高考数学大一轮复习人教A专题训练专题四数列的综合应用PPTppt文档
高三数学一轮复习课件数列.ppt
解得 a3=32(a1+a2)=6.
(2)由题设知 a1=1. 当 n>1 时,有 an=Sn-Sn-1=n+3 2an-n+3 1an-1, 整理得 an=nn+-11an-1. 于是 a2=31a1,a3=42a2,…,an-1=n-n 2an-2,an=nn+ -11an-1. 将以上 n-1 个等式中等号两端分别相乘,整理得 an=nn2+1. 综上可知,{an}的通项公式 an=nn2+1.
当n=1时,4×1+1=5=a1,故an=4n+1. (2)当n=1时,a1=S1=3+1=4,
当n≥2时,
an=Sn-Sn-1=(3n+1)-(3n-1+1)=2×3n-1. 当n=1时,2×31-1=2≠a1,
故an=42,×3n-1,
n=1, n≥2.
已知数列{an}的前n项和Sn,求数列的通项公式, 其求解过程分为三步:
[例 1] (2013·天津南开中学月考)下列公式可作为
数列{an}:1,2,1,2,1,2,…的通项公式的是
()
A.an=1
B.an=-12n+1
C.an=2-sinn2π
D.an=-1n2-1+3
[自主解答]
由an=2-
nπ
sin
2
可得a1=1,
a2=2,
a3=1,a4=2,….
[答案] C
教师备选题(给有能力的学生加餐)
1.下列说法中,正确的是
()
A.数列1,3,5,7可表示为{1,3,5,7}
B.数列1,0,-1,-2与数列-2,-1,0,1是相同的
人教课标A高考一轮复习精品课件6.5数列的综合应用
§6.5数列的综合应用基础知识自主学习要点梳理1扁廖数列应用题的基本步骤(1) 审题一仔细阅读材料,认真理解题意.(数列)语言,将实际问题转化(2) 建(3) 求解——求出该问题的数学解.(4) 还原——将所求结果还原到原实际问题中.2 •数列应用题常见模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3) 分期付款模型:设贷款总额为a,年利率为匚等额还款数为b,分n期还完,则归r(l + r)n---------------- a.(1 +厂)"一1基础自测1 •数列何}是公差不为0的等差数列且a?、a10. a15> 等比数列{"}的连续三项,若等比数列{切}的首项6=3,则b2等于()A. B.5 C.2 D.解析由条件知=a7-a153/. (a7+3d) 2=a7X(a7+8d)5,24.*.9d=2a7, q=•.•b[=3^ .\b2=b1-q=5. :%o _ 如+3〃_ 5ciq ciq 32•—套共7册的书计划每两年出一册,若出完全部各册书,公元年代之和为13 958,则出齐这套书的年份是( )A.1994B.1996C.1998D.2000解析设出齐这套书的年份是x, D贝j (x-12) +(x-10)+(x-8)+..-+x=13 958,・・.7x・=13 9585/.X=2000.2(12 + 0)x73. (2009-四川文,3)等差数列{aj的公差不为零,首项a1=1,a2是引和as的等比中项,贝燉列{aj的前10项之和是( )A.90B.100C.145D.190解析由题意知,S+d) 2=a1(a1+4d), B即+2a[d+d2= +4a1d,/.d=2a1=2.•••S[o=1Oa[d=10+90=100・+2 a x 10x9 21-24•有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的 同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病 毒,问细菌将病毒全部杀死至少需要)A.6秒C.8秒解析 依题意 1+21+22+...+2n -1>100,>100,.\2n>101,・・・n27,即至少需要7秒细菌将病毒全部杀死. B.7秒 D.91 — 2〃1-25•已知数列{aj中,a1=2,点(a n.l5a n) a〔+■■■+*[ 0= ■解析• a n=2a n-l"^,• •a r r1=2(a ri.i・1),・・阳}是等比数列,则a n=2-1+1. • .a〔+a?+■ ■・*a[0=10+(2°+21+22+ (29)=10+ =1 033.1-210(n > 1 且n W N)满足y=2x-11 0331-2解(1)由a n+1=2S n+15nT得an=2Sn”1 (虑2), 两式相减得a n+r a n=2a n^0a n+1=3a n (n>2).又a2=2S〔+1 =3r\a2=3a1.故{%}是首项为公比为3的等比数列,・・气=3胡.(2)设{"}的公差为d,由T3=1 Sjb-j+b2+b3=15,可得b2=5, 故可设b1=5-d3b3=5+d J又a 〔=1 ,a2=39a3=9j 由题意可得(5-d+1)(5+d+9)=(5+3)2, 解得d1=2,d2=-10.・・•等差数列{"}的各项为正,.・・d>0,.•.d=25b1=3,.\T n=3n+ X2=n2+2n ・探究提高对等差.等比数列的综合问题的分析,应重点分析等差.等比数列的通项及前n项和;分析等差.等比数列项之间的关系•往往用到转化与化归的思想方法.2知能迁移1 (2009・全国I文,17)设等差数列{%}的前n项和为公比是正数的等比数列{"}的前n项和为口已知a1=15b1=35a3+b3=173T3-S3=125求{aj/bj的通项公式.解设{aj的公差为d, {bj的公比为q・由a3+b3=17#1 +2d+3q2=175①由①、②及q>0解得q=2,d=2.故所求的通项公式为a n=2n-1 ,b n=3 X 2討・题型二数列与函数的综合应用【例2】(12分)已知f(x)=log a x(a>0且詐4),设f(aj,f(a2),…,f(aj (nGN*)是首预为4,公差另2的等差数列.(1)设a为常数,求证:{%}是等比数列;(2)若b n=a n f(a n)5{b n}的箭n项和是S“^a=时,求S“・利用函数的有关知识得出%的表达式,再利用表达式解决其他问题.V2 思维启迪(1)证明f(a n)=4+(n-1) X 2=2n+2,/log a a n=2n+252分• 口一口2n+2• "a r\~a■・・・(n>2)为定值.・・・{%}为等比数列5分(2廨^=aj(ajta^log a a!^=(2n+2^a2n+2.当a=加瓦绑应)七弦血.7分S n=2.尝斜24+^-25+...+(n+1 他卄2 ①2S n=2-24+3-25+4-26+...+n-2n+2+(n+1 )・ 2岚②①■②得-S n=2.23+24+25+...+2n+2-(n+1)-2n+3V2 V2=16+=16+2卄3・24・“12^*2卄3=・“・2卄3・.♦.S =n-2n+3. 12分n"数列N函数的综合问题主要有以下两类:(1 )已知函数条件, 解决数列问题•此类问题一般利用函数的性质.图象研究数列问题;数列条件,解决函数问题•解决此类问题一般要充分利用数公式.求和方法对式子化简变形.2知能迁移2设等比数列{%}的前n 项和和 首项引=1, 公比q=f (D 证明:S =(2) 若数列{《虑2),求数列低}的通(3) 若=1 ,lHc n =a n(貫1,0)・ n¥(bnJ (nWN ; A 擞列{打的前Tn,求证:当曲2时,2STnV4・222 0 =(1+刃[1—(仝)〃 ]=(1+刃—2(厶)1,1 +2 1 + 2o 2又肌厂%(乙严=(乙)=1 +2 1 + 2=(1 + A)—几© ・(1)证明"11丄1 + 21一9(2)解心)=£,..也二旣・.古亡+1.・・・鬼项为=2,公差対1的等差数列.=J^(nl-1)=n+1,即b“="2.\7;=l + 2(-) + 3(-)2+A +H (-),7_1.I1 1 0 1 Q 1(3)证明・・•当=1时, 2•••产巧+ 2(产3(尹+A+%)“.两式相减得扣i+(》+(y+A y = 2[l-(|r]-n(|)\ .• ^=4-(-r2-n(-r i<4. 又・九1%>0, ・・・人单调递增./.T n>T2=2・故当曲2时,2<T n<4・题型三数列的实际应用【例3】假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%・另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米■那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084^1.36,1.085«1.47,1.086«1.59)2思维启泡)要求学生会把实际问题转化为数学问题:S n=250n+ x50=^5r?+^J25n>4 750.(2归“>0・85"*店400崩8+解(1)设中低价房的命积形成的数列为{a}由题意可知{aj是等差数列,其中a-|=250jd=50,IJl!ja n=250+(n-1 )・ 50=50n+200S n=250n+ X 50=25n2+225n,4^25n2+225n>4 750,即n2+9n-190>0,而n是正整数,/.n>10.因此到2017年底,该市历年所建中低价房的累计面(2)设新建住房面积形成数列{b}由题意可知{"}是等比数列,其中b1=4005q=1.083则4=400・(1・08)討・由题意可知a n>0.85b 即50n+200>400-(1.08)n1・ 0・85・当n=5时,a5<0.85b5,当n=6时,a6>0.85b6,因此满足上述不等式的最小正整数n为6・因此到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.2探會湊匾类问题的关犍是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这也是数学实际应用的具体体现.知能迁移3某市2008年共有1万辆燃油型公交车,有关部门计划于2009年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%, 试问:(1)该市在2015年应该投入多少辆电力型公交车?⑵到哪一年底,电力型公交车的数量开始超过该市公交车总量的?(lg657=2.82,lg 2=0.30,lg 3=0.48)解⑴该市逐年投入的电力型公交车的数量组成等比数列心丄其中a1=128,q=1・5,则在2015年应该投入的电力型公交车为a7=a[・q6=128X1.56=1 458 (辆)・13(2)记Sn=a〔+a?+・・・+&“,依据题意,得1 于是呻>5 0丽丽云护.5睜两边取常屈1(顷盤1・5〉lg1-1.5即n> =7・3,又nWI\T,因此心&所以到2016年底,电力型公交车的数量开始超过谡2市公交军蓉鈿=5览2Ig3-lg2657657~32思想方法感悟提高方法与技巧1 •深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键•两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错. 2•在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3•数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度•解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在囁需作零鏗学囁讓'/数与方程”、4•在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利自药讦算分期付款问题等,都可以利用数列来解决,因此要会鸚為需矗牒型,并用它解决实际问题失误与防范1 •等比数列的前n项和公式要分两种情况:公比等于1和公比不等于1・最容易忽视公比等于1的情况,要注意这方面的练习.2•数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.3•在有些情况下,证明数列的不等式要用到放缩法.2差数列,则A. B. 的值为Cl?+ “4c. ^5 —I D・或解析设农』的公比为q(q>0), 得”4®解得q=因此2腭+ 1由a32a2+a nV5-12A/5+I21 +V52定时检测一、选择题1 •各项都是正数的等比数列何}中,a2, a3,2•数列{aj中,a n=3n-7 (nGN*),数列{bj满足6= ,b n.j=27b n(n>2 KnGN*),^a n+log k b n为常数,则補足条件的k值( )A •唯一存在,且为B •唯一存在,且为3 1C ■存在且不唯一1 3D •不一定存在2解析依题意,/a n +log k b n 是常数, 即 log k 3=1 ,.*.kq3.答案B L =3n-7+(3n-2)log k=(3+3log k )n-7-2log k 53=0, 133•有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点•已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底匯面积)超过39,则该塔形中正方体的个数至少是( )A.4C.6D.72 解析正方体按从下向上的顺序其棱长构成等比数列,其棱长分别为:2, , 1,,n 层正方体的表面积为 7216[1-(-),?] 1曲応知一0羊4- 740込32(—)"・整理得2p3£・・・n>5・ 2答案C 21 1 V2 214•气象学院用3・2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n天的维修保养费为元(nGN*),使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少)为止, n+ 49一共使用巧厂()A.800天B.600天C.1 000天D.1 200天解析由第n天的维修保养费为元(ne Nil + 49可以得出观测仪的整个耗资费用,由平均费用鬲少而求得最小值成立时的相应n的值.设一共使用了n天,则使用n天的平均耗资为丸+ 49当且仅当(5侖取帑最木植,此时n=800.3.2x10" ----------------- — 1^4 OO答案A 2 二3.2x10 | 〃|9.9n n 20 23.2xl04 _ nn 205.2008年春,我国南方部分地区遭受了罕见的特大冻灾•大雪无情人有情,柳州某中学组织学生在学校开展募捐活动,第一天只有10人捐款,人均捐款10元,之后通过积极宣传,从第二天起,每天的捐款人数是前一天的2倍,且当天人均捐款数比前一天多5元,则截止到第5天(包括第5天)捐款总数将达到.8 000元A.4 800元C.9 600元D.11 200元解析由题意知,5天共捐款B10X10+ (10 X 2) X (10+5) + (10 X 22) X (15+5) + (10 X 23)X (20+5) + (10X24) X (25+5) =8 000 (元)・6•務譽攀野e”輕足引弓,且玄風+1是函Wx)=x2-b n x+2"的两个零点, A.24 B.32 C.48 D.64 D解析依题意<a n a n+1=2% 所lUa n+1a n+2=2n+15两式相除得=2,所以a〔,a3,a5,...成等比数列,a2,a4,a6,...^等比数列,而a1=1,a2=2,^f ^310=2-24=32,311=1.25=32. 又因为a n+a n+i=b n^^^Zb10=a10+a11=64.5_ r填空题〒已知数列{aj满足引=1 ,a2=-2,a n+2解析由于a1=13a2=-23a n+2=-, -10所以斥4=,a5=1卫6=・2,・・・,于是{%}是周期为4的数列,故S2Q=6X (1 -2-1 + )|+1-2=-10.•,则该数列前26器的和为丄a n8. (2008•江苏,10)将全体正整数排成一个三角形数阵:123456789 10按照以上排列的规律,第n行(血3)从左向右的第个,即为3个数为--- -2—H +6个,因此第n行第3个数是全体正整数中第+3n2 -nn2 -n + 69. (2009-福建理,15)五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为第二位同学首次报出的数也为之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为.解析设第n个同学报出的数为a n^!|a n+a n+1=a n+25••a n+2=a n+a n+15a n+3=a n+1 +a n+2=a n+2a n+1,a n+4=a n+3+a n+2=23n+^a n+1,•••a n+4+a n=2a n+3a n+1=3(a n+a n+1)-又a.为大于0的整数,・・叫被3整除时,富4也被3整除;a“不被3整除时,a.+4也不被3整除.=1 ,*2=1,*3=2,a4=3,a5=5,・・何}中被3整除的数为a4+4k(kWN),又甲报岀的数为a1+5m(mGN),・・・甲报出的数引+5^^3整除时,存在kWN,使1+5m=4+4k,・・.k= 5m-3 m_3---------- =m -------------- ,、4 4/.m-3被4整除,设m-3=4p(p WZ),贝!|m=4p+3.v1<1+5m<100,/.0<m<19.8,.-.0<4p+3<19.8,/.- <p<4.2,・・・p只能取0, 1, 2, 3, 4共5个整数,・・・m只能取3, 7, 11, 15, 19共5个整数,・••甲报出的数只有5次能被・・・甲拍了5次手.答案5三、解答题石〕为融我国的稀土资源,国家限定某矿区的出口总量不能超过80 吨,该矿区计划从2010年开始出口,当年出口a吨,以后每年出口量均比上一年减少10%.(1) 以2010年为第一年,设第n年出口量为a“吨,试求a“的表达式;(2) 因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2010年最多出口多少吨?(保留一位小数)参考数据:0・9作0・35・解(1)由题意知每年的出口量构成等比数列,且首项a〔=a,公比q=1-10%=0.9,.•.a n=a0.9n1・(2) 10 年出口总量»0= =10a(1-0.910)・•.S1o<80, /.10a (1-0.910) S80, Q(]_0 9IO)即aS .\a<12.3. 1-0.9故2010年最多出口12・3吨.81_0.9心11 •设数列{a“}的前n项和为Sn,且(3・m) S n+2ma n=m+3 (nGN*) ■箕中m为常数,m^-3,且m*0・(2)若数列{aj的公比满足q=f(m)且匕口胡店f(bn・J(n G N;n22),求证:为等差数列,并求b“・证明(1)由(3・m) S n+2ma n=m+3,徼3-m)S n+1+2ma n+1=m+3, 相减,得(3+m)a n+1=2ma n (m^-3),・.・m是常数,且m^-3, m^O,©+i= 2ma n m + 3故 遑坐为0的常数,・・・{%}是等比数列. m +3(2)由b 1=a 1=1,q=f(m)=5nGN* H n>2, zm 是以1为首项,为公差的尊差数烦J, = 1b n b n-\ 3 •111 < -- > —仏J3 丄十口工 丄b n 3 3 " n + 2 解 (1)由题意得a 1=n-15a 2=(n-1 )+(n-2)-1 =2n-4,a 3=(n-1 )+(n-2)+(n-3)-1 -2=3n-9-b n= f (b n .!)= 3 得“b 刃+34=3虬・1,m + 33 2殆 •2 h+3,。
高考数学总复习§数列的综合应用精品课件大纲人教版
(2)
∵
f(λ)
=
λ 1+λ
,
∴
bn
=
1+bnb-n1-1⇒
1 bn
=
bn1-1+1.
∴数列{b1n}是首项为b11=2,公差为 1 的
等差数列,
∴b1n=2+(n-1)=n+1,∴bn=n+1 1.
【思维总结】 通过公比的函数关系 f(λ),
将解{:bn当}转λ化=为1 时{b1n,}求an=通项(12).n-1,∴cn=an(b1n-1)=(12)n -1n, ∴Tn=1+2×12+3×(12)2+…+n×(12)n-1,①
【解】 (1)由题意知 S6=-S155=-3, a6=S6-S5=-8, 所以5aa1+1+51d=0d-=58, , 解得 a1=7.4 分
所以 S6=-3,a1=7.6 分
(2)因为 S5S6+15=0, 所以(5a1+10d)(6a1+15d)+15=0, 即 2a21+9da1+10d2+1=0,10 分 故(4a1+9d)2=d2-8,所以 d2≥8.
所以10年内总投入20760万元,总收入为 13301万元.
【思维总结】 本题是求两个等比数列的前 10项和.
数列的综合问题
数列的综合问题主要有以下两类:一是已知 函数的条件,利用函数的性质图象研究数列 问题,如恒成立、最值问题等.二是已知数 列条件,利用数列的范围、公式、求和方法 等知识对式子化简变形,从而解决函数问 题.
m.
解:(1)∵an+1=f(a1n)=2+33an=an+23, ∴数列{an}是以23为公差的等差数列, 又 a1=1,∴an=2n3+1. (2)Tn = a1a2 - a2a3 + a3a4 - a4a5 + … -
高考数学复习--数列的综合应用 ppt课件
B.2 700元
D.3 600元 )3=2 400 元.
解析:12年后的价格可降为8 100×(1- 答案:A
ppt课件
10
3.已知函数f(x)=
,其对称中心是(
,0),若an=
(n∈N*),记数列{an}的前n项和为Sn,则使Sn>0的n
的最小值为
(
)
A.10
B.11
C.12
ppt课件
D.13
11
解析:因为函数f(x)=
,且函数关于点P(
,0)对
称,故f(1)+f(2)+…+f(10)=0,即S10=0.当n≥6时,f(n)>0, ∴a11=f(11)>0,∴S11>0. 答案:B
ppt课件
12
4.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列, 则{an}的公比为 .
2 1 2 2 +4a1d+d =4a 1+6a1d, 2
∴d2=2a1d.
又∵d≠0,∴d=2a1,
答案:C
ppt课件 9
2.随着计算机技术的迅猛发展,电脑的价格不断降低,若每
隔4年电脑的价格降低三分之一,则现在价格为8 100元的电
脑12年后的价格可降为 ( )
A.2 400元
C.3 000元
ppt课件
22
1.解等差数列应用题时,首先要认真审题,深刻理解问题
的实际背景,理清蕴含在语言中的数学关系,把应用问题 抽象为数学中的等差数列问题,使关系明朗化、标准化, 然后用等差数列知识求解.这其中体现了把实际问题数学 化的能力,也就是所谓的数学建模能力.
ppt课件
23
2.解等差数列应用题的关键是建模,建模的思路是: 从实际出发,通过抽象概括建立数列模型,通过对模型的 解析,再返回实际中去,其思路框图为:
高考数学总复习专题训练:专题四 数列的综合应用
∵等差数列{bn}的各项为正,∴d>0, ∴d=2,b1=3,∴Tn=3n+nn- 2 1×2=n2+2n.
题型分类·深度剖析
题型二
数列与函数的综合应用
思维启迪
解析
探究提高
【 例 2 】 已 知 函 数 f(x) = log2x - logx2(0<x<1),数列{an}满足 f( 2an ) =2n (n∈N*). (1)求数列{an}的通项公式; (2)判断数列{an}的单调性.
题型分类·深度剖析
基础知识·自主学习
基础自测
题号
1 2 3 4 5
答案
5
10
11
2n-1 2-n+2n 2 C
解析
题型分类·深度剖析
题型一
等差数列与等比数列的综合应用
【例 1】 在等差数列{an}中,a10=30, 思维启迪
解析
a20=50.
(1)求数列{an}的通项 an;
(2)令 bn=2an 10,证明:数列{bn}为
高考数学总复习专题训练:专题四 数列的综合应用
2021/4/23 星期五
1
数学 R A(理)
专题四 数列的综合应用
第六章 数 列
基础知识·自主学习
要点梳理 1.等比数列与等差数列比较表
等差 数列
等比 数列
不同点
相同点
(1)强调从第二项起每一
(1)都强调从第二项
项与前一项的差;
起每一项与前一项
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识·自主学习
要点梳理 1.等比数列与等差数列比较表
等差 数列
等比 数列
不同点
相同点
(1)强调从第二项起每一
(1)都强调从第二项
项与前一项的差;
起每一项与前一项
(2)a1 和 d 可以为零;
的关系;
(3)等差中项唯一
(2)结果都必须是同
等比数列.
题型分类·深度剖析
题型一
等差数列与等比数列的综合应用
【例 1】 在等差数列{an}中,a10=30, 思维启迪
解析
a20=50. (1(1)解)求数由列a{na=n}a的1+通(项n-a1n;)d,a10=30,a20=50,
得(2方)令程组bn=aa112++an911d90=d,=3证05,0明,:数解列得{adb1=n=}为21. 2, 等比数列.
(1)强调从第二项起每一
一个常数;
项与前一项的比;
(2)a1 与 q 均不为零; (3)等比中项有两个值
(3)数列都可由 a1,d 或 a1,q 确定
基础知识·自主学习
要点梳理
2.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围 等,需熟练应用不等式知识解决数列中的相关问题. 数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、 银行信贷、分期付款、合理定价等.
基础知识·自主学习
基础自测
题号
1 2 3 4 5
答案
5
10
11
2n-1 2-n+2n 2 C
解析
题型分类·深度剖析
题型一
等差数列与等比数列的综合应用
【例 1】 在等差数列{an}中,a10=30, 思维启迪
解析
a20=50.
(1)求数列{an}的通项 an;
(2)令 bn=2an 10,证明:数列{bn}为
故{an}是首项为 1,公比为 3 的等比数列,∴an=3n-1. (2)设{bn}的公差为 d, 由 T3=15,b1+b2+b3=15,可得 b2=5,
题型分类·深度剖析
变式训练 1 数列{an}的前 n 项和记为 Sn,a1=1,an+1=2Sn+1 (n≥1). (1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前 n 项和为 Tn,且 T3=15,又 a1+b1,
题型分类·深度剖析
题型二
数列与函数的综合应用
思维启迪
解析
探究提高
【 例 2 】 已 知 函 数 f(x) = log2x - logx2(0<x<1),数列{an}满足 f( 2an ) =2n (n∈N*). (1)求数列{an}的通项公式; (2)判断数列{an}的单调性.
题型分类·深度剖析解析 Nhomakorabea探究提高
a20=50.
对等差、等比数列的综合问题的
(1)求数列{an}的通项 an;
分析,应重点分析等差、等比数
(2)令 bn=2an 10,证明:数列{bn}为 列的通项及前 n 项和;分析等差、
等比数列.
等比数列项之间的关系.往往用
到转化与化归的思想方法.
题型分类·深度剖析
变式训练 1 数列{an}的前 n 项和记为 Sn,a1=1,an+1=2Sn+1 (n≥1). (1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前 n 项和为 Tn,且 T3=15,又 a1+b1, a2+b2,a3+b3 成等比数列,求 Tn. 解 (1)由 an+1=2Sn+1,可得 an=2Sn-1+1 (n≥2), 两式相减得 an+1-an=2an,则 an+1=3an (n≥2). 又 a2=2S1+1=3,∴a2=3a1.
题型二
数列与函数的综合应用
思维启迪
解析
探究提高
【 例 2 】 已 知 函 数 f(x) = log2x - logx2(0<x<1),数列{an}满足 f( 2an ) =2n (n∈N*). (1)求数列{an}的通项公式; (2)判断数列{an}的单调性.
(1)将 an 看成一个未知数,解方 程即可求出 an;(2)通过比较 an 和 an+1 的大小来判断数列{an} 的单调性.
3.解答数列应用题的基本步骤 (1)审题——仔细阅读材料,认真理解题意. (2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化 成数学问题,弄清该数列的结构和特征. (3)求解——求出该问题的数学解. (4)还原——将所求结果还原到原实际问题中.
基础知识·自主学习
要点梳理
4.数列应用题常见模型 (1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是 等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数时, 该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不固 定,随项的变化而变化时,应考虑是 an 与 an+1 的递推关系,还 是 Sn 与 Sn+1 之间的递推关系.
等比数列.
探究提高
题型分类·深度剖析
题型一
等差数列与等比数列的综合应用
【例 1】 在等差数列{an}中,a10=30, 思维启迪
解析
探究提高
a20=50. (1)求数列{an}的通项 an;
第(1)问列首项 a1 与公差 d 的方程
(2)令 bn=2an 10,证明:数列{bn}为 组求 an;第(2)问利用定义证明.
题型分类·深度剖析
题型二
数列与函数的综合应用
思维启迪
解析
探究提高
【解例 2(1】)由已已知知得函lo数g2 2afn-(x)lo=g12l2oagn 2=x -2n, ∴l=oag2nx-n2((a01nn<∈=x<N21n*)),,.即数a列2n-{a2n}n满an-足1=f( 20a.n ) ∴an=n± n2+1. (1)求数列{an}的通项公式; ∵0<x<1,∴0< 2an <1,∴an<0. (2)判断数列{an}的单调性. ∴an=n- n2+1.
a2+b2,a3+b3 成等比数列,求 Tn. 故可设 b1=5-d,b3=5+d, 又 a1=1,a2=3,a3=9, 由题意可得(5-d+1)(5+d+9)=(5+3)2, 解得 d1=2,d2=-10.
∵等差数列{bn}的各项为正,∴d>0, ∴d=2,b1=3,∴Tn=3n+nn- 2 1×2=n2+2n.
∴an=12+(n-1)·2=2n+10.
(2)证明 由(1),得 bn=2an10=22n+10-10=22n=4n,
∴bbn+n 1=44n+n 1=4, ∴{bn}是首项是 4,公比 q=4 的等比数列.
探究提高
题型分类·深度剖析
题型一
等差数列与等比数列的综合应用
【例 1】 在等差数列{an}中,a10=30, 思维启迪