交AD 于点F ,OE OB ^交BC 边于点E .求证:ABF D ∽COE D .【难度】★★【解析】证明:Q 90BAC Ð=°,\90BAD CAD Ð+Ð=°,90ABO AOB Ð+Ð=°,又AD BC ^,OE OB ^,9090C CAD AOB EOC \Ð+Ð=°Ð+Ð=°,.BAD C ABO EOC \Ð=ÐÐ=Ð,.\ABF D ∽COE D .【总结】考查利用“子母三角形”基础模型证明角相等,根据同角的余角相等,证明角相等,再利用相似三角形判定定理1即可证明.知识点4判定两个三角形相似定理2(重点)如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.可简述为:两边对应成比例且夹角相等,两个三角形相似.如图,在ABC D 与111A B C D 中,1A A Ð=Ð,1111AB AC A B A C =,那么ABC D ∽111A B C D .要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.例4:如图,点D 是ABC D 的边AB 上的一点,且2AC AD AB =g .求证:ACD D ∽ABC D .【难度】★【解析】证明:Q 2AC AD AB =g ,AD AC AC AB\=,A A Ð=ÐQ ,\ACD D ∽ABC D .【总结】考查相似三角形判定定理2,根据题目条件进行比例变形,对应边成比例夹角相等.知识点5判定两个三角形相似定理3(重点)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.可简述为:三边对应成比例,两个三角形相似.如图,在ABC D 与111A B C D 中,如果111111AB BC CA A B B C C A ==,那么ABC D ∽111A B C D .要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.例5:如图,点D 为ABC D 内一点,点E 为ABC D 外一点,且满足AB BC AC AD DE AE==.求证:ABD D ∽ACE D .【难度】★★【解析】Q AB BC AC AD DE AE== \ABC ADE D D ∽.\BAC DAE Ð=Ð, 即BAD DAC CAE DAC Ð+Ð=Ð+Ð.\BAD CAE Ð=Ð.Q AB AC AD AE= \ABD D ∽ACE D .【总结】本题考查相似三角形的判定定理3和相似三角形的性质知识.知识点6判定两个直角三角形相似定理(重点)如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似.如图,在Rt ABC D 和111Rt A B C D 中,如果190C C Ð=Ð=°,1111AB BC A B B C =,那么ABC D ∽111A B C D .例6:如图,在ABC D 和111A B C D 中,AD BC ^,1111A D B C ^,垂足为D 和1D ,且111111AC AB AD A CA BAD ==.求证:ABC D ∽111A B C D .【难度】★【解析】证明:Q AD BC ^,1111A D B C ^,\11190ADC A D C Ð=Ð=o .又Q 111111AC AB AD A C A B A D ==,\111Rt ADC Rt A D C D D ∽,\1C C Ð=Ð.同理可得:1B B Ð=Ð, \ABC D ∽111A B C D .【总结】本题考查了直角三角形相似的判定方法.【方法二】实例探索法题型一:添加条件来说明三角形相似例7:如图,△ABC 中,D 、E 分别是AB 、AC 上的点(DE 不平行BC ),若使△ADE 与△ABC 相似,则需要添加_____即可(只需添加一个条件).【答案】∠ADE =∠C【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【详解】∵∠A 是公共角,如果∠ADE=∠C ,∴△ADE ∽△ABC ,故答案为∠ADE=∠C.【点睛】本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即①有两组角对应相等的三角形相似,②三边对应成比例的两个三角形相似,③两组边对应成比例且夹角相等的两个三角形相似.题型二:寻找图形中的相似三角形个数例8:如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F .图中有哪几对相似三角形?【难度】★【答案】EAF D ∽EBC D ,EAF D ∽CDF D ,EBC D ∽CDF D .【解析】由////AB CD AD BC ,,可得:////AE CD AF BC ,,根据相似三角形预备定理,可得:EAF D ∽EBC D ,EAF D ∽CDF D ,进而可得:EBC D ∽CDF D ,即这三个三角形两两相似.【总结】考查相似三角形预备定理,同时考查相似三角形的传递性.题型三:相似三角形的判定定理应用例9:如图,点D 、E 分别在ABC V 的边AB 、AC 上,且DE 与BC 不平行.下列条件中,能判定ADE V 与ACB △相似的是( )A .AD AE AC AB =B .AD AB AE AC =C .DE AE BC AB =D .DE AD BC AC=【答案】A【分析】根据两边对应成比例且夹角相等的两个三角形相似即可求解.【详解】解:在ADE V 与ACB V 中,∵AD AE AC AB=,且A A ÐÐ=,∴ADE ACB V V ∽.故选:A .【点睛】此题考查了相似三角形的判定:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.题型四:利用相似三角形证明等积式例10.如图,D 、E 分别是ABC D 的边AB 、AC 上的点,且AED B Ð=Ð.求证:AE AC AD AB =g g .【难度】★【解析】证明:AED B A A Ð=ÐÐ=ÐQ ,,AED \D ∽ABC D ,AD AE AC AB\=,即AE AC AD AB =g g .【总结】考查相似三角形判定定理1和相似三角形的定义,各边对应成比例,先判定再应用即可得出结论.例11.如图,ABC D 是等边三角形,120DAE Ð=°,求证AD AE AB DE =g g .【难度】★★【解析】证明:Q ABC D 是等边三角形,60BAC ACB \Ð=Ð=°.Q 120DAE Ð=°,60DAB CAE \Ð+Ð=°.又60ACB E CAE Ð=Ð+Ð=°,DAB E \Ð=Ð. D D Ð=ÐQ ,DAB \D ∽DEA D ,AD AB DE AE\=, 即AD AE AB DE =g g .题型五:相似三角形应用3 2210/ 223 10【答案】22.3/,∴∠∴,∴,BF'=CF=∴,∴,∴4AE =∴844CE =-=∵在Rt AED V 中,222AE DE AD +=∴3DE =∵DF DE ^∴90FDE Ð=°又∵90ACB Ð=°∴四边形DECF 是矩形∴4DF EC ==∵在Rt EDF V 中,222DF DE EF +=∴5EF =(2)不变过点D 作DH AC ^,DG BC ^,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ^,DG BC^∴90DHC DGC Ð=Ð=°又∵90ACB Ð=°,∴四边形DHCG 是矩形∴90HDG Ð=°∵90FDE Ð=°∴HDG HDF EDF HDF Ð-Ð=Ð-Ð 即EDH FDGÐ=Ð又∵90DHE DGF Ð=Ð=°∴EDH FDGV V ∽题型八:与相似三角形有关的图形运动问题例15.把两块全等的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF Ð=Ð=°,45C F Ð=Ð=°,AB = DE = 4,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD D ∽CDQ D ,则此时AP CQ =g ______;(2)将三角板DEF 由图1所示的位置绕点O 沿逆时间方向旋转,设旋转角为a .其中090a °<<°,问AP CQ g 的值是否改变?请说明理由.【难度】★★【答案】(1)8;(2)不改变.【解析】(2)易证APD CDQ D D ∽, 得:AP AD CD CQ= AP CQ CD AD \·=·.又AC =Q , CD AD \==, 8AP CQ \·=.【总结】本题考查旋转的相关知识,等腰三角形,“一线三等角”得相似等的相关知识.【方法三】差异对比法易错点1对两个三角形中的对应角和对应边的概念理解不透彻例16.在△ABC 中,直线DE 分别与AB 、AC 相交于点D 、E ,下列条件不能推出△ABC 与△ADE 相似的是()A .AD AE BD EC =B .∠ADE=∠ACBC .AE ﹒AC=AB ﹒ADD .AD DE AB BC=【答案】D 【分析】由题意可得一组对角相等,根据相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似添加条件即可.【详解】解:有两边对应成比例且夹角相等的两个三角形相似,故选项A 不符合题意;两角对应相等,两三角形相似,故选项B 不符合题意;由AE ﹒AC=AB ﹒AD 得AD AC AE AB=,且∠A=∠A ,故可得△ABC 与△ADE 相似,所以选项C 不符合题意;而D 不是夹角相等,故选项D 符合题意;故选:D【点睛】相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.易错总结:找两个三角形的对应关系时,容易受思维定式的影响,想当然地把AB 与A1B1当成对应边,∠A 与∠A1当成对应角。
(易错题精选)初中数学图形的相似难题汇编及答案解析
(易错题精选)初中数学图形的相似难题汇编及答案解析一、选择题1.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.2.如图,在ABC ∆中,点D E F 、、分别在边AB AC BC 、、上,// ,//DE BC DF AC ,则下列结论一定正确的是( )A .DE CE BF AE= B .AE CE CF BF = C .AD AB CF AC= D .DF AD AC AB = 【答案】B【解析】【分析】 根据平行线分线段成比例定理,可得B 正确.【详解】解://DE BC Q ,//DF AC , ∴AE AD CE BD =,BF BD CF AD=, ∴AE CF CE BF =, 故B 选项正确,选项A 、C 、D 错误,故选:B .【点睛】本题主要考查平行线分线段成比例,找准对应边是解题的关键.3.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBF DEG ∆∆:;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG ⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE =12a∴GE=12a+x由勾股定理得:EG2=BE2+BG2,即:(12a+x)2=(12a)2+(a-x)2解得:x=13∴BG=2AG,故②正确;∵BE=EF,∴△BEF是等腰三角形,易知△GED不是等腰三角形,∴△EBF与△DEG不相似,故③错误;连接CF,∵BE=CE,∴BE=12 BC,∴S△BFC=2S△BEF.故④错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为()A.2 B.4 C.6 D.8【答案】B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题. 5.如图,在△ABC中,DE∥BC,EF∥AB,则下列结论正确的是()A.AD DEDB BC=B.BF EFBC AB=C.AEEC FCDE=D.EF BFAB BC=【答案】C【解析】【分析】根据相似三角形的判定与性质逐项分析即可.由△ADE∽△ABC,可判断A的正误;由△CEF ∽△CAB,可判定B错误;由△ADE~△EFC,可判定C正确;由△CEF∽△CAB,可判定D错误.【详解】解:如图所示:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴DE AD AD BC AB DB=≠,∴答案A错舍去;∴△CEF ∽△CAB , CF EF BC A B B BF C =≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC ,∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB ,∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.6.如图,点E 是平行四边形ABCD 中BC 的延长线上的一点,连接AE 交CD 于F ,交BD 于M ,则图中共有相似三角形(不含全等的三角形)( )对.A .4B .5C .6D .7【答案】B【解析】【分析】 由平行四边形的性质可得AD//BC ,AB//CD ,根据相似三角形的判定方法进行分析,即可得到图中的相似三角形的对数.【详解】∵四边形ABCD 是平行四边形,∴AD//BC ,AB//CD ,∴△ADM ∽△EBM ,△ADF ∽△ECF ,△DFM ∽△BAM ,△EFC ∽△EAB ,∵∠AFD=∠BAE ,∠DAE=∠E ,∴△ADF∽△EBA,∴图中共有相似三角形5对,故选:B.【点睛】本题考查平行四边形的性质及相似三角形的判定,平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴225AC BC+∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.8.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=25,过C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD455=,求得C (854555,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴2542CD OD==,∴CD85=,OD45=,∴C(45,85),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.9.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】 本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.10.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF 与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13B .横向缩小为原来的14,纵向扩大为原来的3倍 C .△DEF 的面积为△ABC 面积的12倍D .△DEF 的面积为△ABC 面积的112 【答案】A【解析】【分析】【详解】解:△DEF 与△ABC 相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF 的面积为△ABC 面积的169, 故选A.11.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V∴43S ACD S CBA =V V ∵ACD V 的面积为15∴44152033S CBA S ACD ==⨯=VV 故答案为:A .【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.12.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换13.在Rt△ABC中,∠ACB=90°,CD是AB边上的高,则下列结论不正确的是()A.AC2=AD•AB B.CD2=AD•BD C.BC2=BD•AB D.CD•AD=AC•BC 【答案】D【解析】【分析】直接根据射影定理来分析、判断,结合三角形的面积公式问题即可解决.【详解】解:如图,∵∠ACB=90°,CD是AB边上的高,∴由射影定理得:AC2=AD•AB,BC2=BD•AB,CD2=AD•BD;∴CD BC AD AC;∴CD•AC=AD•BC,∴A,B,C正确,D不正确.故选:D.【点睛】该题主要考查了射影定理及其应用问题;解题的关键是灵活运用射影定理来分析、判断、推理或解答.14.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30,∴旗杆的高=130=152⨯米.故选:D.【点睛】本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.15.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D .【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P 在BO 上和P 在OD 上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC 与BD 交于O 点,当P 在BO 上时,∵EF ∥AC , ∴EF BP AC BO =即43y x =, ∴43y x =; 当P 在OD 上时,有643DP EF y x DO AC -==即, ∴y=483x -+.故选C .16.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.17.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.18.若△ABC 的每条边长增加各自的50%得△A 'B 'C ',若△ABC 的面积为4,则△A 'B 'C '的面积是( )A .9B .6C .5D .2【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.19.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .AD AB AB AC= 【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.20.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.。
初中数学全等相似三角形难题汇总(附答案)
1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=.OCD10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l甲、l乙、l丙.已知AB=DE=GH,试猜想l甲、l乙、l丙的大小关系,并说明理由.15.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.【考点】K3:三角形的面积.=S△DEC,【解答】解:∵S△BDE∴BD=DC,=S△ABC=,∴S△ABD∵S=1,S△BDE=S△DEC=S△ACE,△ABC=S△DEC=S△ACE=,∴S△BDE=S△ABD﹣S△BDE=﹣=.∴S△ADE故选B.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.【考点】KE:全等三角形的应用;KM:等边三角形的判定与性质.【解答】解:连接QR,过Q作QD⊥PR,∴∠AQD=45°,∵∠QAR=180°﹣75°﹣45°=60°,且AQ=AR,∴△AQR为等边三角形,即AQ=QR,∵∠AQD=45°∴∠RQD=15°=∠ARP,∠QRD=75°=∠RAP,∴△DQR≌△PRA(ASA),∴QD=PR,即w=h.故选A.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【解答】解:①在AE取点F,使EF=BE.∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,∴S△ACE ﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE ﹣S△BCE=S△ADC,故④正确.故选D.4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD【考点】KD:全等三角形的判定与性质.【解答】解:因为∠A=2∠B,所以∠A>∠B,所以BC>AC.在BC上截取CA′=CE,连接DE′(如图),易证△ACD≌△EC′D,所以AD=ED,且∠CED=∠A=2∠B,又∠CED=∠B+∠EDB,所以∠B=∠EDB,所以AD=ED=EB,所以BC=E′C+E′B=AC+AD,所以AD=BC﹣AC.故此题选B.注意到:若AD=BC﹣CD,则CD=BC﹣AD=A′C=AC,此时∠CDA′=∠CDA=∠A=2∠B,所以∠ADA′=4∠B,又∠ADA′+∠2=4∠B+∠B=180°,所以∠B=36°,所以∠C=72°,与已知矛盾,故A排除,易证BD>BA′=AD,所以PB<BD,PA>AD.所以AD<BC﹣AP,排除C,AD>BC﹣BD,排除D.5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′【考点】S9:相似三角形的判定与性质;KF:角平分线的性质.【解答】解:A、∵∠A′=30°,∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;B、∵∠C′=60°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;C、∠C=60°,无法确定△A′B′C′中各角的度数,故无法证明△ABC∽△A′B′C′,故本选项正确;D、∵∠A′=2∠C′,∠A′+∠C′=90°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误.故选C6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定【考点】S9:相似三角形的判定与性质;K8:三角形的外角性质.【解答】解:由=得=,延长CB至D,使BD=AB,于是CD=a+c,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC.故选B.7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定【考点】S9:相似三角形的判定与性质;K3:三角形的面积.【解答】解:分别构造△ABC与△A1B1C1如下:①作△ABC∽△A1B1C1,显然=>1,即S>S1;②设a=b=,c=20,则h c=1,S=10,a1=b1=c1=10,则S1=×100>10,即S<S1;③设a=b=,c=20,则h c=1,S=10,a1=b1=,c1=10,则h c=2,S1=10,即S=S1;因此,S与S1的大小关系不确定.故选D.8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD【考点】S8:相似三角形的判定.【解答】解:A、因为AD•BC=AB•BD的夹角非∠A,所以不能判定两三角形相似,故本选项错误;B、因为符合两边及夹角法,故可判定两三角形相似,故本选项正确;C、因为无法确定三角形的对应角相等,故无法判定两三角形相似,故本选项错误;D、因为AB•BC=AC•BD的夹角为∠C、∠B,不确定是否相等,无法判定两三角形相似,故本选项错误,故选B.9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=16.8.OCD【考点】K3:三角形的面积.【解答】解:连接DE,如图则有,,将已知数据代入可得S=1.5,△DOE=x,则由,设S△ADE,所以得方程:,解得:x=6.3,所以四边形ADOE的面积=x+1.5=7.8.=2+3+4+7.8=16.8.所以S△ABC故填:16.8.10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5.【考点】KD:全等三角形的判定与性质.【解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是5.【考点】KD:全等三角形的判定与性质.【解答】解:作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD===20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中⇒△ACD≌△BCD⇒∠CDA=∠CDB,∴∠CDA=∠CDB===120°,在△ACD与△AOD中⇒△ACD≌△AOD⇒AO=AC,∴AO=5.故答案为5.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.【考点】KD:全等三角形的判定与性质.【解答】证明:(1)在边BC上截取BE=AB,连接DE,∵BD为∠ABC的平分线,∴∠ABD=∠DBE,∴△ABD≌△DBE,∴AD=DE,∴∠A=∠BED,∵∠A=100°,∴∠BED=100°,∵∠C=50°,∴∠CDE=50°,∴∠C=∠CDE,∴DE=CE,∵BC=BE+CE,∴BC=BA+AD;(2)如图,以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,∴∠ACA′=∠ABD=20°,∵AB=AC,∴△ABD≌△ACD'(SAS),∴AD=AD',∠BAC=∠CAD′=100°,∴∠AD′C=60°,连接AA′,∴∠D'A'A=∠A'AD'=30°,∴A'D'=AD',∴BC=A'C=A'D'+CD'=AD+BD,即BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.【考点】KD:全等三角形的判定与性质.【解答】解:延长BC到F,使CF=DE,连接AF(如图)∵DE+BC=1,∴BF=BC+CF=BC+DE=1∵BE=AC,∠DEB=∠ACF=90°,DE=CF,∴△BDE≌△AFC(SAS),∵BD=,∴AF=BD=,∠B=∠1,∴AF=BF,∵∠B+∠2=90°,∴∠1+∠2=90°,∴∠ABC=30°.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l 甲、l 乙、l 丙.已知AB=DE=GH ,试猜想l 甲、l 乙、l 丙的大小关系,并说明理由.【考点】KD :全等三角形的判定与性质;K6:三角形三边关系.【解答】解:猜想l 甲<l 乙<l 丙.(5分)理由:在甲三角形中,作∠ABF′=65°,交AC 的延长线于点F′.在△DEF 和△BAF′中,∵∠D=∠ABF′=65°,DE=BA ,∠E=∠A=55°,∴△DEF ≌△BAF′(ASA ).(3分)∵F′C +F′B >BC ,∴△BAF′的周长大于l 甲.即 l 甲<l 乙.(3分)同理可说明l 乙<l 丙.(3分)∴l 甲<l 乙<l 丙.15.已知等腰直角三角形ABC ,BC 是斜边.∠B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD=2CE .【考点】KD:全等三角形的判定与性质.【解答】证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【考点】KD:全等三角形的判定与性质.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,。
相似三角形难题集锦(含问题详解)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
初中数学《相似三角形》压轴30题含解析
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
初中数学相似三角形经典练习难题易错题(附详解)
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
相似三角形难题集锦(含答_案)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
相似三角形难题集锦(含答案解析)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH ⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
史上最全!!!!相似三角形难题精选
相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A 点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(s)表示移动的时间(0<t<6)。
相似三角形难题集锦(含答案)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A 点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
初中数学相似三角形经典练习难题易错题(附详解)
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
专题02 相似三角形(难点)(解析版)
专题02 相似三角形(难点)一、单选题1.下列说法不正确的是( )A.将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB,C是线段AB的黄金分割点,且AC>BC,则AC2.下列说法正确的是()A.两个直角三角形相似B.两条边对应成比例,一组对应角相等的两个三角形相似C.有一个角为40°的两个等腰三角形相似D.有一个角为100°的两个等腰三角形相似【答案】D【分析】利用相似三角形的判定方法依次判断即可得解.【解析】解:A、∵两个直角三角形只有一组角相等,∴两个直角三角形不一定相似,故选项A不合题意;B、∵两条边对应成比例,且夹角相等的两个三角形相似,∴两条边对应成比例,一组对应角相等的两个三角形不一定相似,故选项B不合题意;C、∵底角为40°的等腰三角形和顶角为40°的等腰三角形不相似,∴有一个角为40°的两个等腰三角形不一定相似,故选项C不合题意;D、∵有一个角为100°的两个等腰三角形相似,∴选项D符合题意;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3.点P是线段AB的黄金分割点,且AP PB>,下列命题:()()()()222=×=×=×=,中正确的有()1AB AP PB2AP PB AB3BP AP AB4AP:AB PB:AP4.下列关于向量的说法中,不正确的个数是()①()()3330a b a b ---=r r r r ;②若3a b =r r ,则3a b =-r r ;③若m 、n 是实数,则()()m na mn a =r r ;④如果非零向量b r 与非零向量a r 平行,那么存在唯一的实数m ,使得b ma =r r ;⑤如果非零向量a mb =r r ,则a r 与b r 所在的直线平行;⑥如果0a ®与0b ®分别是a r 与b r 的单位向量,则00//a b ®®5.如图,在中,,,下列结论正确的是()A.AM AMNC AB=B.AD DNDM MC=C.AM ANMB AC=D.DN MNMC BC=BE=1,则EC=()A.32B.2C.3D.4OE DF ∥7.如图是一架梯子的示意图,其中1111∥∥∥AA BB CC DD ,且AB BC CD ==.为使其更稳固,将A ,1D 间加一条安全绳(线段1AD ),1AD 分别交1BB ,1CC 于点E ,F ,量得0.4m =AE .则1AD 的长为( )接DE .将△BDE 沿DE 折叠,得到△B ′DE ,点B 恰好落在AC 的中点处,设DE 与BB 交于点F ,则EF =( )A .12B .53C D ∴△AHB ′是等腰直角三角形,∴AH =B ′H 22=AB ′,∵AB ′12=AC 2=,9.如图,正方形ABCD 由四个全等的直角三角形拼接而成,连结HF 交DE 于点M .若12AH AE =,则HM MF 的值为( )A .49B .12C .47D .23∵正方形ABCD 由四个全等的直角三角形拼接而成,AEH BFE CGF DHG @@@V V V V 设3,AB a =10.如图,在Rt△ABC中,∠BAC=90°,BA=CA=,D为BC边的中点,点E是CA延长线上一点,把ACDE沿DE翻折,点C落在C¢处,EC¢与AB交于点F,连接BC¢.当43FAEA=时,BC’的长为( )A B.C D.【答案】D【分析】如图,连接CC′,过点C′作C′H⊥EC于H.设AB交DE于N,过点N作NT⊥EF于T,过点D作DM⊥EC于M.证明∠CC′B=90°,求出CC′,BC即可解决问题.【解析】解:如图,连接CC′,过点C′作C′H⊥EC于H.设AB交DE于N,过点N作NT⊥EF于T,过点D 作DM⊥EC于M.∵∠FAE=∠CAB=90°,FA EA=∴EF:AF:AE=5:4:3,∵C′H∥AF,∴△EAF∽△EHC′,∴EC′:C′H:EH=EF:AF:设EH=3k,C′H=4k,EC′=二、填空题11.已知235a b c ==,且a+b+c≠0,则232a b c a b c +-++=_____.13.如图,在△ABC 中,AD 为边BC 上的中线,DE ∥AB ,已知ED a =,BC b =,那么用a ,b 表示AD =_____.14.如图,ABC V 的中线AD 、CE 交于点G ,点F 在边AC 上,GF BC P ,那么GF BC的值是__________.15.如图,在ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果CF ∶CA=a ∶b ,那么BE ∶AE 的值为______.(用含a 、b 的式子表示)过点B 作BG ∥AC 交EF 于点∴∠1=∠C∵点D 是边BC 的中点∴BD=CD在△BDG 和△CDF 中1=C BD CD ÐÐìï=í线交于点G,与边AB交于点F,如果AB=AF=2BF,那么GB=______.形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的最美分割线.在△ABC中,∠A=50°,CD是△ABC的最美分割线.若△ACD为等腰三角形,则∠ACB的度数为________.【点睛】本题考查了相似三角形的性质以及等腰三角形的性质,理解最美分割线的定义是解决本题的关键.18.如图,梯形ABCD 中,4//,90,tan ,3AD BC B C AB BC Ð===o ,点E 在边CD 上,把BCE V 绕点B 逆时针旋转90°,点E 的对应点是点F ,点C 的对应点是点M ,如果//EF BC ,那么:DE CE 的值是_______.三、解答题19.已知,x:y:z=2:3:4,求:(1)x yz+的值;(2)若x+y+z=18,求x,y,z.20.如图,在△ABC中,AD是BC边上的中线,点H在边BC上,且AH=HC,交AC于点G,BD=7,AD=5,DH=3.(1)求证:AH⊥BC;(1)求EC的值;CD .(1)求证:DE ∥CF ;(2)联结DF ,设AD 、CF 的交点为M ,如果2DF =FM •FC ,求证:DF∥AC .【答案】(1)见解析(2)见解析【分析】(1)由等边三角形的性质证明△ACD ≌△CBF ,得出∠CAD =∠BCF ,由等边三角形的性质及三角形外角的性质得出∠BDE =∠CAD ,进而得出∠BDE =∠BCF ,即可证明DE ∥CF ;(2)先证明△DFM ∽△CFD ,得出∠FDM =∠FCD ,由∠CAD =∠BCF ,得出∠FDM =∠CAD ,即可证明DF ∥AC .(1)如图1,∵△ABC 是等边三角形,∴AC =BC ,∠ACB =∠B =60°,在△ACD 和△CBF 中,AC CB ACD B CD BF =ìïÐ=Ðíï=î,223.如图,点D、E分别在△ABC的边BC及其延长线上,且∠BAC=∠DAE,∠ACB=2∠BAD.(1)求证:22AB BD BD DE-=×;DA EF AB CE AF=,AE延长线交DC延长线于点P.(1)证明:四边形ACEG 是等腰梯形;(2)若点E 是BC 的黄金分割点,且CE BE <,证明:2CP CE AD =×.【答案】(1)见解析(2)见解析【分析】(1)根据正方形的性质可得四边形AFEC 是平行四边形,进一步可得CE AG =,根据平行四边形的性质可得GE AC ¹,且GE AC ∥,即可得证;(2)根据正方形的性质易得ABE △∽PCE V ,根据相似三角形的性质以及黄金分割比可得CP BE =,进一步即可得证.(1)证明:在正方形ABCD 中,AD BC ∥,BC BA =,90ABC BAC Ð=Ð=°,45BAC BCA \Ð=Ð=°,又CE AF =Q ,\四边形AFEC 是平行四边形,45F BCA \Ð=Ð=°,AC FE ∥,AC FE =,90FAG Ð=°Q ,45AGF F \Ð=Ð=°,AG AF \=,CE AG \=,GE AC ¹Q ,且GE AC ∥,\四边形ACEG 是等腰梯形;(2)证明:在正方形ABCD 中,AB CD ∥,AB BC AD ==,ABC BCP \Ð=Ð,AEB PEC Ð=ÐQ ,ABE \V ∽PCE V ,BE \:AB CE =:PC ,E Q 是BC 的黄金分割点,且CE BE <,BE \∶BC CE =∶BE ,AB BC =Q ,CP BE \=,CP \∶AB CE =∶PC ,AB AD =Q ,2\=×.CP CE AD【点睛】本题考查了正方形的性质,平行四边形的判定和性质,相似三角形的判定和性质,黄金分割等,熟练掌握正方形的性质是解题的关键.V中,点D、点E分别在AC、AB上,点P是BD上的一点,联结EP并延长交AC于点25.如图,在ABCÐ=Ð=Ð.F,且A EPB ECB×=×;(1)求证:BE BA BP BD(1)如图1,当α=90°时,点C′恰好在DB延长线上.求证:点B是线段DC′的黄金分割点;(2)如图2,连接AC′,过点D′作D′M∥AC′交BD于点M,射线DB分别交AD′,AC′于点P,N.求证:MN2=PN•DN.MN PN DN=×==.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.5DE DF(1)求证:BG CH =;(2)设AD x =,ADN △的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;与性质、分类讨论思想的运用等知识点.28.如图,在矩形ABCD 中,:3:2AB BC =,点F 、G 分别在边AB 、CD 上,将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形EFGP ,EP 交CD 于点H ,连接AE 交GF 于点O .(1)若BC =8,E 是BC 中点,求BF 的长;(2)试探究GF 与AE 之间的位置关系与数量关系,并说明理由;(3)连接CP ,若34BE BF =,GF =,求线段BE 和CP 的长.。
初中数学相似三角形经典练习难题易错题(附详解)
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
相似三角形难题集锦(含答案)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013初中相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为或,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
②通分法:将原等式变为,利用相关定理将两个个比通分即:,,且,则原式成立。
2013初中相似三角形难题易错题参考答案与解析一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.由于BC是△ABC与△DBC的公共边,且AB∥EF∥CD,利用平行线分线段成比例的定理,可求EF.解:在△ABC中,因为EF∥AB,所以EF:AB=CF:CB①,同样,在△DBC中有EF:CD=BF:CB②,①+②得EF:AB+EF:CD=CF:CB+BF:CB=1③.设EF=x厘米,又已知AB=6厘米,CD=9厘米,代入③得x:6+x:9=1,解得x=.故EF=厘米.考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=.△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.解:取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=c,∴△EFB∽△EOM,∴,∵AB=a,AD=c,BE=b,∴ME=MB+BE=AB+BE=a+b,∴,∴BF=.故答案为:.此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.考点:相似三角形的判定与性质;等边三角形的判定.交AC于E,则△ADE为正三角形,从而AE=DE=AD,利用△CED∽△CAB,可实现求证的目标.证明:过D引DE∥AB,交AC于E.∵AD是∠BAC的平分线,∠BAC=120°,∴∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以∴△ADE是正三角形,∴EA=ED=AD.①由于DE∥AB,所以△CED∽△CAB,∴===1﹣.②由①,②得=1﹣,从而+=.本题考查了相似三角形对应边比值相等的性质,考查了相似三角形的判定,考查了等边三角形的判定,考4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.应利用平行四边形的性质,通过添加辅助线使各线段“集中”到一个三角形中来求证.证明:延长CB与EG,其延长线交于H,如虚线所示,构造平行四边形AIHB.在△EIH中,由于DF∥IH,∴=.∵IH=AB,∴=,从而,﹣=﹣===1+.①在△OED与△OBH中,∠DOE=∠BOH,∠OED=∠OHB,OD=OB,∴△OED≌△OBH(AAS).从而DE=BH=AI,∴=1.②由①,②得﹣=2.此题考查学生对相似三角形的判定与性质和平行四边形的性质的理解和掌握,此题的关键是延长CB与EG,5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.连接BE、AD,并把线段之比转化为两三角形面积之比,然后约分即可求证.证明:如图,连接BE、AD,∵△BDE与△DCE等高,∴=,∵△DCE与△ADE等高,∴=,∵△ADF与△BDF等高,∴=,∵△AEF与△BEF等高,∴=,∴=,∴••=••=1.此题考查学生对三角形面积的理解和掌握,解答此题的关键是连接BE、AD,并把线段之比转化为两三角6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.计算题.由FG∥BC,HI∥CA,ED∥AB,易证四边形AIPE、四边形BDPF、四边形CGPH均是平行四边形,利用平行线分线段成比例定理的推论可得△IHB∽△AFG∽△ABC,于是=,=,再结合=,先计算式子右边的和,易求++==2,从而有++=2,再把DE=FG=HI=d,AB=510,BC=450,CA=425代入此式,解即可.解:∵FG∥BC,HI∥CA,ED∥AB,∴四边形AIPE、四边形BDPF、四边形CGPH均是平行四边形,∴△IHB∽△AFG∽△ABC,∴=,=,∴++=,又∵DE=PE+PD=AI+FB,AF=AI+FI,BI=IF+FB,∴DE+AF+BI=2×(AI+IF+FB)=2AB,∴++==2,∵DE=FG=HI=d,AB=510,BC=450,CA=425,∴++=++=2,∴++=2,解得d=306.本题考查了相似三角形的判定和性质、平行线分线段成比例定理的推论、平行四边形的判定和性质.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.平行线分线段成比例.由平行线的性质可得===,得出OE与BC,OF与AD的关系,进而即可求解EF的长.解:∵AD∥BC,EF∥BC,∴===,又==,==,∴OE=BC=,OF=AD=,∴EF=OE+OF=15.本题主要考查了平行线的性质问题,能够利用其性质求解一些简单的计算问题.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.证明题.由于AB=CD,所以将转化为,再由平行线的性质可得=,进而求解即可.证明:在平行四边形ABCD中,则AD∥BC,AB∥CD,∴==∴﹣=﹣==1.本题主要考查了平行四边形的性质以及相似三角形的判定及性质问题,能够熟练掌握.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.由平行线分线段成比例可得对应线段的比,再由题中已知条件即可求解线段MN的长.解:∵MN∥BC,∴在△ABD中,=,即OM==,同理ON==,∴MN=OM+ON=.本题主要考查了平行线分线段成比例的性质问题,能够熟练掌握.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.证明题.(1)由平行线可得△PIF∽△CAB,得出对应线段成比例,即==,同理得出==,即可证明结论;(2)证明方法与(1)相同.证明:(1)∵DE∥AB,IH∥AC,FG∥BC,∴可得△PIF∽△CAB,∴==,同理==,++=++=1.(2)仿(1)可得==,===,∴++=++=1.本题主要考查了平行线的性质问题,能够利用其性质通过线段之间的转化,证明一些简单的结论.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.进而可求解结论.解:∵AB∥CD,EF=FG=CH=HI=IJ,∴==,∴==,==,∴DJ=4AE,又=,解得AB=AE,又AE=CJ,∴AB=CJ,EB=4CJ,==,CD=5CJ,∴AB:CD=:5=1:2.本题主要考查了相似三角形对应边成比例或平行线分线段成比例的性质问题,应熟练掌握.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.证明题.(1)第一问可由三角形的面积入手,即△PBC+△PAC+△PAB=△ABC,通过化简可得面积与线段之间的关系,进而即可求解.(2)由(1)中得出,则其中至少有一个不大于,可设≤,即3AD≤PD,而AD=AP+PD,进而通过证明即可得出结论.解:(1)由面积概念得:S△PBC+S△PAC+S△PAB=S△ABC①整理等式得:++=1,②由面积概念得:=,=,∴=,即=③同理得:=④=⑤把式③、④、⑤、代入式②得:;(2)由,知,,中至少有一个不大于,不妨设≤即3AD≤PD.而AD=AP+PD,∴AP≥2PD,∴≥2,即不小于2,同理可证三式中至少有一个不大于2.本题主要考查了三角形的面积比与对应边的比值之间的关系,能够熟练掌握其内在联系,并能求解一些比13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.从而∠HBQ=∠HCD,因而△BHQ与△DHC相似.证明:在Rt△PBC中,∵BH⊥PC,∴∠PBC=∠PHB=90°,∴∠PBH=∠PCB.显然,Rt△PBC∽Rt△BHC,∴=,由已知,BP=BQ,BC=DC,∴=,∴=.∵∠ABC=∠BCD=90°,∠PBH=∠PCB,∴∠HBQ=∠HCD.在△HBQ与△HCD中,∵=,∠HBQ=∠HCD,∴△HBQ∽△HCD,∴∠BHQ=∠DHC,∠BHQ+∠QHC=∠DHC+∠QHC.又∵∠BHQ+∠QHC=90°,∴∠QHD=∠QHC+DHC=90°,即DH⊥HQ.本题考查了相似三角形的判定与性质及正方形的性质,难度适中,关键是掌握相似三角形的判定方法.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.考点:直角三角形斜边上的中线;勾股定理.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)用∠APB=∠APC=120°,∠CBP=∠BAP两个对应角相等证明△PAB∽△PBC,根据相似比可证到结论.证明:∵∠APB=120°,∴∠ABP+∠BAP=60°,又∵∠ABC=60°,∴∠ABP+∠CBP=60°,∴∠CBP=∠BAP,又∵∠APB=∠APC=120°,∴△ABP∽△BCP,∴=,∴BP2=PA•PC.本题考查相似三角形的判定和性质定理,先用判定定理证明相似,然后根据相似对应边成比例证明结论.18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.利用HL判定△ACD≌△CBF,由全等三角形的性质得其对应角相等,再根据等角的性质不难证得结论.证明:过B作BC的垂线交CE的延长线于点F,(1分)∴∠FBC=∠ACB=90°.∴AC∥BF.∴△ACE∽△BFE.(3分)∴.∴AC=2BF.(4分)∵AC=BC,∴CD=BF.(5分)在△ACD和△CBF中,∴△ACD≌△CBF.(6分)19.(巧解妙解)如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.的关系,即可得出其比值.解:如答图所示.作已知图形的中心对称图形,以E为对称中心.令BF=a,FG=b,GE=c.∵M′C∥AM,N′C∥AN∴a:(2b+2c)=BM:MC=1:2∴a=b+c,而(a+b):2c=BN:NC=2:1∴a+b=4c,所以a=c,b=c.∴BF:FG:GE=5:3:2.本题主要考查了平行线分线段成比例的性质问题,要求线段的比,通过作平行线构造比例线段是一种重要20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如将原等式变为或,为此若能设法利用长度分别为AB,BC,CA及AB+AC这4条线段,构造一对相似三角形,问题可能解决.注意到,原△ABC中,已含上述4条线段中的三条,因此,不妨以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似,期望能解决问题.证延长AB至D,使BD=AC(此时,AD=AB+AC),又延长BC至E,使AE=AC,连结ED.下面证明,△ADE∽△ABC.设∠A=α,∠B=2α,∠C=4α,则:∠A+∠B+∠C=7α=180°.由作图知,∠ACB是等腰三角形ACE的外角,所以∠ACE=180°-4α=3α,所以∠CAE=180°-3α-3α=7α-6α=α.从而∠EAB=2α=∠EBA,AE=BE.∵AE=AC,AE=BD,∴ BE=BD,△BDE是等腰三角形,∴∠D=∠BED=α=∠CAB,∴△ABC∽△DAE,∴,即∴。