高一数学必修3第一章测试题及答案
(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)
一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)
一、选择题1.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18554.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差5.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( )A .26B .27C .28D .296. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份 8.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油10.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2, ,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____14.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..15.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
高中数学必修3精品模块测试题1(含答案)(word版)
新课标数学必修3精品模块测试题1一、选择题:本大题共12小题.每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果输入3n =,那么执行右图中算法后的输出 结果是( )A.3 B.4 C.5 D.62.某校1000名学生中, O 型血有400人,A 型血有250人,B 型血有250人,AB 型血有100人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本. 如果从A 型血中抽取了10人,则从AB 型血中应当抽取的人数为( )A.4 B.5 C.6 D.73.把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球. 事件“甲分得白球”与事件“乙分得白球”是( )A. 对立事件 B. 不可能事件 C. 互斥事件 D. 必然事件 4.用样本估计总体,下列说法正确的是 ( ) A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确C .样本的标准差可以近似地反映总体的平均状态D .数据的方差越大,说明数据越稳定 5. 在区域⎩⎨⎧≤≤≤≤1010y x ,内任意取一点),(y x P ,则122<+y x 的概率是( )A .0B .214-πC .4πD .41π- 6. 把11化为二进制数为( )A .1011(2)B . 11011(2)C . 10110(2)D .0110(2) 7.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 8.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9. 观察新生婴儿的体重,其频率分布直方图如下图所示,则新生婴儿体重在[2800,3200]的频率约为( ) A .0.1 B .0.3C .0.45D .0.510.右边程序运行后的输出结果为( ) A .17 B .19 C .21 D .2311. 已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是( ) A .62 B .63 C .64 D .6512.在右面的程序框图表示的算法中,输入三个实数c b a ,,, 要求输出的x 是这三个数中最大的数,那么在空白的判断 框中,应该填入( ) A .x c > B .c x > C .c b > D .c a >3900婴儿 体重。
(压轴题)高中数学必修三第一章《统计》测试(有答案解析)
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
高一数学必修3第一章综合素质检测
第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面对程序框图中的图形符号的说法错误的是()A.起、止框是任何流程不可少的,表明程序开始和结束B.输入、输出可用在算法中任何需要输入、输出的位置C.算法中间要处理数据或计算,可分别写在不同的注释框内D.当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内[答案]C[解析]算法中间要处理数据或计算,可分别写在不同的处理框内.2.十进制数389化成四进制数的末位数是()A.1B.2C.3D.0[答案]A[解析]故389=12 011(4),故末位是1.3.下列程序的功能是()S=1i=3WHILE S<=10 000S=S*ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 000的值D.求满足1×3×5×…×n>10 000的最小正整数n[答案]D[解析]解法一:S是累乘变量,i是计数变量,每循环一次,S 乘以i一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.解法二:最后输出的是计数变量i,而不是累乘变量S,由排除法可知,D正确.4.(2011~2012·广东广州模拟)用辗转相除法,计算56和264的最大公约数时,需要做的除法次数是()A.3 B.4C.6 D.7[答案]B[解析]由辗转相除法,264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,即得最大公约数为8,做了4次除法,故选B.5.下面的程序运行后,输出的值是()i =0DOi =i +1LOOP UNTIL i *i >=2 000 i =i -1PRINT i ENDA .42B .43C .44D .45[答案] C[解析] 由题意知,此程序为循环语句,当i =44时,44×44=1 936;当i =45时,45×45=2 025>2 000,输出结果为i =45-1=44,故选C .6.下面的程序运行后的输出结果为( )A .17B .19C .21D .23[答案] C[解析] 第一次循环,i =3,S =9,i =2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环结构,输出S=21,结束.7.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6在x=-4时,v2的值为()A.-4 B.1C.17 D.22[答案] D[解析]v0=a6=1;v1=v0x+a5=x+0=-4;v2=v1x+a4=-4x+6=22.8.(2011~2012·辽宁抚顺模拟)下图给出的是计算1+2+4+…+219的值的一个程序框图,则其中判断框内应填入的是()A .i =19?B .i ≥20?C .i ≤19?D .i ≤20?[答案] B[解析] 计算S =1+2+4+…+219的值,所使用的循环结构是直到型循环结构,循环应在i ≥20时退出,并输出S .故填“i ≥20?”.9.(2011~2012·山东日照模拟)如下图,程序框图所进行的求和运算是( )A .1+12+13+…+110B .1+13+15+…+119C.12+14+16+…+120 D.12+122+123+…+1210 [答案] C[解析] 第一次循环后,S =0+12=12,i =2;第二次循环后,S =12+14,i =3;第三次循环后,S =12+14+16,i =4;……第十次循环后,S =12+14+16+…+120,i =11,i >10,退出循环并输出S .10.(2011~2012·浙江衢州模拟)下列程序框图运行后,输出的结果最小是( )A .2 012B .2 011C .64D .63[答案] D[解析] 由题图知,若使n (n +1)2>2 012,n 最小为63.11.(2011~2012·北京怀柔模拟)右图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2 [答案] B[解析] 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.故选B.12.(2011~2012·山东滨州模拟)对于任意函数f (x ),x ∈D ,可按下图所示构造一个数字发生器,其工作原理如下:①输入数据x0∈D,经过数字发生器,输出x1=f(x0);②若x1∉D,则数字发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义f(x)=2x+1,D=(0,1 000).若输入x0=0,当发生器结束工作时,输出数据的总个数为() A.8 B.9C.10 D.11[答案] C[解析]依题中规律,当输入x0=0时,可依次输出1,3,7,15,31,63,127,255,511,1 023,共10个数据,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.459与357的最大公约数是________.[答案]51[解析]459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.14.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值时,v4的值为________.[答案]80[解析]v0=1,v1=v0x+a5=1×2-12=-10,v2=v1x+a4=-10×2+60=40,v3=v2x+a3=40×2-160=-80,v4=v3x+a2=-80×2+240=80.15.(2012·江苏高考卷)下图是一个算法流程图,则输出的k的值是________.[答案] 5[解析]将k=1带入0=0不满足,将k=2带入-4<0不满足,将k=3带入-2<0不满足,将k=4带入0=0不满足,将k=5带入4>0满足,所以k=5.16.某城市缺水问题比较突出,为了制定水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x 1,…,x 4(单位:吨).根据如图所示的程序框图,若x 1,x 2,x 3,x 4分别为1,1.5,1.5,2,则输出的结果s 为________.[答案] 32[解析] i =1时,s 1=0+x 1=0+1=1,s =11·s 1=1;i =2时,s 1=1+x 2=1+1.5=52,s =12·s 1=54;i =3时,s 1=52x 3=52+32=4,s =13·s 1=43;i =4时,s 1=4+x 4=4+2=6,s =14·s 1=32.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知一个正三角形的周长为a ,求这个正三角形的面积,设计一个算法解决这个问题.[解析] 算法步骤如下:第一步,输入a 的值.第二步,计算l =a 3的值. 第三步,计算S =34l 2的值. 第四步,输出S 的值.18.(本小题满分12分)(1)用辗转相除法求567与405的最大公约数.(2)用更相减损术求2 004与4 509的最大公约数.[解析] (1)∵567=405×1+162,405=162×2+81,162=81×2.∴567与405的最大公约数为81.(2)∵4 509-2 004=2 505,2 505-2 004=501,2 004-501=1 503,1 503-501=1 002,1 002-501=501.∴2 004与4 509的最大公约数为501.19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧ x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +2,x >1,编写一个程序求函数值.[解析] 程序如下:20.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.[解析]利用秦九韶算法求出当x=0及x=2时,f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x +1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.21.(本小题满分12分)如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P 运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.[解析] 由题意可得y =⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8, 4<x ≤8,2(12-x ), 8<x ≤12.程序框图如图:22.(本小题满分12分)假定在银行中存款10 000元,按2.5%的年利率,一年后连本带息将变为10 250元,若将此款继续存入银行,试问多长时间就会连本带利翻一番?请用直到型和当型两种语句写出程序.[解析] 用“当型”循环用“直到型”循环。
数学必修三习题答案
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
(压轴题)高中数学必修三第一章《统计》测试题(有答案解析)(1)
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:x 16 17 18 19 z50344131由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度5.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .726.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08158.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s9.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,810.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数( )A .40B .45C .48D .5011.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高[)120130,,[)130140,,[]140,150三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[]140,150内的学生中抽取的人数应为________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人. 16.给出下列命题:①若函数()y f x =满足(1)(1)f x f x -=+,则函数()f x 的图象关于直线1x =对称; ②点(2,1)关于直线10x y -+=的对称点为(0,3);③通过回归方程y bx a =+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,2()sin(1)f x x =+是正弦函数,所以2()sin(1)f x x =+是奇函数,上述推理错误的原因是大前提不正确. 其中真命题的序号是__________. 17.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.18.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.19.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.20.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.三、解答题21.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:月份i 7 8 9 10 11 12 销售单价i x (元) 9 9.5 10 10.5 11 8.5 销售量i y (元)111086514y x (2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 22.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量.参考数据:7772111y9.24,t39.75,0.53,7 2.646i i ii i iiy=====⋅≈≈∑∑∑(y-y).参考公式:相关系数()()()()()()11112211,ni i n n nii i i i in ni i ii ii it t y yr t t y y t y t yt t y y======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,ni iiniit t y yb a y btt t==⋅--==-⋅-∑∑.23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x(分钟)时刻的细菌个数为y个,统计结果如下:x12345y23445(Ⅰ)在给出的坐标系中画出x,y的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y关于x的回归直线方程ˆˆˆy bx a=+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni iiniix y nx yx naxb y bx====---∑∑)25.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:温度(单位:C︒)212324272932死亡数y(单位:株)61120275777经计算:611266iix x===∑,611336iiy y===∑,()()61557i iix x y y=--=∑,()62184iix x=-=∑,()6213930iiy y=-=∑,()621ˆ236.64iiy y=-=∑,8.0653167e≈,其中ix,iy分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i=.(1)若用线性回归模型,求y关于x的回归方程ˆˆˆy bx a=+(结果精确到0.1);(2)若用非线性回归模型求得y关于x的回归方程0.2303ˆ0.06xy e=,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1ni i i niii v vR v v ==-=--∑∑.26.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.3.D解析:D由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得c 值.【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kx y ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+, 令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.A解析:A 【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误. 【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.5.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=,【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.8.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,1s ==,2s == 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.9.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】先由频率之和等于1得出的值计算身高在的频率之比根据比例得出身高在内的学生中抽取的人数【详解】身高在的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分解析:3 【分析】先由频率之和等于1得出a 的值,计算身高在[)120,130,[)130,140,[]140,150的频率之比,根据比例得出身高在[]140,150内的学生中抽取的人数. 【详解】(0.0050.010.020.035)101a ++++⨯=0.03a ∴=身高在[)120,130,[)130,140,[]140,150的频率之比为0.03:0.02:0.013:2:1= 所以从身高在[]140,150内的学生中抽取的人数应为11836⨯= 故答案为:3 【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.14.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.16.②③【解析】分析:根据函数的周期性可判断①;根据垂直平分线的几何特征可判断②;根据回归直线的实际意义可判断③;根据演绎推理及正弦函数的定义可判断④详解:①若函数满足则函数是周期为2的周期函数但不一定解析:②③ 【解析】分析:根据函数的周期性,可判断① ;根据垂直平分线的几何特征,可判断②;根据回归直线的实际意义,可判断③;根据演绎推理及正弦函数的定义,可判断④.详解:①若函数()y f x =满足()()11f x f x -=+,则函数()f x 是周期为2的周期函数,但不一定具有对称性,①错误;②点()()2,1?0,3确定直线的斜率为1-,与直线 10x y -+=垂直,且中点()1,2在直线10x y -+=上,故点()()2,1?0,3关于直线10x y -+=的对称,②正确; ③通过回归方程ˆˆˆy bx a =+可以估计和观测变量的取值和变化趋势,③正确;④正弦函数是奇函数,()()2sin 1f x x =+是正弦函数,所以()()2sin 1f x x =+是奇函数,上述推理错误的原因是小前提不正确,④错误,故答案为②③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的周期性、点关于直线对称、以及回归分析与“三段论”,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.17.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.18.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果.详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.19.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.20.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.三、解答题21.(1) 3.240ˆyx =-+;(2)可以认为所得的回归直线方程是理想的;(3)该产品的销售单价为7.5元/件时,获得的利润最大. 【分析】(1)计算x 、y ,求出回归系数,写出回归直线方程;(2)根据回归直线方程,计算对应的数值,判断回归直线方程是否理想; (3)求销售利润函数W ,根据二次函数的图象与性质求最大值即可. 【详解】 (1)因为1(99.51010.511)105x =++++=,1(1110865)85y =++++=,所以23925108ˆ 3.2502.5510b -⨯⨯==--⨯,则8( 3.2)00ˆ14a =--⨯=, ∴y 关于x 的回归直线方程为 3.240ˆyx =-+ (2)剩余数据为12月份,此时8.5x =,14y =,现进行检测,当8.5x =时,ˆ 3.28.54012.8y=-⨯+=,则ˆ||12.814 1.22y y -=-=<,所以可以认为所得的回归直线方程是理想的. (3)令销售利润为W ,则22( 2.5)( 3.240) 3.248100 3.2(7.5)80W x x x x x =--+=-+-=--+.∴当7.5x =时,W 取最大值.所以该产品的销售单价为7.5元/件时,获得的利润最大. 【点睛】函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系,如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .22.(1)散点图见解析,y 与t 的线性相关性相当高,理由见解析;(2)0.920.1011 2.02y =+⨯=,2.02万户.【分析】(1)根据表格中对应的t 与y 的关系,描绘散点图,并根据参考数据求r ,说明相关性;(2)根据参考数据求ˆb和ˆa ,求回归直线方程,并令11t =,求y 的预测值.【详解】(1)作出散点图如图所示:由条形图数据和参考数据得()()7722114,0.53iii i t t t y y ===⋅-=⋅-≈∑∑,()()77711139.7549.24 2.79ii i i i i i i tty y t y t y ===⋅--=-=-⨯=∑∑∑,2.790.990.532 2.646r ≈≈⨯⨯.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关性相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由9.24 1.327y ==及(1)得()()()717212.79ˆ0.1028iii i i t t y y b t t==⋅--==≈⋅-∑∑, ˆˆ 1.320.1040.92ay bt =-≈-⨯=,所以,y 关于t 的回归方程为:0.920.10y t =+. 将11t=代入回归方程得:0.920.1011 2.02y =+⨯=,所以预测11月份该省煤改气、煤改电的用户数量达到2.02万户. 【点睛】关键点点睛:本题考查回归直线方程,此类问题的关键是根据参考数据和公式相结合,求ˆb和ˆa ,一般计算量较大,需计算严谨,准确. 23.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况, 其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑。
北师大版高中数学必修三第一章《统计》测试题(答案解析)
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆy bx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量3.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,84.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .675.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .6.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是 A .81.2,4.4 B .40.6,1.1 C .48.8,4.4D .78.8,1.17.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1768.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆy bx a =+中的ˆb为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元 B .62.5万元C .63.5万元D .65.0万元9.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.从存放号码分别为1,2,⋯,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53B .0.5C .0.47D .0.37二、填空题13.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位: cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有_______株树木的底部周长大于110cm .14.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.15.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1a ,2a ,3a ,⋅⋅⋅,2019a 的标准差为1σ,数据11S ,22S ,33S ,⋅⋅⋅,20192019S 的标准差为2σ,则12σσ=________ 16.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下: 零件数x (个) 15 20 30 40 50 加工时间y (分钟)6570758090由表中数据,求得线性回归方程0.66y x a =+,则估计加工70个零件时间为__________分钟(精确到0.1). 17.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.18.数据1x ,2x ,…,n x 的平均数是3,方差是1,则数据15x -,25x -,…,5n x -的平均数和方差之和是__________.19.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.20.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.三、解答题21.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.22.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)23.经销商小王对其所经营的某一型号二手汽车的使用年数(010)x x <≤与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:售价 1613 9.5 7 4.5(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归方程ˆybx a =+中,1221ˆˆˆˆ,ni ii nii x ynx y b ay bx xnx -=-==--∑∑ 24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆy bx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据. 得分(百分[0,20)[20,40)[40,60)[60,80)[80,100]地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =; ③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z N μσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.3.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=)()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.4.B解析:B 【分析】由剩余5个分数的平均数为21,据茎叶图列方程求出x =4,由此能求出5个剩余分数的方差. 【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21, ∴由茎叶图得:1724202020215x+++++=得x =4,∴5个分数的方差为: S 2=()()()()()222221361721242120212021242155⎡⎤-+-+-+-+-=⎣⎦ 故选B 【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以,代入回归直线方程可求得,所以,故选D. 【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.6.B解析:B 【分析】先设出原来的数据,然后设出现在的数据,找到两组数据的联系,即可. 【详解】设原来的数据为12,,....,n x x x ,每一个数据都乘以2,再减去80,得到新数据为 12280,280,...,280n x x x --- 已知()122...80 1.2n x x x nn+++-=,则81.240.62X == 方差为:224 4.4, 1.1σσ==,故选B . 【点睛】本道题目考查的是平均数和方差之间的关系,列出等式,探寻两组数据的联系,即可.7.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 8.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1a y bx=-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.B解析:B 【解析】 【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果. 【详解】 由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72,a=84﹣0.72×108=6.24, ∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目. 12.A解析:A【解析】分析:由题意结合统计表确定频数,然后确定频率即可.详解:由题意可知,取到卡片为奇数的频数为:1356181153++++=,取卡片的次数为100次,则取到号码为奇数的频率是530.53 100=.本题选择A选项.点睛:本题主要考查频率的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.18【分析】根据频率小矩形的面积小矩形的高组距底部求出周长大于110的频率再根据频数样本容量频率求出对应的频数【详解】由频率分布直方图知:底部周长大于110的频率为所以底部周长大于110的频数为(株解析:18【分析】根据频率=小矩形的面积=小矩形的高⨯组距底部,求出周长大于110cm的频率,再根据频数=样本容量⨯频率求出对应的频数.【详解】由频率分布直方图知:底部周长大于110cm的频率为(0.0200.010)100.3+⨯=,所以底部周长大于110cm的频数为600.318⨯=(株),故答案是:18.【点睛】该题考查的是有关频率分布直方图的应用,在解题的过程中,注意小矩形的面积表示的是对应范围内的频率,属于简单题目.14.【分析】先根据平均数计算出的值再根据方差的计算公式计算出这组数的方差【详解】依题意所以方差为故答案为【点睛】本小题主要考查平均数和方差的有关计算考查运算求解能力属于基础题解析:26 5【分析】先根据平均数计算出m的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意12674,45m m ++++==.所以方差为()()()()()22222114244464745⎡⎤-+-+-+-+-⎣⎦[]126944955=+++=. 故答案为265. 【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15.2【分析】根据等差数列性质分析两组数据之间关系再根据数据变化规律确定对应标准差变化规律即得结果【详解】因为数列是公差不为零的等差数列其前项和为所以因此即故答案为:2【点睛】本题考查等差数列和项性质以解析:2 【分析】根据等差数列性质分析两组数据之间关系,再根据数据变化规律确定对应标准差变化规律,即得结果. 【详解】因为数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,所以111=+222n n n a a a a n S +=, 因此2112σσ=,即122σσ=故答案为:2 【点睛】本题考查等差数列和项性质以及数据变化对标准差的影响规律,考查综合分析求解能力,属中档题.16.7【解析】【分析】结合题意先求出线性回归方程然后再计算出结果【详解】由题意可得则线性回归方程为当时【点睛】本题考查了求线性回归方程然后求出估计结果需要掌握解题方法较为基础解析:7 【解析】 【分析】结合题意先求出线性回归方程,然后再计算出结果 【详解】 由题意可得1520304050315x ++++==6570758090765y ++++==,760.6631a ∴=⨯+,55.54a =,则线性回归方程为0.66 5.4ˆ55y x =+ 当70x =时,ˆ101.7y≈ 【点睛】本题考查了求线性回归方程,然后求出估计结果,需要掌握解题方法,较为基础17.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.18.3【解析】分析:由题意结合平均数方差的性质整理计算即可求得最终结果详解:由题意结合平均数和方差的性质可知:数据…的平均数为:方差为:则平均数和方差之和是点睛:本题主要考查均值的性质方差的性质等知识意解析:3 【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果. 详解:由题意结合平均数和方差的性质可知:数据15x -,25x -,…,5n x -的平均数为:532-=,方差为:()2111-⨯=, 则平均数和方差之和是213+=.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.19.75【解析】分析:由频率分布直方图算出各频率然后计算中位数详解:由图可知的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为则解得故该组数据的中位数为点睛:本题考查了解析:75. 【解析】分析:由频率分布直方图算出各频率,然后计算中位数 详解:由图可知,10~20的频率为0.1420~30的频率为0.2430~40的频率为0.32 40~50的频率为0.2 50~60的频率为0.1前两组频率0.140.240.380.5=+=< 前三组频率0.140.240.320.70.5=++=>∴中位数在第三组设中位数为x ,则()300.380.320.510x -+⨯=解得33.75x =故该组数据的中位数为33.75点睛:本题考查了在频率分布直方图中求中位数,此类题目需要先确定中位数所在的组,然后根据公式计算求得结果,较为基础.20.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.三、解答题21.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972xy =,23432x =; 又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用.22.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190i i x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.23.(1) 1.4518.7y x =-+;(2)3 【分析】(1)由表中数据计算x 、y ,求出ˆb、ˆa ,即可写出回归直线方程; (2)写出利润函数z y w =-,利用二次函数的图象与性质求出3x =时z 取得最大值. 【详解】解:(1)由表中数据得,1(246810)65x =⨯++++=,1(16139.57 4.5)105y =⨯++++=, 由最小二乘法求得:22222221641369.58710 4.5561058ˆ 1.452468105640b⨯+⨯+⨯+⨯+⨯-⨯⨯-===-++++-⨯, ˆ10( 1.45)618.7a=--⨯=, 所以y 关于x 的回归直线方程为 1.4518.7y x =-+; (2)根据题意,利润函数为:22(1.4518.7)(0.05 1.7517.2)0.050.3 1.5z y w x x x x x =-=-+--+=-++,所以,当0.332(0.05)x =-=⨯-时,二次函数z 取得最大值为1.95;即预测3x =时,小王销售一辆该型号汽车所获得的利润z 最大. 【点睛】本题考查了回归直线方程的求法,以及二次函数的图象与性质的应用,考查计算能力.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题. 25.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解. 【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=, 所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+,由于*n N ∈,所以当7n =时,()f n 取最大值104.9. 即当他的答题数量7n =时,他的复赛成绩的期望值最大. 【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641 (0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
【精品单元】2021届高中数学必修3第一章算法框图精品测试卷 算法框图(A)(含答案)
1【精品单元】2021届高中数学必修3第一章算法框图精品测试卷算法框图(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下面哪个不是算法的特征( ) A .抽象性B .精确性C .有穷性D .唯一性2.下列关于算法的说法中正确的个数有( ) ①求解某一类问题的算法是唯一的; ②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊; ④算法执行后一定产生确定的结果. A .1B .2C .3D .43.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步: ①计算;②输入直角三角形两直角边长a ,b 的值; ③输出斜边长c 的值; 其中正确的顺序是( )A .①②③B .②③①C .①③②D .②①③4.阅读下面的程序框图,运行相应的程序,输出S 的值为( )A .15B .105C .245D .9455.将两个数,交换,使,,下列语句正确的是( ) A ., B .,C .,,D .,,6.执行下面的程序,则输出的s 的值是( )A .11B .15C .17D .197.2019年11月26日,联合国教科文组织宣布3月14日为“国际数学日”(昵称:此卷只装订不密封姓名 准考证号 考场号 座位号),2020年3月14日是第一个“国际数学日”.圆周率是圆的周长与直径的比值,是一个在数学及物理学中普遍存在的数学常数.有许多奇妙性质,如莱布尼兹恒等式,即为正奇数倒数正负交错相加等.小红设计了如图所示的程序框图,要求输出的值与非常近似,则①、②中分别填入的可以是()A.,B.,C.,D.,8.如图所示的程序运行后,输出的值是()A.8B.9C.10D.119.某程序框图如图所示,若输出结果是126,则判断框中可以是()A.B.C.D.10.如果下边程序执行后输出的结果是132,那么在程序后面的“条件”应为()A.B.C.D.11.将93化为二进制数为()A.B.C.D.12.若十进制数26等于k进制数32,则k等于()A.4B.5C.6D.82二、填空题:本大题共4小题,每小题5分.13.计算下列各式中的值,能设计算法求解的是______.①;②;③(,且).14.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为________.15.若输入8时,则下列程序执行后输出的结果是______.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填______,输出的_______(注:框图中的赋值符号“=”也可以写成“←”或“:=”)三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)用辗转相除法求840与1764的最大公约数;(2)用更相减损术求440与556的最大公约数.318.(12分)设计一个计算的值的算法,并画出程序框图.19.(12分)把下列程序用程序框图表示出来.20.(12分)给出以下10个数:5,9,80,43,95,73,28,17,60,36.要求把大于40的数找出并输出,试画出该问题的算法程序框图.421.(12分)”鸡兔同笼”我国隋朝时期数学著作《孙子算经》中的一个有趣题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”22.(12分)画出求的程序框图.(1)求出鸡、兔各几只?(2)根据提示,设计这类问题的通用解法,并画出算法的程序框图.设有只鸡,只兔,总头数为,总脚数为,则,解方程得,用数学语言:第一步:输入______,______;第二步:计算鸡的只数______;第三步:计算兔的只数______;第四步:输出______.5算法框图(A)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.2.【答案】C【解析】①不符合算法的不是唯一性;②符合算法的有限性;③符合算法的明确性;④符合算法的有效性.故选C.3.【答案】D【解析】由算法规则得:第一步:输入直角三角形两直角边长a,b的值;第二步:计算;第三步:输出斜边长c的值,这样一来,就是斜边长c的一个算法,故选D.4.【答案】B【解析】采用列举法列出运算各步结果,;,;,;,,结束算法,输出,故选B.5.【答案】D【解析】因为两个量进行数据交换,必须借助第三个量传递储存,所以选项A,B错误;对于C,第一步因为c中无数据,错误,对于D,b中数据传递给c,a中数据传递给b,再把c中数据传递给a,实现了a,b中的数据交换,故选D.6.【答案】B【解析】当时,,当时,,此时仍满足条件“”,因此再循环一次,即时,,此时不满足“”,所以,故答案为B.7.【答案】D【解析】由题可知,,输出的值与非常近似,则输出的,当时,不符合题意;当时,符合题意,输出对应的值,则,即,可知,循环变量的初值为1,终值为1011,的步长值为1,循环共执行1011次,可得②中填入的可以是,又的值为正奇数倒数正负交错相加,可得①中填入的可以是,故选D.8.【答案】C【解析】由题意知,此程序为循环语句,当时,;当时,,则输出结果为,本题选择C选项.9.【答案】A【解析】根据题意可知该循环体运行情况如下:第1次:,;第2次:,;第3次:,;第4次:,;第5次:,;第6次:,,因为输出结果是126,结束循环,判断框应该是,故选A.10.【答案】C【解析】后面的“条件”含义是:直到满足该“条件”就跳出循环,执行下面的语句.6第一次直接进入循环,第二次循环,满足就跳出循环,输出,故选C.11.【答案】C【解析】利用“除2取余法”得:余;;余;余;余;;余,可得,故选C.12.【答案】D【解析】由题意知,,解得,故选D.二、填空题:本大题共4小题,每小题5分.13.【答案】①③【解析】因为算法步骤具有“有限性”的特点,而②式不满足“有限性”的条件,所以②式不能设计算法求解,故答案为①③.14.【答案】【解析】第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,输出.15.【答案】【解析】.16.【答案】,【解析】∵统计该6名队员在最近三场比赛中投进的三分球总数,∴要求的和.由题意可知,循环体要执行6次,所以图中判断框应填.故答案为,.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)84;(2)4.【解析】(1)用辗转相除法求840与1764的最大公约数.,,所以840与1764的最大公约数是84.(2)用更相减损术求440与556的最大公约数.,,,,,,,,,,,,,所以440与556的最大公约数4.18.【答案】见解析.【解析】算法:第一步:设的值为;第二步:设的值为;第三步:如果执行第四步,否则转去执行第七步;第四步:计算并将结果代替;第五步:计算并将结果代替;第六步:转去执行第三步;第七步:输出的值并结束算法,程序框图如下:719.【答案】见解析.【解析】程序框图如下:20.【答案】见解析.【解析】由题意,框图如图所示.21.【答案】【答案空1】总头数【答案空2】总脚数【答案空3】【答案空4】【答案空5】,【解析】(1)设有只鸡,只兔,则,解得,故有只鸡,只兔.(2)算法如下:第一步:输入,;第二步:计算鸡的只数;第三步:计算兔的只数;第四步:输出,;程序框图如下:22.【答案】见解析.【解析】由题意,所求程序框图如下:89。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
人教版必修3数学第一章算法初步练习题及答案
第一章 算法初步测试题(A 组)班次 学号 姓名 一、选择题 (每小题5分,共50分)1.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算c =a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 ( ) A.①②③ B.②③① C.①③② D.②①③2.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排列3.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.0m =?B.0x = ?C.1x = ?D.1m =? ( ) 4.将两个数a =8,b =7交换,使a =7,b =8,使用赋值语句正确的一组 ( ) A. a =b ,b =a B. c =b ,b =a ,a =c C. b =a ,a =b D. a =c ,c =b ,b =a 5.下列给出的输入语句、输出语句和赋值语句⑴输出语句INPUT a ;b ;c (2)输入语句INPUT x =3 (3)赋值语句3=B (4)赋值语句A=B=2则其中正确的个数是, ( )A .0个 B. 1个 C. 2个 D. 3个6.直到型循环结构为 ( )7.下边程序执行后输出的结果是 ( ) 5n = 0s =WHILE 15s < s s n =+ 1n n =- WENDPRINT n ENDA. -1B. 0C. 1D. 28.当2x =时,下面的程序段结果是 ( ) 1i = 0s =WHILE 4i <= *1s s x =+ 1i i =+ WENDPRINT s ENDA. 3B. 7C. 15D. 17AAABC D9.下面为一个求20个数的平均数的程序,在横线上应填充的语句为 ( ) 0S = 1i = DOINPUT x S S x =+ 1i i =+LOOP UNTIL ___________ /20a S = PRINT a ENDA.20i >B.20i <C. 20i >=D.20i <=10.下列各数中最小的数是 ( ) A.()2111111 B.()6210 C.()41000 D.()981二、填空题 (每小题5分,共20分)11.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.12.此题程序运行结果为。
最新高一数学题库 必修3算法初步练习题及答案
第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。
高中数学 第一章 统计综合能力测试(含解析)北师大版必修3-北师大版高一必修3数学试题
【成才之路】2015-2016学年高中数学第一章统计综合能力测试北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2015年的世界无烟日(5月31日)之前,小华学习小组为了了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟[答案] B[解析]调查方式显然是抽样调查,∴A错误.样本是这100个成年人.∴C也错误,显然D不正确.故选B.2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法 B.系统抽样法C.分层抽样法 D.抽签法[答案] B[解析]所抽出的编号都间隔5,故是系统抽样.3.下列问题,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有:山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩. 现抽取农田480亩估计全乡农田某种作物的平均亩产量[答案] B[解析]A项的总体容量较大,用简单随机抽样法比较麻烦;B项的总体容量较小,用简单随机抽样法比较方便;C项由于学校各类人员对这一问题的看法可能差异较大,不宜采用简单随机抽样法;D 项的总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.4.一个容量为50的样本数据,分组后,组距与频数如下:[12.5,15.5),2;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),4.根据分组情况估计小于30.5的数据占( )A .18% B.30% C .60% D.92%[答案] D[解析] (2+8+9+11+10+6)÷50=92%.5.如图所示的是2006年至2015年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2006年至2015年此省城镇居民百户家庭人口数的平均数为( )2 9 1 1 5 83 0 2 6 31247[答案] B[解析] 由茎叶图得到2006年至2015年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,所以平均数为291+291+295+298+302+306+310+312+314+31710=3 03610=303.6.6.某地区共有10万户居民,该地区城市住户与农村住户之比为4∶6,根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如下表所示,那么可以估计该地区农村住户中无冰箱的总户数约为( )万户 C .1.76万户 D.0.24万户[答案] A[解析] 由于城市住户与农村住户之比为4∶6,城市住户有4万户,农村住户有6万户,调查的1 000户居民中共400户城市住户,有600户农村住户,其中农村住户中无冰箱的有160户,所以可估计该地区农村住户中无冰箱的总户数约为10×1601 000=1.6(万户).7.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )1 2 520 2 3 33 1 24 4 8 94 5 5 5 7 7 8 8 950 0 1 1 4 7 96 17 8A.46,45,56B.46,45,53C.47,45,56 D.45,47,53[答案] A[解析]本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为68-12=56.在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断.8.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36C.54 D.72[答案] B[解析]频率分布直方图中所有小矩形的面积之和为1,每个小矩形的面积表示样本数据落在该区间内的频率,故样本数据落在区间[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18,故样本数据落在区间[10,12)内的频数为0.18×200=36.9.已知两个变量x,y之间具有线性相关关系,测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为( )A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.2[答案] C[解析] 利用排除法. ∵x =14(1+2+3+4)= 2.5,y =14(2+4+5+7)=4.5,由于回归直线方程y =bx +a 必过定点(2.5,4.5),故排除A 、D.又由四组数值知y 随x 的增大而增大,知b >0,排除B.10.某路段检查站监控录像显示,在某时段内,有 1 000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90 km/h 的约有( )A .100辆 B.200辆 C .300辆 D.400辆[答案] C[解析] 由题图可知汽车中车速在[60,90)的频率为10×(0.01+0.02+0.04)=0.7, ∴在[90,110]的频率为(1-0.7)=0.3.∴车速不小于90 km/h 的汽车数量约为0.3×1 000=300辆.11.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1 B.2 C .3 D.4[答案] D[解析] 依题意,可得 ⎩⎪⎨⎪⎧10=x +y +10+11+95,2=15[x -102+y -102+10-102+11-102+9-102],⇒⎩⎪⎨⎪⎧x +y =20,x -102+y -102=8,⇒⎩⎪⎨⎪⎧x =12y =8,或⎩⎪⎨⎪⎧x =8y =12,所以|x-y|=4.12.甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则( )A.s甲<s乙<s丙 B.s甲<s丙<s乙C.s乙<s甲<s丙 D.s丙<s甲<s乙[答案] D[解析]由频率分布条形图可得甲,乙,丙三名运动员的平均成绩分别为x-甲=0.25×(7+8+9+10)=8.5;x-乙=0.3×7+8×0.2+9×0.2+10×0.3=8.5;x-丙=0.2×7+8×0.3+9×0.3+10×0.2=8.5,s2甲=0.25×(1.52+0.52+0.52+1.52)=1.25;s2乙=0.3×1.52+0.52×0.2+0.52×0.2+1.52×0.3=1.45;s2丙=0.2×1.52+0.52×0.3+0.52×0.3+1.52×0.2=1.05,∴s丙<s甲<s乙.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.一个容量为40的样本,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.10,则第6组的频率是________.[答案]0.20[解析]第5组的频数为40×0.10=4,第6组的频数为40-(10+5+7+6+4)=8,则频率为840=0.20.14.(2015·某某文,12)已知样本数据x1,x2,…,x n的均值x=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为________.[答案]11[解析]因为样本数据x1,x2,…,x n的均值x=5,所以样本数据2x1+1,2x2+1,…,2x n+1的均值为2x+1=2×5+1=11.15.(2014·某某,6)设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100cm.[答案] 24[解析] 本题考查频率分布直方图.由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)×10×60=24.频率分布直方图中的纵坐标为频率组距,此处经常误认为纵坐标是频率.16.下图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.0 8 9 10 3 5(注:方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,x 2,…,x n 的平均数)[答案] 6.8[解析] 本题考查茎叶图、方差的概念. 由茎叶图知x -=8+9+10+13+155=11,∴s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在同等条件下,对30辆同一型号的汽车进行耗油1升所行走路程的试验,得到如下数据(单位:km):14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8 12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2 13.5 13.6 13.4 13.6 12.1 12.5 13.1 13.5 13.2 13.4以前两位数为茎画出上面数据的茎叶图(只有单侧有数据),并找出中位数.[解析]茎叶图如图所示.1213566789130112223445566 6 788914012 4中位数为13.35.18.(本小题满分12分)某高级中学共有学生3 000名,各年级男、女人数如下表:高一年级高二年级高三年级女生523x y男生487490z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.17.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?[解析](1)由题设可知x3000=0.17,所以x=510.(2)高三年级人数为y+z=3000-(523+487+490+510)=990,现用分层抽样的方法在全校抽取300名学生,应在高三年级抽取的人数为:3003000×990=99名.答:(1)高二年级有510名女生;(2)在高三年级抽取99名学生.19.(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示).分组频率[1.00,1.05)(1)(2)估计数据落在[1.15,1.30)中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.[解析] (1)根据频率分布直方图可知,频率=组距×频率组距故可得下表:(2)0.30+0.15+0.02=中的概率约为0.47. (3)120×1006=2000.所以水库中鱼的总条数约为2000条.20.(本小题满分12分)某农场为了从三种不同的西红柿品种中选出高产稳定的西红柿品种,分别在5块试验田上试种,每块试验田均为0.5公顷,产量情况如下表:问哪一种西红柿既高产又稳定?[解析] 因为x 甲=15(21.5+20.4+22.0+21.2+19.9)=21.0(kg),x 乙=15(21.3+18.9+18.9+21.4+19.8)=20.06(kg), x 丙=15(17.8+23.3+21.4+19.9+20.9)=20.66(kg),所以s 甲=15[21.5-21.02+…+19.9-21.02]≈0.756(kg);s 乙=15[21.3-21.062+…+19.8-21.062]≈1.104(kg);s 丙=15[17.8-20.662+…+20.9-20.662]≈1.807(kg).由于x 甲>x 丙>x 乙,s 甲<s 乙<s 丙,所以甲种西红柿既高产又稳定.21.(本小题满分12分)某某统计局就某地居民的月收入调查了10 000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样的方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?[解析] (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-0.1+0.20.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人), 再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).22.(本小题满分12分)(2015·新课标Ⅰ理,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =,(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:(①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为word 11 / 11 β^=,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适合作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=∑i =18w i -wy i -y ∑i =18 w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6.∴y 关于w 的线性回归方程为y ^=100.6+68w ,∴y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x=-x +13.6x +20.12,∴当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.。
(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(3)
一、选择题1.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2asD .这组新数据的标准差为2a s2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( ) A .006B .041C .176D .1964.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .295.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为(A.95 B.96 C.97 D.986.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().78066572080263142947182198003204923449353623486969387481A.02B.14C.18D.297.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.1609.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.9110.已知x,y的取值如表:x2678y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .11.已知某企业上半年前5个月产品广告投入与利润额统计如下: 月份1 2 3 4 5 广告投入(x 万元) 9.5 9.3 9.1 8.9 9.7 利润(y 万元)9289898793由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .7二、填空题13.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.14.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.15.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.18.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.19.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某市政府针对全市10所由市财政投资建设的企业进行了满意度测评,得到数据如下表: 企业abcdefghij满意度x (%) 21 33 24 20 25 21 24 23 25 12 投资额y (万元)79868978767265625944y x (2)约定:投资额y 关于满意度x 的相关系数r 的绝对值在0.7以上(含0.7)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则根据满意度“末位淘汰”规定,关闭满意度最低的那一所企业,求关闭此企业后投资额y 关于满意度x 的线性回归方程(精确到0.1).参考数据:22.8x =,71y =,1022110248i i x x =-≈∑,643.7,10110406i i i x y x y =-=∑,222851984=,2287116188⨯=.附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x ynx y bxnx==-=-∑∑,ˆˆay bx =-.线性相关系数ni ix y nx yr -=∑.22.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 23.画糖人是一种以糖为材料在石板上进行造型的民间艺术.某糖人师傅在公园内画糖人,每天卖出某种糖人的个数与价格相关,其相关数据统计如下表:卖出糖人的个数y (个)5450 46 43 39(1)根据表中数据求y 关于x 的回归直线方程;(2)若该种造型的糖人的成本为2元/个,为使糖人师傅每天获得最大利润,则该种糖人应定价多少元?(精确到1元)参考公式:回归直线方程^^^y b x a =+,其中^121()()()niii nii x x y y b x x ==--=-∑∑,^^^a y b x =-.24.某地区不同身高的未成年男性的体重平均值如下表: 身高/cm6070 80 90 100 110 120 130 140 150 160 170 体重/kg 6.137.909.9012.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据散点图判断,y a bx =+与xy a b =⋅哪一个能比较近似地反映这个地区未成年男性体重kg y 与身高cm x 的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及下表中数据,建立y 关于x 的回归方程(表中ln i i u y =,0.66 1.93e ≈,0.22 1.02e ≈).xyu()1221ii x x =-∑()()121iii x x y y =--∑ ()()121iii x x u u =--∑11524.0532.9614200 6143.3 284参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑,a y b x =-⋅.25.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:26.某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:在统计中发现月销售额x和月利润额y具有线性相关关系.(Ⅰ)根据如下的参考公式与参考数据,求月利润y与月销售额x之间的线性回归方程;(Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式:1221ni i i n i i x y nx y b x nx==-⋅=-∑∑,a y b x =-,其中:1112ni ii x y ==∑,21200)nii x==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s , 则平均值为()12341n ax ax ax ax ax ax n++++⋯+=, ()()()()()22222212341n s x x x xx xx xx x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦,()()()()()222222212341n ax axax axax axax axax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦故选:D. 【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.4.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.5.C解析:C 【分析】结合系统抽样法的方法,得出其他四名选手的成绩,然后计算平均数,即可. 【详解】结合系统抽样法,可知间隔5个人抽取一次,甲为85,则其他人分别是88,94,99,107,故平均数为88+94+99+107=974,故选C.【点睛】考查了系统抽样法,关键该抽取方法每间隔相同人数中抽取一人,计算平均数,即可,难度中等.6.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.A解析:A【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可.【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题. 10.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.【详解】根据题意可得,,由线性回归方程一定过样本中心点,. 故选:B .【点睛】 本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题. 11.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a =7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
上海华东师范大学附属枫泾中学必修三第一章《统计》测试题(有答案解析)
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .393.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件4.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .805.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.56.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2asD .这组新数据的标准差为2a s7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为 A .7B .9C .10D .128.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④9.某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .1810.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.已知x ,y 取值如下表:x0 1 4 5 6 8 y 1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且 1.03y x a =+,则a =( ) A .1.53B .1.33C .1.23D .1.1312.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .0815二、填空题13.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.14.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.15.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下: 零件数x (个) 15 20 30 40 50 加工时间y (分钟)6570758090由表中数据,求得线性回归方程0.66y x a =+,则估计加工70个零件时间为__________分钟(精确到0.1).16.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________ 17.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.18.已知由样本数据点集合(){},|1,2,3,,i ix y i n =,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。
北师大版数学高一-课堂新坐标14-15数学必修3第1章 综合检测
综合检测(一)第一章统计(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法【解析】抽出的号码是5,10,15,…,60.符合系统抽样的特点“等距抽样”.【答案】 B3.(2013·湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10C.12 D.13【解析】依题意得360=n120+80+60,故n=13.【答案】 D4.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为()A.10组B.9组C.8组D.7组【解析】由题意知极差为:140-51=89.8910=8.9,故应分为9组.【答案】 B5.(2013·福建高考)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70)[70,80),[80,90),[90,100]加以统计,得到如图1所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()图1A.588 B.480C.450 D.120【解析】不少于60分的学生的频率为(0.030+0.025+0.015+0.010)×10=0.8,∴该模块测试成绩不少于60分的学生人数应为600×0.8=480.【答案】 B6.下列图形中具有相关关系的两个变量是()【解析】A、B为函数关系,D中所有点大约集中在一条直线附近,故具有相关关系.【答案】 D图27.(2012·陕西高考)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图2),以下结论正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 【答案】 A8.(2013·福建高考)已知x 与y 之间的几组数据如下表:据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A .b >b ′,a >a ′B .b >b ′,a <a ′C .b <b ′,a >a ′D .b <b ′,a <a ′【解析】 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2. 求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57,a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′. 【答案】 C图39.A ,B 两名同学在5次数学考试中的成绩统计的茎叶图3所示,若A ,B 两人的平均成绩分别是X A ,X B ,则下列的结论正确的是( )A .X A <XB ,B 比A 成绩稳定 B .X A >X B ,B 比A 成绩稳定C .X A <X B ,A 比B 成绩稳定D .X A >X B ,A 比B 成绩稳定【解析】 由茎叶图知,A 同学的5次数学成绩的平均值为X A =15(91+92+96+103+128)=102,X B =15(99+108+107+114+112)=108,∴X A <X B ,且B 较A 更稳定,故选A. 【答案】 A10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图4所示,假设得分值的中位数为m e ,众数为m o ,平均值为x ,则( )图4A .m e =m o =xB .m e =m o <xC .m e <m o <xD .m 0<m o <x【解析】 30个数中第15个数是5,第16个数是6,所以中位数为5+62=5.5,众数为5,x =3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上) 11.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图5).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.图5【解析】 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,所以所求分数小于60的学生数为3 000×0.2=600.【答案】 60012.(2012·浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.【解析】 男生人数为560×280560+420=160.【答案】 16013.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:分组151.5~ 158.5158.5~ 165.5 165.5~ 172.5 172.5~ 179.5 频数 6 21 m 频率a0.1则表中的【解析】 由表中信息可知,0.1=m60,∴m =0.1×60=6,则身高在165.5~172.5内的频数为60-6-21-6=27.∴a =2760=0.45.【答案】 6 0.4514.如图3是某保险公司提供的资料,在1万元以上的保险单中,821少于2.5万元,那么不少于2.5万元的保险单有________万元.图3【解析】 不少于1万元的占700万元的21%,金额为700×21%=147万元,1万元以上的保险单中,超过或等于2.5万元的保险单占1321,金额为1321×147=91万元,故不少于2.5万元的保险单有91万元.【答案】 9115.(2012·郑州高一检测)样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为________.【解析】 由题意知,15(a +0+1+2+3)=1,所以a =-1,∴样本方差s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.【答案】 2三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)某篮球运动员在2013赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.如何分析该运动员的整体水平及发挥的稳定程度?【解】 画出茎叶图如图所示:由茎叶图可以看出,该运动员的平均得分及中位数、众数都在20到40之间,且分布较对称,集中程度高,说明该运动员发挥比较稳定17.(本小题满分12分)从高三学生中抽取50名学生参加数学竞赛,成绩的分组及各组的频率如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8. (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例; (4)估计成绩在85分以下的学生比例. 【解】 (1)频率分布表如下:成绩分组 频数 频率 累积频率 [40,50) 2 0.04 0.04 [50,60) 3 0.06 0.1 [60,70) 10 0.2 0.3 [70,80) 15 0.3 0.6 [80,90) 12 0.24 0.84 [90,100) 8 0.16 1.00 估计501.00(2)频率分布直方图如图所示:(3)成绩在[60,90)分的学生比例,即学生成绩在[60,90)分的频率,0.2+0.3+0.24=74%. (4)成绩在85分以下的学生比例,即学生成绩不足85分的频率.设相应频率为b ,则b -0.685-80=0.84-0.690-80,故b =0.72. 估计成绩在85分以下的学生约占72%.18.(本小题满分12分)以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:房屋面积(m 2)11511080135105销售价格(万元)24.821.618.429.222(1)(2)求线性回归方程,并在散点图中画出回归直线;(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.【解】(1)数据对应的散点图如图所示:(2)x=109,y=23.2,∑i=15(x i-x)2=1 570,∑i=15(x i-x)(y i-y)=308,设所求的回归直线方程为y=bx+a,则b=3081 570≈0.196 2,a=y-b x=23.2-109×0.196 2=1.814 2,故所求回归直线方程为y=0.196 2x+1.814 2.(3)据(2),当x=150 m2时,销售价格的估计值为y=0.196 2×150+1.814 2=31.244 2(万元).19.(本小题满分13分)某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,把成绩分组,得到的频率分布表如下:组号分组频数频率第1组[160,165)50.050第2组[165,170)①0.350第3组[170,175)30②第4组[175,180)200.200第5组[180,185]100.100总计100 1.00(1)(2)这次笔试成绩的中位数落在哪组内?(3)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽多少名学生进入第二轮面试?【解】(1)由题意知第2组的频数为100-5-30-20-10=35(人)(或100×0.35=35(人));第3组的频率为1-0.050-0.350-0.200-0.100=0.300(或30100=0.300).(2)第1组和第2组的频率的和为0.400,第4组和第5组的频率的和为0.300,所以这次笔试成绩的中位数落在第3组内.(3)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:3060×6=3(人),第4组:2060×6=2(人),第5组:1060×6=1(人).所以第3、4、5组分别抽取3人,2人,1人.20.(本小题满分13分)某个服装店经营某种服装,在某周内获纯利润y (元)与该周每天销售这种服装件数x 之间的一组数据关系见下表:x 3 4 5 6 7 8 9 y66697381899091已知:Σ7i =1x 2i =280,Σ7i =1x i y i =3 487. (1)求x ,y ; (2)画出散点图;(3)求纯利润y 与每天销售件数x 之间的回归直线方程. 【解】 (1)x =3+4+5+6+7+8+97=6(件),y =66+69+73+81+89+90+917=5597≈79.86(元).(2)散点图如下:(3)由散点图知,y 与x 有线性相关关系. 设回归直线方程为y =bx +a . 由Σ7i =1x 2i =280, Σ7i =1x 1y i =3 487, x =6,y =5597,得打印版高中数学 b =3 487-7×6×5597280-7×36=13328=4.75, a =5597-6×4.75≈51.36. 故回归直线方程为y =4.75x +51.36.21.(本小题满分13分)从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲:7,8,6,9,6,5,9,9,7,4乙:9,5,7,8,7,6,8,6,7,7(1)分别计算甲、乙两人射击命中环数的极差、众数和中位数;(2)分别计算甲、乙两人射击命中环数的平均数、方差、标准差;(3)比较两人的成绩,然后决定选择哪一个人参赛.【解】 (1)甲:极差是9-4=5,众数是9,中位数是7;乙:极差是9-5=4,众数是7,中位数是7.(2)x 甲=7+8+6+9+6+5+9+9+7+410=7, s 2甲=110[(7-7)2+(8-7)2+(6-7)2+(9-7)2+(6-7)2+(5-7)2+(9-7)2+(9-7)2+(7-7)2+(4-7)2]=2.8,s 甲=s 2甲= 2.8≈1.673; x 乙=9+5+7+8+7+6+8+6+7+710=7, s 2乙=110[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(7-7)2+(6-7)2+(8-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2,s 乙=s 2乙= 1.2≈1.095. (3)∵x 甲=x 乙,s 甲>s 乙,∴甲、乙两人的平均成绩相等,乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,应选择乙参赛.。
人教B版高中数学必修3同步练习题及答案全册汇编整理
人B版高中数学必修3同步习题目录第1章1.1.1同步练习第1章1.1.2同步练习第1章1.1.3同步练习第1章1.2.1同步练习第1章1.2.2同步练习第1章1.2.3同步练习第1章§1.3同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.1.3同步练习第2章2.1.4同步练习第2章2.2.1同步练习第2章2.2.2同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章章末综合检测第3章3.1.2同步练习第3章3.1.3同步练习第3章3.1.4同步练习第3章3.3.1同步练习第3章3.3.2同步练习第3章§3.2同步练习第3章§3.4同步练习第3章章末综合检测人教B 版必修3同步练习1.有关辗转相除法下列说法正确的是( )A .它和更相减损之术一样是求多项式值的一种方法B .基本步骤是用较大的数m 除以较小的数n 得到除式m =n q +r ,直至r <n 为止C .基本步骤是用较大的数m 除以较小的数n 得到除式m =q n +r(0≤r <n )反复进行,直到r =0为止D .以上说法皆错 答案:C2.在对16和12求最大公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的最大公约数是( ) A .4 B .12 C .16 D .8 答案:A3.用“等值算法”可求得204与85的最大公约数是( ) A .15 B .17 C .51 D .85 解析:选B.由更相减损之术可得.4.秦九韶的算法中有几个一次式,若令v 0=a n ,我们可以得到⎩⎪⎨⎪⎧v 0=a nv k =v k -1x + (k =1,2,…,n ). 答案:a n -k5.用秦九韶算法求多项式f (x )=2+0.35x +1.8x 2-3.66x 3+6x 4-5.2x 5+x 6在x =-1.3的值时,令v 0=a 6;v 1=v 0x +a 5;…;v 6=v 5x +a 0时,v 3的值为________. 答案:-22.445一、选择题1.在等值算法(“更相减损术”)的方法中,其理论依据是( ) A .每次操作所得的两数和前两数具有相同的最小公倍数 B .每次操作所得的两数和前两数具有相同的最大公约数 C .每次操作所得的两数和前两数的最小公倍数不同 D .每次操作所得的两数和前两数的最大公约数不同 答案:B2.我国数学家刘徽采用正多边形面积逐渐逼近圆面积的计算方法来求圆周率π,其算法的特点为( )A .运算速率快B .能计算出π的精确值C .“内外夹逼”D .无限次地分割解析:选C .割圆术用正多边形面积代替圆面积的方法是内外夹逼,能得到π的不足和过剩近似值,其分割次数是有限的.3.使用秦九韶算法求p (x )=a n x n +a n -1x n -1+…+a 1x +a 0在x =x 0时的值时,做加法与乘法的次数分别为( )A .n ,nB .n ,n (n +1)2C .n ,2n +1D .2n +1,n (n +1)2答案:A4.用辗转相除法计算60与48的最大公约数时,需要做的除法次数是( )A.1 B.2C.3 D.4解析:选B.∵60=48×1+12,48=12×4+0,故只需要两步计算.5.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()A.-57 B.220C.-845 D.3392解析:选B.v0=3,v1=3×(-4)+5=-7,v2=-7×(-4)+6=34,v3=34×(-4)+79=-57,v4=-57×(-4)-8=220.6.若int(x)是不超过x的最大整数(如int(4.3)=4,int(4)=4),则下列程序的目的是() x=input(“x=”);y=input(“y=”);m=x;n=y;w hile m/n<>int(m/n)c=m-int(m/n)*n;m=n;n=c;enddisp(n)A.求x,y的最小公倍数B.求x,y的最大公约数C.求x被y整除的商D.求y除以x的余数答案:B二、填空题7.168,56,264的最大公约数为________.解析:法一:采用更相减损之术求解.先求168与56的最大公约数:168-56=112,112-56=56,因此168与56的最大公约数是56.再求56与264的最大公约数:264-56=208,208-56=152,152-56=96, 96-56=40,56-40=16, 40-16=24,24-16=8, 16-8=8,故8是56与264的最大公约数,也就是三个数的最大公约数.法二:采用辗转相除法.先求168与56的最大公约数,∵168=56×3,故168与56的最大公约数是56.再求56与264的最大公约数,∵264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,故56与264的最大公约数是8.因此168,56,264的最大公约数是8.答案:88.用秦九韶算法求f(x)=x3-3x2+2x-11的值时,应把f(x)变形为________.解析:f(x)=x3-3x2+2x-11=(x2-3x+2)x-11=((x-3)x+2)x-11.答案:((x-3)x+2)x-119.已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n.如果在一种算法中,计算x k0(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要________次运算.解析:计算3(x0)时为P3(x0)=a0x30+a1x20+a2x0+a3,其中x k0需k-1次乘法,∴a n-k·x k0共需k次乘法.上式中运算为3+2+1=6次,另外还有3次加法,共9次.由此产生规律:当计算P10(x0)时有P10(x0)=a0x100+a1x90+…+a10.计算次数为10+9+8+…+1+10=10×(10+1)2+10=65.第2个空中需注意P3(x0)=x0·P2(x0)+a3,P2(x0)=x0·P1(x0)+a2,P1(x0)=x0·P0(x0)+a1.显然P0(x0)为常数不需要计算.∴计算为每次一个乘法运算和一个加法运算,共需3×2=6次.由此运用不完全归纳法知P10(x0)=x0·P9(x0)+a10,P9(x0)=x0·P8(x0)+a9,…,P1(x0)=x0·P0(x0)+a1.其中共有10×2=20个运算过程.答案:6520三、解答题10.用秦九韶算法求多项式函数f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,所以v0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v4=262×3+3=789,v5=789×3+2=2369,v6=2369×3+1=7108,v7=7108×3=21324,故x=3时,多项式函数f(x)的值为21324.11.求两正整数m,n(m>n)的最大公约数.写出算法、画出程序框图,并写出程序.解:算法如下:S1输入两个正整数m,n(m>n);S2如果m≠n,则执行S3,否则转到S6;S3将m-n的差赋予r;S4如果r≠n,则执行S5,否则转到S6;S5若n>r,则把n赋予m,把r赋予n,否则把r赋予m,重新执行S2;S6输出最大公约数n.程序框图如图所示.程序如下:才能保证正方体体积最大,且不浪费材料?解:要焊接正方体,就是将两种规格的钢筋裁成长度相等的钢筋条.为了保证不浪费材料,应使每一种规格的钢筋裁剪后无剩余,因此裁剪的长度应是2.4和5.6的公约数;要使正方体的体积最大,亦即棱长最长,就要使正方体的棱长为2.4和5.6的最大公约数.用“等值算法”求得 2.4和 5.6的最大公约数:(2.4,5.6)→(2.4,3.2)→(0.8,2.4)→(0.8,1.6)→(0.8,0.8).因此将正方体的棱长设计为0.8 m时,体积最大且不浪费材料.人教B版必修3同步练习1.下列对算法的理解不正确的是()A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯一的结果C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法D.任何问题都可以用算法来解决解析:选D.算法是解决问题的精确的描述,但是并不是所有问题都有算法,有些问题使用形式化、程序化的刻画是最恰当的.2.算法的有限性是指()A.算法的步骤必须有限B.算法的最后必须包括输出C.算法中每个操作步骤都是可执行的D.以上说法都不正确答案:A3.早上起床到出门需洗脸刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个步骤.下列选项中最好的一种算法为()A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭的同时听广播D.S1吃饭的同时听广播、S2泡面、S3浇水的同时洗脸刷牙、S4刷水壶解析:选C.经比较可知C最省时,效率最高.4.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(只写编号)答案:③②①⑤④⑥5.求1+3+5+7+9的算法的第一步是1+3得4,第二步是将第一步中运算结果4与5相加得9,第三步是__________________________.答案:将第二步中运算结果9与7相加得16一、选择题1.下列说法正确的是()A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结论C.解决某一个具体问题,算法不同所得的结果不同D.算法执行步骤的次数不可以很大,否则无法实施解析:选B.B项,如判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;而A项,算法不能等同于解法;C项,解决某一个具体问题算法不同所得的结果应该相同,否则算法不正确;D项,算法可以为很多次,但不可以无限次.2.阅读下列算法.S1输入n;S2判断n是否是2,若n=2,则n满足条件;若n>2,则执行S3;S3依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.满足上述条件的数是()A.质数B.奇数C.偶数D.4的倍数解析:选A.由质数的定义知A 正确.3.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y +c 1=0,a 2x +b 2y +c 2=0.在写此方程组解的算法时,需要我们注意的是( ) A .a 1≠0 B .a 2≠0 C .a 1b 1-a 2b 2≠0 D .a 1b 2-a 2b 1≠0解析:选D.由高斯消去法知,方程组是否有解,解的个数是否有限,在于a 1b 2-a 2b 1是否为零.故选D.4.指出下列哪个不是算法( )A .解方程2x -6=0的过程是移项和系数化为1B .从济南到温哥华要先乘火车到北京,再转乘飞机C .解方程2x 2+x -1=0D .利用公式S =πr 2计算半径为3的圆的面积时,计算π×32 答案:C5.下列语句表达中是算法的有( )①利用公式S =12ah 计算底为1,高为2的三角形的面积;②12x >2x +4; ③求M (1,2)与N (-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得. A .①③ B .②③ C .①② D .③解析:选A.算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①③都各表达了一种算法.判断算法的标准是“解决问题的有效步骤或程序”.②只是一个纯数学问题,没有解决问题的步骤,不属于算法的范畴.6.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是( ) A .4 B .5 C .6 D .7解析:选D.最多是7粒,第一次是天平每边3粒,若平衡,则剩余的为最轻的珠子;若不平衡,则在轻的一边选出两粒,再放在天平的两边,同样就可以得到最轻的珠子,故选D. 二、填空题7.写出解方程2x +3=0的算法步骤: S1____________________________; S2____________________________; S3____________________________. 答案:移项得2x =-3未知数系数化为1,得x =-32输出x =-328.一个算法步骤如下: S1 S 取0,i 取1;S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替i ; S5 执行S2; S6 输出S .运行以上步骤输出的结果为S =________.解析:由以上算法可知S =1+3+5+7+9=25. 答案:259.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总成绩和平均成绩的一个算法如下,在①②处应填写________、________. S1 取A =89,B =96,C =99; S2 __①__; S3 __②__;S4 输出计算的结果.答案:计算总分D =A +B +C 计算平均成绩E =D3三、解答题10.设一个球的半径为r (r >0),请写出求以r 为半径的球的表面积的算法. 解:算法如下: S1 输入半径r ;S2 计算表面积S =4πr 2; S3 输出S .11.写出求过点M (-2,-1)、N (2,3)的直线与坐标轴围成的三角形面积的一个算法. 解:算法步骤如下:S1 取x 1=-2,y 1=-1,x 2=2,y 2=3;S2 得直线方程y -y 1y 2-y 1=x -x 1x 2-x 1;S3 令x =0得y 的值m ,从而得直线与y 轴交点的坐标(0,m ); S4 令y =0得x 的值n ,从而得直线与x 轴交点的坐标(n,0);S5 根据三角形面积公式求S =12·|m |·|n |;S6 输出运算结果.12.某快递公司规定甲、乙两地之间物品的托运费用根据下面的方法计算: f =⎩⎪⎨⎪⎧0.53ω, ω≤5050×0.53+(ω-50)×0.85, ω>50 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出计算费用f 的算法. 解:S1 输入物品重量ω;S2 如果ω≤50,那么f =0.53ω,否则f =50×0.53+(ω-50)×0.85; S3 输出物品重量ω和托运费f .人教B版必修3同步练习1.程序框图中的判断框,有一个入口几个出口()A.1B.2C.3 D.4解析:选B.一般有两个出口:“是”与“否”.2.下面的功能中,属于处理框的是()①赋值;②计算;③判断;④输入,输出.A.①②③B.①②C.②③D.①②④解析:选B.处理框的功能是赋值,计算和传送结果.3.下列关于程序框图的说法正确的有()①程序框图只有一个入口,也只有一个出口;②程序框图中的每一部分都应有一条从入口到出口的路径通过它;③程序框图中的循环可以是无尽循环;④连接点是用来连接两个程序框图的.A.①②③B.②③C.①D.①②解析:选D.由框图符号及作用的说明可知③④错误,程序框图中的循环必须是有限循环;连接点是连接同一个程序框图的不同部分.4.如图算法的功能是________.答案:求两个实数a、b的和5.如图算法的功能是(a>0,b>0)________.答案:求以a、b为直角边的直角三角形斜边c的长一、选择题1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()A.连接点B.流程线C.判断框D.处理框答案:B2.符号表示的意义是()A.流程图的开始或结束B.数据的输入或输出C.根据给定条件判断D.赋值执行语句结果的传递解析:选C.掌握每一种框图的功能,能准确地画出框图符号.3.画程序框图需要遵循的规则中,下列说法中错误的是()A.使用标准的框图的符号B.除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的符号之一C.一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果D.在图形符号内描述的语言要非常简练清楚答案:B4.下列关于程序框图的理解中正确的有()①用程序框图表示算法直观、形象,容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言;③在程序框图中,起、止框是任何流程必不可少的;④输入和输出框可用在算法中任何需要输入、输出的位置.A.1个B.2个C.3个D.4个答案:D5.如图程序框图能判断任意输入的数x的奇偶性.其中判断框内的条件是()A.m=0 B.x=0C.x=1 D.m=1答案:D6.如图,写出程序框图描述的算法的运行结果()A .-5B .5C .-1D .-2解析:选A.该算法的功能是求x =-1时,f (x )=⎩⎪⎨⎪⎧2x +1, x ≥03x -2, x <0的函数值,由分段函数的性质知f (-1)=-5. 二、填空题7.如图所示是某一问题的算法的程序框图.此框图反映的算法功能是________.解析:输入x ,x ≥0时输出x ;x <0时输出-x , ∴是计算|x |.答案:计算任意实数x 的绝对值|x | 8.观察程序框图如图所示.若a =5,则输出b =________.解析:因为a =5,所以程序执行“否”,b =52+1=26. 答案:269.(2011年高考陕西卷改编)如图框图,当x 1=6,x 2=9,p =8.5时,x 3等于________.解析:由程序框图可知p =8.5≠6+92, ∴p =x 2+x 32=8.5,∴x 3=8.5×2-9=8. 答案:8 三、解答题10.如图是为解决某个问题而绘制的程序框图,根据该图和下列各小题的条件回答问题.(1)该程序框图解决的问题是什么? (2)框图中x =3的含义是什么?(3)若输出的最终结果是y 1=4,y 2=-3,当x =10时,输出的结果是多少? (4)在(3)的前提下,当输入的x 值为多大时,输出ax +b =0?解:(1)该程序框图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(2)框图中x =3的含义是将3的值赋给变量x . (3)y 1=4,即3a +b =4,① y 2=-3,即-4a +b =-3.② 由①②得a =1,b =1,∴f (x )=x +1.∴当x =10时,10a +b =f (10)=11. (4)令f (x )=x +1=0,知x =-1.∴当输入的值为-1时,输出ax +b =0.11.画出判断两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2是否垂直的程序框图. 解:算法如下:S1 输入k 1、k 2的值. S2 计算u =k 1×k 2.S3 若u =-1,则直线l 1与l 2垂直;否则,l 1与l 2不垂直. S4 输出信息“垂直”或“不垂直”. 程序框图如图:12.假设函数f(x)=ax2+bx+c(a≠0)与x轴有公共点,设计一个算法,对多项式ax2+bx +c因式分解并画出程序框图.解:算法如下.S1利用求根公式求得方程ax2+bx+c=0的两个根x1,x2;S2对ax2+bx+c因式分解:ax2+bx+c=a(x-x1)(x-x2).程序框图如图所示.人教B版必修3同步练习1.算法共有三种逻辑结构,即顺序结构、条件分支结构和循环结构,下列说法中正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案:D2.若一个算法的程序框图中有,则表示该算法中一定有下列逻辑结构中的() A.循环结构和条件分支结构B.条件分支结构C.循环结构D.顺序结构和循环结构解析:选B.当有判断框时,一定有条件分支结构.3.下列说法中不正确的是()A.顺序结构是由若干个依次执行的步骤组成,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始,按照一定条件,反复执行某些步骤,故循环结构中一定包含条件分支结构C.循环结构中不一定包含条件分支结构D.用程序框图表示算法,使之更加直观形象,容易理解答案:C4.如图程序框图的运算结果为________.解析:∵a的初值为5,每循环一次,a的值减1,故循环2次.答案:205.已知函数f(x)=|x-3|,程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.答案:x<3y=x-3一、选择题1.任何一个算法都离不开的基本结构为( ) A .逻辑结构 B .条件分支结构 C .循环结构 D .顺序结构解析:选D.任何一个算法都要由开始到结束,故应当都有顺序结构. 2.如图的程序框图表示的算法的功能是( ) A .计算小于100的奇数的连乘积 B .计算从1开始的连续奇数的连乘积C .从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数D .计算1×3×5×…×n ≥100时的最小的n 值 答案:D3.图中所示的是一个算法的框图,S 的表达式为( )A.11+2+3+…+99B.11+2+3+…+100 C.199 D.1100 答案:A4.下列问题的算法适宜用条件结构表示的是( ) A .求点P (2,5)到直线l :3x -2y +1=0的距离 B .由直角三角形的两条直角边求斜边 C .解不等式ax +b >0(a ≠0) D .计算100个数的平均数解析:选C.条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含判断a 的符号,其余选择项中都不含逻辑判断,故选C. 5.下列程序框图中,是循环结构的是( )A.①②B.②③C.③④D.②④解析:选C.循环结构需要重复执行同一操作,故只有③④符合.6.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5C.6 D.7解析:选A.当k=0时,S=0⇒S=1⇒k=1,当S=1时⇒S=1+21=3⇒k=2,当S=3时⇒S=3+23=11<100⇒k=3,当S=11时⇒S=11+211>100,故k=4.二、填空题7.程序框图如图所示,其输出结果是________.解析:根据程序框图可得,a的取值依次为1,3,7,15,31,63,127.答案:1278.有如图所示的框图.则该框图输出的结果是________. 答案:20119.如图程序框图的输出结果为S =132,则判断框中应填________.解析:∵132=11×12,而S =S ×i ,输出结果S =(12-1)×12=11×12,∴判断条件为i ≥11. 答案:i ≥11 三、解答题10.画出求1×2×3×4×5×6×7的程序框图.解:本题可用顺序结构和循环结构来完成,循环结构流程图如图所示.11.设计一个算法,输入x 的值,输出y 的值,其中y =⎩⎪⎨⎪⎧2x -1, x <0x 2+1, 0≤x <1x 3+2x , x ≥1,画出该算法的程序框图.解:程序框图如图所示.最早哪一年生产的轿车超过300万辆?试设计算法并画出相应的程序框图.解:算法如下S1n=2010;S2a=200;S3T=0.05a;S4a=a+T;S5n=n+1;S6若a>300,输出n.否则执行S3.程序框图如图所示.人教B 版必修3同步练习1.在我们写程序时,对于“//”号的说法正确的是( ) A .“//”后面是注释内容,对程序运行起着重要作用B .“//”后面是程序执行的指令,对程序运行起着重要作用C .“//”后面是注释内容,对程序运行不起作用D .“//”后面是程序执行的指令,对程序运行不起作用 答案:C2.下列给出的赋值语句正确的有( ) ①赋值语句3=B ;②赋值语句x +y =0; ③赋值语句A =B =-2;④赋值语句T =T *T . A .0个 B .1个 C .2个 D .3个解析:选B.①赋值语句中“=”号左右两边不能互换,即不能给常量赋值.左边必须是变量,右边必须是表达式,应改为B =3;②赋值语句不能给一个表达式赋值;③一个赋值语句只能给一个变量赋值,不能出现两个或多个“=”;④该语句的功能是将当前的T 平方后再赋给变量T.故选B .3.下列给出的输入、输出语句正确的是( ) ①输入语句input a ;b ;c ②输入语句input x =3 ③输出语句p r int A =4 ④输出语句p r int 20,3*2 A. ①② B.②③ C .③④ D .④解析:选D.①input 语句可以给多个变量赋值,变量之间用“,”隔开;②input 语句中只能是变量,而不能是表达式,③p r int 语句中不用赋值号“=”;④p r int 语句可以输出常量、表达式的值.4.下列程序的运行结果是________. x =0;x =x +1;x =x +2;x =x +3;print (%io (2),x );解析:由赋值语句的作用知x =6. 答案:65.读程序Ⅰ、Ⅱ,若两程序输入值与执行结果均分别相同,则两程序的输入值为________,执行结果为________. 程序Ⅰ: 程序Ⅱ: x =input(“x =”); x =input(“x =”); y =x +2; y =2*x+2 p rint(%io(2),y); p r int(%io(2),y); end end解析:两程序执行结果相同,即求y =x +2与y =2x +2的交点. 答案:0 2一、选择题1.某一程序中先后相邻的两个语句是:x=3*5;x=x+1;那么下列说法中正确的是()①x=3*5的意思是x=3×5=15,此式与算术中的式子是一样的;②x=3*5是将数值15赋给x;③x=3*5也可以写为3*5=x;④该语句程序执行后x的值是16.A. ①③B. ②④C.①④D.②③答案:B2.已知变量a,b已被赋值,要交换a,b的值,下列方法正确的是()A.a=b,b=a B.a=c,b=a,c=bC.a=c,b=a,c=a D.c=a,a=b,b=c解析:选D.利用赋值语句交换a,b的值需引入第三个量c.3.在Sci l ab的文本编辑器中有如下程序:a=input(“chinese”);b=input(“math”);c=input(“fo r eign l anguage”);ave r=(a+b+c)/3其中第一步程序语句的作用为()A.请求将语文成绩的变量输入给aB.请求输入语文成绩,并将它赋值给aC.将表达式input(“chinese”)的值赋给aD.将变量input(“chinese”)的值赋值给表达式a解析:选B.这里应注意输入语句与赋值语句的作用.4.计算机执行下面的程序段后,输出的结果是()a=1;b=3;a=a+b;b=a-b;p r int(%io(2),a,b);A.1,4 B.4,1C.0,0 D.6,0解析:选A.第一步,a=1+3=4;第二步,b=a-b=4-3=1,p r int(%io(2),a,b)输出的顺序为b,a,所以输出b,a应分别为1,4.5.下面程序运行时输出的结果是()A=10;B=-5;C=A+B;A=B+C;B=A+C;C=C+A+B;print(%io(2),A,B,C);A.5,0,10 B.10,5,0C.5,10,0 D.0,10,5解析:选B.执行顺序为C=A+B=10-5=5,A=B+C=-5+5=0,B=A+C=0+5=5,C=C+A+B=5+0+5=10.故最后的结果为A=0,B=5,C=10.6.关于输入语句、输出语句和赋值语句,下列说法中正确的是()A.input语句只能给一个变量赋值B.p r int语句可以在计算机屏幕上输出常量、变量的值和系统信息C.赋值语句就是将赋值号左边的值赋给赋值号右边的变量D.赋值语句不能给变量重复赋值,只能赋一次值答案:B二、填空题7.已知如下程序a=input(“a=”);b=input(“b=”);c=input(“c=”);a=b;b=c;c=a;abc若输入10,20,30,则输出结果为________.解析:由赋值语句的功能知b的值20赋给了a,c的值30赋给了b,赋值后的a=20,又赋给了c.答案:20,30,208.请写出下面运算输出的结果________.a=5;b=3;c=(a+b)/2;d=c*c;print(%io(2),d);解析:语句c=a+b2是将a,b和的一半赋值给变量c,c得4;语句d=c*c是将c的平方赋值给d,最后输出d的值.答案:169.下面程序是输出A(x1,y1),B(x2,y2)中点的程序,添上空白部分缺省的语句.x1=input(“x1=”);y1=input(“y1=”);x2=input(“x2=”);y2=input(“y2=”);①________②________解析:利用中点坐标公式来解决.答案:①x=(x1+x2)/2②y=(y1+y2)/2三、解答题10.设计程序,用公式法解一元二次方程2x2+3x-1=0.解:根据一元二次方程的求根公式x=-b±b2-4ac2a,结合赋值语句便可以设计出这个运算程序.程序如下:11.编写一个程序,求分别用长度为l的细铁丝围成的一个正方形和一个圆的面积,要求输入l的值,输出正方形和圆的面积(π取3.14).解:设围成的正方形的边长为a,依题意得4a=l,a=l4,所以正方形的面积为S1=(l4)2=l216;同理若设围成的圆的半径为R,则2πR=l,R=l2π,所以圆的面积为S2=πR2=π(l2π)2=l24π,因此可以用顺序结构实现这一算法,采用input语句输入l的值,利用print语句输出得到的面积.程序如下:12.我国土地沙漠化问题非常严重,2000年全国沙漠化土地总面积达到1.6×105km2,并以每年约3.4×103km2的速度扩张.请你设计一个程序,计算以后某年的全国沙漠化土地总面积.解:程序如下:人教B版必修3同步练习1.条件语句表达的算法的结构为()A.顺序结构B.条件分支结构C.循环结构D.以上都不对解析:选B.条件语句主要用来实现算法中的条件分支结构,故选B. 2.若输入4,则下面程序执行后输出的结果为()A.4B.0.2C.0.1 D.0.3答案:B3.程序框图:该程序框图的功能是()A.输入一个数x,判断其是否大于或等于2,然后输出符合条件的x的值B.输入一个数x值,输出x-2的值C.任给一个实数x,求|x-2|的值D.任给一个实数x,同时输出x-2的值和2-x的值答案:C4.求函数y=|x-4|+1的函数值,则③为________.解析:else 暗含的条件为x <4,此时y =5-x . 答案:y =5-x5.输入两个数,输出其中较大的一个数,试将其程序补充完整.答案:b一、选择题1.下列关于条件语句的功能的叙述,正确的是( ) A .条件语句主要是给变量赋值的功能B .条件语句可以在计算机屏幕上输出表达式的值及系统信息C .条件语句必须嵌套才能使用D .条件语句主要用来实现算法中的条件分支结构解析:选D .分清条件语句在功能上与输入、输出语句、赋值语句的区别. 2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求函数f (x )=⎩⎪⎨⎪⎧x 2-1, x ≥0x +2, x <0的函数值;③求面积为6的正方形的周长; ④求三个数a ,b ,c 中的最大数.其中不需要用条件语句来描述的有( ) A .1个 B .2个C.3个D.4个解析:选A.只有③不需要用条件语句来描述.3.下列程序的功能是:判断任意输入的数x是否是正数,若是,输出它的平方值;若不是,输出它的相反数.则填入的条件应该是()A.x>0 B.x<0C.x>=0 D.x<=0解析:选D.因为条件真则执行y=-x,条件假则执行y=x*x,由程序功能知条件应为x<=0.4.当a=3时,下面的程序段输出的结果是()A.9 B.3C.10 D.6解析:选D.据条件3<10,故y=2×3=6.5.下列程序运行的结果是()A.10.5 B.11.5C.16 D.25答案:D6.为了在运行下面的程序之后能输出y=9,则应从键盘输入()A .-4B .-2C .4或-4D .2或-2 解析:选C.该程序功能是求函数y =⎩⎪⎨⎪⎧(x +1)2x <0(x -1)2x ≥0的函数值,y =9时有两种情况,若x <0,则由(x +1)2=9,得x =-4(x =2舍去);若x ≥0,则由(x -1)2=9,得x =4(x =-2舍去),从而答案为-4或4. 二、填空题7.写出下面程序运行后的结果.x =6,p =________;x =20,p =________. 解析:该程序是求分段函数f (x )=⎩⎪⎨⎪⎧x ×0.35, x ≤1010×0.35+(x -10)×0.7, x >10的函数值,当x =6时,f (6)=2.1;当x =20时,f (20)=10.5. 答案:2.1 10.58.下面程序是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1, x ≥4x 2-2x +3, x <4的函数值,则①为________.解析:由条件语句的特点知①处应为x >=4. 答案:x >=49.读程序完成下列题目: x =input (“x =”)if x >1y =x +1;else y =2x +1;endprint (%io (2),y );(1)若执行程序时没有执行语句y =x +1,则输入x 的范围是________;(2)若执行结果y 的值为5,则执行的赋值语句是________,输入的x 值为________.解析:(1)由题意,该程序是求f(x )=⎩⎪⎨⎪⎧x +1, x >12x +1, x ≤1的函数值的程序,因此x ≤1时没有执行y =x +1;(2)又当x >1时,x +1>2;当x ≤1时,2x +1≤3,从而输出的y 的值为5,则执行了语句y =x +1,得x =4.答案:(1)x ≤1 (2)y=x +1 4 三、解答题10.编写一个程序,对于函数y =⎩⎪⎨⎪⎧x 2+1, x ≤2.5x 2-1, x >2.5,输入x 的值,输出相应的函数值.解:程序如下:11.根据下面给出的程序画出相应的程序框图.解:程序框图如图.12.我国是水资源相对匮乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施,规定每季度每人用水量不超过5吨时,每吨水费收基本价1.3元,若超过5吨而不超过6吨时,超过部分水费收200%;若超过6吨而不超过7吨,超过部分的水费收400%.如果某人本季度实际用水量为x (x ≤7)吨,试设计一个某人本季度缴纳水费的程序. 解:某人本季度缴纳水费的计算公式: y =⎩⎪⎨⎪⎧1.3x , x ≤56.5+2.6(x -5), 5<x ≤69.1+5.2(x -6), 6<x ≤7. 程序如下:。
(常考题)北师大版高中数学必修三第一章《统计》检测卷(含答案解析)(2)
一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .3.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和674.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④5.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A.15.5 B.15.6 C.15.7 D.166.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.157.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号8.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.1609.已知x,y的取值如表:x2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.10.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A .40B .45C .48D .5011.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .712.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.15.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.16.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.17.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x3 4 5 6y23.5 55.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 18.已知某人连续5次射击的环数分别是8,9,10,x ,8,若这组数据的平均数是9,则这组数据的方差为 .19.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.某食品厂为了检测某批袋装食品的质量,从该批食品中抽取了一个容量为100的样本,测量它们的质量(单位:克).根据数据分为[)92,94,[)94,96,[)96,98,[)99,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,估计这批袋装食品质量的中位数.(保留一位小数) (2)记产品质量在[)98,102内为优等品,每袋可获利5元;产品质量在[)92,94内为不合格品,每袋亏损2元;其余的为合格品,每袋可获利3元.若该批食品共有10000袋,以样本的频率代替总体在各组的频率,求该批袋装食品的总利润.22.学校食堂统计了最近5天到餐厅就餐的人数x (百人)与食堂向食材公司购买所需食材(原材料)的数量y (袋),得到如下统计表:第一天 第二天 第三天 第四天 第五天 就餐人数x (百人) 13 9 8 10 12 原材料y (袋)3223182428(1)根据所给的5组数据,求出关于的线性回归方程ˆˆˆy bx a =+;(2)已知购买食材的费用C (元)与数量y (袋)的关系为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩,投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-参考数据:511343i ii x y==∑,521558i i x ==∑,5213237i i y ==∑23.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.24.某校2011年到2019年参加“北约”“华约”考试而获得加分的学生人数(每位学生只能参加“北约”“华约”中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推) 年份x 1 2 3 4 5 6 7 8 9 人数y23545781010(1)求这九年来,该校参加“北约”“华约”考试而获得加分的学生人数的平均数和方差; (2)根据最近五年的数据,利用最小二乘法求出y 与x 的线性回归方程,并依此预测该校2020年参加“北约”“华约”考试而获得加分的学生人数.(最终结果精确至个位) 参考数据:回归直线的方程是y bx a =+,其中()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-.95293i ii x y==∑,925255i i x ==∑.25.新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程y bt a=+,并预测2018年5月份当地该品牌新能源汽车的销量;(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望()Eξ.参考公式及数据:①回归方程y bx a=+,其中()()()1122211ˆn ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑,a y bx=-,②5118.8i iit y ==∑.26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x与销售单价y之间的关系,经统计得到如下数据:等级代码数值x 38 48 58 68 78 88 销售单价y (元/kg )16.818.820.822.82425.8(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】因为,所以,代入回归直线方程可求得,所以,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.3.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a1,a2,…,a50,则a1+a2+…+a50=50×70,即60+90+a3+…+a50=50×70,(a1﹣70)2+(a2﹣70)2+…+(a50﹣70)2=50×75,即102+202+(a3﹣70)2+…+(a50﹣70)2=50×75.更正后平均分为x=150×(80+70+a3+…+a50)=70;方差为s2=150×[(80﹣70)2+(70﹣70)2+(a3﹣70)2+…+(a50﹣70)2]=150×[100+(a3﹣70)2+…+(a50﹣70)2]=150×[100+50×75﹣102﹣202]=67.故选B.【点睛】本题考查平均数与方差的概念与应用问题,是基础题.4.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FPOP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FPOP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.5.B解析:B【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05频数为:367.57.54.51.5,,,,,则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B 【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错6.C解析:C【详解】抽取比例为1501 30000200=,1400020200∴⨯=,抽取数量为20,故选C.7.C解析:C【解析】【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷,已知03号,18号被抽取,所以应该抽取181533+=号,故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.8.D解析:D【解析】【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B . 【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127; 128,128,129,129,129; 131,131,131,132,132; 132,133,134,134,135; 137,138,138,138,139;140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.14.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.15.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a ∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.16.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果. 详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.17.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】分析:先根据平均数求x 的值再求数据的方差详解:由题得所以数据的方差为故答案为点睛:(1)本题主要考查平均数和方差的计算意在考查学生对这些基础知识的掌握水平(2)方差公式为解析:45【解析】分析:先根据平均数求x 的值,再求数据的方差. 详解:由题得8+9+8109,10.5x x ++=∴=所以数据的方差为22222214[(89)(99)(109)(109)(89)]55S =-+-+-+-+-=.故答案为45. 点睛:(1)本题主要考查平均数和方差的计算,意在考查学生对这些基础知识的掌握水平.(2) 方差公式为222121[()()()]n S x x x x x x n=-+-+⋅⋅⋅+-. 19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.630【解析】每层的抽样比为女生抽了95人所以男生抽取105人因此共有男生人故填630解析:630 【解析】 每层的抽样比为200112006=,女生抽了95人,所以男生抽取105人,因此共有男生1056630⨯=人,故填630.三、解答题21.(1)99.6;(2)35600元. 【分析】(1)根据频率分布直方图中的中位数在长方形面积为0.5的地方取得得解. (2)求出批食品中优等品、不合格品、合格品的袋数得总利润. 【详解】(1)因为(0.020.040.12)20.360.5,0.360.0920.540.5++⨯=<+⨯=>, 所以样本质量的中位数在[98,100)内.设样本质量的中位数为m ,则980.0920.360.52m -⨯⨯+=, 解得99.6m ≈,故这批袋装食品质量的中位数为99.6.(2)由题意可得,这批食品中优等品有10000(0.090.10)23800⨯+⨯=袋, 这批食品中不合格品有100000.022400⨯⨯=袋, 这批食品中合格品有1000038004005800--=袋.故该批袋装食品的总利润为3800558003400235600⨯+⨯-⨯=元. 【点睛】频率分布直方图中的中位数求法在长方形面积为0.5的地方取得是解题关键,属于基础题. 22.(1) 2.51y x =-;(2)食堂购买36袋食,能获得最大利润,最大利润为11520元. 【分析】(1)本题首先可根据题中所给数据求出x 、y ,然后根据51522155i ii ii x y x yb xx==-⋅=-∑∑求出b ,最后根据a y bx =-求出a ,即可得出结果;(2)本题首先可根据 2.51y x =-得出预计需要购买食材36.5袋,然后分为36y <、36y ≥两种情况进行讨论,分别求出最大值后进行比较,即可得出结果.【详解】(1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==,515222151343510.4252.5558510.45i ii i i x y x yb x x==-⋅-⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-,故y 关于x 的线性回归方程为 2.51y x =-.(2)因为 2.51y x =-,所以当15x =时36.5y =,即预计需要购买食材36.5袋,因为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩, 所以当36y <时,利润()7004002030020L y y y =--=+, 此时当35y =时,max 300352010520L =⨯+=, 当36y ≥时,由题意可知,剩余的食材只能无偿退还, 此时当36y时,700363803611520L =⨯-⨯=,当37y =时,利润70036.53803711490L =⨯-⨯=,综上所述,食堂应购买36袋食,才能获得最大利润,最大利润为11520元. 【点睛】本题考查线性回归直线方程,考查回归方程的应用,考查学生的数据处理能力以及运算求解能力.考查分类讨论思想,属于中档题.23.(1)0.08,150;(2)88%;(3)第四小组,理由见解析 【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间. 试题(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为: 又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 考点:频率分布直方图 24.(1)6;689;(2) 1.3 1.1y x =-,12人. 【分析】(1)由表格中的数据,利用平均数和方差的公式,即可求解;(2)由表中近五年的数据,利用公式,求得ˆˆ,b a ,求得回归直线方程,代入10x =,即可作出结论. 【详解】(1)由表格中的数据,利用平均数的计算公式,可得2354578101069++++++++=.由方差的公式,可得()()()2222168263610699s ⎡⎤=-+-++-=⎣⎦.(2)由表中近五年的数据知,7x =,8y =,95293i ii x y ==∑,925255i i x ==∑,9592255293578ˆ 1.32555495i ii i i x y xybx x==--⨯⨯===-⨯-∑∑,又a y bx =-,所以8 1.37 1.1a =-⨯=-, 故y 与x 的线性回归方程为 1.3 1.1y x =-, 当10x =时, 1.310 1.111.912y =⨯-=≈,故估计该校2020年参加“北约”“华约”考试而获得加分的学生有12人. 【点睛】本题主要考查了平均数与方差的计算,以及回归直线方程的求解及应用,其中解答中认真审题,根据公式准确计算是解答的关键,着重考查运算与求解能力. 25.(1)约为2万辆;(2)见解析 【分析】(1)利用最小二乘法求y 得关于t 的线性回归方程为0.3208ˆ.0yt =+,再令6t =得到2018年5月份当地该品牌新能源汽车的销量.(2)先分析得到ξ~33,5B ⎛⎫ ⎪⎝⎭,再根据二项分布求ξ的分布列及数学期望()E ξ. 【详解】 (1)易知1234535t ++++==,0.50.61 1.4 1.71.045y ++++==,522222211234555ii t ==++++=∑,218.853 1.040.32555ˆ3b -⨯⨯==-⨯,1.040.320ˆ3.08a=-⨯= 则y 关于t 的线性回归方程为0.3208ˆ.0yt =+, 当6t =时,ˆ 2.00y=,即2018年5月份当地该品牌新能源汽车的销量约为2万辆. (2)根据给定的频数表可知,任意抽取1名拟购买新能源汽车的消费者,对补贴金额的心理预期值不低于3万元的概率为12032005=,由题意可知ξ~33,5B ⎛⎫⎪⎝⎭,ξ的所有可能取值为0,1,2,3ξ的分布列为:()0303328055125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12133236155125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()21233254255125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()30333227355125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以()5E ξ= 【点睛】(1)本题主要考查回归方程的求法,考查二项分布,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是()(1)kkn kn n P k C p p ξ-==-,(0,1,2,3,...k n =).正好是二项式[(1)]n p p -+的展开式的第1k +项.所以记作ξ~(,)B n p ,读作ξ服从二项分布,其中,n p 为参数.26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程;。
(必考题)高中数学必修三第一章《统计》测试(包含答案解析)(1)
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.753.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.54.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .815. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日6.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆybx =+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39 B .42C .45D .507.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和928.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64 B .96C .144D .1609.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 14.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________15.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.16.已知一组数据为2,3,4,5,6,则这组数据的方差为______.17.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________. 18.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表:X 1011.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.19.某中学调查了400名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这400名学生中每周的自习时间不少于22.5小时的人数是__________人.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x (2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.随着人民生活水平的日益提高,某小区拥有私家车的数量与日俱增,物业公司统计了近六年小区私家车的数量,数据如下: 年份 2014 2015 20162017 2018 2019 编号x 1 2 3 4 5 6 数量y (辆)4196116190218275(1)若该小区私家车的数量y 与年份编号x 的关系可用线性回归模型来拟合,请求出y 关于x 的线性回归方程,并用相关指数2R 分析其拟合效果(2R 精确到0.01);(2)由于该小区没有配套停车位,车辆无序停放易造成交通拥堵,因此物业公司预在小区内划定一定数量的停车位,若要求在2022年小区停车位数量仍可满足需要,则至少需要规划多少个停车位. 参考数据:61936ii y==∑,614081i i i x y ==∑,62191ii x ==∑,()62137586i i y y=-=∑.附:回归方程中斜率和截距的最小二乘估计公式分别为:1221ni ii nii x y nx yb xnx==-⋅=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑,残差e y y =-.23.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.025 0.010 0.005 0.001 0k5.0246.6357.87910.82824.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:s =(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b cd =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.3.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.4.A解析:A 【解析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.5.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.6.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .7.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.58.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,,所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D. 计算1169=(504712151923273136)1111x -++++++++++= 11228=(15615013212813011610489937654)111.641111y ++++++++++=≈ 将x 代入选项A ,得1692.352147.767111.6311ˆy=-⨯+= 将x 代入选项B ,得1692.352127.76591.6311ˆy=-⨯+= 所以选项A 正确. 故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b 符号的判断和回归直线过样本中心点(,)x y 是解题关键.二、填空题13.75【解析】【分析】计算然后将代入回归直线得从而得回归方程然后令x=5解得y 即为所求【详解】∵∴∵∴∴样本中心点为(3)又回归直线过(3)即3=06×+解得=所以回归直线方程为y =06x+令x =5时解析:75 【解析】 【分析】计算x ,y ,然后将x ,y 代入回归直线得a ,从而得回归方程,然后令x =5解得y 即为所求. 【详解】 ∵4115i i x ==∑,∴154x =, ∵4112i i y ==∑,∴1234y ==, ∴样本中心点为(154,3), 又回归直线0.6ˆyx a =+过(154,3),即3=0.6×154+a ,解得a =34, 所以回归直线方程为y =0.6x +34, 令x =5时,y =0.6×5+34=3.75万元 故答案为:3.75. 【点睛】本题考查线性回归方程的应用,以及利用线性回归方程进行预测,要注意回归直线必过样本中心点.14.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.15.25【解析】分析:先求成绩在80分以上的概率再根据频数等于总数与对应概率乘积求结果详解:因为成绩在80分以下的概率为所以成绩在80分以上的概率为因此成绩在80分以上的人数为点睛:频率分布直方图中小长解析:25 【解析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为(0.0050.03+0.0410=0.75+⨯),所以成绩在80分以上的概率为10.750.25-=,因此成绩在80分以上的人数为0.25100=25.⨯点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1; 频率分布直方图中组中值与对应区间概率乘积的和为平均数; 频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.16.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大解析:2 【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=,()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()().即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.1【解析】分析:先利用平均数公式求出平均数再利用方差公式即可得结果详解:的平均数为的方差为故答案为点睛:本题考查主要考查平均数公式与方差公式属于基础题样本数据的算术平均数公式;样本方差公式标准差解析:1 【解析】分析:先利用平均数公式求出平均数,再利用方差公式即可得结果. 详解:5.7,5.8,6.1,6.4,6.5的平均数为5.7+5.8+6.1+6.4+6.56.15=,5.7,5.8,6.1,6.4,6.5∴的方差为()()()()()222225.76.1+5.8 6.1+6.1 6.1+6.4 6.1+6.5 6.10.15-----=,故答案为0.1.点睛:本题考查主要考查平均数公式与方差公式,属于基础题. 样本数据的算术平均数公式12n 1(x +x +...+x )x n =;样本方差公式2222121[()()...()]n s x x x x x x n =-+-++-,标准差s =18.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >. 【解析】分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .b 的正负,决定正相关与负相关.19.280【解析】由频率分布直方图得这名大学生中每周的自习时间不少于小时的频率为这名大学生中每周的自习时间不少于小时的人数为故答案为解析:280 【解析】由频率分布直方图得这400名大学生中每周的自习时间不少于22.5小时的频率为()0.16+0.080.04 2.50.7,+⨯=∴这400名大学生中每周的自习时间不少于22.5小时的人数为4000.7280⨯=,故答案为280.20.2【解析】由茎叶图及10个班级的得分的平均数是90可得∴当且仅当即时取等号故答案为2解析:2 【解析】由茎叶图及10个班级的得分的平均数是90可得8a b += ∴1911919191()()(19)(10)(1023)28888b a b a a b a b a b a b a b +=⨯++=+++=++≥+⨯=,当且仅当9b aa b=,即36b a ==时,取等号 故答案为2三、解答题21.(1)0.5 2.3y x =+;(2)6800元. 【分析】(1)根据表中数据计算出4x =, 4.3y =,再结合参考数据利用公式即可计算出,b a ,进而得出线性回归方程; (2)将9x =代入即可预测. 【详解】解:(1)由表可得:123456747++++++==x ,2.93.3 3.64.4 4.85.2 5.9 4.37y ++++++==,又77211134.4,140i ii i i x yx ====∑∑,71722217134.474 4.30.5140747i ii i i x y x yb x x==--⨯⨯∴===-⨯-∑∑ 4.30.54 2.3a y bx ∴=-=-⨯=y ∴关于x 的线性回归方程为0.5 2.3y x =+;(2)由(1)可得:0.5 2.3y x =+,∴当9x =时,0.59 2.3 6.8y =⨯+=,即该地区2015年农村居民家庭人均纯收入约为6800元. 【点睛】本题考查线性回归方程的求法,考查由线性回归方程进行预测,属于基础题. 22.(1)ˆ465yx =-;拟合效果较好;(2)至少需要规划409个停车位 【分析】(1)由已知数据求得ˆb与ˆa 的值,则线性回归方程可求,再求出残差平方和,代入相关指数公式求得2R ,根据与1的接近程度分析拟合效果;(2)在(1)中求得的线性回归方程中,取9x =求得y 值即可. 【详解】 解:(1)1(123456) 3.56x =+++++=,19361566y =⨯=.6162221640816 3.5156ˆ46916356i ii ii x yxy bxx ==--⨯⨯===-⨯-∑∑,ˆˆ15646 3.55ay bx =-=-⨯=-. y ∴关于x 的线性回归方程为ˆ465y x =-.1x =时,ˆ41y=,2x =时,ˆ87y =,3x =时,ˆ133y =, 4x =时,ˆ179y=,5x =时,ˆ225y =,6x =时,ˆ271y =. 621()556ii i yy =-=∑.6221621()556110.9737586()ii i ii yy R yy ==-=-=-≈-∑∑, 相关指数2R 近似为0.97,接近1,说明拟合效果较好; (2)在(1)中求得的线性回归方程中,取9x =, 可得ˆ4695409y=⨯-=. 故若要求在2022年小区停车位数量仍可满足需要,则至少需要规划409个停车位. 【点睛】本题考查线性回归方程与相关指数的求法,考查运算求解能力,属于中档题. 23.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45, 设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅=⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅=⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题.25.(1)中位数为71.4;平均数为71;(2)平均数为90;标准差为53)3700元.【分析】(1)利用频率分布直方图能求出中位数、平均分;(2)由题意,求出剩余8个分数的平均值,由10个分数的标准差,能求出剩余8个分数的标准差;(3)求出将3座教学楼完全包裹的球的最小直径、将一座教学楼完全包裹的球的最小直径和将1号教学楼与2号教学楼完全包裹的球的最小直径,由此能求出让各教学楼均被屏蔽仪信号完全覆盖的最小花费. 【详解】(1)因为0.050.150.250.450.5++=<0.050.150.250.350.80.5+++=> 所以中位数为x 满足7080x <<由80()0.350.10.10.510x -⨯++=,解得608071.47x =-≈ 设平均分为y ,则0.05450.15550.25650.35750.1850.19571y =⨯+⨯+⨯+⨯+⨯+⨯=(2)由题意,剩余8个分数的平均值为01010080908x x --==因为10个分数的标准差6s ==所以2222110...10(6)10(90)81360x x ++=⨯+⨯=所以剩余8个分数的标准差为0s ===(3)将3座教学楼完全包裹的球的最小直径为:210=<=因此若用一个覆盖半径为105米的屏蔽仪则总费用为4100元;70<= 因此若用3个覆盖半径为35米的屏蔽仪则总费用为4800元; 将1号教学楼与2号教学楼完全包裹的球的最小直径为:110=<=70>=因此若用1个覆盖半径为55米和1个覆盖半径为35米的屏蔽仪则总费用为3700元; 所以,让各教学楼均被屏蔽仪信号完全覆盖的最小花费为3700元. 【点睛】本题考查中位数、平均数、标准差、最小费用的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641(0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修3第一章测试题
姓名____________班级___________学号_______(时间120分钟,满分150分) 一、选择题(5×10=50分)
1.下面对算法描述正确的一项是:( )
A .算法只能用自然语言来描述
B .算法只能用图形方式来表示
C .同一问题可以有不同的算法
D .同一问题的算法不同,结果必然不同 2.在下图中,直到型循环结构为 ( )
A .
B .
C . D
3.算法
S1 m=a
S2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=d
S5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值
B .a ,b ,c ,d 中最小值
C .将a ,b ,c ,d 由小到大排序
D .将a ,b ,c ,d 由大到小排序 4.右图输出的是
A .2005
B .65
C .64
D .63
5.下列给出的赋值语句中正确的是( )
A. 5 = M
B. x =-x (第4题)
C. B=A=3
D. x +y = 0
6.右边程序的输出结果为 ( )
A . 3,4
B . 7,7
C . 7,8
D . 7,11
7.右图给出的是计算0
101614121+⋅⋅⋅+++的值的一个程序框图, 其中判断框内应填入的条件是 ( )
A . i<=100
B .i>100
C .i>50
D .i<=50 8.如果右边程序执行后输出的结果是990, 那么在程序until 后面的“条件”应为( ) > 10 B. i <8 C. i <=9 <9
9.读程序
甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO
S=S+i S=S+i i=i+l i=i 一1
WEND Loop UNTIL i<1 PRINT S PRINT S
END END
对甲乙两程序和输出结果判断正确的是 ( )
A .程序不同结果不同
B .程序不同,结果相同
C .程序相同结果不同
D .程序相同,结果相同 10.右边程序执行后输出的结果是( )
A.1- B .0 C .1 D .2 二.填空题. (5×6=30分)
11.有如下程序框图(如右图所示),则该程序框图表示的算法的功能是
( 第12题)
12.上面是求解一元二次方程)0(02
≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。
13.把求(注:n!=n*(n-1)*……*2*1)的程序补充完整
14.右程序运行后输出的结果为_______________.
15.计算11011(2)-101(2)=
16.下列各数)
9(85 、 )
6(210 、 )
4(1000 、 )
2(111111中最小的数是____________。
(第11题) 第
三.解答题 17.根据右边的程序框图,请写出对应的程序并计算出S 的值。
(10
18. 已知算法: ① 将该算法用流程图描述之; ② 写出该程序,若输出Y=-3,求X 的值。
(12分) S1、 输入 X
S2 、 若X<1,执行 S3. 否则执行S6 S3 、 Y =X - 2 S4、输出 Y S5、 结束
S6、 若X=1 ,执行S7;否则执行S10; S7 Y =0 S8 输出Y S9 结束 S10 Y= 2X-7 S11 输出Y S12 结束
19.设计算法求S=
50
491
431321211⨯+
⋅⋅⋅+⨯+⨯+⨯的值, 写出用基本语句编写的程序,并求出S 的值.(12分)
20.用辗转相除法求210与162的最大公约数,并用更相减损术检验。
(12分)
21.《中华人民共和国个人所得税法》规定,公民月工资,薪金所得不超过800元的部分不必纳税,超过800:
试写出工资x (x5000 元)与税收 y的函数关系式,并写出计算应纳税所得额的的程序。
22.给出30个数:1,2,4,7,……,其规律是:第1个数是1,第2个数比第1个数大1, 第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,使之能完成该题算法功能;(II)根据程序框图写出程序.
(第20题)
数学第一章测试题
姓名座位号班别
一、选择题
二、填空题
11..计算并输出使1×3×5×7…× >10 000成立的最小整数.
12.(1)
(2)x1= a
b 2∆
+- x2=a b 2∆-- (3) 输出x1,x2
13. 85 、 125(8)
14.用冒泡法对数3,6,9,5,1从小到大排序
第一趟 第二趟 第三趟 第四趟
15. 10110
三、解答题
16. 该算法是求函数
Y=⎪⎪⎪⎪⎩
⎪⎪⎪⎪
⎨⎧
+==-=120
2X Y Y X Y )
1()1()1(>=<X X
X
17、解 这是一个累加求和问题,共49项相加,可设计一个计数变量,一个累加变量,用循环结构实现
这一算法.程序框图如下图所示
18.
19.
y=0800(800)5%800130025(1300)10%1300280025150(2800)15%
28005800
x x x x x x x ≤⎧
⎪-⨯<≤⎪⎨
+-⨯<≤⎪⎪++-⨯<≤⎩
20.解 (I )该算法使用了当型循环结构,因为是求30个数的和,故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为30≤i .算法 中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大1-i ,,第1+i 个数比其前一个数大i ,故应有i p p +=.故(1)处应填30≤i ;(2)处应填i p p +=。