平行线培优训练题
第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)
解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,
根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,
故△ABC的面积等于△PBC的面积.
故选D.
【点睛】
本题考查平行线之间的距离;三角形的面积.
2.A
解析:A
【分析】
根据两直线平行,内错角相等、同旁内角互补逐一判断可得.
(1)求a、b的值;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC()
∴∠C=∠CEF.()
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C=(等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
27.如图1.已知直线 .点 为 , 内部的一个动点,连接 , ,作 的平分线交直线 于点 ,作 的平分线交直线 于点 , 和 交于点 .
(1)若 ,猜想 和 的位置关系,并证明;
(2)如图2,在(1)的基础上连接 ,则在点 的运动过程中,当满足 且 时,求 的度数.
28.如图1,直线 与直线 交于点 , .小明将一个含 的直角三角板 如图1所示放置,使顶点 落在直线 上,过点 作直线 交直线 于点 (点 在 左侧).
5.2平行线及其判定 培优训练-2020-2021学年人教版七年级数学下册
第五章相交线与平行线第2节《平行线及其判定》同步培优训练一、选择。
1.如图,下列条件:①,②,③,④,⑤中能判∠=∠∠+∠=∠=∠∠=∠∠=∠+∠13241804523623 l l的有( )断直线12A.5个B.4个C.3个D.2个2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 5.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .46.若a ⊥b ,c ⊥d ,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对 7.如图下列推断错误的是( )A .由12∠=∠,得AB CD ∥ B .由1324∠+∠=∠+∠,得AE CN ∥C .由56,∠=∠34∠=∠,得AB CD ∥ D .由SAB SCD ∠=∠,得AB CD ∥8.如图,在四边形ABCD中,点E在线段DC的延长线上,能使直线AD∥BC的条件有()(1)∠D=∠BCE,(2)∠B=∠BCE,(3)∠A+∠B=180°,(4)∠A+∠D =180°,(5)∠B=∠DA.1个B.2个C.3个D.4个9.如下图,在下列条件中,能判定AB//CD的是( )A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠410.如图,下列判断正确的是()A.∵∠1=∠2,∴DE∥BFB.∵∠1=∠2,∴CE∥AFC.∵∠CEF+∠AFE=180°,∴DE∥BFD.∵∠CEF+∠AFE=180°,∴CE∥AF二、填空。
平行线的性质与判定 解答题培优专练(原卷)
平行线的性质与判定解答题培优专练1.(2022春·浙江温州·七年级校考期中)如图1,直线AB∥CD,△ABE的顶点E在AB与CD 之间.(1)若∠ABE=150°,∠BAE=20°.△当△CDE=2△EDM时,求△BED的度数.△如图2,作出△CDE的角平分线DF,当DF平行于△ABE中的一边时,求△BED的度数.(2)如图3,△CDE的角平分线DF交EB的延长线于点H,连结BF,当△ABH=2△HBF,1 2∠BED+13∠F=40°时,求△CDE的度数.2.(2022春·浙江金华·七年级校联考期中)如图,直线PQ∥MN,一副直角三角板△ABC、△DEF 中,△ACB=△EDF=90°,△ABC=△BAC=45°,△DFE=30°,△DEF=60°.(1)若△DEF如图1摆放,当ED平分△PEF时,则△DFM=.(2)若图2中△ABC固定,将△DEF沿着AC方向平移,边DF与直线PQ相交于点G,作△FGQ 和△GF A的角平分线GH、FH相交于点H(如图3),求△GHF的度数.(3)若图2中△DEF固定,(如图4)将△ABC绕点A顺时针旋转,1分钟转半圈,旋转至AC 与直线AN首次重合的过程中,当线段BC与△DEF的一条边平行时,请直接写出旋转的时间.(单位必须化成秒)3.(2022春·浙江金华·七年级校联考阶段练习)如图1,已知MN∥PQ,,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分△ADC,BE平分△ABC,直线DE,BE交于点E,△CBN=120°.(1)若△ADQ=100°,求△BED的度数;(2)在图1中过点D作△ADQ的角平分线与直线BE相交于点F,如图2,试探究△DEB与△DFE 的关系;(3)若改变线段AD的位置,使得点D在点C的左侧,其他条件不变,若△ADQ=n°,过点D 作△PDA的角平分线与直线BE相交于点G,求△BED+△DGE的和是多少度?(用含n的代数式表示)4.(2022春·浙江湖州·七年级统考期末)长江汛期即将来临,为了便于夜间查看江水及两岸河堤的情况,防汛指挥部在一危险地带两岸各安置了一探照灯(如图1),假定这一带长江两岸河堤是平行的,即PQ∥MN,连结AB,且∠ABN=45°.灯A射线自AQ顺时针旋转至AP便立即回转,灯B射线自BM顺时针旋转至BN便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是1度/秒,灯B转动的速度是3度/秒.(1)若两灯同时转动,在灯B射线第一次转到BN之前,两灯射出的光线交于点C.△如图1,当两灯光线同时转动50秒时,求∠ABC的度数.△如图2,过C作CD⊥BC交PQ于点D,则在转动过程中,求∠ABC与∠ACD的比值,并说明理由.(2)若灯A射线先转动30秒,灯B射线才开始转动,在灯A射线第一次转到AP之前,B灯转动几秒,两灯的光线互相平行?5.(2021春·浙江衢州·七年级校考期中)如图1,将一副直角三角板放在同一条直线AB上,它们的一边分别与直线AB重合,其中△ONM=30°,△OCD=45°,将图1中的三角板OMN 绕点O按每秒15°的速度沿逆时针方向旋转α°.(0°<α°<180°).(1)当△AOM=105°时,求旋转角的度数.(2)当两块三角板中至少有一组边互相平行时,求旋转的时间.(3)将图1中的三角板OMN绕点O按逆时针方向旋转得到图2,MN与CD相交于点E,若△CEN=β°时,试探究α与β的数量关系,并直接写出结论.6.(2022春·浙江金华·七年级统考期末)如图,已知AB∥CD,直线MN交AB于点M,交CD于点N.点E是线段MN上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分△MPE,QF平分△CQE.(1)如图1,若PE△QE,△EQN=64°,则△MPE=°,△PFQ=°.(2)如图2,求△PEQ与△PFQ之间的数量关系,并说明理由.(3)如图3,当PE△QE时,若△APE=150°,△MND=110°,过点P作PH△QF交QF的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为M′N,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△F′PH′,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线M′N恰好平行于△F′PH′的一条边,请直接写出所有满足条件的t的值.7.(2022春·浙江嘉兴·七年级校考期中)如图1,点O为直线AB上一点,过点O作射线OC,使△AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中△OMN=30°.(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在△BOC的内部,且恰好平分△BOC,求△CON的度数;(2)将图1中的三角尺绕点O按每秒6°的速度绕点O沿顺时针方向旋转一周,OC也以每秒1°的速度绕点O顺时针方向旋转,当三角尺停止运动时,OC也停止运动.△在旋转的过程中,问运动几秒时,边MN恰好与射线OC平行;△将图1中的三角尺绕点O顺时针旋转至图3,使ON在△AOC的内部,请探究△AOM与△NOC 之间的数量关系(直接写出结果).8.(2022春·浙江台州·七年级校联考阶段练习)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分△AEF交CD于点M,且△FEM=△FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分△FEG交CD于点H,过点H作HN△EM于点N,设△EHN=α,△EGF=β.△当点G在点F的右侧时,若β=56°,求α的度数;△当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.9.(2021春·浙江绍兴·七年级校考阶段练习)已知直线l1∥l2,直线l3,l4分别与l1,l2交于点B,F和A,E,点P是直线l3上一动点(不与点B,F重合),设△BAP=△1,△PEF=△2,△APE=△3.(1)如上图,当点P在B,F两点之间运动时,试确定△1,△2,△3之间的关系,并给出证明;(2)当点P在B,F两点外侧运动时,试探究△1,△2,△3之间的关系,画出图形,给出结论,不必证明.10.(2022春·浙江衢州·七年级统考期末)已知△ABC与△ADE共顶点A,∠BAC=∠DAE=90∘,顶点B和C在直线l1上(点B在点C的左侧),顶点D和E在直线l2上(点D在点E的左侧),且直线l1∥l2.(1)如图1,顶点A在l1与l2之间,判断△BAD与∠ABC+∠ADE是否相等,并说明理由.(2)如图2,顶点A在l1与l2之间,△ABC的外角平分线与△AED的角平分线交于点F,若∠BAD=70∘,求△BFE的度数.(3)若顶点A在直线l2的下方,且顶点B、A、D不在一条直线上,△ABC的外角平分线与△AED 的角平分线交于点F,记∠BAD=α,∠BFE=β,请探究α与β的数量关系,并直接写出结论.11.(2022春·浙江金华·七年级统考期末)如图,AB、CD被AC所截,AB∥CD,△CAB=108°,点P为直线AB上一动点(不与点A重合),连CP,作△ACP和△DCP的平分线分别交直线AB于点E、F.(1)当点P在点A的右侧时△若△ACP=36°,则此时CP是否平分△ECF,请说明理由.△求△ECF的度数.(2)在点P运动过程中,直接写出△APC与△AFC之间的数量关系.12.(2022春·浙江湖州·七年级统考期末)如图1,已知直线AB∥CD,∠CMN=60∘,射线ME 从MD出发,绕点M以每秒a度的速度按逆时针方向旋转,到达MC后立即以相同的速度返回,到达MD后继续改变方向,继续按上述方式旋转;射线NF从NA出发,绕点N以每秒b度的速度按逆时针方向旋转,到达NB后停止运动,此时ME也同时停止运动.其中a,b满足方程组{4a+b=173a−2b=10.(1)求a,b的值;(2)若NF先运动30秒,然后ME一起运动,设ME运动的时间为t,当运动过程中ME∥NF时,求t的值;(3)如图2,若ME与NF同时开始转动,在ME第一次到达MC之前,ME与NF交于点P,过点P 作PQ⊥ME于点P,交直线AB于点Q,则在运动过程中,若设∠NME的度数为m,请求出∠NPQ 的度数(结果用含m的代数式表示).13.(2022春·浙江绍兴·七年级统考期末)已知AB△CD,(1)如图1,若△ABE=160°,△CDE=120°,求△BED的度数;(2)如图2,若BF平分△ABE,DF平分△CDE,则△BFD与△BED有怎样的数量关系,并说明理由;(3)如图3,若BF平分△ABE,DF平分△CDE,则△BFD与△BED有怎样的数量关系,并说明理由.14.(2022春·浙江宁波·七年级校考期中)如图,直线PQ∥MN,一副三角尺(∠ABC=∠CDE= 90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°)按如图△放置,其中点E在直线PQ 上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数.(2)如图△,若将三角形ABC绕点B以每秒2度的速度按逆时针方向旋转(A,C的对应点分别为F,G),设旋转时间为t(s)(0≤t≤90).△在旋转过程中,当BG∥CD时,求t的值.△若在三角形ABC绕点B旋转的同时,三角形CDE绕点E以每秒1度的速度按顺时针方向旋转(C,D的对应点为H,K),请直接写出当BG∥HK时t的值.15.(2022春·浙江金华·七年级校考期中)(1)如图1,点E在BC上,△A=△D,△ACB=△CED.请说明AB∥CD的理由.(2)如图2,AB∥CD,BG平分△ABE,与△EDF的平分线交于H点,若△DEB比△DHB大60°.求△DEB的度数.(3)保持(2)中所求的△DEB的度数不变,如图3,AB∥CD,BM平分△EBK,DN平分△CDE,作BP∥DN,则△PBM的度数是否改变?若不变,请直接写出△PBM的度数;若改变,请说明理由.16.(2022春·浙江湖州·七年级校联考阶段练习)(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°,求∠EPF的度数;(提示:过点P作PQ∥AB)(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.17.(2022春·浙江宁波·七年级校联考期末)如图△,AB,BC被直线AC所截,点D是线段AC 上的点,过点D作DE∥AB,连接AE,∠B=∠E=60°.(1)请说明AE∥BC;(2)将线段AE沿着直线..AC平移得到线段PQ,连接DQ.△.如图△,当DE⊥DQ时,则∠Q的度数=_____________;△.在整个运动中,当∠Q=2∠EDQ时,∠Q=_____________.18.(2022春·浙江宁波·七年级校考期中)如图,直线CD//EF,点A、B分别在直线CD、EF上(自左向右分别为点C、A、D和点E、B、F),△ABF=60°,射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者均停止运动,设旋转时间为x秒.(1)如图1,直接写出下列答案:△△BAD的度数是;△当旋转时间x= 秒时,射线BN过点A.(2)如图2,若AM∥BN,求此时对应的旋转时间x的值.(3)若两条射线AM和BN所在直线交于点P,△如图3,若点P在CD与EF之间,且△APB=126°,求旋转时间x的值;△若旋转时间x<24,求△APB的度数(用含x的代数式表示).19.(山西省忻州市代县2021-2022学年七年级下学期期末数学试题)如图1,AB∥CD,点E 为直线AB,CD外一点.(1)若AE⊥AB,∠C=65°,求出△E的度数.(2)如图2,点F在BA的延长线上,连接BE,EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,求∠BEF的度数:(3)如图3,在(2)的条件下,过点F作∠BFG=∠BFE,交EC的延长线于点G,延长EF 交CD于点H,过点F作FI∥BE交CD于点I.当FH平分∠IFG时,请直接写出∠CHF的度数.20.(山东省日照市岚山区2021-2022学年七年级下学期期末考试数学试题)(1)阅读下面材料:已知:如图1,AB∥CD,E为AB,CD之间一点,连接AE,CE,得到∠AEC.求证:∠AEC+∠A+∠C=360°.解答过程如下,并请你在括号内填写推理的依据:过点E作EF∥AB,则有∠AEF+∠A=180°(______).△AB∥CD,△EF∥CD(______).△∠FEC+∠C=180°(______).△∠AEF+∠A+∠FEC+∠C=360°,又△∠AEC=∠AEF+∠FEC△∠AEC+∠A+∠C=360°.假若将具有图1特征的图形称为“平行凸折线”,“平行凸折线”的性质可以表述如下:若AB∥CD,E为AB,CD之间一点,则有∠AEC+∠A+∠C=360°(2)已知:直线m∥n,点A,B在直线m上,点C,D在直线n上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.△如图2,当点D在点C的左侧时,若∠ADC=80°,∠BED=160°,请你结合(1)中“平行凸折线”的性质,求∠ABC的度数;△如图3,当点D在点C的右侧时,设∠ABC=α,∠ADC=β,请直接写出∠BED的度数(用含有α,β的式子表示).21.(江苏省江阴市周庄中学2021-2022学年七年级下学期3月限时作业数学试题)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有△1=△2,△3=△4,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线a与水平线OC的夹角为42°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.△BAF=110°,△DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.22.(2021春·浙江·七年级阶段练习)如图1,已知AB△CD,△B=30°,△D=120°;(1)若△E=60°,则△F=;(2)请探索△E与△F之间满足的数量关系?说明理由;(3)如图2,已知EP平分△BEF,FG平分△EFD,反向延长FG交EP于点P,求△P的度数.23.(2022春·浙江台州·七年级台州市书生中学校考期中)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯,便于夜间查看道路安全情况,如图,灯A射线AM′自AM顺时针旋转至AN便立即回转,灯B射线BQ′自BQ顺时针旋转至BP便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足√5−a+|b−a+3|=0,假定主道路的两边是平行的,即PQ△MN.(1)求a、b的值;(2)若灯B的射线BQ′先转动30秒,灯A的射线AM′才开始转动,在射线BO′到达BP之前,射线AM′转动几秒,两灯的光束互相平行?(3)若灯A、B的射线AM′,BQ′同时转动t秒,在射线BQ′到达BP之前,记射线AM′与BQ′交于点H,若两束光束垂直,求t的值.24.(2021春·浙江·七年级专题练习)问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG (△EFG=90°,△EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若△2=2△1,求△1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明△AEF与△FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则△CFG等于______(用含α的式子表示).25.(2021春·浙江衢州·七年级浙江省衢州市衢江区实验中学校考开学考试)将一副三角板中的两个直角顶点C叠放在一起(如图△),其中△A=30°,△B=60°,△D=△E=45°.(1)猜想△BCD与△ACE的数量关系,并说明理由;(2)若△BCD=4△ACE,求△BCD的度数;(3)若按住三角板ABC不动,绕顶点C转动三角DCE,试探究△BCD等于多少度时CE△AB,并简要说明理由.26.(2022春·浙江金华·七年级义乌市绣湖中学教育集团校联考阶段练习)如图,直线MN//PQ,将一副三角板中的两块直角三角板如图1放置,△ACB=△EDF=90°,△ABC=△BAC=45°,△DFE=30°,△DEF=60°,此时点A与点E重合.(1)对于图1,固定△ABC的位置不变,将△DEF绕点E按顺时针方向进行旋转,旋转至DE与BC首次平行,如图2所示,求此时△F AC的度数.(2)对于图1,固定△ABC的位置不变,将△DEF沿AC方向平移至点F正好落在直线MN上,再将△DEF绕点F按顺时针方向进行旋转,如图3所示.△若边EF与边BC交于点G,试判断△BGF﹣△EFN的值是否为定值,若是定值,则求出该定值,若不是定值,请说明理由;△对于图3,固定△ABC的位置不变,将△DEF绕点F顺时针方向以每秒10°的速度进行旋转,当EF与直线MN首次重合时停止运动当经过t秒时,线段DE与△ABC的一条边平行,求满足条件的t的值.27.(2020春·浙江杭州·七年级统考期末)问题情境:如图1,已知AB△CD,∠APC=108°.求∠PAB+∠PCD的度数.经过思考,小敏的思路是:如图2,过P作PE△AB,根据平行线有关性质,可得∠PAB+∠PCD=360°−∠APC=252°.问题迁移:如图3,AD△BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.(1)当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由.(2)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.(3)问题拓展:如图4,MA1△NA n,A1−B1−A2−⋯−B n−1−A n是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为.28.(2020春·浙江宁波·七年级统考期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图,直接写出∠A和∠C之间的数量关系.(2)如图,过点B作BD⊥AM于点D,求证:∠ABD=∠C.(3)如图,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF那平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.29.(2021春·浙江金华·七年级统考期末)如图1,在△ABC中,△B=65°,△BAC=75°,D 为AC边上一点,分别过点A、D作BC、AB的平行线交于点E.(1)求△E的度数.(2)点P为直线AC上的一个动点,过点P作PF△AE,且PF=AE,连DF.△如图2,当点P在点C的右侧,且△PFD=25°时,判断DE与DF的位置关系,并说明理由.△在整个运动中,是否存在点P,使得△PFD=2△EDF?若存在,请求出△PFD的度数,若不存在,请说明理由.30.(2021春·浙江宁波·七年级统考期末)如图,直线CD//EF,点A,B分别在直线CD,EF上(自左向右分别为点C,A,D和点E,B,F),∠ABF=60°.射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者均停止运动,设旋转时间为x秒.(1)如图1,直接写出下列答案:△∠BAD的度数是______.△当旋转时间x=______秒时,射线BN过点A.(2)如图2,若AM//BN,求此时对应的旋转时间x的值.(3)若两条射线AM和BN所在直线交于点P.△如图3,若点P在CD与EF之间,且∠APB=126°,求旋转时间x的值.△若旋转时间x<24,求∠APB的度数(直接写出用含x的代数式表示的结果).。
浙教版2022-2023学年七下数学第一章 平行线 培优测试卷(解析版)
浙教版2022-2023学年七下数学第一章平行线培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,在长为xm,宽为ym的长方形草地ABCD中有两条小路l1和l2、l1为W状,l2为平行四边形状,每祭小路的右边线都是由小路左边线右移1m得到的两条小路l1、l2的占地面积的情况是()A.l1占地面积大B.l2占地面积大C.l2和l1占地面积一样大D.无法确定【答案】C【解析】小路l2可看作高为y,底为2的平行四边形,由平行四边形面积公式S=ah,则面积为:S2=2y;小路l1可看作四个小的平行四边形组成,小平行四边形的底可看作2,所有小平行四边形的高之和为y,由平行四边形面积公式S=ah,则面积为:S1=2y;则S1=S2,故答案为:C.2.下列说法中:①在同一平面内,不相交的两条线段一定平行;②两条直线被第三条直线所截,同位角相等;③相等的角是对顶角;④等角的补角相等,不正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】①在同一平面内,不相交的两条线段一定平行,判断错误;②两条直线被第三条直线所截,同位角相等,判断错误;③相等的角是对顶角,判断错误;④等角的补角相等,判断正确.故答案为:C.3.如图,直线a,b被直线c所截,下列说法不正确的是()A.∠1与∠2是内错角B.∠3与∠4是同旁内角C.∠2与∠5是同位角D.∠2与∠4是内错角【答案】A【解析】∵∠1和∠2是对顶角,不是内错角,∴A选项不正确,符合题意.故答案为:A.4.图,点A,B,E共线,下列条件中不能判断AD∥BC的是()A.∠1=∠2B.∠A=∠5C.∠3=∠4D.∠A+∠ABC=180°【解析】A 、∠1=∠2可利用内错角相等,两直线平行判定AD∠BC ,故此选项不符合题意; B 、∠A =∠5可利用同位角相等,两直线平行判定AD∠BC ,故此选项不符合题意; C 、∠3=∠4,可根据内错角相等,两直线平行判定CD∠BA ,不能判定AD∠BC ,故此选项符合题意; D 、∠A +∠ABC =180°可利用同旁内角互补,两直线平行判定AD∠BC ,故此选项不符合题意; 故答案为:C .5.如图.已知AB//CD .直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF .若∠1=50°.则∠2的度数为( )A .50°B .65°C .60°D .70° 【答案】B【解析】∵AB∠CD ,∴∠1+∠BEF=180°,∠2=∠BEG , ∴∠BEF=180°-50°=130°, 又∵EG 平分∠BEF , ∴∠BEG=12∠BEF=65°,∴∠2=65°. 故答案为:B.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )A .52°B .38°C .42°D .60°【答案】A 【解析】【解答】如图:∠3=∠2=38°(两直线平行同位角相等), ∴∠1=90°﹣∠3=52°, 故选A .7.如图,直线c 与直线a 相交于点A ,与直线b 相交于点B , ∠1=130∘ , ∠2=60∘ ,若要使直线 a ∥b ,则将直线a 绕点A 按如图所示的方向至少旋转( )A .10∘B .20∘C .60∘D .130∘【答案】A【解析】∵∠2=60°,∴若要使直线a∠b ,则∠3应该为60°, 又∵∠1=130°,∴直线a绕点A按顺时针方向至少旋转:60°−50°=10°,故答案为:A.8.如图,直线AB//CD,将含有45°角的三角板EFP的直角顶点F放在直线CD上.顶点E放在直线AB上,若∠1=28°,则∠2的度数为()A.45°B.17°C.25°D.30°【答案】B【解析】过点P作PM∠AB,∵AB∠CD,∴AB∠PM∠CD,∴∠3=∠1=28∘,∵∠EPF=45∘,∴∠2=∠4=∠EPF−∠3=45∘−28∘=17∘.故答案为:B.9.如图,ΔABC是直角三角形,它的直角边AB=6,BC=8,将ΔABC沿边BC的方向平移到ΔDEF的位置,DE交AC于点G,BE=2,ΔCEG的面积为13.5,下列结论:①ΔABC平移的距离是4:②DG=1.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④【答案】B【解析】∵直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,①∵BE=2,∴三角形ABC平移的距离是2,故①不符合题意,②∵ΔABC沿边BC的方向平移到ΔDEF的位置,BC=8,BE=2,∴BE=BC−BE=6,DE=AB=6,∵ΔCEG的面积为13.5,且ΔCEG是直角三角形,∴GE=4.5,∴DG=DE−GE=1.5,故②符合题意,③∵ΔABC沿边BC的方向平移到ΔDEF的位置,ΔABC是直角三角形,∴∠ B=∠ DEC=90°, ∴AD∠CF , 故③符合题意,④四边形ADFC 的面积=2×6=12. 故④不符合题意, 故答案为:B .10.如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角∠1与折射角∠2的度数比为3∠2.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为α,β,在液体中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为( )A .23 (α+β)=γB .23 (α+β)=120°-γC .α+β=γD .α+β+γ=180° 【答案】B【解析】如图2,分别作出两条入射关系的法线并延长,与折线的夹角分别为∠1和∠2,再过γ角的顶点作法线的平行线,夹角分别为∠3和∠4,∴∠1=∠3,∠2=∠4, ∴γ=∠1+∠2①,又∵入射角与折射角的度数比为3:2, ∴∠1=23(90°-α),∠2=23(90°-β),∴γ=23(90°-α)+23(90°-β)=23(180°-α-β),∴γ=120°-23(α+β),即23(α+β)=120°-γ.故答案为:B.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在同一平面内,三条互不重合的直线 a 、 b 、 c ,若 a ∠ b , a ∠ c ,则 . 【答案】b ∠ c【解析】∵a∠b ,a∠c ∴b∠c12.如图所示,能与∠1构成同位角的角有 个.【答案】3【解析】由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个.13.如图,在直线AB外取一点C,经过点C作AB的平行线,这种画法的依据是.【答案】同位角相等,两直线平行【解析】如图,由图形痕迹可得∠BDE=∠CEF,则根据同位角相等,两直线平行可判断经过点C的直线与AB平行.故答案为:同位角相等,两直线平行.14.如图,在三角形ABC中,AB=2BC=4cm.把三角形ABC沿AB方向平移1cm,得到三角形A1B1C1,连接CC1,则四边形BB1C1C的周长为cm.【答案】6【解析】根据平移的性质可:BC=B′C′,CC′=BB′,∵平移的距离为1cm,∴CC′=BB′=1cm,∵2BC=4cm,∴BC=2cm,∴BC=B′C′=2cm,∴四边形BB′C′C的周长为:BC+B′C′+CC′+BB′=2+2+1+1=6cm,故答案为:6.15.如图,已知直线a∥b,c∥d,若∠1、∠2是图中的两个角,且这两个角的两边分别平行,∠1=(2x−3)°,∠2=(3x−17)°,则x值为.【答案】14或40【解析】如图,∵c ∥d ,∴∠1+∠2=180°,∴(2x -3)°+(3x -17)°=180°, 解得:x =40, 如图,∵a ∥b ,c ∥d ,∴∠2+∠3=180°,∠1+∠3=180°, ∴∠1=∠2,∴(2x -3)°=(3x -17)° 解得:x=14综上:x 的值为:14或40 故答案为:14或40 16.如图,AD //BC ,点P 是射线BC 上一动点,且不与点B 重合.AM 、AN 分别平分∠BAP 、∠DAP ,∠B =α,∠BAM =β,在点P 运动的过程中,当∠BAN =∠BMA 时,12α+2β= .【答案】90°【解析】∵AD//BC∴∠BMA=∠DAM ,∠B+∠BAD=180° ∵AM 平分∠BAP ,∴∠BAM=∠MAP=12∠BAP ,∵AN 平分∠DAP ,∴∠DAN=∠NAP=12∠DAP ,∵∠BAN=∠BMA∴∠DAM=∠BAN∵∠BAM=∠BAN−∠MAN,∠DAN=∠DAM−∠MAN ∴∠BAM=∠DAN∴∠BAM=14∠BAD∵∠B=α,∠BAM=β∴∠BAM=14∠BAD=β∴∠BAD=4β∴α+4β=180°∴12α+2β=90°故答案为:90°.三、解答题(本题有8小题,第17~20题每题7分,第21题8分,第22~24题每题10分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,AD⊥BC于点D,EF⊥BC于点F,且∠1+∠3=180°.(1)试判断DG与AC的位置关系,并说明理由.(2)若∠3=3∠2,求∠C的度数.【答案】(1)解:如图,DG//AC理由:∵AD⊥BC,EF⊥BC∴AD//EF∴∠4+∠3=180°∵∠1+∠3=180°∴∠1=∠4∴DG//AC(2)解:∵AD⊥BC∴∠1+∠2=90°∵∠3=3∠2∴∠1+∠3=∠1+3∠2=180°∴∠2=45°由(1)得DG//AC∴∠C=∠2=45°18.如图,在∠ABC中,D,E,F分别是三边上的点,且DE平分∠ADF,∠ADF=2∠DFB.(1)判断DE与BC的位置关系,并说明理由.(2)若EF∠AB,∠DFE=3∠CFE,求∠ADE的度数.【答案】(1)证明:DE与BC的位置关系为:DE∠BC.理由:∵DE平分∠ADF,∴∠ADF=2∠EDF,∵∠ADF=2∠DFB,∴∠EDF=∠DFB,∴DE∠BC.(2)解:∵EF∠AB,∴∠CFE=∠B,设∠CFE=∠B=x,∵DE∠BC,DE平分∠ADF,∴∠DFB=∠EDF=∠ADE=x,∵∠DFB+∠DFE+∠CFE=180°,∴x+3x+x=180°,解之:x=36°,∴∠ADE的度数36º.19.如图,由若干个小正方形构成的网格中有一个△ABC,△ABC的三个顶点都在格点上,按要求进行下列作图:(只借助于网格,需写出结论)∠过点B画出AC的平行线BD;∠画出先将△ABC向右平移2格,再向上平移3格后的△A ′B ′C ′.【答案】解:(1)BD就是所求作的图形(2)∠A'B'C'即为所求作图形.20.如图,∠ABC和∠BCD的平分线交于点P,延长CP交AB于点Q,且∠PBC+∠PCB=90°(1)求证:AB//CD.(2)探究∠PBC与∠PQB的数量关系.【答案】(1)证明:∵BP平分∠ABC,∴∠ABC=2∠PBC.∵CP平分∠BCD,∴∠BCD=2∠PCB,∴∠ABC+∠BCD=2∠PBC+2∠PCB又∵∠PBC+∠PCB=90∘∴∠ABC+∠BCD=180∘∴AB//CD.(2)解:∵CP平分∠DCB,∴∠PCD=∠PCB.∵AB//CD,∴∠PCD=∠PQB,∴∠PCB=∠PQB.又∵∠PBC+∠PCB=90∘∴∠PBC+∠PQB=90°21.如图,MN∠BC,BD∠DC,∠1=∠2=60°,DC是∠NDE的平分线.(1)AB与DE平行吗?请说明理由;(2)试说明:∠ABC=∠C;(3)求∠ABD的度数.【答案】(1)解:AB∠DE,理由如下:∵MN∠BC,∠1= 60°,∴∠ABC=∠1=60°,又∵∠1=∠2,∴∠ABC=∠2,∴AB∠DE(2)解:∵MN∠BC,∴∠NDE+∠2= 180°,∴∠NDE=180°-∠2= 180°-60°=120°,∵DC是∠NDE的角平分线,∴∠EDC=∠NDC=12∠NDE=60°,∵MN∠BC,∴∠C=∠NDC=60°,∴∠ABC=∠C(3)解:∵∠ADC+∠NDC=180°,∠NDC= 60°,∴∠ADC=180°-∠NDC=180°-60°=120°,∵BD∠DC,∴∠BDC= 90°,∴∠ADB=∠ADC-∠BDC=120°-90°=30°,∵MN∠BC,∴∠DBC=∠ADB=30°,∵∠ABC=∠C=60°,∴∠ABD=30°22.已知,∠AOB=90°,点C在射线OA上,CD//OE.(1)如图1,若∠OCD=120°,求∠BOE的度数;(2)把“ ∠AOB=90°°”改为“ ∠AOB=120°”,射线OE沿射线OB平移,得到O′E,其它条件不变(如图2所示),探究∠OCD,∠BO′E的数量关系;(3)在(2)的条件下,作PO′⊥OB,垂足为O′,与∠OCD的角平分线CP交于点P,若∠BO′E=α,用含α的式子表示∠CPO′(直接写出答案).【答案】(1)解:∵CD//OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°(2)解:如图2,过O点作OF//CD,∴CD//OE,∴OF∠OE,∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,∴∠OCD+∠BO'E=240°(3)30°+ 1 2α【解析】(3)如图,∵CP是∠OCD的平分线,∴∠OCP= 12∠OCD,∴∠CPO'=360°-90°-120°-∠OCP=150°-12∠OCD=150°-12(240°-∠BO'E)=30°+ 12α23.已知AB//CD,(1)如图1,若∠ABE=160°,∠CDE=120°,求∠BED的度数;(2)如图2,若BF平分∠ABE,DF平分∠CDE,则∠BFD与∠BED有怎样的数量关系,并说明理由;(3)如图3,若BF平分∠ABE,DF平分∠CDE,则∠BFD与∠BED有怎样的数量关系,并说明理由.【答案】(1)解:延长AB交DE于点F.∵∠ABE+∠EBF=180°,∴∠EBF=20°.∵AB//CD,∴∠CDE=∠BFE=120°.∵∠EBF+∠BED+∠BFE=180°,∴∠BED=180°−20°−120°=40°.(2)解:∠BED=2∠BFD.理由:延长AB交FD于点N,交DE于点M.∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE.∵AB//CD,∴∠CDF=∠ANF,∠AME=∠CDE.∵∠E=180°−∠BME−∠EBM=180°−∠CDE−(180°−∠ABE)=∠ABE −∠CDE ,又∵∠F =∠ABF −∠ANF=∠ABF −∠CDF=12∠ABE −12∠CDE =12(∠ABE −∠CDE),∴∠E =2∠F .即∠BED =2∠BFD .(3)解:∠BED +2∠BFD =360°理由:过点F 作FM//AB ,过点E 作EN//CD .∵BF 平分∠ABE ,DF 平分∠CDE ∴∠ABF =∠FBM =12∠ABE ,∠CDF =∠FDE =12∠CDE .∵FM//AB ,EN//CD ,AB//CD ,∴AB//FM//EN//CD , ∴∠BFM =∠ABE ,∠MFD =∠CDF ,∴∠BFD =12(∠ABE +∠CDE) ∵∠BFD +∠FBE +∠FDE +∠BED =360°, ∴∠BED +∠BFD +12(∠ABE +∠CDE)=360°, ∴∠BED +2∠BFD =360°.24.已知,直线AB//DC ,点P 为平面内一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,若∠BAP =50°,∠DCP =20°,求∠APC 的度数. (2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.(3)如图3,点P 在直线AB 、CD 下方,∠BAP 与∠DCP 的角平分线相交于点K ,直接写出∠AKC 与∠APC 之间的数量关系.【答案】(1)解:如图1,过P 作PE//AB ,∵AB//CD ,∴PE//AB//CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴∠APC =∠APE +∠CPE =∠BAP +∠DCP =50°+20°=70°;(2)解:∠AKC=12∠APC.理由:如图2,过K作KE//AB,∵AB//CD,∴KE//AB//CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF//AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)解:∠AKC=12∠APC.理由:如图3,过K作KE∠AB,∵AB∠CD,∴KE∠AB∠CD.∴∠BAK=∠AKE,∠DCK=∠CKE.∴∠AKC=∠AKE−∠CKE=∠BAK−DCK.过P作PF∠AB,同理可得,∠APC=∠BAP−∠DCP.∵∠BAP与∠DCP的平分线交于点K,∴∠BAK−∠DCK=12∠BAP−12∠DCP=12(∠BAP−∠DCP)=12∠APC,∴∠AKC=12∠APC.。
18.平行线分线段成比例九年级数学下册培优训练含答案
平行线分线段成比例九年级数学下册 培优训练一、选择题1、如图,已知a ∥b ∥c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F.若AB BC =12,则DE EF =( ) A.13 B.12 C.23D .1 2、如图,已知AB ∥CD ∥EF ,那么下列结论中,正确的是( )A.CD EF =AC AEB.AC AE =BD DFC.AC BD =CE DFD.AC BD =DF CE3、如图,直线l 1∥l 2∥l 3,直线AC 与l 1,l 2,l 3分别交于点A ,B ,C ,直线DF 与l 1,l 2,l 3分别交于点D ,E ,F .若DE =3,EF =6,AB =4,则AC 的长是( )A .6B .8C .9D .124、如图,DE ∥BC ,则下列比例式错误的是( )A.AD BD =AE ACB.AD BD =AE ECC.AB BD =AC ECD.AD AB =AEAC5、如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE 6、如图,直线a ∥b ,AF ∶FB =3∶5,BC ∶CD =3∶1,则AE ∶EC 等于( )A .5∶12B .9∶5C .12∶5D .3∶2MN ,点M ,N 分别在线段AD ,BC 上,AC 与MN 交于点E ,则( )A .B .C .D .8、如图,直线l 1∥l 2∥l 3,直线AF 分别交l 1,l 2,l 3于点A ,D ,F ,直线BE 分别交l 1,l 2,l 3于点B ,C ,E ,两直线AF ,BE 相交于点O .若AD =DF ,OA =OD ,则EF AB = . 9、如图,已知一组平行线a //b //c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =2,BC =3,DE =l .6,则EF =( )A .2.4B .1.8C .2.6D .2.810、在△ABC 中,E 、F 是BC 边上的三等分点,BM 是AC 边上的中线,AE 、AF 分BM 为三段的长分别是x 、y 、z ,若这三段有x >y >z ,则x :y :z 等于( )A .3:2:1B .4:2:1C .5:2:1D .5:3:2二、填空题11、如图,已知123l l l ,直线4l 、5l 被这组平行线所截,且直线4l 、5l 相交于点E ,已知1AE EF ==,3FB =,则AC BD________.12、如图,△ABC 中,DE ∥FG ∥BC ,AD ∶DF ∶FB =2∶3∶4,若EG =4,则AC =________. =3BD ,AF =FD ,则AE :AC = .14、如图,在ABC中,DE∥BC,DF∥AC,如果32AEEC=,则CFBF=_______.15、如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.16、如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF=4.8,则DE的长为.17、已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.18、在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是.三、解答题19、如图所示,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,G,B及点C,H,D.已知AG=0.6 cm,BG=1.2 cm,CD=1.5 cm,求CH的长.、如图,在平行四边形ABCD中,点E为边BC上一点,联结AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F,32 DFFC=.(1)若BD=20,求BG 的长;(2)求CM CD 的值21、如图,已知AD ∥BE ∥CF ,它们依次交直线l 1、l 2于点A 、B 、C 和D 、E 、F .若52 EF DE ,AC =14, (1)求AB 的长.(2)如果AD =7,CF =14,求BE 的长.22、已知:如图,在△ABC 中,AB =AC ,且AG GD =AF FB ,EG ∥CD .求证:AE =AF .23、如图,在△ABC 中,点D 是AB 上的一点,过点D 作DE ∥BC 交边AC 于点E ,过点E 作EF ∥DC交AD 于点F.已知AD =2 6 cm ,AB =8 cm.求:(1)AE AC 的值;(2)AF AB 的值.24、规律探究题如图,AD 是△ABC 的中线,点E 在AC 上,BE 交AD 于点F .某数学兴趣小组在研究这个图形时得到如下结论:(1)当AF AD =12时,AE AC =13;(2)当AF AD =13时,AE AC =15;(3)当AF AD =14时,AE AC =17;…猜想:当AF AD =1n +1时,AE AC 的值为多少?并说明理由.平行线分线段成比例九年级数学下册 培优训练(答案)一、选择题1、如图,已知a ∥b ∥c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F.若AB BC =12,则DE EF =(B ) A.13 B.12 C.23D .1 2、如图,已知AB ∥CD ∥EF ,那么下列结论中,正确的是(C )A.CD EF =AC AEB.AC AE =BD DFC.AC BD =CE DFD.AC BD =DF CE3、如图,直线l 1∥l 2∥l 3,直线AC 与l 1,l 2,l 3分别交于点A ,B ,C ,直线DF 与l 1,l 2,l 3分别交于点D ,E ,F .若DE =3,EF =6,AB =4,则AC 的长是( )A .6B .8C .9D .12[解析] D ∵l 1∥l 2∥l 3,∴AB BC =DE EF ,即4BC =36,∴BC =8,∴AC =AB +BC =12,故选D . 4、如图,DE ∥BC ,则下列比例式错误的是( ) A.AD BD =AE AC B.AD BD =AE EC C.AB BD =AC EC D.AD AB =AE AC5、如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF相等的是(D ) A.AB EF B.CD EF C.BO OE D.BC BE6、如图,直线a ∥b ,AF ∶FB =3∶5,BC ∶CD =3∶1,则AE ∶EC 等于( )B .9∶5C .12∶5D .3∶2[解析] C ∵a ∥b ,∴AF BF =AG BD =35,设AG =3x ,BD =5x ,∵BC ∶CD =3∶1,∴CD =14BD =54x. ∵AG ∥CD ,∴AE EC =AG CD =3x 54x =125,故选C . 7、如图,AB ∥CD ∥MN ,点M ,N 分别在线段AD ,BC 上,AC 与MN 交于点E ,则( )A .B .C .D .【解析】∵ME ∥CD ,∴,∴.故选:D .8、如图,直线l 1∥l 2∥l 3,直线AF 分别交l 1,l 2,l 3于点A ,D ,F ,直线BE 分别交l 1,l 2,l 3于点B ,C ,E ,两直线AF ,BE 相交于点O .若AD =DF ,OA =OD ,则 .【解析】∵AD =DF ,OA =OD ,∴,∵l 1∥l 2∥l 3,AD =DF ,OA =OD ,∴,故答案为.9、如图,已知一组平行线a //b //c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =2,BC =3,DE =l .6,则EF =( A )A .2.4B .1.8C .2.6D .2.810、在△ABC 中,E 、F 是BC 边上的三等分点,BM 是AC 边上的中线,AE 、AF 分BM 为三段的长分别是x 、y 、z ,若这三段有x >y >z ,则x :y :z 等于( D )A .3:2:1B .4:2:1C .5:2:1D .5:3:2二、填空题11、如图,已知123l l l ,直线4l 、5l 被这组平行线所截,且直线4l 、5l 相交于点E ,已知1AE EF ==,3FB =,则AC BD__14_______.12、如图,△ABC 中,DE ∥FG ∥BC ,AD ∶DF ∶FB =2∶3∶4,若EG =4,则AC =________. [解析] ∵DE ∥FG ∥BC ,∴AE ∶EG ∶GC =AD ∶DF ∶FB =2∶3∶4.∵EG =4,∴AE =83,GC =163,∴AC =AE +EG +GC =12,故答案为12. 13、已知如图:CD =3BD ,AF =FD ,则AE :AC = .解:过点D 作DH ∥BE 交AC 于H ,∵DH ∥BE ,∴==1,==3,∴AE =EH ,CH =3EH ,∴AE :AC =1:5,故答案为:1:5.14、如图,在ABC 中,DE ∥BC ,DF ∥AC ,如果32AE EC =,则CF BF =_32________.15、如图,AD ∥BE ∥FC ,它们依次交直线l 1、l 2于点A 、B 、C 和点D 、E 、F ,如果=,DF =7.5,那么DE 的长为 .解:∵AD ∥BE ∥FC ,∴=, ∵=,DF =7.5,∴=,解得:DE =3,故答案为:3. 16、如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE 的长为 3.6 .17、已知:△ABC 中,D 为BC 的中点,E 为AB 上一点,且BE =AB ,F 为AC 上一点,且CF =AC ,EF 交AD 于P ,则EP :PF = .18、在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE 平分∠ABC 交AC 于点E ,连结CD 交BE 于点O .若AC =8,BC =6,则OE 的长是 .三、解答题19、如图所示,直线l 1∥l 2∥l 3,另两条直线分别交l 1,l 2,l 3于点A ,G ,B 及点C ,H ,D .已知AG =0.6 cm ,BG =1.2 cm ,CD =1.5 cm ,求CH 的长. 解:∵l 1∥l 2∥l 3,∴AG BG =CH DH. ∵AG =0.6 cm ,BG =1.2 cm ,CD =1.5 cm ,设CH =x cm ,则DH =(1.5-x)cm ,∴0.61.2=x 1.5-x, 解得x =0.5,即CH =0.5 cm .20、如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长交DC 的延长线于点M ,交BD于点G ,过点G 作GF ∥BC 交DC 于点F ,32DF FC . (1)若BD=20,求BG 的长;(2)求CM CD的值解:(1) ∵GF ∥BC , ∴DF DG FC BG =, ∵BD=20,32DF FC =, ∴8BG = ; (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴DM DG AB BG =, ∴32DM AB =, ∴32DM CD =, ∴12CM CD =.21、如图,已知AD ∥BE ∥CF ,它们依次交直线l 1、l 2于点A 、B 、C 和D 、E 、F .若,AC =14, (1)求AB 的长.(2)如果AD =7,CF =14,求BE 的长.【解析】(1)∵AD ∥BE ∥CF ,∴,∴, ∵AC =14,∴AB =4,(2)过点A 作AG ∥DF 交BE 于点H ,交CF 于点G ,如图所示:又∵AD ∥BE ∥CF ,AD =7,∴AD =HE =GF =7,∵CF =14,∴CG =14﹣7=7, ∵BE ∥CF ,∴,∴BH =2, ∴BE =2+7=9.22、已知:如图,在△ABC 中,AB =AC ,且AG GD =AF FB ,EG ∥CD .求证:AE =AF .证明:∵EG ∥CD ,∴AG GD =AE EC . 又∵AG GD =AF FB ,∴AE EC =AF FB ,∴AE AE +EC =AF AF +FB, 即AE AC =AF AB. ∵AB =AC ,∴AE =AF.23、如图,在△ABC 中,点D 是AB 上的一点,过点D 作DE ∥BC 交边AC 于点E ,过点E 作EF ∥DC交AD 于点F.已知AD =2 6 cm ,AB =8 cm.求:(1)AE AC 的值;(2)AF AB 的值.解:(1)∵DE∥BC,∴AEAC=AD AB.∵AD=26,AB=8,∴AEAC=268=64.(2)∵EF∥DC,∴AFAD=AEAC=64,即AF26=64. 解得AF=3. ∴AFAB=38.24、规律探究题如图,AD是△ABC的中线,点E在AC上,BE交AD于点F.某数学兴趣小组在研究这个图形时得到如下结论:(1)当AFAD=12时,AEAC=13;(2)当AFAD=13时,AEAC=15;(3)当AFAD=14时,AEAC=17;…猜想:当AFAD=1n+1时,AEAC的值为多少?并说明理由.解:猜想:当AFAD=1n+1时,AEAC=12n+1.理由如下:如图,过点D作DG∥BE,交AC于点G,则AEAG=AFAD=1n+1,∴AEEG=1n,EG=nAE.∵AD是△ABC的中线,BE∥DG,∴CG=EG=nAE,AC=(2n+1)AE,∴AEAC=1.。
专题训练 平行线培优习题
C. 45° D. 30°
5、如图8所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=度。
6、如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=_________.
7、(2015•绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.
14
(
(
15、如图5,ABCD是正方形,点G是BC上的任意一点, 于E, ,交AG于F.
求证: .
16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度。
专题训练平行线培优习题
一、基础过关
1、(2011四川泸州)如图,∠1与∠2互补,∠3=135°,则∠4 的度数是( )
A.4 5°B.55°C.65°D.75°
2、如图,直线l1∥l2,∠1=55°,∠2=65°则∠3 = _______________.
3、下列四个图形中 大于 的是( )
4、将一副三角板按图中的方式叠放,则∠ 等于
17、如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AD,∠B=60°,DE⊥AC于点E,已知该梯形的高为 .(1)求证: ∠ACD=30°;(2)DE的长度.
18、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
(C)若∠MON=90°,则MN与⊙O相切
(D)l1和l2的距离为2
七年级下册 相交线与平行线 培优训练(含答案)
七年级下册相交线与平行线培优训练1.如图,若∠1=∠2,∠A=∠3.则可以推出AC∥DE.请完成下面的推理过程:因为∠1=∠2,所以AB∥所以∠A=∠4又因为∠A=∠3,所以∠3=∠所以AC∥DE2.如图,已知∠1=∠BDE,∠2+∠3=180°(1)证明:AD∥EF.(2)若DA平分∠BDE,FE⊥AF于点F,∠1=40°,求∠BAC的度数.3.如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠BAE=∠DCF.(1)求证:AE=CF;(2)连结AF、EC,若AE=AF,试猜想四边形AECF是什么四边形,并证明你的结论.4.【问题原型】如图①,AB∥CD,点M在直线AB、CD之间,则∠M=∠B+∠D,小明解决上述问题的过程如下:如图②,过点M作MN∥AB则∠B=()∵AB∥CD,(已知)MN∥AB(辅助线的做法)∴MN∥CD()∴∠=∠D()∴∠B+∠D=∠BMD请完成小明上面的过程.【问题迁移】如图③,AB∥CD,点M与直线CD分别在AB的两侧,猜想∠M、∠B、∠D之间有怎样的数量关系,并加以说明.【推广应用】(1)如图④,AB∥CD,点M在直线AB、CD之间,∠ABM的平分线与∠CDM的平分线交于点N,∠M=96°,则∠N=°;(2)如图⑤,AB∥CD,点M与直线CD分别在AB的两侧,∠ABM的平分线与∠CDM的平分线交于点N,∠N=25°,则∠M=°;(3)如图⑥,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠G=78°,∠F=64°,∠E=64°,则∠M=°.5.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∵AB∥CD,PQ∥AB∴∥CD∴∠C=∠∵∠APC=∠﹣∠∴∠APC=应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E 分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P=°.6.如图,直线AB与CD相交于点O,OD平分∠BOE.(1)图中∠AOD的补角是(把符合条件的角都填出来);(2)若∠AOC=28°,求∠BOE的度数.7.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=°;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG =°(用m的代数式表示).8.如图,射线OA∥射线CB,∠C=∠OAB=120°.点D、E在线段BC上,且∠DOB=∠BOA,OE平分∠DOC.(1)说明AB∥OC的理由;(2)求∠BOE的度数;(3)平移线段AB,若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC 的度数.9.如图,在△ABC中,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF 相交于点H.(1)∠HDE与∠HED是否相等?并说明理由.解:∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴=()∵EF∥BC(已知)∴=()又∵∠A=∠B(已知)∴=().(2)如果∠C=90°,DG、EF有何位置关系?并仿照(1)中的解答方法说明理由.解:.理由如下:10.如图,已知直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OM是∠BOF的角平分线.(1)若∠AOC=25°,求∠BOD和∠COE的度数;(2)若∠AOC=α,求∠EOM的度数(用含α的代数式表示).参考答案1.解:∵∠1=∠2,∴AB∥CE,∴∠A=∠4(两直线平行,内错角相等,∵∠A=∠3,∴∠3=∠4,∴AC∥DE(内错角相等,两直线平行),故答案为:CE,(内错角相等,两直线平行),4,(内错角相等,两直线平行).2.(1)证明:∵∠1=∠BDE,∴AC∥DE,∴∠2=∠ADE,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD∥EF;(2)∵∠1=∠BDE,∠1=40°,∴∠BDE=40°,∵DA平分∠BDE,∴∠ADE=BDE=20°,∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE⊥AF,∴∠F=90°,∴∠B=360°﹣90°﹣160°﹣40°=70°,在△ABC中,∠BAC=180°﹣∠1﹣∠B=180°﹣40°﹣70°=70°.3.(1)证明:∵AB∥CD∴∠B=∠D又∵AB=CD,∠BAE=∠DCF∴△BAE≌△DCF(ASA)∴AE=CF(2)四边形AECF是菱形,证明如下:由(1)△BAE≌△DCF得:∠AEB=∠CFD∴∠AEF=∠CFE∴AE∥CF又∵AE=CF∴四边形AECF为平行四边形∵AE=AF∴四边形AECF为菱形.4.解:【问题原型】如图①,过点M作MN∥AB,则∠B=∠BMN(两直线平行,内错角相等)∵AB∥CD,(已知)∴MN∥AB(辅助线的做法)∴MN∥CD(平行于同一条直线的两直线平行)∴∠NMD=∠D(两直线平行,内错角相等)∴∠B+∠D=∠BMD,故答案为:∠BMN,两直线平行,内错角相等,平行于同一条直线的两直线平行,∠NMD,两直线平行,内错角相等,【问题迁移】过点M作MN∥AB,∴∠1=∠B,∵AB∥CD,∴MN∥AB,∴∠NMD=∠D,∵∠NMD=∠1+∠BMD,∴∠BMD=∠D﹣∠B;【推广应用】如图④,由如图①的结论可得,∠ABM+∠CDM=∠M=96°,∠N=∠ABN+∠CDN,∵BN,DN分别平分∠ABM,∠CDM,∴∠ABN+∠CDN==(∠ABM+∠CDM)=48°,∴∠N=48°;如图⑤,由如图②的结论可得,∠M=∠CDM﹣∠ABM,∵BN,DN分别平分∠ABM,∠CDM,∴∠CDN﹣∠ABN=∠CDM﹣∠ABM=(∠CDM﹣∠ABM)=M=∠N=25°,∴∠M=50°;如图⑥,过G,F,E分别作GN∥AB,FH∥AB,EP∥AB,∵AB∥CD,∴AB∥GN∥FH∥EP∥CD,∴∠2=∠GFH,∠3=∠EFH,∴∠2+∠3=∠GFE=64°,∴∠1+∠4=∠BGF+∠DEF﹣∠GFE=78°,∵AB∥GN,EP∥CD,∴∠ABG=∠1,∠CDE=∠4,∴∠ABG+∠CDE=78°,∵BM,DM分别平分∠ABG,∠CDE,∴∠ABM=∠ABG,∠CDM=∠CDE,由如图①中的结论可得∠M=∠ABM+∠CDM=(∠ABG+∠CDE)=78°=39°,故答案为:48,50,39.5.解:感知:如图①,过点P作PQ∥AB∴∠A=∠APQ,∵AB∥CD,PQ∥AB∴PQ∥CD,∴∠C=∠QPC,∴∠APQ+∠QPC=∠A+∠C,∠APC=∠A+∠C.故答案为∠P=∠A+∠C;探究:证明:如图③,过点P作PQ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.6.解:(1)由图示可得,∠AOD+∠AOC=180°,∠AOD+∠BOD=180°,∵OD平分∠BOE,∴∠BOD=∠DOE,∴∠AOD+∠DOE=180°,故∠AOD的补角是∠AOC、∠BOD、∠EOD;故答案为:∠AOC、∠EOD、∠DOB.(2)∵直线AB与CD相交于点O,∠AOC=28°,∴∠BOD=∠AOC=28°.又∵OD平分∠BOE,∴∠BOE=2∠BOD=56°.答:∠BOE的度数是56°.7.解:(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解得x=45°,故∠BEC=45°故答案为:45°(2)∵∠CEG=∠AEG﹣25°∴∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°)=160°﹣∠AEG ∴∠AEG=80°(3)∵EF平分∠AED,∴∠AEF=∠DEF,设∠AEF=∠DEF=α,∠AEG=∠FEG﹣∠AEF=m﹣α,∠CEG=180°﹣∠GEF﹣DEF =180﹣m﹣α,∴∠AEG﹣∠CEG=m﹣α﹣(180﹣m﹣α)=2m﹣180故答案为:2m﹣1808.解:(1)∵OA∥CB,∴∠OAB+∠ABC=180°,∵∠C=∠OAB=120°,∴∠C+∠ABC=180°,∴AB∥OC(2)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣120°=60°,∵OE平分∠COD,∴∠COE=∠EOD,∵∠DOB=∠AOB,∴∠EOB=∠EOD+∠DOB=∠AOC=×60°=30°;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OD是∠AOC的四等分线,∴∠COE=∠AOC=×60°=15°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣120°﹣15°=45°,∴∠OEC=∠OBA,此时∠OEC=∠OBA=45°9.解:(1)∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴∠A=∠HDE(两直线平行,同位角相等)∵EF∥BC(已知)∴∠B=∠HED(两直线平行,同位角相等)又∵∠A=∠B(已知)∴∠HDE=∠HED(等量代换).(2)DG⊥EF.理由如下:∵EF∥BC∴∠AFE=∠C=90°∵AC∥DG∴∠DHE=∠AFE=90°∴DG⊥EF.故答案为:∠A,∠HDE,两直线平行,同位角相等;∠B,∠HED,两直线平行,同位角相等;∠HDE,∠HED,等量代换.DG⊥EF.10.解:(1)∵OE⊥AB,∴∠AOE=90°,∵∠AOC=25°,∴∠BOD=∠AOC=25°,∠COE=90°﹣∠AOC=65°;(2)∵∠AOC=α,∴∠BOD=α,∵OE⊥AB,OF⊥CD,∴∠BOE=∠DOF=90°,∴∠BOF=90°﹣α,∵OM是∠BOF的角平分线,∴∠BOM=∠BOF=45°﹣α,∴∠EOM=90°﹣∠BOM=45°+α.。
完整版人教版七年级下册相交线与平行线培优50题含答案
人教版七年级下册相交线与平行线培优50题一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°4.将一副三角尺按如图的方式摆放,则∠α的度数是()第1页(共53页)105°°D.B.60°C.75A.45°,=4G,BG于点AC的方向平移到△DEF的位置,E交BC5.如图,将直角△ABC沿斜边;平移的距离是4②△ABC,下列结论:①∠A=∠BED;EF=10,△BEG的面积为4),正确的有(④CF;四边形GCFE的面积为16③BE=①②③④D.①②③C.①③④BA.②③.)b,c应满足的条件是(c为同一平面内不同的三条直线,要使a∥b,则a,,6.若ab,∥cc,b∥c D.a∥bc B c.a∥c,b⊥C.a ⊥c,ba A.⊥b,⊥)=(55°,则∠B+∠CAB7.如图,∥DE,∠E=45°°35D.B125°.55°C..A B、,按如图所示方式放置,其中°角的直角三角板ABCA.已知直线8m∥n,将一块含30)=35°,则∠2的度数是(上,若∠两点分别落在直线m、n1°55.D25C°.B°.A3530.°页)53页(共2第9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°10.将一副三角板按如图的所示放置,下列结论中不正确的是()A.若∠2=30°,则有AC∥DEB.∠BAE+∠CAD=180°C.若BC∥AD,则有∠2=30°D.如果∠CAD=150°,必有∠4=∠C11.如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°12.若∠A的两边与∠B的两边分别平行,且3∠A﹣∠B=80°,那么∠B的度数为()°140°或.°°或.B65115°°或.A80100C40D.°115°或4013.下列条件不能判定AB∥CD的是()第3页(共53页)A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠514.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()A.13B.8C.5D.315.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A﹣∠C+∠D+∠E=180°D.∠A+∠°C C.∠E﹣∠+∠D﹣∠A=90D=∠C+∠E16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D.A30°.60°18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()第4页(共53页)30°°D.°A.80°B.65C.45)D的关系是(CDAB∥,BF平分∠ABE,且BF∥DE,则∠ABE与∠19.如图,90°B ABE=3∠D.∠ABE+∠D=A.∠D D.∠∠C.∠ABE+3D=180°ABE=2∠)°,∠AED=70°,则∠A的大小是(=20.如图,BC∥DE,∠111040°D.60°.A25°B.35°C.13小题)二.填空题(共的、分别在MN的交点为.把一张长方形纸片21ABCD沿EF折叠后ED与BCG,D、C.2=49°,则∠﹣∠1=EFG位置上,若∠.、∠C、∠P的关系为,则∠.如图,已知22AB∥CDA.ADC,⊥且112A,平分∠BDBCAD如图,23.已知∥,ABC∠=°,BDCD则∠=535第页(共页)°,则∠2 =度.,若∠24.如图,直线a∥b1=60.∠则∠1、2、∠3、∠4间的数量关系是P25.如图,若过点P,作直线m的平行线,21.相交,如果∠1=60°,那么∠2的度数26.如图,CD直线AB∥,EF分别与AB、CD作O,过点和∠ACB的平分线,且交于点.如图,OB,OOC分别是△ABC的∠ABC27.BC =2008,则△OEF的周长是BCBCOE∥AB交于点O,OF∥AC交于点F,的位置关系.与AB1,∠=∠2,试判断CDBC28.如图,已知DG⊥BC,⊥AC,EF⊥AB AC⊥(已知)⊥BC,BC解:∵DG90°(垂直的定义)=∴∠DGB=∠DG∴∥∴∠2=∠)已知∵∠1=(=∠∴∠1536第页(共页)∴EF∥)(∴∠AEF=∠∵EF⊥AB=90°∴∠AEF)°(∴∠ADC=90AB.即:CD⊥,,,若ABCBC=29.如图,将等腰直角△ABC沿BC方向平移得到△111.则BB=1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯..某宾馆在重新装修后,30 米,其侧面如图所示,则购买地毯至少需要元.为每平方米32元,主楼道宽231.已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是.32.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为cm;(2)如图2,若∠=∠,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=度;第7页(共53页)度.=150°,∠D=145°,则∠C,∠33.如图,已知AB∥DEB=17小题)三.解答题(共90°.∠1=AFBC⊥于点C,∠A+34.如图1,;∥)求证:ABDE (1,ABPPE.则∠停止,连接AF运动到点FPB,,点(2)如图2P从点A出发,沿线段?C重合的情况)A与点,D,DEP∠,∠BPE三个角之间具有怎样的数量关系(不考虑点P并说明理由.有怎样的数量关系,并FA与∠D=110°,∠C=∠,试探索∠°,∠.如图,∠351=702说明理由.图中′,′CBABC在边长为如图,1个单位的正方形网格中,△经过平移后得到△A′.36′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的对应点B标出了点B:的问题(保留画图痕迹)538第页(共页)′(1)画出△A′BC′;(2)画出△ABC的高BD;,线段AC AA′与CC扫过的图形的面′的关系是′、(3)连接AACC′,那么积为.37.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是°;②当∠BAD=∠ABD时,x=°;③当∠BAD=∠BDA时,x=°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.38.如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.(1)∠BOD与∠DOF相等吗?请说明理由.(2)若∠DOF=∠BOE,求∠AOD的度数.第9页(共53页)的延长线在DE∥AC,点F上的点,E分别是三角形ABC的边AB,BCDE,39.如图,D A.上,且∠DFC=∠CF;)求证:AB∥1(的度数.BDE大40°,求∠(2)若∠ACF比∠BDE上一点,且ODF是,OE是CD上一点,∥40.已知:如图,FEOC,AC和BD相交于点.=∠A∠1DC;1()求证:AB∥的度数.65=°,求∠OFE2()若∠B=30°,∠1个单位长度.所在的网格图中,每个小正方形的边长均为1.如图,四边形41ABCD ABCD的面积;)求出四边形(1个单位长度后所得的25个单位长度,再向左平移ABCD(2)请画出将四边形向上平移′.C′′DBA四边形′5310第页(共页),D,∠=∠2C=∠DF上,BD,CE均与AF相交,∠1,42.如图所示,点BE分别在AC,.求证:∠A=∠F2,∠1=∠⊥.已知:如图,AEBC,FG⊥BC43CD)求证:AB∥(1°,求∠C的度数.=∠3+50°,∠CBD=70(2)若∠D经过一,在方格纸中将△ABC44.画图并填空:如图,方格纸中每个小正方形的边长都为1′.′、点C和它的对应点C,点次平移后得到△A′B′C′,图中标出来点AB′BC′;(1)请画出平移前后的△ABC和△A′AD;中2)利用网格画出△ABCBC边上的中线(;中AB边上的高CE)利用网格画出△(3ABC.′的面积为′′)△(4ABC5311第页(共页)分别平分、NO2,MO相交于点M、N,且∠1=∠AB45.如图,直线EF分别与直线、CD的形状,并说明理由.END,试判断△MON∠BMF和∠°,114AOC=,OF⊥OE,且∠O46.如图所示,直线AB,CD相交于点,OE平分∠BOC的度数.求∠BOF90°.,∠COE=CD47.已知如图,直线AB、相交于点O的度数;36°,求∠BOE(1)若∠AOC=AOE的度数;1:5,求∠BOC2()若∠BOD:∠=的度数.EOFOF作⊥AB,请直接写出∠O23()在()的条件下,过点5312第页(共页)48.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.49.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.50.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.第13页(共53页)人教版七年级下册相交线与平行线培优50题参考答案与试题解析一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°【分析】利用平行线的性质求出∠DHF即可.【解答】解:∵AB∥CD,∴∠1=∠DHF,∵∠1=105°,∴∠DHF=105°,∴∠2=180°﹣∠DHF=75°,故选:D.【点评】本题考查平行线的性质,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()第14页(共53页)A.1个B.2个C.3个D.4个=∠AEF=∠GEF,根据余角的性质得到∠【分析】根据角平分线的定义得到∠AEGBEH=∠FEH,于是得到EH平分∠BEF;故①正确,根据平移的性质得到四边形EGFH是平行四边形,根据平行四边形的性质得到EG∥FH,EG=HF;故②正确;根据平行线的性质得到∠AEF=∠DFE,于是得到FH平分∠EFD;故③正确;根据矩形的性质得到∠GFH=90°,故④正确.【解答】解:∵EG平分∠AEF,=∠AEF,∴∠AEG=∠GEF∵HE⊥GE于E,∴∠GEH=90°,∴∠GEF+∠HEF=90°,∴∠AEG+∠BEH=90°,∴∠BEH=∠FEH,∴EH平分∠BEF;故①正确,∵平移EH恰好到GF,∴四边形EGFH是平行四边形,∴EG∥FH,EG=HF;故②正确;∴∠GEF=∠EFH,∵AB∥CD,∴∠AEF=∠DFE,=∠AEF∵∠GEF,=∠EFDEFH,∴∠∴FH平分∠EFD;故③正确;∵四边形EGFH是平行四边形,∠GEH=90°,∴四边形EGFH是矩形,∴∠GFH=90°,故④正确,∴正确的结论有4个,故选:D.第15页(共53页)【点评】本题考查了平移的性质,平行线的性质,角平分线的定义,平行四边形的判定和性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠2=180°(已知),∠1+∠EFD=180°(邻补角定义),∴∠2=∠EFD(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠ADE=∠3=72°(两直线平行内错角相等)∵∠3=∠B(已知),∴∠ADE=∠3=72°(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C=58°(两直线平行同位角相等).故选:B.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.4.将一副三角尺按如图的方式摆放,则∠α的度数是()第16页(共53页)A.45°B.60°C.75°D.105°【分析】根据平行线的性质和根据三角形的内角和计算即可.解:如图:【解答】90°,=∠ABE=∵∠DEC DE,∴AB∥30°,=∠D=∴∠AGD∴∠α=∠AHG=180°﹣∠A ﹣∠AGD=180°﹣45°﹣30°=105°,故选:D.【点评】本题考查的是平行线的判定和性质以及三角形的内角和的性质,掌握三角形的内角和是180°是解题的关键.5.如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,E交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A.②③B.①②③C.①③④D.①②③④【分析】由平移的性质得到BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;根据平行四边形的性质得到∠A=∠BED,故①正确;根据直角三角形斜边大于直角边得到△ABC平移的距离>4,故②错误;根据三角形的面积公式得到GE=2,根据梯形的面积的面积=(6+10)×2=GCFE公式得到四边形16,故④正确.【解答】解:∵△DEF的是直角三角形ABC沿着斜边AC的方向平移后得到的,且A、D、C、F 四点在同一条直线上,∴BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;第17页(共53页)∴四边形ABED是平行四边形,∴∠A=∠BED,故①正确;∵BG=4,∴AD=BE>BG,∴△ABC平移的距离>4,故②正确;∵EF=10,∴CG=BC﹣BG=EF﹣BG=10﹣4=6,∵△BEG的面积等于4,∴BG?GE=4,∴GE=2,的面积=(6+10)×2=16,故④正确;∴四边形GCFE故选:C.【点评】本题考查了平移的性质,面积的计算,平行四边形的判定和性质,正确的识别图形是解题的关键.6.若a,b,c为同一平面内不同的三条直线,要使a∥b,则a,b,c应满足的条件是()A.a⊥b,b⊥c B.a∥c,b⊥c C.a⊥c,b∥c D.a∥c,b∥c【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行进行分析即可.【解答】解:A、a⊥b,a⊥c可判定b∥c,故此选项错误;B、a∥b,b⊥c可判定a⊥c,故此选项错误;C、a⊥c,b∥c可判定a⊥b,故此选项错误;D、根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得a∥b,故此选项正确;故选:D.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.如图,AB∥DE,∠E=55°,则∠B+∠C=()第18页(共53页)45°°D.B.55°C.35.A125°【分析】利用平行线的性质结合三角形的外角的性质解决问题即可.DE,【解答】解:∵AB∥55°,=∠BFE=∴∠E,+∠CB∵∠BFE=∠°,C =55∴∠B+∠.故选:B本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知【点评】识,属于中考常考题型.BA、,按如图所示方式放置,其中,将一块含30°角的直角三角板ABC.已知直线8m∥n)2的度数是(上,若∠m、n1=35°,则∠两点分别落在直线55°°D..30°A.35B.°C25即可解决问题.【分析】利用平行线的性质求出∠3解:如图,【解答】,m∵∥n5319第页(共页)∴∠1=∠3=35°,∵∠ABC=60°,∴∠2+∠3=60°,∴∠2=25°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°【分析】利用平行线的性质求出∠5即可解决问题.【解答】解:∵直线l∥l,21∴∠1+∠4=180°,∵∠4=149°,∴∠1=31°,∵∠1+∠2=90°,∴∠2=59°,∵直线l∥l,21∴∠5=∠2=59°,∴∠3=180°﹣∠5=121°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10.将一副三角板按如图的所示放置,下列结论中不正确的是()第20页(共53页)DE30°,则有AC∥A.若∠2=°CAD=180B.∠BAE+∠°2=30C.若BC∥AD,则有∠C°,必有∠1504=∠D.如果∠CAD=1根据已知可求出∠首先要知道一幅三角板中各角的度数;对于①【分析】要解答此题,的位置关系,即可判断;根据角的关系判断E°,结合∠1与∠的度数,再根据∠E=60;①的结论和平行线的性质定理判断④②,根据平行线的性质定理判断③,结合°,=302【解答】解:∵∠°,=60∴∠1°,=60又∠E,=∠E∴∠1正确;,故A∴AC∥DE90°,2+∠3=1+∵∠∠2=90°,∠正确;°,故°=180B2+∠3=90°+90∠即∠BAE+CAD=∠1+∠2+∠,BC∥AD∵°.=180∠∠2+∠3+C∴∠1+°,=90,∠1+∠2=∵∠C4545°,∴∠3=不正确;,故°=45C∴∠2=90°﹣45°,=150°,∠∵∠D=30CAD 180°,+D∠CAD=∴∵∠,AC∴∥DE D正确.C∴∠4∠=∠,故.故选:C5321第页(共页)本题侧重考查对知识点的应用能力,两直线平行,同旁内角互补;两直线平行,【点评】同错角相等;内错角相等,两直线平行;同角(等角)的余角相等°,=60PQ之间,若∠ACB在直线PQ,∠ACB的顶点CMN与11.如图,若直线MN∥)CEN的度数为(∠CFQ=35°,则∠°D.45C°.30°A.35°B.25即可解决问题.+∠CFQ∥MN,证明基本结论:∠ACB=∠CEN【分析】如图作CK,CK∥MN【解答】解:如图作,∥CKMN∥PQ,MN∵,∥CK∴PQ,=∠CFQ=∠ACK,∠FCK∴∠CEN CFQ,∠ACB=∠CEN+∴∠+35°,∴60°=∠CEN25°,∴∠CEN=B.故选:本题考查平行线的性质和判定等知识,解题的关键是学会添加常用辅助线,构【点评】造平行线解决问题.)(=80°,那么∠B 的度数为且12.若∠A的两边与∠B的两边分别平行,3∠A﹣∠B°140°或40.C°115°或°°或.A8010065.B.D115°或°40°,和已知组成方程组,求出方程组+或∠B=∠根据已知得出∠【分析】AAB∠=180第页(共2253页)的解即可.【解答】解:∵∠A的两边与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵3∠A﹣∠B=80°,∴∠A=40°,∠B=40°或∠A=65°,∠B=115°故选:D.【点评】本题考查了平行线的性质的应用,注意:如果两个角的两边互相平行,那么这两个角相等或互补,题目比较好,难度适中.13.下列条件不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠5【分析】分别利用平行线的判定方法,定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行,分别判断得出即可.【解答】解:∵∠3=∠4,∴AB∥CD,∵∠1=∠5,∴AB∥CD,∵∠+∠2=180°,又∵∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∵∠3+∠5=180°,∴AB∥CD,故选:D.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()第23页(共53页).3.5D.13B.8CA对应,根据平移的性质,易得平、FE对应,CB【分析】观察图形,发现平移前后,、3,进而可得答案.﹣5=移的距离=BE=8【解答】解:根据平移的性质,3,﹣5=易得平移的距离=BE=8.D故选:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平【点评】行且相等,对应角相等,本题关键要找到平移的对应点.)满足的数量关系是(、∠C、∠D、∠E15.如图,AB∥EF,则∠A°∠E=180D B°.∠A﹣∠C+∠+360C A.∠A+∠+∠D+∠E=D﹣∠A=90°∠ED=∠C+D.∠A+∠+.∠C E﹣∠C∠AB,利用平行线的性质即可解问题.,DN∥【分析】作CM∥AB,DN∥AB【解答】解:作CM∥AB,,AB∥EF∵,∥EFAB∥CM∥DN∴180°,+∠EDN=ACMA=∠,∠MCD=∠CDN,∠E∴∠CDE)=∠﹣∠ACM=∠﹣∠DCMCDE﹣(∠ACD=∠=∠∵∠EDNCDE﹣∠CDNCDE),﹣(∠ACD﹣∠A180°,A﹣∠CDEACD+∠=∠E∴∠+.故选:B5324第页(共页)【点评】本题考查平行线的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【解答】解:①∵∠1=∠2不能得到l∥l,故本条件不合题意;21②∵∠4=∠5,∴l∥l,故本条件符合题意;21③∵∠2+∠5=180°不能得到l∥l,故本条件不合题意;21④∵∠1=∠3,∴l∥l,故本条件符合题意;21⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l∥l,故本条件符合题意.21故选:C.【点评】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D°A.30.60°【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【解答】解:∵b∥c,a⊥b,第25页(共53页)∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.【点评】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.【解答】解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.第26页(共53页)19.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°D=180°D=2∠D.∠ABE C.∠ABE+3∠【分析】延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠G,再根据两直线平行,同位角相等可得∠G=∠ABF,然后根据角平分线的定义解答.【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.20.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°【分析】由DE∥BC,推出∠EDB=∠1=110°,根据∠EDB=∠A+∠AED,求出∠A即可.第27页(共53页)DE∥BC,【解答】解:∵=110°,∴∠EDB=∠1∠AED,∵∠EDB=∠A+A+70°,∴110°=∠=40°,∴∠A故选:C.本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握【点评】基本知识,属于中考常考题型.13小题)二.填空题(共的、ND、C分别在MED21.把一张长方形纸片ABCD沿EF折叠后与BC的交点为G,.°=16=位置上,若∠EFG49°,则∠2﹣∠1°,再根据折叠的性49DEG=DEG,∠EFG=∠【分析】先利用平行线的性质得∠2=∠﹣,然后计算∠2=98°,接着利用互补计算出∠1GEF质得∠DEF=∠=49°,所以∠21.∠BC,解:∵AD∥【解答】°,49=∠DEG=∴∠2=∠DEG,∠EFG,BC的交点为GABCD沿EF折叠后ED与∵长方形纸片°,=49DEF∴∠=∠GEF°,°=98=2×492∴∠82°,180°﹣98°=∴∠1=°.82°=1698∴∠2﹣∠1=°﹣°.故答案为16本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角【点评】互补;两直线平行,内错角相等.也考查了折叠的性质.﹣∠P=180°.C+∠的关系为、∠、∠,则∠∥.如图,已知22ABCDACP A ∠第28页(共53页)AB=180°,而CD,根据两直线平行同旁内角互补可知∠C+∠CPE【分析】先作PE∥,再根据两直线平行内错角相∥AB∥CD,利用平行于同一直线的两条直线平行可得PE180°.∠C﹣∠P =+=∠APD,于是有∠A=∠APC∠CPE,即可求∠A+等可知∠A,PE【解答】解:如右图所示,作∥CD,∵PE∥CD°,+∠CPE=180∴∠C,又∵AB∥CD,∴PE∥AB A=∠APD,∴∠P=180°,∴∠A+∠C﹣∠=180°.故答案为:∠A+∠C﹣∠P【点评】本题考查了平行线的判定和性质.平行于同一直线的两条直线平行..°=则∠=A112°,且BD⊥CD,ADC124ABC,已知23.如图,AD∥BCBD平分∠,∠ABC112°,根据两直线平行,同旁内角互补,即可求得∠,∠A=∥【分析】由ADBC的度数,继而求得答案.,求得∠CCD平分∠ABC,BD⊥的度数,又由BD112°,BC,∠A=∥【解答】解:∵AD°,=68°﹣∠∴∠ABC=180A,BD平分∠ABC∵5329第页(共页)=∠ABCCBD=34°,∴∠∵BD⊥CD,=9056°,°﹣∠CBD=∴∠C124°.180°﹣∠C=∴∠ADC=124°.故答案为:此题考查了平行线的性质以及三角形内角和定理.注意掌握两直线平行,同旁【点评】内角互补定理的应用是解此题的关键.60度.=6024.如图,直线a ∥b,若∠1=°,则∠2【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故答案为60.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.25.如图,若过点P,P作直线m的平行线,则∠1、∠2、∠3、∠4间的数量关系是∠212+∠4=∠1+∠3.【分析】分别过点P1、P2作PC∥m,PD∥m,由平行线的性质可知,∠1=∠APC,121CPP=∠PPD,∠DPB=∠4,22112所以∠1+∠PPD+∠DPB=∠APC+∠CPP+∠4,即∠2+∠4=∠1+∠3.221112【解答】解:分别过点P、P作PC∥m,PD∥m,2121第30页(共53页)n,∵m∥,∥C∥PDm∥n∴P21,D,∠DPB=∠4=∠∴∠1=∠APC,CPPPP221112=∠1+∠.3+C∠CPP+∠4,即∠2+∠4∠1+∴∠∠PPD+DPB=∠AP212211.1+∠3故答案为:∠2+∠4=∠本题考查的是平行线的性质,即两直线平行,内错角相等.【点评】120°60°,那么∠2的度数.如果∠CD26.如图,直线AB∥,EF分别与AB、CD相交,1=【分析】先根据对顶角相等求出∠3的度数,再根据平行线的性质即可得出∠2的度数.【解答】解:∵∠1=60°,∠1与∠3是对顶角,∴∠3=∠1=60°,∵AB∥CD,∴∠2=180°﹣∠3=180°﹣60°=120°.故答案为:120°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.27.如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点O,过点O作OE∥AB 交于BC点O,OF∥AC交BC于点F,BC=2008,则△OEF的周长是2008.第31页(共53页)可ACAB和∠ACB的平分线和OE∥、OF∥ABC【分析】由OB,OC分别是△的∠ABC OF=CF,显然△OEF的长度.的周长即为BC=推出BEOE,ACB的平分线,ABC的∠ABC和∠OC【解答】解:OB,分别是△OCF,∠ACO=∠.∴∠ABO=∠OBF,ACOF∥∵OE∥AB=∠COF,∠∴∠ABO=∠BOEACO为等腰三角形OCF∴△BOE和△OF∴BE=EO,=CF∴△OEF的周长=BE.BC=2008+EF+CF=此题运用了平行线性质,和角平分线性质以及等腰三角形的性质,较为灵活,【点评】难度中等.,试判断的位置关系.CD与ABEFBC,⊥AC,⊥AB,∠1=∠2DG28.如图,已知⊥BC AC(已知)BC解:∵DG⊥,BC⊥=DGB∴∠BCA°(垂直的定义)=∠90DG∥AC∴∴∠2=∠DCA∵∠1=∠2(已知)∴∠1=∠DCA∴EF∥DC∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)即:CD⊥AB.第32页(共53页),求出∠DCA,根据平行线的性质得出∠2=∠【分析】根据平行线的判定推出DG∥AC即ADC,根据平行线的性质得出∠AEF=∠1=∠DCA,根据平行线的判定得出EF∥DC可.⊥AC(已知)BC【解答】解:∵DG⊥,BC=90°(垂直的定义)∴∠DGB=∠BCA∥AC,∴DG=∠DCA,∴∠2),=∠2(已知∵∠1DCA,∴∠1=∠DC,∴EF∥(两直线平行,同位角相等),∴∠AEF=∠ADC(已知),∵EF⊥AB,AEF=90°(垂直定义)∴∠,ADC=90°(等量代换)∴∠,即:CD⊥AB,两直线平行,同位角相等,(已知)DC,DCA,,ADC,,故答案为:BCA,ACDCA,∠2(垂直定义),等量代换.本题考查了平行线的性质和判定,垂直定义的应用,能灵活运用平行线的性质【点评】和判定定理进行推理是解此题的关键.,,若BC,=C.如图,将等腰直角△29ABC沿BC方向平移得到△AB111.=则BB1【分析】先判断出△PBC是等腰直角三角形,再根据等腰直角三角形的性质利用面积列1式求出BC,然后根据BB=BC﹣BC代入数据计算即可得解.111【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PBC=∠CB=45°,1∴△PBC是等腰直角三角形,1第33页(共53页))=2C?,(BC∴SB=11C1PB△2C解得B=,13=BB=BC﹣﹣B2C=.∴11故答案为:.本题考查了平移的性质,等腰直角三角形的判定与性质,利用等腰直角三角形【点评】的长度是解题的关键.B求出C1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯.30.某宾馆在重新装修后,元.2512米,其侧面如图所示,则购买地毯至少需要为每平方米32元,主楼道宽根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得【分析】其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为【解答】2.5米,米,5.516平方米,8×2=∴地毯的长度为2.5+5.5=8米,地毯的面积为512元.×32=16∴买地毯至少需要512.故答案为:本题考查平移性质的实际运用,难度不大.解决此题的关键是要利用平移的知【点评】识,把要求的所有线段平移到一条直线上进行计算.,AOB的外部作∠AOC=∠OA,OB为始边,在∠AOB.31已知∠AOB=22.5°,分别以射线OD的位置关系是垂直与.,则∠BOD=2∠AOBOC【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】解:∵∠AOB=22.5°,∠AOC=∠AOB=22.5°,∠BOD=2∠AOB=45°,∴∠COD=∠AOC+∠AOB+∠BOD=22.5°+22.5°+45°=90°,∴OC与OD的位置关系是垂直.故填垂直.第34页(共53页)先利用角的和差关系求得这个角是90°,再由垂线的定义可得,两直线垂直.【点评】之间的距离为3cm,BC=2cm,则AB与CD2AB.32(1)如图1,在长方形ABCD中,=;cm;∥BC2,则AD2(2)如图,若∠1=∠度;EDC°,则∠=25BC,CD是∠ACB的平分线,∠ACB=503()如图3,DE∥1)夹在两条平行线间的垂线段的长度即为两平行线的距离.【分析】(2)运用的是平行线判定定理.(3)运用的是角平分线的定义和平行线的性质.(°.B=90C∥CD,∠=90°,∠1【解答】解:()已知四边形ABCD为长方形,则AB.2cm与cm,故ABCD之间的距离为又BC=2.故填22.BC,根据平行线的判定定理可得∠1=∠∥(2)要使AD2.故填∠1;∠,DE∥BC3()已知,=∠DCBEDC根据平行线判定定理可得∠ACB是∠的平分线,又CD DCB,∴∠ECD=∠°,ACB=50∵∠25°.EDC∴∠=.故填255335第页(共页)此类题考查的是平行线的性质以及平行线的判定定理,考生一定要熟记.【点评】=65=145°,则∠C度.D33.如图,已知AB∥DE,∠B=150°,∠【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF?∠1=180°﹣∠B=30°,CF∥ED?∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.三.解答题(共17小题)34.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB第36页(共53页)∥DE.(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P 作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.【解答】解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,第37页(共53页)∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.【点评】本题主要考查了平行线的性质与判断的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.35.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【解答】解:∠A=∠F.理由:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD,∵∠C=∠D,第38页(共53页)ABD,=∠D∴∠,∥DF∴AC.=∠F∴∠A本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错【点评】角、同旁内角是正确答题的关键.图中′,′ABC经过平移后得到△A′BC136.如图,在边长为个单位的正方形网格中,△′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关B标出了点B的对应点:的问题(保留画图痕迹)′AB′C′;(1)画出△ABC的高BD;)画出△(2平行且相等,线段CC′,那么AA′与CCAC扫过的′的关系是)连接(3AA′、图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;第39页(共53页)BD即为所求;(2)如图所示,′的关系是平行且相等,)如图所示,(3AA′与CC,××6×1=线段AC扫过的图形的面积为10×2﹣2××4×1﹣210故答案为:平行且相等、10.此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握【点评】平移的性质是解题关键.上的分别是射线OM、OE、ONMON.已知:∠MON=48°,OE平分∠,点A、B、C37°x.设∠OAC=B、C不与点O重合),连接AC交射线OE于点D、动点(A24°;的度数是)如图1,若AB∥ON,则:①∠ABO(1②当∠BAD=∠ABD时,x=108°;③当∠BAD=∠BDA时,x=54°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【分析】(1)①运用平行线的性质以及角平分线的定义,可得①∠ABO的度数;②根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;。
人教版七年级数学下册 5.2.1 平行线 培优训练(含答案)
人教版七年级数学下册5.2.1《平行线》培优训练一、选择题(共10小题,3*10=30)1.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直2.若直线a∥b,b∥c,则a∥c的依据是()A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行3.下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A.1个B.2个C.3个D.4个4.在同一平面内,不重合的两条直线的位置关系可能是( )A.平行B.垂直或平行C.相交或平行D.相交或垂直5.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面内没有公共点的两条射线平行6.平面上有P、Q、R三点,以下说法正确的是()A.经过这三点,必有一条直线C.一定可以画三条直线,使它们两两相交于这三点D.经过这三点,至多能画两条平行直线7.过一点画已知直线的平行线,则( )A.有且只有一条B.可能有两条C.不存在D.不存在或只有一条8.若直线a∥b,b∥c,则a∥c的依据是( )A.平行线的基本事实B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行9.己知直线AB及AB外一点P,若过点P作一直线与AB平行,那么这样的直线()A.有且只有一条B.有两条C.不存在D.无数条10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有() A.4组B.5组C.6组D.7组二.填空题(共8小题,3*8=24)11.下列生活实例:①交通路口的斑马线;②天上的彩虹;③百米跑道线;④一段平直的火车铁轨线.其中属于平行线的有____________.12.在同一平面内,_______的两条直线叫做平行线.如图,AB平行于CD,可表示为_________.13.在同一平面内,直线a与b满足下列条件,写出其对应的位置关系:(1)a与b没有公共点,则a与b______;(2)a与b有且只有一个公共点,则a与b______;(3)a与b有两个公共点,则a与b______.14.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是___________________________.15.如图,经过直线a外一点O的4条直线中,OB∥a,则与直线a相交的直线有( ) 条16.如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的位置关系是___,其理由是________________________________________________________.17. 如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作________的平行线即可,其理由是________________________________.18.已知点P是直线AB外一点,CD、EF分别是过点P的两条直线,若AB∥CD,那么AB与EF 的关系是_______,理论依据是____________________________________________________________. 三.解答题(共6小题,46分)19.(6分) 如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过点C画直线垂直于CD;(2)用符号表示上面①,②中的平行、垂直关系.20.(6分) 如图,P,Q分别是直线EF外两点,画图并回答问题:(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?21.(6分)观察如图所示的正方体,用符号表示下列两棱的位置关系:(1)AA1____AB;BB1____DD1;(2)A1C1____AC;AD1____BC1;(3)CC1____A1C1;B1C1____C1D1.22.(6分) 如图,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,若要过点E作河岸CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?这样的直线能作多少条?为什么?23.(6分) 如图,将一张长方形硬纸片对折,MN是折痕,把面ABNM平放在桌面上,另一个面CDMN 任意改变位置,试探索AB与CD的位置关系,并说明理由.24.(8分) 如图,在∠AOB的内部有一点P,∠AOB=60°.(1)过点P作PC∥OA,PD∥OB;(2)量出∠CPD的度数,说出它与∠AOB的关系.25.(8分)在同一平面内,三条直线有多少个交点?甲:在同一平面内,三条直线有0个交点,因为a∥b∥c,如图①;乙:在同一平面内,三条直线只有1个交点,因为a,b,c交于同一点,如图②. 以上说法谁对谁错?为什么?参考答案1-5BDDCC 6-10 ADDAC11. ①③④12. 不相交,AB∥CD13. 平行,相交,重合14. 经过直线外一点,有且只有一条直线与这条直线平行15. 316. 平行,如果两条直线都与第三条直线平行,那么这两条直线也互相平行17. AB,平行于同一条直线的两条直线平行18. 相交,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交19. 解:(1)如图所示,(2)AB∥EF,GC⊥CD.20. 解:(1)如图所示,(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)21. 解:(1)⊥,∥(2)∥,∥(3)⊥,⊥22. 解:其理由是:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;这样的直线只能作1条,因为经过直线外一点,有且只有一条直线与这条直线平行23. 解:因为MN为长方形纸片对折折痕,所以MN∥AB,MN∥CD,所以AB∥CD,理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行(2)∠CPD=60°或120°,它与∠AOB相等或互补25. 解:都不对,因为除了甲、乙两种说法外,在同一平面内,三条直线交点的个数还有两种情况,即有2个交点或3个交点,如图:,所以在同一平面内,三条直线有0个或1个或2个或3个交点。
第一章 平行线 培优训练试题(含解析)
第一章 平行线培优训练试题答案一.选择题:1.答案:C解析:∵b a //,∴0180231=∠+∠+∠, ∵0501=∠,32∠=∠,05018022-=∠∴,0652=∠∴,故选择C2.答案:B解析:∵c a //,c b //,∴b a //,故①正确; ∵c a ⊥,c b ⊥,∴b a //,故②正确; ∵ c a ⊥,c b //,∴b a ⊥,故③错误;∵ c 截b a ,所得的内错角的邻补角相等,∴b a //,故④正确; 故选择B3.答案:C解析:∵△ABE 向右平移2cm 得到△DCF , ∴EF=AD=2cm ,AE=DF , ∵△ABE 的周长为16cm , ∴AB+BE+AE=16cm ,∴四边形ABFD 的周长=AB+BE+EF+DF+AD =AB+BE+AE+EF+AD =16cm+2cm+2cm =20cm .故选C .4.答案:B解析:过B 作l DB //,∵m l //,∴m DB //, ∴0201=∠=∠DBC ,∴ABD ∠=∠2,∵045=∠ABC ,∴0002520452=-=∠=∠ABD , 故选择B5.答案:A解析:∵∠BEF 是△AEF 的外角,∠1=20°,∠F=30°, ∴∠BEF=∠1+∠F=50°, ∵AB ∥CD ,∴∠2=∠BEF=50°,故选A6.答案:C解析:∵AB ∥CD ,∠A=50°, ∴∠ADC=∠A=50°,∵∠AEC 是△CDE 的外角,∠C=30°, ∴∠AEC=∠C+∠D=30°+50°=80°, 故选:C .7.答案:C解析:当AD//BC 时,BCA DAC ∠=∠,CBD ADB ∠=∠, 故②④能使AD//BC 满足,故选择C8.答案:B解析:∵∠1=80°,∠2=100°,∴01801008021=+=∠+∠, ∴b a //,∴08543=∠=∠,故选择B9.答案:C解析:∵CD AB //,∴0180=∠+∠AOD ODC , ∵050=∠ODC ,∴0130=∠AOD ,∵OE 平分AOD ∠,∴065=∠=∠DOE AOE ,故①正确;∵OF OE ⊥,∴090=∠EOF ,∵065=∠EOD ,∴025=∠DOF , ∵CD AB //,∴050=∠=∠BOD CDO ,∴025=∠=∠DOF BOF , ∴OF 平分BOD ∠,故②正确;∵CD OG ⊥,∴090=∠OGD ,∵050=∠GDO ,∴040=∠GOD , ∵065=∠EOD ,∴025=∠=∠DOF GOE ,故③正确; ∵040,65=∠=∠GOD AOE ,∴GOD AOE ∠≠∠,故④错误, 故选择C10.答案;B解析:如图,∵EG ∥DB , ∴∠1=∠2,∠1=∠3, ∵AB ∥EF ∥DC ,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个. 故选:B .二.填空题:11.答案:12解析:∵周长为10的△ABC 沿BC 方向平移1个单位得到△DEF , ∴CF AD DF AC ==,,∴四边形ABFD 的周长为1212.答案:504解析:宽向道路总长为20米,长向道路总长为30米,道路宽2米,故道路面积为:9622230220=⨯-⨯+⨯,长方形面积为6003020=⨯,草地面积为:50496600=-13.答案:0270 解析:如图,∵a ∥b ,∴∠2+∠3=180°,则∠3=180°﹣∠2, ∵b ∥c ,∴∠1+∠4=180°,则∠4=180°﹣∠1,∵∠BAC=90°, ∴∠3+∠4=90°,∴180°﹣∠2+180°﹣∠1=90°, ∴∠1+∠2=270°.14.答案:03021⎪⎭⎫⎝⎛+n解析:根据题意得:∵BE=2AE=2A ′E ,∠A=∠A ′=90°, ∴△ABE 、△A ′BE 都为30°、60°、90° 的三角形, ∴∠1=∠AEB=60°,∴∠AED ′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°, ∴∠DED ′=∠AED+∠AED ′=n °+60°=(n+60)°, ∴∠2=21∠DED ′=(21n+30)°, ∵A ′D ′∥BC , ∴∠BCE=∠2=(21n+30)°. 故答案为:(21n+30).15.答案:078解析:如图,分别过K 、H 作AB 的平行线MN 和RS , ∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=21∠ABK ,∠SHC=∠DCF=21∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=180°, ∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣21(∠ABK+∠DCK ),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:78°.16.答案:70°或110°解析:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=110°,∴∠A=180°﹣(∠B+∠C)=70°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=70°;第二种情况:如图②,∵∠B+∠ACB=110°,∴∠BAC=180°﹣(∠B+∠ACB)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;第三种情况:如图③,∵∠ABC+∠C=110°,∴∠BAC=180°﹣(∠ABC+∠C)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;故答案为:70°或110°.三.解答题:17.解析:CD AB // ,∴0180=∠+∠D BAD , ∵AFD ∠=∠4,018042=∠+∠+∠∴D , ∵018031=∠+∠+∠B ,∵43,21∠=∠∠=∠ ∴D B ∠=∠,∴0180=∠+∠B BAD ,∴BE AD //18.解析:∵AE ⊥BC ,FG ⊥BC ,∴AE ∥FG , ∴∠2=∠CFG .∵∠1=∠2,∴∠CFG =∠1,∴AB ∥CD19. 证明:∵∠1+∠2=180°(已知), ∠1+∠4=180°(一平角), ∴∠2=∠4.∴BD ∥FE (内错角相等两直线平行). ∴∠3=∠ADE (两直线平行内错角相等). ∵∠3=∠B (已知),∴∠B =∠ADE.∴DE ∥BC (同位角相等两直线平行).∴∠AED =∠ACB (两直线平行同位角相等).20.解析:(1)∵DE 平分∠ADC ,∠ADC=70°,∴∠EDC =21∠ADC=21×70°=35°; (2)过点E 作EF ∥AB ,∵AB ∥CD , ∴AB ∥CD ∥EF , ∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=n °,∠ADC=70°, ∴∠ABE=21∠ABC=21n °,∠CDE=21∠ADC=35°,∴∠BED=∠BEF+∠DEF=21n °+35°; (3)过点E 作EF ∥AB∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=n °,∠ADC=70° ∴∠ABE=21∠ABC=21n °,∠CDE=21∠ADC=35° ∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BEF=180°-∠ABE=180°-21n °,∠CDE=∠DEF=35°, ∴∠BED=∠BEF+∠DEF=180°-21n °+35°=215°-21n °. 故∠BED 的度数发生了改为,改变为(215-21n )°.21.解析:(1)证明:∵∠EAB=180°﹣∠BAC ﹣∠FAC ,∠BAC=90°,∠FAC=30°,∴∠EAB=60°,又∵∠ABC=60°,∴∠EAB=∠ABC ,∴EF ∥GH ; (2)解:不发生变化, 理由是:经过点A 作AM ∥GH ,又∵EF ∥GH ,∴AM ∥EF ∥GH ,∴∠FCA+∠CAM=180°,∠MAB+∠ABH=180°,∠CBH=∠ECB , 又∵∠CAM+∠MAB=∠BAC=90°, ∴∠FCA+∠ABH=270°,又∵BC 平分∠ABH ,CD 平分∠FCA , ∴∠FCD+∠CBH=135°,又∵∠CBH=∠ECB ,即∠FCD+∠ECB=135°, ∴∠BCD=180°﹣(∠FCD+∠ECB )=45°.22.解析:(1)如图1,过点E 作l ∥AB , ∵AB ∥CD ,∴l ∥AB ∥CD , ∴∠1=∠BME ,∠2=∠DNE , ∵∠MEN=∠1+∠2, ∴∠E=∠BME+∠END , 故答案为:∠E=∠BME+∠END ;(2)如图2,∵EF 平分∠MEN ,NP 平分∠END ,∴MEN NEF ∠=∠∴21,END ENP ∠=∠21, ∵EQ ∥NP ,∴END ENP QEN ∠=∠=∠21,∵∠MEN=∠BME+∠END , ∴∠MEN ﹣∠END=∠BME=m °, ∴∠FEQ=∠NEF ﹣∠NEQ()021212121n END MEN END MEN =∠-∠=-∠=, (3)n ∠GEH=∠GEK ﹣∠BMN .如图3,∵∠BMN=n •∠EMN ,∠GEK=n •∠GEM ,∴GEK nGEM BMN n EMN ∠=∠∠=∠∠1,1, ∵EH ∥MN ,∴BMN nEMN HEM ∠=∠=∠1,∵∠GEH=∠GEM ﹣∠HEM ,BMN nGEK n ∠-∠=11, ∴n ∠GEH=∠GEK ﹣∠BMN .23.解析:(1)∵OM ⊥ON ,∴∠MON=90°, 在四边形OBCD 中,∠C=∠BOD=90°, ∴∠OBC+∠ODC=360°﹣90°﹣90°=180°; 故答案为180°;(2)证明:延长DE 交BF 于H ,如图1, ∵∠OBC+∠ODC=180°,而∠OBC+∠CBM=180°,∴∠ODC=∠CBM ,∵DE 平分∠ODC ,BF 平分∠CBM ,∴∠CDE=∠FBE , 而∠DEC=∠BEH ,∴∠BHE=∠C=90°,∴DE ⊥BF ; (3)解:DG ∥BF .理由如下: 作CQ ∥BF ,如图2,∵∠OBC+∠ODC=180°,∴∠CBM+∠NDC=180°, ∵BF 、DG 分别平分∠OBC 、∠ODC 的外角, ∴∠GDC+∠FBC=90°, ∵CQ ∥BF ,∴∠FBC=∠BCQ , 而∠BCQ+∠DCQ=90°,∴∠DCQ=∠GDC ,∴CQ ∥GD ,∴BF ∥DG .。
【单元测试】浙教版 2019年 七年级数学下册 平行线 单元培优卷(含答案)
浙教版 2019年七年级数学下册平行线单元培优卷一、选择题1.下列各式中,正确的是()A.一个图形平移后,形状和大小都改变B.一个图形平移后,形状和大小都不变C.一个图形平移后,形状改变但大小不变D.一个图形平移后,形状不变但大小改变2.将如图所示的图案通过平移后可以得到的图案是()A. B. C. D.3.如图,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,△OAB,其中可由△OBC平移得到的有()A.1个B.2个C.3个D.4个4.对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°5.如图,已知∠1=∠2,若要∠3=∠4,则须()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD6.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个7.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=70°,则∠2的度数为( )A.20°B.40°C.30°D.25°8.如图,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于( )A.45°B.30°C.50°D.36°9.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论:①∠BOE=(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有多少个?()A.1B.2C.3D.4二、填空题11.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.12.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.13.如图,已知AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为.14.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.15.如图,直线l、l2分别与直线l3、l4相交,∠1与∠3互余,∠3余角与∠2互补,∠4=125°,则∠13=______.16.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是°.17.如图1是长方形纸袋,∠DEF=a,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用表示图3中∠CFE的大小为_________三、作图题18.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)四、解答题19.如图,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.20.如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?21.如图所示,AB∥CD,∠1=∠B,∠2=∠D.试说明:BE⊥DE.22.如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.23.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.24.已知直线,直线与直线、分别相交于C、D两点.(1)如图a,有一动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中,是否始终具有∠3+∠1=∠2这一关系,为什么?(2)如图b,当动点P线段CD之外运动(不与C、D两点重合),问上述结论是否成立?若不成立,试写出新的结论并说明理由.答案1.B2.B3.B4.D5.D6.A7.C8.C9.C10.C.11.答案为:8.12.答案为:10.13.答案为:25°.14.答案为:115°15.答案为:55°.16.答案为:96°17.答案为:180°﹣3α.18.解:(1)小鱼的面积为16.(2)将每个关键点向左平移3个单位,连接即可.19.证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.20.解:平行.理由:∵∠AEF+∠CFE=180°,∴AB∥CD.∴∠AEF=∠EFD.∵∠1=∠2,∴∠AEF-∠1=∠EFD-∠2,即∠GEF=∠HFE.∴GE∥FH.21.略22.证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等).∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).23.由DB∥FG∥EC,可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP平分∠BAC得∠CAP=∠BAC=×96°=48°.由FG∥EC得∠GAC=ACE=36°.∴∠PAG=48°-36°=12°.24.解:(1)作PE∥,则∠1=∠APE∵,∴PE ∴∠3=∠BPE∵∠APB=∠APE+∠BPE∴∠APB=∠1+∠3(2)上述结论不成立.新结论:∠1=∠2+∠3∵,∴∠1=∠AFB∵∠AFB=∠2+∠3∴∠1=∠2+∠3。
第五章 相交线与平行线(过关测试)【培优卷】(解析版)
第五章 相交线与平行线(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A .B .C .D .【答案】B 【分析】根据中点的定义,平行线的定义判断即可.【详解】解:过AC 的中点D 作AB 的平行线,正确的图形是选项B ,故选:B .【点睛】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.2.如图,直线1l ,2l 被3l 所截得的同旁内角为a ,b ,要使12l l ∥,只要使( )A .90a b +=°B .a b=C .116033a b +=°D .090a °<£°,90180b °£<°【答案】C【分析】由同旁内角互补两直线平行即可判定出12l l ∥,变形后即可得到正确的选项.【详解】解:当180°a b +=,即116033a b +=°时,12l l ∥,故C 正确.故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行【答案】C 【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C 正确;故选:C .【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.(2021·安徽·统考中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( )A .a b c>>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-【答案】D【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b a c =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b a c =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b a c =+,故D 正确;故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.5.已知直线a 、b 、c 在同一平面内,则下列说法错误的是( )A .如果a ∥b ,b ∥c ,那么a ∥cB .a ⊥b ,c ⊥b ,那么a ∥cC .如果a 与b 相交,b 与c 相交,那么a 与c 一定相交D .如果a 与b 相交,b 与c 不相交,那么a 与c 一定相交【答案】C【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行,同一平面内,垂直于同一条直线的两直线平行进行分析即可.【详解】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.【点睛】此题主要考查了平行公理及推论,关键是熟练掌握所学定理.6.一副直角三角尺叠放如图所示,现将30°的三角尺ABC固定不动,将45°的三角尺BDE绕顶点B逆时Ð所有符合条件的针转动,点E始终在直线AB的上方,当两块三角尺至少有一组边互相平行时,则ABE度数为()A.45°,75°,120°,165°B.45°,60°,105°,135°C.15°,60°,105°,135°D.30°,60°,90°,120°【答案】A【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.【详解】解:如图,①DE∥AB,∴∠D+∠ABD=180°∴∠ABD=90°∴∠ABE=45°;②DE∥AC,∵∠D=∠C=90°,∴B ,C ,D 共线,∴∠ABE=∠CBE+∠ABC=180°-45°+30°=165°;③BE ∥AC ,∴∠C=∠CBE=90°,∴∠ABE=∠ABC+∠CBE=120°;④AC ∥BD ,∴∠ABD=180°-∠A=120°,∴∠ABE=∠ABD-∠DBE=75°,综上:∠ABE 的度数为:45°或75°或120°或165°.【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.二、填空题(每小题3分,共18分)7.“若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).【答案】是【分析】根据命题的定义判断即可.【详解】若0ab >,则0a >,0b >是一个命题.故答案为:是.【点睛】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题. 8.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是__.【答案】127【分析】先根据第一个数字不是7,得出第一个数字是1或2,再根据1和2相邻,进而得出第三个是7,即可得出结论.【详解】解:∵三个数字分别是7,2,1,但第一个数字不是7,∴第一个数为1或2,∵1和2的位置相邻,∴前两个数字是1,2或2,1,第三位是数字7,∵中间的数字不是1,∴第一个数字只能是1,第二个数字为2,即密码为127,故答案为:127【点睛】此题主要考查了推理与论证,判断出第三个数是7是解本题的关键.9.(2022秋·黑龙江佳木斯·七年级校考期中)将直角梯形ABCD平移得梯形EFGH,若===,则图中阴影部分的面积为_________平方单位.10,2,4HG MC MG【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.【详解】根据平移的性质得S梯形ABCD =S梯形EFGH,Q DC = HG = 10,MC= 2,MG = 4,\DM = DC - MC = 10 - 2 = 8,\S阴影= S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD =S梯形HGMD=()12DM HG MG+g=12×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.10.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)【答案】如果两个角是两个相等角的余角,那么这两个角相等. 真【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键11.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.12.(2022秋·重庆·七年级重庆市綦江中学校考阶段练习)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=52∠DAE,则∠ACD的度数是_____.【答案】27°##27度【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°,然后结合图形,利用各角之间的关系求解即可.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,∵MN∥PQ,∴∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,∴∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,∴∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°,故∠ACD的度数是27°,故答案为:27°.【点睛】本题利用平行线、垂直、角平分线综合考查角度的计算,理解题意,综合运用这些知识点是解题关键.三、解答题(每小题6分,共30分)13.(2022秋·福建福州·七年级统考期末)如图,已知AGF ABC Ð=Ð,12180Ð+Ð=°.(1)试判断BF 与DE 的位置关系,并说明理由;(2)若BF AC ^,2140Ð=°,求AFG Ð的度数.【答案】(1)//BF DE ,理由见解析;(2)50°【分析】(1)根据已知条件,先证明 FG//BC ,继而得 ∠1=∠3 ,根据 ∠1+∠2=180° 等量代换得 ∠3+∠2=180° ,从而得证;(2)由(1)的结论,求得 ∠1 ,再根据 BF ⊥AC ,求得 ∠1 的余角即可.【详解】解:()1//BF DE ,理由如下:AGF ABC Ð=ÐQ ,//GF BC \,13\Ð=Ð,12180Ð+Ð=°Q ,32180\Ð+Ð=°,//BF DE \;()2//BF DE Q ,BF AC ^,DE AC \^,12180Ð+Ð=°Q ,2140Ð=°,140\Ð=°,904050AFG \Ð=°-°=°.【点睛】本题考查了平行线的性质与判定,求一个角的余角,熟练平行线的性质与判定是解题的关键.14.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB 和CD 被直线EF 所截,∠2=∠3,AB ∥CD 吗?说明理由.现请你补充完下面的说理过程:答:AB ∥CD理由如下:∵∠2=∠3(已知)且( )∴∠1=∠2∴AB ∥CD ( )【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB ∥CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB ∥CD (同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.15.如图,己知点P 、Q 分别在AOB Ð的边OA OB 、上,按下列要求画图:(1)画射线PQ;(2)过点P画垂直于射线OB的线段PC,垂足为点C;(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图,分别P画垂直于射线OB的射线PC,垂足为点C;过点Q画直线QM平行于射线OA.【详解】(1)如图,射线PQ为所求;(2)如图,线段PC为所求;(3)如图,直线QM为所求【点睛】此题主要考查了基本作图,正确把握相关定义是解题关键.16.指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.【答案】(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,反例见解析;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【分析】(1)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平角的定义可得该命题是真命题;(2)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是假命题;利用相交直线被第三条直线所截,内错角不相等可举反例;(3)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是真命题;.【详解】(1)题设:如果两个角的和等于平角,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【点睛】本题考查了命题与定理的相关知识.将命题写成“如果…,那么…”的形式,就是要明确命题的题设和结论,“如果”后面写题设,“那么”后面写结论.关键是明确命题与定理的组成部分,会判断命题的题设与结论.17.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.四、解答题(每小题8分,共24分)18.如图,点O是直线AB上一点,OD平分∠AOC,∠BOE=3∠COE,∠DOE=81°,求∠BOE,∠AOD的度数.【答案】∠BOE=27°,∠AOD=72°.【分析】设∠COE=x ,则∠AOD=81°-x ,则∠BOE=3x ,∠AOC=2 ∠AOD ,由∠AOC+∠BOC=180° ,列方程2()81x °-+4x=180°,解方程求解即可.【详解】解:设∠COE=x ,∵∠BOE=3∠COE ,OD 平分∠AOC ,∠DOE DOC COE=Ð+Ð81ADO DOC DOE COE x\Ð=Ð=Ð-Ð=°-Q ∠BOE=3∠COE ,则∠BOE=3x ,∠AOC=2()81x °-,∵O 是直线AB 上一点,∴ ∠AOC+∠BOC=180° ,∴2()81x °-+4x=180°,解得9x =°∠AOD=81°-972°=°∴∠BOE=27°,∠AOD= 72°.【点睛】本题考查的是角平分线的定义,角的和差运算,邻补角的含义,解本题的关键是运用方程的思想解决几何问题.19.如图,直线AB ,CD 相交于点O ,OB 平分∠EOD .(1)若∠BOE :∠EOC =1:4,求∠AOC 的度数;(2)在(1)的条件下,画OF ⊥CD ,请直接写出∠EOF 的度数.【答案】(1)30°(2)30°或150°【分析】(1)设BOE x Ð=,则4EOC x Ð=,先根据角平分线的定义可得BOD BOE x Ð=Ð=,22EOD BOE x Ð=Ð=,再根据邻补角的定义求出x 的值,从而可得BOD Ð的度数,然后根据对顶角相等即可得;(2)先求出60,90EOD FOD Ð=°Ð=°,再分①点F 在AB 的上方和②点F 在AB 的下方两种情况,根据角的和差即可得.【详解】(1)解:由题意,设BOE x Ð=,则4EOC x Ð=,OB Q 平分EOD Ð,22EOD BOE x \Ð=Ð=,BOD BOE x Ð=Ð=,180EOD EOC Ð+Ð=°Q ,24180x x \+=°,解得30x =°,30BOD \Ð=°,由对顶角相等得:30AOC BOD Ð=Ð=°.(2)解:由(1)可知,23060EOD Ð=´°=°,OF CD ^Q ,90FOD \Ð=°,由题意,分以下两种情况:①如图,当点F 在AB 的上方时,则150EOF EOD FOD Ð=Ð+Ð=°;②如图,当点F 在AB 的下方时,则30EOF FOD EOD Ð=Ð-Ð=°;综上,EOF Ð的度数为30°或150°.【点睛】本题考查了与角平分线有关的计算、对顶角相等、一元一次方程的应用,较难的是题(2),正确分两种情况讨论是解题关键.20.如图,已知直线,,AB CD AC 上的点M ,N ,E 满足ME NE ^,90,AME CNE ACD Ð+Ð=а的平分线CG 交MN 于G ,作射线GF AB ∥.(1)直线AB 与CD 平行吗?为什么?(2)若66CAB Ð=°,求CGF Ð的度数.【答案】(1)平行,理由见解析(2)123°【分析】(1)利用已知条件和三角形内角和定理,通过等量代换可得180A ACD Ð+Ð=°,由同旁内角互补,两直线平行,可得//AB CD ;(2)利用,66AB CD CAB Ð=°∥,求出ACD Ð,再利用角平分线的定义求出GCD Ð,再证GF CD ∥,利用两直线平行,同旁内角互补,即可求出CGF Ð.(1)解://AB CD .理由如下:∵ME NE ^,∴90MEN Ð=°,∴90AEM CEN Ð+Ð=°,∵180A AEM AME Ð+Ð+Ð=°,180ACD CEN CNE Ð+Ð+Ð=°,∴360A ACD AEM CEN AME CNE Ð+Ð+Ð+Ð+Ð+Ð=°,∵90AME CNE Ð+Ð=°,90AEM CEN Ð+Ð=°,∴180A ACD Ð+Ð=°,∴//AB CD ;(2)解:∵66AB CD CAB ∥,Ð=°,∴180114ACD CAB Ð=°-Ð=°,∵CG 平分ACD Ð,∴1572GCD ACD Ð=Ð=°,∵AB CD GF AB ∥,∥,∴GF CD ∥.∴180CGF GCD Ð+Ð=°,∴18057123CGF Ð=°-°=°.【点睛】本题考查平行线的判定与性质,角平分线的定义,三角形内角和定理,垂直的定义等,熟练掌握平行线的判定定理和性质定理是解题的关键.五、解答题(每小题9分,共18分)21.如图,//AC BD ,BC 平分ABD Ð,设ACB Ð为a ,点E 是射线BC 上的一个动点.(1)若30a =°时,且BAE CAE Ð=Ð,求CAE Ð的度数;(2)若点E 运动到1l 上方,且满足100BAE Ð=°,:5:1BAE CAE ÐÐ=,求a 的值;(3)若:()1BAE CAE n n ÐÐ=>,求CAE Ð的度数(用含n 和a 的代数式表示).【答案】(1)60°;(2)50°;(3)18021n a °--或18021n a°-+【分析】(1)根据平行线的性质可得CBD Ð的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC Ð的度数,由已知条件BAE CAE Ð=Ð,可计算出CAE Ð的度数;(2)根据题意画出图形,先根据:5:1BAE CAE ÐÐ=可计算出CAE Ð的度数,由100BAE Ð=°可计算出BAC Ð的度数,再根据平行线的性质和角平分线的性质,计算出CBD Ð的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由a 可计算出CBD Ð的度数,再根据角平分线的性质和平行线的性质,计算出BAC Ð的度数,再:BAE CAE n ÐÐ=,BAE BAC CAE Ð=Ð+Ð,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由a 可计算出CBD Ð的度数,再根据角平分线的性质和平行线的性质,计算出BAC Ð的度数,再:BAE CAE n ÐÐ=,BAE BAC CAE Ð=Ð-Ð列出等量关系求解即可等处结论.【详解】解:(1)30a =°Q ,//AC BD ,30CBD \Ð=°,BC Q 平分ABD Ð,30ABE CBD \Ð=Ð=°,1801803030120BAC ABE a \Ð=°-Ð-=°-°-°=°,又BAE CAE Ð=ÐQ ,111206022CAE BAC \Ð=Ð=´°=°;(2)根据题意画图,如图1所示,100BAE Ð=°Q ,:5:1BAE CAE ÐÐ=,20CAE \Ð=°,1002080BAC BAE CAE \Ð=Ð-Ð=°-°=°,//AC BD Q ,180100ABD BAC \Ð=°-Ð=°,又BC Q 平分ABD Ð,111005022CBD ABD \Ð=Ð=´°=°,50CBD a \=Ð=°;(3)①如图2所示,//AC BD Q ,CBD ACB a \Ð=Ð=,BC Q 平分ABD Ð,22ABD CBD a \Ð=Ð=,1801802BAC ABD a \Ð=°-Ð=°-,又:BAE CAE n ÐÐ=Q ,():BAC CAE CAE n \Ð+ÐÐ=,(1802):CAE CAE n a °-+ÐÐ=,解得18021CAE n a°-Ð=-;②如图3所示,//AC BD Q ,CBD ACB a \Ð=Ð=,BC Q 平分ABD Ð,22ABD CBD a \Ð=Ð=,1801802BAC ABD a \Ð=°-Ð=°-,又:BAE CAE n ÐÐ=Q ,():BAC CAE CAE n \Ð-ÐÐ=,(1802):CAE CAE n a °--ÐÐ=,解得18021CAE n a°-Ð=+.综上CAE Ð的度数为18021n a °--或18021n a°-+.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.22.如图,//AB CD ,C 在D 的右侧,BE 平分ABC Ð,DE 平分ADC Ð,,BE DE 所在直线交于点E ,80ADC Ð=°.(1)若50ABC Ð=°,求BED Ð的度数;(2)将线段BC 沿DC 方向平移,使得点B 在点A 的右侧,其他条件不变,若120ABC Ð=°,求BED Ð的度数.【答案】(1)65°;(2)20°或160°【分析】1)作//EF AB ,如图1,利用角平分线的定义得到25ABE Ð=°,40EDC Ð=°,利用平行线的性质得到25BEF ABE Ð=Ð=°,40FED EDC Ð=Ð=°,从而得到BED Ð的度数;(2)作//EF AB ,如图2,利用角平分线的定义得到60ABE Ð=°,40EDC Ð=°,利用平行线的性质得到120BEF Ð=°,40FED EDC Ð=Ð=°,从而得到BED Ð的度数;如图3,利用//AB CD 得到240Ð=°,然后根据三角形外角性质可计算出BED Ð.【详解】解:(1)作//EF AB ,如图1,BE Q 平分ABC Ð,DE 平分ADC Ð,1252ABE ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,//EF CD \,25BEF ABE Ð=Ð=°Q ,40FED EDC Ð=Ð=°,254065BED \Ð=°+°=°;(2)作//EF AB ,如图2,BE Q 平分ABC Ð,DE 平分ADC Ð,1602ABE ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,//EF CD \,180120BEF ABE Ð=°-Ð=°Q ,40FED EDC Ð=Ð=°,12040160BED \Ð=°+°=°.如图3,BE Q 平分ABC Ð,DE 平分ADC Ð,11602ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,240\Ð=°,12BED Ð=Ð+ÐQ ,604020BED \Ð=°-°=°.如图4,BE Q 平分ABC Ð,DE 平分ADC Ð,1602ABE ABC \Ð=Ð=°,12402ADC Ð=Ð=°,//AB CD Q ,160ABE \Ð=Ð=°,3240Ð=Ð=°Q ,而12BED Ð=Ð+Ð,604020BED \Ð=°-°=°.综上所述,BED Ð的度数为20°或160°.【点睛】本题考查了平移的性质:解题的关键是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.也考查了平行线的性质.六、解答题(本大题共12分)23.(2022秋·贵州黔西·七年级校考阶段练习)已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且∠AGE+∠DHE =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:∠M =∠AGM+∠CHM ;(3)如图3,在(2)的条件下,射线GH 是∠BGM 的平分线,在MH 的延长线上取点N ,连接GN ,若∠N=∠AGM ,∠M =∠N+12∠FGN ,求∠MHG 的度数.【答案】(1)见解析;(2)见解析;(3)60°【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M 作MR ∥AB ,可得AB ∥CD ∥MR .进而可以证明;(3)如图3,令∠AGM =2α,∠CHM =β,则∠N =2α,∠M =2α+β,过点H 作HT ∥GN ,可得∠MHT =∠N =2α,∠GHT =∠FGN =2β,进而可得结论.【详解】(1)证明:如图1,∵∠AGE+∠DHE =180°,∠AGE =∠BGF .∴∠BGF+∠DHE =180°,∴AB ∥CD ;(2)证明:如图2,过点M 作MR ∥AB ,又∵AB ∥CD ,∴AB ∥CD ∥MR .∴∠GMR =∠AGM ,∠HMR =∠CHM .∴∠GMH =∠GMR+∠RMH =∠AGM+∠CHM .(3)解:如图3,令∠AGM =2α,∠CHM =β,则∠N =2α,∠M =2α+β,∵射线GH 是∠BGM 的平分线,∴()111809022FGM BGM AGM a Ð=Ð=°-Ð=°-,∴∠AGH =∠AGM+∠FGM =2α+90°﹣α=90°+α,∵12M N FGN Ð=Ð+Ð,∴1222FGN a b a +=+Ð,∴∠FGN =2β,过点H 作HT ∥GN ,则∠MHT =∠N =2α,∠GHT =∠FGN =2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【点睛】本题考查了平行线的判定与性质,对顶角的性质,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。
数学第五章 相交线与平行线的专项培优练习题(含答案
,
,
,
本题的答案为:1, .
【点睛】
本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.
13.【解析】
【分析】
首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25
13.如图, 平分 平分 ,则 ______.
14. 与 的两边互相垂直,且 ,则 的度数为_________.
15.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图②,则图②中的∠CFG的度数是_____________.
16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.
∴∠ABF+∠CDF= (∠ABE+∠CDE)=125°,
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF=26°,
∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,
故选:A.
【点睛】
本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.
17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.
18.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.
七年级下册 相交线与平行线 培优训练一(含答案)
七年级下册相交线与平行线培优训练(一)1.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=.∵AB∥CD,∴∥,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).2.如图,直线AB和直线BC相交于点B,连接AC,点D、E、H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).3.如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD 分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.4.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.5.如图,在下列解答中,填写适当的理由或数学式:(1)∵∠ABD=∠CDB,(已知)∴∥()(2)∵∠ADC+∠DCB=180°,(已知)∴∥()(3)∵AD∥BE,(已知)∴∠DCE=∠()(4)∵∥,(已知)∴∠BAE=∠CFE.()6.如图,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.(1)求∠BCF的度数;(2)如果DE是∠ADC的平分线,那么DE与AB平行吗?请说明理由.7.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请你判断DA与CE的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.8.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.9.补全解答过程:已知:如图,直线AB∥CD,直线EF与直线AB,CD分别交于点G,H;GM平分∠FGB,∠3=60°.求∠1的度数.解:∵EF与CD交于点H,(已知)∴∠3=∠4.∴∠4=60°.∴∠4+∠FGB=180°.∴∠1=°.(角平分线的定义)10.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案1.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.2.解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°﹣α又∵DH平分∠BDE∴∠1=∠BDE=(180°﹣α)∴∠3=180°﹣(180°﹣α)=90°+α3.解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°,故答案为:60°.(2)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°,故答案为:30°.(3)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.4.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.5.解:(1)∵∠ABD=∠CDB,(已知)∴AB∥CD(内错角相等两直线平行)(2)∵∠ADC+∠DCB=180°,(已知)∴AD∥BC(同旁内角互补两直线平行)(3)∵AD∥BE,(已知)∴∠DCE=∠ADC(两直线平行内错角相等)(4)∵AB∥CD,(已知)∴∠BAE=∠CFE.∵AD∥BC,∴∠1=∠B=60°,又∵∠1=∠2,∴∠2=60°,又∵FC⊥CD,∴∠BCF=90°﹣60°=30°;(2)DE∥AB.证明:∵AD∥BC,∠2=60°,∴∠ADC=120°,又∵DE是∠ADC的平分线,∴∠ADE=60°,又∵∠1=60°,∴∠1=∠ADE,∴DE∥AB.7.解:(1)AD∥EC,理由是:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,又∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥EC.(2)∵DA平分∠BDC,∴∠ADC=∠BDC=35°,∴∠2=∠ADC=35°,∵CE⊥AE,AD∥EC,∴∠F AD=∠AEC=90°,∴∠F AB=∠F AD﹣∠2=90°﹣35°=55°.8.解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣112°=68°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×68°=34°;(2)∠OBC:∠OFC的值不变.∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×68°=17°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣112°﹣17°=51°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=51°.9.解:∵EF与CD交于点H,(已知)∴∠3=∠4.∴∠4=60°.∴∠4+∠FGB=180°.∴∠1=60°.如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD=2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.。
平行线分线段成比例专题培优提高训练(最新编写)
A
E
D
P
Q
B
F
C
专题二、定理及推论与中点有关的问题
【例4】(2007 年北师大附中期末试题) (1)如图(1),在 ABC 中, M 是 AC 的中点, E 是 AB 上一点,且 AE 1 AB ,
4
连接 EM 并延长,交 BC 的延长线于 D ,则 BC _______.
CD
(2)如图(2),已知 ABC 中, AE : EB 1: 3 , BD : DC 2 :1, AD 与 CE 相交于 F ,
3
A
F E
B
D
C
【例6】(宁德市中考题)如图, ABC 中, D 为 BC 边的中点,延长 AD 至 E ,
延长 AB 交 CE 的延长线于 P 。若 AD 2DE ,求证:
AP 3AB 。
A
B D
P
E
C
【巩固】(济南市中考题;安徽省中考题)如图, ABC 中, BC a ,若 D1 ,E1
C
D
E
O
A
B
【习题2】 在 ABC 中, BD CE , DE 的延长线交 BC 的延长线于 P ,
求证: AD BP AE CP .
A
D
E
B
C
P
【习题3】 如图,在 ABC 的边 AB 上取一点 D ,在 AC 取一点 E ,使 AD AE , 直线 DE 和 BC 的延长线相交于 P ,求证: BP BD
AD
(2)当 AE 1、1 时,求 AO 的值;
AC 3 4
AD
A
(3)试猜想 AE 1 时 AO 的值,并证明你的猜想.
AC n 1 AD
第一章 平行线 培优训练试题(含解析)
第一章 平行线培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°2.c b a ,,为平面内不同的三条直线,若要b a //,以下条件不符合的个数有( )① c a //,c b //;② c a ⊥,c b ⊥;③ c a ⊥,c b //;④ c 截b a ,所得的内错角的邻补角相等A .0个B .1个C .2个D .3个3.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm4.如图,直线m l //,将三角形△ABC (∠ABC =45°)的直角顶点C 放在直线m 上,若∠1=20°,则∠2的度数为( )A .20°B .25°C .30°D .35°5.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A .50°B .60°C .70°D .80°6.如图,AB ∥CD ,∠A=50°,∠C=30°,则∠AEC 等于( )A .20°B .50°C .80°D .100°7.如图,给出下列四个条件:①AC =BD ;②∠DAC =∠BCA ;③∠ABD =∠CDB ;④∠ADB =∠CBD.其中能使AD ∥BC 的条件为( )A .①②B .③④C .②④D .①③④8.如图,直线a ,b 被直线c ,d 所截.若∠1=80°,∠2=100°,∠3=85°,则∠4度数是( )A .80° B .85° C .95° D .100°9.如图,CD ∥AB ,OE 平分∠AOD ,OF ⊥OE ,OG ⊥CD ,∠CDO =50°,则下列结论:① ∠AOE =65°;② OF 平分∠BOD ;③ ∠GOE =∠DOF ;④ ∠AOE =∠GOD ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角(∠1除外)共有( )二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为__________12.如图,在宽为20米、长为30米的矩形地面上修筑宽均为2米的道路(图中阴影部分),余下部分种植草坪,则草坪的面积为_________平方米13.如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别于直线a、c相交于点B、C,则∠1+∠2的度数是___________14.如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠BCE的度数为(用含n的代数式表示).15.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=16.已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分).如图,AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE18.(本题8分)如图,已知AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.19(本题8分).如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.20(本题10分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.21(本题10分).直线EF、GH之间有一个直角三角形ABC,其中∠BAC=90°,∠ABC=α.(1)如图1,点A在直线EF上,B、C在直线GH上,若∠α=60°,∠FAC=30°.求证:EF∥GH;(2)将三角形ABC如图2放置,直线EF∥GH,点C、B分别在直线EF、GH上,且BC平分∠ABH,直线CD平分∠FCA交直线GH于D.在α取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化指出其变化范围.22(本题12分).已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)23(本题12分).如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC= ;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.。
2020--2021学年七年级数学下册5.3.1:平行线培优练习(添辅助线类型)
折线图问题一、选择题(本大题共20小题,共58.0分)1.如图,M、N分别在a、b上,P为两平行线间一点,那么A.B.C.D.2.如图,如果,,那么等于A.B.C.D.3.如图,,那么A.B.C.D.4.如图,,,则A.B.C.D.5.如图,已知,,,则A.B.C.D.6.已知:如图,,则,,之间的关系是A.B.C.D.7.如图,直线,且,,则A.B.C.D.8.如图所示,若,则,,之间的度数关系是A.B.C.D.第2页,共7页9.已知直线,一块含角的直角三角板如图所示放置,,则等于A.B.C.D.10.探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O点的灯泡发出的两束光线OB、OC经灯碗反射以后平行射出.如果图中,,则的度数为A. B. C. D.二、填空题(本大题共7小题,共30.0分)11.如图,,,,的度数为______.12.如图所示,,,,则的度数为______ 度.13.如图,若,且,,则______度.14.如图,已知,,,则______ .三、计算题(本大题共1小题,共11.0分)15.已知,直线,E为AB、CD间的一点,连接EA 、EC.如图,若,,则______如图,若,,则______如图,若,,则,与之间有何等量关系.并简要说明.四、解答题(本大题共13小题,共131.0分)16.问题发现:如图,直线,E 是AB与CD 之间的一点,连接BE ,CE,可以发现.请把下面的证明过程补充完整:证明:过点E 作,已知,辅助线的作法.____________,同理.______等量代换第4页,共7页即.拓展探究:如果点E运动到图所示的位置,其他条件不变,进一步探究发现:,请说明理由.解决问题:如图,,,,请直接写出的度数.17.在一次数学课上,李老师让同学们独立完成课本第23页选择题如图1,如果,那么请写出这道题的正确选项;在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,,请直接写出,,之间的数量关系.善于思考的龙洋同学想:将图1平移至与图2重合如图3所示当AD,ED分别平分,时,与之间有怎样的数量关系?请你直接写出结果,不需要证明.彭敏同学又提出来了,如果像图4这样,,当时,、和之间又有怎样的数量关系?请你直接写出结果,不需要证明.18.已知,直线,点P为平面上一点,连接AP与CP.如图1,点P在直线AB 、CD之间,当,时,求.如图2,点P在直线AB、CD之间,与的角平分线相交于点K,写出与之间的数量关系,并说明理由.如图3,点P落在CD外,与的角平分线相交于点K,与有何数量关系?并说明理由.第6页,共7页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A 1 A 2
A 3
B 1 B 2
B 图1
平行线与相交线培优题型
1 已知:如图1,∠B 1+∠B 2=∠A 1+∠A 2+∠A 3(即向左凸出的角的和等于向右凸出的角的和),求证:AA 1∥BA 3
(想一想:如果把例1的折线变成几条,且∠B +∠B 1+∠B 2+…+∠B n =∠A 1+∠A 2+…+∠A n ,那么AA 1∥BA n 成立吗?若成立,试加以证明;若不成立,请说明理由。
)
2, 如图2,已知AB ∥CD ,∠AFE=α,∠ECB=β,求证:∠E=α+β-180°。
3, 已知,如图3,AB ∥CD ,BC ∥DE ,BF 平分∠ABC ,DG 平分∠EDC ,求证:DG ⊥BF 。
4, 如图5,正方形ABCD 对角线AC 分成几段,以每一段为对角线作正方形,设这几个小正方形的周长之和为P ,正方形ABCD 的周长为L ,求证:P=L 。
A F
B E D α β
C 图2 A B
F G C
D
E 图3
A C D
5, 如图6,AB ∥ED ,α=∠A +∠E ,β=∠B +∠C +∠D ,求证:β=2α。
6,平面上有10条直线,且无任何三条交于一点,欲使它们出现31个交点,试问:怎样安排才能办到?
7,如图8,已知AB ∥CD ,被直线EF 所截交AB 、CD 于M 、N ,MP 平分∠EMB ,NQ 平分∠MND ,求证:MP ∥NQ 。
8,如图9,已知∠AB E +∠DEB=180°,∠1=∠2。
求证:∠F=∠G 。
9,如图
10,已知∠ADE=∠B ,∠1=∠2,GF ⊥AB ,求证:CD ⊥AB 。
图6
2
1
A B C
F G D E 图9 F B 图10
10,如图11,∠1=∠2,∠C=∠D ,求证:∠A=∠F 。
11.如图12,已知∠ABC=∠ADC ,BF 和DE 分别平分∠ABC 和∠ADC ,且∠1=∠2,求证:DF ∥EB 。
12.如图13,点B 、E 、C 、F 在一条直线上,并且AB ∥DE ,∠A=∠D ,AC ⊥BF ,求证:DF ⊥BF 。
13.如图14,已知AB ∥CD ,∠BAE=∠C ,求证:AE ∥BC 。
14.如图15,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线。
求证: ∠EDF=∠BDF 。
A B
C F
E
D
1
2
图11
F C E A 图12 C E D C
B E F
A D G 图13
C
15.如图16,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠ACB 的大小关系,并对结论进行证明。
16.如图17:
(1)如图甲,已知AB ∥CD ,求证:∠E=∠A+∠C 。
(2)如图乙,已知AB ∥CD ,求证:∠B+∠E+∠D=360°。
17.如图1,已知E 是AB ,CD 外一点,∠D=∠B+∠E ,求证:AB ∥CD 。
18.如图2,已知两条平行线AB 、CD 被直线EF 所截,交点分别为G 、H ,P 为HD 上任意一点,过P 点的直线
交HF 于O 点,求证:∠
HOP=∠AGF -∠HPO 。
C
图16
A E C
B D B D A
C E
图甲 图乙 C
D B A
E 图1
B
E A G
C D H F
O
P
19.如图3,已知AB ∥CD ,∠EAF=
14∠EAB ,∠ECF=14∠ECD ,求证:∠AFC=3
4
∠AEC 。
20.如图4,AB ∥CD ∥EF ,EH ⊥CD 于H ,求证:∠BAC+∠ACE+∠CEH=270°。
21.如图5,AB ∥EF ,∠C=90°,求证:αβγ+-=90°
22.如图6,已知CD 平分∠ACB ,且DE ∥AC ,CD ∥EF ,求证:EF 平分∠DEB 。
23.如图7,已知DA ⊥AB ,DE 平分∠ADC ,CE 平分∠BCD ,∠1+∠2=90°,求证:BC ⊥AB 。
E
F
C
A
B
D
图
3
图4
B
图5
A
C E B
图6
24.如图8,EF ⊥AB ,CD ⊥AB ,∠1=∠2,求证:∠B=∠ADG 。
25.如图9,已知AA 1∥B A 3,证明:∠A 1+∠A 2∠A 3=∠B 1+∠B 2。
26.如图10,在△ABC 中,已知DF ∥A B 1,∠2=∠A ,求证:∠4=∠5。
27.如图7,已知直线AB 分别交a 与b 于A 、B ,∠DAB 与∠EBA 平分线相交于C ,若AC ⊥
BC ,求证:a ∥b 。
A C 图
8 A A 1
A 2
A 3
B 2 B 1 B 图9
B D 图10
A D C
B E a
b
图7
28.已知:如图4,AD ⊥BC ,EF ⊥BC ,∠1=∠2,求证:AB ∥GF 。
A B
C
F E
G 1
2
图4。