第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)
矩阵的行列式、秩与迹及特征值分析
Al=[l,2,3;4,5,6] B1=det(A1) C1=trace(A1)
2.2矩阵的迹 矩阵的迹等于矩阵主对角线元素的总和。 也等于矩阵特征值的总和。
运算符:trace() 注意:要求矩阵是方阵
3.矩阵的特征值分析
E=eig(A ) 求矩阵A的全部特征值, 并构成向量E
[V,D]=eig(A )求矩阵A的全部特征值,构成 对角矩阵D;求A的特征向量 构成列向量V。
例2.4一1
矩阵的行列式、秩与迹 及特征值分析
主要内容
矩阵的行列式 矩 阵的秩与迹 矩阵 的特征值分析
1・矩阵的行列 式
运算符:det() 注意:用于求方阵阵的秩 矩阵的秩是矩阵的列向量组(或行向量组) 的任一极大线性无关组所含向量的个数。
运算符:rank()
2.矩阵的秩与迹
矩阵讲义全
本课程的说明:矩阵分析理论是在线性代数的基础上推广的(数学是在已有的基础理论上模仿,推广而发展的。
要大胆猜想,小心证明!) 矩阵分析理论的组成:四部分:一、基础知识(包括书上的前三章内容)重点、难点:约当标准形与多项式矩阵,矩阵的分解等; 二、矩阵分析(第四章:矩阵函数及其应用)重点、难点:范数,矩阵幂级数,微分方程组; 三、矩阵特征值的估计(第五章)重点、难点:Gerschgorin 圆盘定理;广义逆矩阵; 四、非负矩阵(第六章)(注:不讲)重点、难点:基本不等式,素矩阵,随机矩阵等。
§1 线性空间与度量空间一、线性空间: 1.数域:Df 1:若复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积、商(除数不为0)仍在这个集合中,则称数集P 为一个数域 eg 1:Q (有理数),R (实数),C (复数),Z (整数),N (自然数)中哪些是数域?哪些不是数域? 2.线性空间— 设P 是一个数域,V 是一个非空集合,若满足:<1> 可加性—指在V 上定义了一个二元运算(加法)即:V ∈∀βα, 经过该运算总存在唯一的元素V ∈γ与之对应,称γ为α与β的和,记βαγ+= 并满足:① αββα+=+② )()(γβαγβα++=++ ③ 零元素—=有θαθααθ+∈∀∈∃Vt s V .(线性空间必含θ)。
④ αβαβθβααβ-+∈∀∈∃=记的负元素为=有对V V<2> 数积:(数乘运算)—在P 与V 之间定义了另一种运算。
即V P k ∈∈∀α,经该运算后所得结果,仍为V 中一个唯一确定的元素(存在唯一确定的元素V ∈δ与之对应),称δ为k 与α的乘积。
记为αδk =并满足:① αα=⋅1② P l k ∈∀, αα)()(kl l k = ③ P l k ∈∀, αααl k l k +=+)( ④ γβα∈∀, βαβαk k k +=+)(则称V 为数域P 上的线性空间(向量空间)记为)...(∙+P V 习惯上V 中的元素—向量, θ—零向量, 负元素—负向量结论:可以证明,线性空间中的零向量是唯一的,负元素也是唯一的,且有:θα=⋅0 θθ=⋅k αα-=⋅-)1( )(βαβα-+=-eg2:}{阶矩阵是n m A A V ⨯= P —实数域R按照矩阵的加法和数与矩阵的乘法,就构成实数域R 上的线性空间,记为:n m R ⨯同样,若V 为n 维向量,则可构成R 上的n 维向量空间n R —线性空间。
矩阵论五矩阵分析
矩阵论五矩阵分析矩阵论作为数学中的一个重要分支,研究的是矩阵的性质、运算和应用。
在实际应用中,矩阵论广泛应用于线性代数、计算机科学、物理学、经济学等领域,起到了重要的作用。
本文将介绍矩阵分析这一矩阵论的重要内容。
矩阵分析是矩阵论中的一个重要分支,它研究的是矩阵的各种性质和内在结构。
矩阵分析包括矩阵的行列式、特征值、特征向量、正交变换、相似矩阵等概念和定理。
首先,矩阵的行列式是一个非常重要的概念。
行列式是一个把方阵映射到实数的函数,用于判断矩阵是否可逆、求解线性方程组等问题。
行列式的计算可以通过对矩阵进行列展开、代数余子式等方法来进行。
同时,行列式还具有一系列重要的性质,如行列式的线性性、行列式的性质、Cramer法则等,这些性质为行列式的计算和应用提供了便利。
其次,矩阵的特征值和特征向量也是矩阵分析的重要内容。
特征值和特征向量描述了矩阵在线性变换下的性质,是矩阵的本征特性。
通过求解特征方程,可以得到矩阵的特征值,通过求解对应的特征向量,可以得到矩阵的特征向量。
特征值和特征向量在很多应用中起着重要的作用,如在物理学中用于描述物理量在变换下的特性,亦或者在图像处理中用于图像压缩和分解等。
此外,矩阵的正交变换也是矩阵分析中的一个重要概念。
正交变换是指保持向量长度和夹角不变的线性变换,可以通过一个正交矩阵来实现。
正交变换在几何学中起到了非常重要的作用,如在三维空间中的旋转变换、投影变换等。
正交矩阵具有很多重要的性质,如正交矩阵的逆等于其转置、正交矩阵的行列式为1或-1等。
最后,相似矩阵也是矩阵分析中的一个重要概念。
相似矩阵是指可以通过一个可逆矩阵相似变换得到的矩阵。
相似矩阵具有相同的特征值,特征向量和行列式。
相似矩阵在矩阵的相似性和等价性判断、矩阵的对角化等问题中起到了重要的作用。
总之,矩阵分析作为矩阵论的重要分支,研究的是矩阵的各种性质和内在结构,是矩阵论的重要内容之一、矩阵分析包括矩阵的行列式、特征值、特征向量、正交变换和相似矩阵等概念和定理。
矩阵的特征方程和特征值
矩阵的特征方程和特征值
矩阵的特征方程和特征值是矩阵的重要性质。
一个 n 阶方阵A的特征方程是一个关于λ的n次多项式,定义为det(A-λI),其中I是n阶单位矩阵,det表示行列式。
一个特征向量是指一个非零列向量v,使得矩阵A与v的乘积等于一个数λ与v的乘积,即Av=λv。
特征值就是特征方程的根,也就是一个矩阵所对应的线性变换中,存在使得线性变换与其对应的向量共线的非零向量的实数λ,这个实数称为特征值,而对应的向量称为特征向量。
矩阵的特征值和特征向量在线性代数的许多方面都有应用,如求解矩阵的逆矩阵、求解线性方程组、矩阵的对角化等。
研究生矩阵论
研究生矩阵论矩阵论是数学中的一个重要分支,它研究的对象是矩阵及其性质。
研究生在学习矩阵论时,需要深入理解矩阵的基本概念和性质,并掌握一些重要的定理和推论。
本文将介绍研究生矩阵论的一些重要内容,以帮助读者更好地理解和应用矩阵论知识。
矩阵是由数个数按照一定的规律排列成的矩形数组。
矩阵的行和列分别代表其维度。
在矩阵论中,我们通常用大写字母表示矩阵,如A、B、C等。
矩阵中的每个元素用小写字母表示,如a、b、c等。
矩阵的运算包括加法、减法、数乘和矩阵乘法等。
这些运算满足一定的性质,如结合律、分配律等。
矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
转置矩阵的性质有:(A^T)^T = A,(A + B)^T = A^T + B^T,(kA)^T = kA^T,其中A、B是矩阵,k是数。
矩阵的逆是指对于一个可逆方阵A,存在一个方阵B,使得AB = BA = I,其中I是单位矩阵。
如果一个矩阵没有逆矩阵,我们称其为奇异矩阵。
逆矩阵的性质有:(A^T)^{-1} = (A^{-1})^T,(AB)^{-1} = B^{-1}A^{-1},(kA)^{-1} = \frac{1}{k}A^{-1},其中A、B是可逆矩阵,k是非零数。
矩阵的秩是指矩阵中非零行(列)的最大个数。
矩阵的秩具有一些重要的性质:如果矩阵A的秩为r,则A的任意r阶子式不等于0,而r+1阶子式等于0。
矩阵的特征值和特征向量是矩阵论中的重要概念。
对于一个方阵A,如果存在一个非零向量x,使得Ax = \lambda x,其中\lambda是一个数,那么\lambda称为A的特征值,x称为对应于特征值\lambda的特征向量。
特征值和特征向量具有一些重要的性质:矩阵A和其转置矩阵A^T具有相同的特征值;A的特征值之和等于A 的迹,即矩阵A的所有特征值之和等于A的主对角线上元素之和。
矩阵的相似性是矩阵论中的一个重要概念。
对于两个方阵A和B,如果存在一个可逆矩阵P,使得P^{-1}AP = B,那么我们称A和B 是相似的。
线性代数知识点总结(第5章)
线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。
注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。
第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
大一线性代数矩阵知识点总结
大一线性代数矩阵知识点总结矩阵是线性代数中的重要概念,它是一种方便表示和处理线性变换的数学工具。
在大一线性代数课程中,我们将学习矩阵的相关知识,本文将对一些重要的矩阵知识点进行总结。
1. 矩阵的定义和表示方式- 矩阵是由m行n列元素排列成的矩形阵列,用大写字母表示,如A、B等。
- 矩阵可以用方括号表示,如A=[a_ij],其中a_ij代表矩阵A 的第i行第j列的元素。
2. 矩阵的运算- 矩阵的加法:对应元素相加。
- 矩阵的数乘:矩阵中的每个元素乘以相同的数。
- 矩阵的乘法:矩阵A的列数等于矩阵B的行数时,可以进行乘法运算,结果的行数等于A的行数,列数等于B的列数。
3. 矩阵的特殊类型- 零矩阵:所有元素都为0的矩阵,用0表示。
- 方阵:行数等于列数的矩阵。
- 单位矩阵:主对角线元素为1,其它元素为0的方阵,用I 表示。
4. 矩阵的转置- 矩阵的转置就是将矩阵的行与列对调得到的新矩阵,用A^T表示。
5. 矩阵的行列式- 行列式是一个标量,表示一个方阵所围成的平行四边形的有向面积。
- 行列式常用符号为|A|或det(A),其中A为方阵。
6. 逆矩阵- 对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。
- A的逆矩阵记为A^{-1}。
7. 矩阵的特征值和特征向量- 对于一个n阶方阵A,如果存在一个非零向量x和标量λ,使得Ax=λx,其中λ为标量,则称λ为A的特征值,x为对应于特征值λ的特征向量。
8. 矩阵的特征分解- 对于一个可对角化的矩阵A,存在一个对角矩阵D和一个可逆矩阵P,使得A=PDP^{-1},其中D为对角矩阵,P为特征向量矩阵。
9. 矩阵的秩- 矩阵的秩是指矩阵中非零行的最大个数,用rank(A)表示。
10. 线性方程组与矩阵- 线性方程组可以用矩阵的形式表示,例如AX=B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
以上是大一线性代数矩阵知识点的简单总结。
矩阵在线性代数中起着重要的作用,它不仅可以用于表示线性变换,还可以用于解决线性方程组和求解特征值等问题。
第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)
第五专题矩阵的数值特征(⾏列式、范数、条件数、迹、秩、相对特征根)第五专题矩阵的数值特征(⾏列式、迹、秩、相对特征根、范数、条件数)⼀、⾏列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明⼀:参照课本194页,例4.3.证明⼆:利⽤AB 和BA 有相同的⾮零特征值的性质;从⽽I p +AB ,I q +BA 中不等于1的特征值的数⽬相同,⼤⼩相同;其余特征值都等于1。
⾏列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以⼆者相等。
⼆、矩阵的迹矩阵的迹相对其它数值特征简单些,然⽽,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应⽤,许多量的计算都会归结为矩阵的迹的运算。
下⾯讨论有关迹的⼀些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+µ=λ+µ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnkki i i 1i 1tr(A),tr(A )===λ=λ∑∑;9. 对于n 阶⽅阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若⼲基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维⾣空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利⽤Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m×n复矩阵A和B|tr(A H B)|2≤tr(A H A)﹒tr(B H B)这⾥等号成⽴的充要条件是A=cB,c为⼀常数。
考研数学线性代数知识点总结
考研数学线性代数知识点总结线性代数是考研数学中的重要组成部分,对于很多考生来说,它具有一定的难度。
但只要掌握了关键的知识点和方法,就能在考试中取得较好的成绩。
以下是对考研数学线性代数的知识点总结。
一、行列式行列式是线性代数中的基本概念之一。
1、二阶和三阶行列式的计算方法要熟练掌握,通过对角线法则可以轻松计算。
2、 n 阶行列式的定义和性质需要理解清楚。
例如,行列式的某一行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
3、行列式按行(列)展开定理也是重点,它可以将高阶行列式转化为低阶行列式来计算。
二、矩阵矩阵是线性代数的核心内容。
1、矩阵的运算,包括加法、数乘、乘法以及矩阵的转置。
要特别注意矩阵乘法的规则和不满足交换律的特点。
2、逆矩阵的概念和求法至关重要。
判断矩阵是否可逆,以及通过伴随矩阵或初等变换来求逆矩阵。
3、矩阵的秩是一个关键概念,它反映了矩阵中线性无关的行(列)向量的个数。
4、分块矩阵的运算和应用也需要掌握,它可以简化一些复杂矩阵的计算。
三、向量向量是线性代数中的重要工具。
1、向量组的线性相关性是常见考点。
判断向量组是线性相关还是线性无关,以及理解相关和无关的性质。
2、向量组的秩与极大线性无关组要弄清楚它们的概念和求法。
3、向量空间的基、维数和坐标等概念也需要了解。
四、线性方程组线性方程组是线性代数的重点应用。
1、线性方程组有解的判定条件,通过系数矩阵的秩和增广矩阵的秩来判断。
2、齐次线性方程组基础解系的求法,要熟练掌握通过初等行变换将系数矩阵化为行最简形。
3、非齐次线性方程组的通解结构,由一个特解加上齐次线性方程组的通解组成。
五、矩阵的特征值和特征向量这部分内容在考研中经常出现。
1、特征值和特征向量的定义和计算方法,通过求解特征方程来得到特征值,再代入方程求解特征向量。
2、相似矩阵的概念和性质,相似矩阵具有相同的特征值。
3、矩阵可对角化的条件,以及如何将矩阵对角化。
矩阵知识点归纳范文
矩阵知识点归纳范文矩阵是线性代数中一个重要的概念,具有广泛的应用。
矩阵可以表示一个线性方程组的系数矩阵,也可以用于描述图像处理、网络分析等领域。
以下是矩阵的基础知识点的归纳:1.矩阵的定义与表示:矩阵是一个有序的数表,通常用大写字母表示。
矩阵的元素可以是实数或复数。
矩阵通常用方括号[]或圆括号(表示,不同的元素用逗号或空格隔开。
矩阵的行数与列数分别称为矩阵的阶。
2.矩阵的运算:-矩阵的加法:两个相同阶的矩阵相加,即对应位置的元素相加。
-矩阵的乘法:两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。
结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
矩阵乘法可以表示为A*B=C。
3.矩阵的转置:矩阵的转置是将原矩阵的行变为列,列变为行。
转置后的矩阵记作A^T。
转置满足以下性质:-(A^T)^T=A-(A+B)^T=A^T+B^T-(k*A)^T=k*A^T4.矩阵的逆:对于一个n阶方阵A,如果存在一个n阶方阵B,使得A*B=B*A=I,其中I是单位矩阵,则称A可逆,B称为A的逆矩阵,记作A^(-1)。
要求A可逆的一个必要条件是A的行列式不等于零。
逆矩阵满足以下性质:-(A^(-1))^(-1)=A-(A*B)^(-1)=B^(-1)*A^(-1)-(k*A)^(-1)=(1/k)*A^(-1)5.矩阵的行列式:矩阵 A 的行列式用 det(A) 表示,是一个数值,用于判断矩阵是否可逆。
行列式满足以下性质:- 如果 A 的其中一行(列)为 0,或者 A 的两行(列)相同,则det(A)=0。
-交换A的两行(列),行列式的值取负。
-如果A的其中一行(列)的元素全部乘以一个非零常数k,行列式的值乘以k。
-将A的其中一行(列)的元素与另一行(列)对应位置的元素相加乘以一个常数k,行列式的值不变。
6.矩阵的秩:矩阵的秩是指矩阵行(列)的最大线性无关组中的向量个数。
秩可以用来判断矩阵的行(列)是否线性相关。
线性代数精华——矩阵的特征值与特征向量
线性代数精华——矩阵的特征值与特征向量今天和大家聊一个非常重要,在机器学习领域也广泛使用的一个概念——矩阵的特征值与特征向量。
[1]我们先来看它的定义,定义本身很简单,假设我们有一个n阶的矩阵A以及一个实数lambda,使得我们可以找到一个非零向量x,满足:如果能够找到的话,我们就称lambda是矩阵A的特征值,非零向量x是矩阵A的特征向量。
[2]几何意义光从上面的式子其实我们很难看出来什么,但是我们可以结合矩阵变换的几何意义,就会明朗很多。
我们都知道,对于一个n维的向量x来说,如果我们给他乘上一个n阶的方阵A,得到Ax。
从几何角度来说,是对向量x进行了一个线性变换。
变换之后得到的向量y和原向量x的方向和长度都发生了改变。
但是,对于一个特定的矩阵A来说,总存在一些特定方向的向量x,使得Ax和x的方向没有发生变化,只是长度发生了变化。
我们令这个长度发生的变化当做是系数lambda,那么对于这样的向量就称为是矩阵A的特征向量,lambda就是这个特征向量对应的特征值。
求解过程我们对原式来进行一个很简单的变形:这里的I表示单位矩阵,如果把它展开的话,可以得到一个n元的齐次线性方程组。
这个我们已经很熟悉了,这个齐次线性方程组要存在非零解,那么需要系数行列式不为零,也就是系数矩阵的秩小于n。
我们将这个行列式展开:这是一个以lambda为未知数的一元n次方程组,n次方程组在复数集内一共有n个解。
我们观察上式,可以发现lambda 只出现在正对角线上,显然,A的特征值就是方程组的解。
因为n次方程组有n个复数集内的解,所以矩阵A在复数集内有n个特征值。
我们举个例子,尝试一下:假设:那么我们套入求根公式可以得出使得f(lambda) = 0 的两个根lambda1 lambda2,有:这个结论可以推广到所有的n都可以成立,也就是说对于一个n 阶的方阵A,都可以得到:案例我们下面来看一个例子:我们带入可以得到:使用Python求解特征值和特征向量在我们之前的文章当中,我们就介绍过了Python在计算科学上的强大能力,这一次在特征值和特征矩阵的求解上也不例外。
矩阵特征值和特征向量的数值解
风险管理
在风险管理模型中,可以使用风 险矩阵的特征值和特征向量来分 析风险的分布和相关性,从而制 定有效的风险管理策略。
感谢您的观看
THANKS
稳定性分析通常通过比较不同数值解法的计算结果,观察其误差随舍入精 度的变化情况来进行。
稳定性好的算法能够在不同舍入精度下保持一致的计算结果,而稳定性差 的算法则可能导致计算结果的较大偏差。
数值解法的收敛性分析
01
收敛性分析是评估数值解法求解特征值和特征向量问题的有效 性的关键步骤。
02
收敛性分析主要关注算法是否能够收敛到正确的解,以及收敛
通过求解矩阵的特征值和特征向量,可以找到线性变换下的不变量,从而更好地理解和分析线性变换的 性质和行为。
特征值和特征向量在矩阵的奇异值分解和QR分解等矩阵分解方法中也有着重要的应用,这些分解方法在 许多科学计算和工程领域中都有广泛的应用。
在微分方程中的应用
01
矩阵特征值和特征向量在解决微分方程问题中也有着重要 的应用。
速度的快慢。
收敛速度的快慢通常用收敛阶数来衡量,收敛阶数越高,收敛
03
速度越快。
数值解法的误差估计
01
误差估计是对数值解法计算结果的精度进行量化的 重要手段。
02
误差估计通常通过比较数值解法的计算结果与精确 解之间的差异来进行。
03
误差估计可以帮助我们了解算法的精度,从而在实 际应用中选择合适的算法和舍入精度。
在研究热传导问题时,热传导矩阵的特征值和特 征向量可以用来确定温度场的分布和变化。
在工程问题中的应用实例
结构分析
在结构分析中,结构的质量矩阵和刚度矩阵的特征值和特征向量可 以用来确定结构的固有频率和振型,从而评估结构的稳定性和安全 性。
考研数学矩阵的特征值与特征向量讲解
考研数学矩阵的特征值与特征向量讲解我们在进行考研数学的复习时,需要把矩阵的特征值与特征向量的重点知识点复习好。
店铺为大家精心准备了考研数学矩阵的特征值和特征向量分析,欢迎大家前来阅读。
考研数学矩阵的特征值和特征向量解析矩阵的特征值与特征向量的定义:设为阶矩阵,若存在常数和向量,使得,则称为矩阵的特征值,称为矩阵的属于特征值的特征向量。
求特征值与特征向量的常用思路:1.根据定义求特征值和特征向量。
2.当已给出矩阵,通过求出特征值,然后通过求齐次线性方程组的基础解系,求出矩阵的属于特征值的线性无关的特征向量。
3.利用关联矩阵的特征值之间的关系求特征值,如互逆矩阵的特征值互为倒数;相似矩阵的特征值相同;和有相同的特征值等。
并利用关联矩阵特征向量之间的关系求矩阵的属于特征值的特征向量,如当可逆时,、与对应的特征值的特征向量相同等。
一般矩阵与实对称矩阵的特征值与特征向量的性质:1.阶矩阵的所有特征值之和等于矩阵的迹,阶矩阵的所有特征值之积等于矩阵的行列式。
2.设为阶矩阵的特征值,若为矩阵的属于特征值的特征向量,则也是矩阵的属于特征值的特征向量。
3.实对称矩阵的特征值都是实数。
4.矩阵的不同特征值所对应的特征向量线性无关,实对称矩阵的不同特征值所对应的特征向量正交。
考研数学复习指导技巧当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。
数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。
高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。
另一部分考查的是简单的分析综合能力。
因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。
最后就是数学的解应用题能力。
解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。
线性代数知识点全面总结
线性代数知识点全面总结线性代数是数学的一个重要分支,在科学、工程、计算机科学等领域都有着广泛的应用。
下面就为大家全面总结一下线性代数的主要知识点。
一、行列式行列式是线性代数中的一个基本概念,它是一个数值。
对于一个二阶行列式,其计算公式为“左上角元素乘以右下角元素减去右上角元素乘以左下角元素”。
对于高阶行列式,可以通过按照某一行(列)展开来计算。
行列式具有很多重要的性质,比如:某一行(列)元素乘以同一数后,加到另一行(列)对应元素上,行列式的值不变;如果行列式某一行(列)元素全为零,则行列式的值为零;交换行列式的两行(列),行列式的值变号等。
二、矩阵矩阵是线性代数的核心概念之一。
它是一个按照矩形排列的数表。
矩阵可以进行加法、减法、数乘和乘法运算。
矩阵加法和减法要求两个矩阵的行数和列数都相同,对应位置的元素相加减。
数乘则是将矩阵的每个元素乘以一个数。
矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。
而且,矩阵乘法一般不满足交换律。
矩阵还有转置、逆等概念。
矩阵的转置是将行和列互换得到的新矩阵。
如果一个矩阵存在逆矩阵,那么它与原矩阵相乘得到单位矩阵。
三、线性方程组线性方程组是线性代数中的重要内容。
可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换来求解。
齐次线性方程组(常数项都为零的线性方程组)一定有零解,如果系数矩阵的秩小于未知数的个数,则有非零解。
非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,则有解;如果秩相等且等于未知数的个数,则有唯一解;如果秩相等但小于未知数的个数,则有无穷多解。
四、向量向量是既有大小又有方向的量。
在线性代数中,向量可以表示为行向量或列向量。
向量组的线性相关和线性无关是重要概念。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称向量组线性相关;否则,称向量组线性无关。
向量组的秩是指极大线性无关组中向量的个数。
五、特征值与特征向量对于一个方阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ称为矩阵 A 的特征值,x 称为矩阵 A 对应于特征值λ的特征向量。
矩阵的特征值与特征向量专题讲解
矩阵的特征值与特征向量专题讲解一、内容提要一、矩阵的特征值和特征向量 1、基本概念设A 为n 阶方阵,若存在数λ和n 为非零向量0,a ≠使Aa a λ=,则称λ是A 的特征值,a 是属于λ的特征向量;矩阵E A λ-称为A 的特征矩阵;E A λ-是λ的n 次多项式,称为A 的特征多项式;E A λ-=0称为A 的特征方程; 2、特征值、特征向量的求法(1)计算A 的特征值,即解特征方程E A λ-=0;(2)对每一个特征值0λ,求出相应的齐次线性方程组()00E A X λ-= 一个基础解系123,ξξξ,,...,则属于0λ的全部特征向量为11...s s k k ξξ++,其中1,...,s k k 为不全为零的任意常数; 3、特征值、特征向量的性质(1)A 与T A 的特征值相同(但特征向量一般不同);(2)属于同一特征值的特征向量的线性组合仍是属于该特征值的特征向量; (3)属于不同特征值的特征向量线性无关;(4)设()0Aa a a λ=≠,则(),,m kA A P A 的特征值分别为(),,m k P λλλ,其中()P x 为任一多项式,而a 仍为相应的特征向量; (5)若A 可逆,()0Aa a a λ=≠,则1λ是1A -的特征值;Aλ是*A 的特征值,a 仍为相应的特征向量;(6)设12n λλλ,,...是n 阶方阵的特征值,则有()11nni ii i i a tr A λ====∑∑(迹);1nii A λ==∏;推论:A 可逆当且仅当A 的特征值全不为零;(7)若A 为实对称阵,则A 的所有特征值均为实数,且属于不同特征值的特征向量彼此正交。
二、相似矩阵 1、定义设,A B 为n 阶方阵,若存在n 阶可逆阵P ,使1P AP B -=,称A 与B 相似,记为A ~B ; 2、A ~B 的性质T T A B ,,,M M kA kB A B ~~~()(),P A P B ~其中P 为任一多项式;()(),,,r A r B A B E A E B λλ==-=-⇒特征值相同,()()tr A tr B =;若A 可逆,则B 也可逆,且11A B --~。
矩阵知识点总结大纲
矩阵知识点总结大纲一、矩阵的基本概念1.1 矩阵的定义1.2 矩阵的元素1.3 矩阵的维数1.4 矩阵的转置1.5 矩阵的特殊矩阵二、矩阵运算2.1 矩阵的加法2.2 矩阵的数乘2.3 矩阵的乘法2.4 矩阵的转置2.5 矩阵的幂2.6 矩阵的逆2.7 矩阵的行列式2.8 矩阵的秩三、线性方程组与矩阵3.1 矩阵的行简化阶梯形式3.2 矩阵的列简化阶梯形式3.3 矩阵的增广矩阵3.4 矩阵的系数矩阵3.5 矩阵的齐次线性方程组3.6 矩阵的非齐次线性方程组四、矩阵的应用4.1 线性代数4.2 计算机图形学4.3 信号处理4.4 优化问题4.5 统计学4.6 量子力学五、矩阵分析5.1 矩阵的迹5.2 矩阵的本征值与本征向量5.3 矩阵的相似矩阵5.4 矩阵的对角化5.5 矩阵的奇异值分解5.6 矩阵的正交矩阵六、矩阵的特征6.1 矩阵的周期性6.2 矩阵的稀疏性6.3 矩阵的对称性6.4 矩阵的正定性6.5 矩阵的随机性七、矩阵的发展历程7.1 矩阵的起源7.2 矩阵的发展7.3 矩阵的应用八、矩阵的未来发展8.1 矩阵的应用领域拓展8.2 矩阵的理论深化8.3 矩阵的计算方法改进九、矩阵的教学与研究9.1 矩阵的教学模式9.2 矩阵的教学资源9.3 矩阵的研究方向十、矩阵的未来前景10.1 矩阵的应用前景10.2 矩阵的教学前景10.3 矩阵的研究前景十一、矩阵的总结与展望11.1 矩阵的总结11.2 矩阵的展望结语矩阵知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是一个按照长方形排列的数表。
其中的元素可以是数字、符号或数学式。
矩阵是线性代数的基本概念,应用非常广泛,涉及几何学、概率论、微分方程以及物理学和工程学等各个学科。
1.2 矩阵的元素矩阵的元素是矩阵中的一个具体数值或符号。
1.3 矩阵的维数一个矩阵的维数是指矩阵的行数与列数。
如果一个矩阵有m行n列,则称其为m×n阶矩阵。
《线性代数》学习指导 第五章 矩阵的特征值与特征向量(43P)
第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量; 3)方阵 ()ijn nA a ⨯= 与特征值 λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。
对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A—1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。
性质2(1)nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ (2)|| 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵TA 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。
线性代数知识点总结
线性代数知识点总结线性代数知识点总结线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是小编想跟大家分享的线性代数知识点总结,欢迎大家浏览。
线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
矩阵的特征值和特征向量教学讲义
返回
下页
结束
性质5 n阶矩阵A互不相同的特征值l1,l2, ,lm,对应的
特征向量X1,X2, ,Xm线性无关.
补充性质
性质7 矩阵A的m个不同的特征值所对应的m组线性 无关的特征向量组并在一起仍然是线性无关的。
性质8 设λ0是n阶方阵A的一个 t 重特征值,则λ0对应 的特征向量集合中线性无关的向量个数不超过 t .
所以齐次线性方程组AXo有非零解X1 ,由此可知|A|0,即A为 奇异矩阵.
《线性代数》
返回
下页
结束
1.2 特征值与特征向量的性质
性质1 设X1, X2,…, Xm都是矩阵A的对应于特征值l的特征向量,
如果它们的线性组合
k1X1+k2X2+…+ kmXm≠o,
则k1X1+k2X2+…+ kmXm也是矩阵A的对应于特征值l的特征向量.
② 设Ak=0,k是正整数,则A必有一特征值为( 0 ) .
③ 若A2=A,则A的特征值为( 0, 1 ) . ④ 设A是3阶方阵,已知方阵E-A,E+A,3E-A都不可逆, 则A的特征值为( 1, -1, 3 ).
⑤ 已知三阶矩阵A的特征值为1,-1,2,
则|A-5E|=( -72 ) .
《线性代数》
AXlX, 则称l为A的特征值,称向量X为A的对应于特征值l的特征向量.
注意:如果X是A的对应于特征值l的特征向量,则
AXlX lX-AXo (lE-A)Xo |lE-A|0
●矩阵 lE-A 称为 A 的特征矩阵; ●l 的 n 次多项式 |lE-A| 称为 A 的特征多项式; ●方程 |lE-A|0 称为 A 的特征方程.
问题:对角矩阵的特征值是什么? 例5.试证:n阶矩阵A是奇异矩阵(不可逆,秩亏)的充
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数) 一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=; 3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
特别当A 和B 为实对称阵或Hermit 矩阵时0≤|tr(AB)|≤定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,B≥0,则0≤tr(AB)≤λ1(B)tr(A) ≤tr(A)﹒tr(B) λ1(B)表示B 的最大特征值。
证明:tr(AB)= tr(A 1/2BA 1/2) ≥0,又因为A 1/2[λ1(B)I-B]A 1/2≥0,所以λ1(B)tr(A)≥A 1/2BA 1/2,得 tr(AB)= tr(A 1/2BA 1/2)≤tr(λ1(B) A)=λ1(B) tr(A)≤tr(A)﹒tr(B)推论:设A 为Hermite 矩阵,且A>0,则tr(A)tr(A -1)≥n另外,关于矩阵的迹的不等式还有很多,请参考《矩阵论中不等式》。
三、矩阵的秩矩阵的秩的概念是由Sylvester 于1861年引进的。
它是矩阵的最重要的数字特征之一。
下面讨论有关矩阵秩的一些性质和不等式。
定义:矩阵A 的秩定义为它的行(或列)向量的最大无关组所包含的向量的个数。
记为rank(A)性质:1. rank(AB)min(rank(A),rank(B))≤;2. rank(A B)rank(A,B)rank(A)rank(B)+≤≤+;3.H Hrank(AA )rank(A )rank(A)==;===,4. rank(A)rank(XA)rank(AY)rank(XAY)其中X列满秩,Y行满秩(消去法则)。
定理(Sylvester):设A和B分别为m×n和n×l 矩阵,则Sylveste定理是关于两个矩阵乘积的秩的不等式。
其等号成立的充要条件请参考王松桂编写的《矩阵论中不等式》,三个矩阵乘积的秩的不等式也一并参考上述文献。
四、相对特征根定义:设A和B均为P阶实对称阵,B>0,方程|A-λB|=0的根称为A相对于B的特征根。
性质:|A-λB|=0等价于|B-1/2AB-1/2-λI|=0(因为B>0,所以B1/2>0)注:求A相对于B的特征根问题转化为求B-1/2AB-1/2的特征根问题或AB-1的特征根。
因B-1/2AB-1/2是实对称阵,所以特征根为实数。
定义:使(A-λi B)l i=0的非零向量l i称为对应于λi 的A相对于B的特征向量。
性质:①设l是相对于λ的A B-1的特征向量,则A B-1l=λl 或 A (B-1l)=λB( B-1l)B-1l 为对应λ的A相对于B的特征向量(转化为求A B -1的特征向量问题)。
② 设l 是相对于λ的B -1/2AB -1/2的特征向量,则B -1/2AB -1/2l=λl可得A (B -1/2l)=λB(B -1/2l)则B -1/2l 为对应λ的A 相对于B 的特征向量(转化为求B -1/2AB -1/2对称阵的特征向量问题)。
五、向量范数与矩阵范数向量与矩阵的范数是描述向量和矩阵“大小”的一种度量。
先讨论向量范数。
1. 向量范数定义:设V 为数域F 上的线性空间,若对于V 的任一向量x ,对应一个实值函数x ,并满足以下三个条件:(1)非负性 x 0≥,等号当且仅当x=0时成立; (2)齐次性 x x ,k,x V;α=α⋅α∈∈ (3)三角不等式x y x y ,x,y V +≤+∈。
则称x 为V 中向量x 的范数,简称为向量范数。
定义了范数的线性空间定义称为赋范线性空间。
例1. n x C ∈,它可表示成[]T12n x =ξξξ,i C ξ∈,1n22i 2i 1x ∆=⎛⎫=ξ ⎪⎝⎭∑就是一种范数,称为欧氏范数或2-范数。
证明:(i )非负性 1n 22i 2i 1x 0=⎛⎫=ξ≥ ⎪⎝⎭∑,当且仅当()i 0i 1,2,,n ξ==时,即x =0时,2x=0(ii )齐次性(iii )三角不等式[]T12n y =ηηη ,i C η∈根据Hölder 不等式:11nnnpqp q i i i i i 1i 1i 1a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,i i 11p,q 1,1,a ,b 0p q >+=> 2. 常用的向量范数(设向量为[]T12n x =ξξξ)1-范数:ni 1i 1x==ξ∑;∞-范数:1i nx i max ∞≤≤=ξ;P-范数:1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑ (p>1, p=1, 2,…,∞,);2-范数:()1H22x x x =;椭圆范数(2-范数的推广):()1H2Axx Ax=,A 为Hermite 正定阵.加权范数:1n22i i wi 1xw =⎛⎫=ξ ⎪⎝⎭∑,当[]12n A W diag w w w ==,i w 0>证明:px显然满足非负性和齐次性(iii )[]T12n y =ηηη1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑,1npp i pi 1y =⎛⎫=η ⎪⎝⎭∑,1npp i i p i 1x y =⎛⎫+=ξ+η ⎪⎝⎭∑应用Hölder 不等式 即p p px y x y+≤+3. 向量范数的等价性 定理 设α、β为nC 的两种向量范数,则必定存在正数m 、M ,使得m xx M xαβα≤≤,(m 、M 与x无关),称此为向量范数的等价性。
同时有11x x x Mmβαβ≤≤注:(1)对某一向量X 而言,如果它的某一种范数小(或大),那么它的其它范数也小(或大)。
(2)不同的向量范数可能大小不同,但在考虑向量序列的收敛性问题时,却表现出明显的一致性。
4、矩阵范数向量范数的概念推广到矩阵情况。
因为一个m ×n 阶矩阵可以看成一个mn 维向量,所以m nC ⨯中任何一种向量范数都可以认为是m ×n 阶矩阵的矩阵范数。
1. 矩阵范数定义:设m n C ⨯表示数域C 上全体m n⨯阶矩阵的集合。
若对于m n C ⨯中任一矩阵A ,均对应一个实值函数A ,并满足以下四个条件:(1)非负性:A 0≥ ,等号当且仅当A=0时成立; (2)齐次性:A A ,C;α=αα∈(3)三角不等式:m n A B A B ,A,B C ⨯+≤+∈,则称A 为广义矩阵范数;(4)相容性:AB A B ≤⋅,则称A 为矩阵范数。
5. 常用的矩阵范数(1)Frobenius 范数(F-范数)F-范数:12n2ij Fi j 1Aa =⎛⎫= ⎪⎝⎭∑,==矩阵和向量之间常以乘积的形式出现,因而需要考虑矩阵范数与向量范数的协调性。
定义:如果矩阵范数A 和向量范数x 满足 则称这两种范数是相容的。
给一种向量范数后,我们总可以找到一个矩阵范数与之相容。
(2)诱导范数设A ∈C m ×n ,x ∈C n , x 为x 的某种向量范数, 记则A 是矩阵A 的且与x 相容的矩阵范数,也称之为A 的诱导范数或算子范数。
(3)p-范数:pppAx Amaxx=,()ij m nA a ⨯=,x 为所有可能的向量,[]T12n x =ξξξ,ppxxα=α,()p p1Ax A x =αα()0α≠111x 1A max Ax==,ni 1i 1x 1==ξ=∑,nnij j1i 1j 1Ax a ===ξ∑∑可以证明下列矩阵范数都是诱导范数: (1)nij11j ni 1A max a ≤≤==∑ 列(和)范数;(2)21i nA ≤≤= 谱范数; H A A 的最大特征值称为H A A 的谱半径。
当A 是Hermite 矩阵时,i 21i nA max (A)≤≤=λ是A 的谱半径。
注:谱范数有许多良好的性质,因而经常用到。
(3)nij1i mj 1Amax a ∞≤≤==∑ 行(和)范数(x∞=1npp i i1i ni 1p max ≤≤=→∞⎛⎫ξ=ξ ⎪⎝⎭∑ ,2x =1n22i i 1=⎛⎫ξ ⎪⎝⎭∑)定理 矩阵A 的任意一种范数A 是A 的元素的连续函数;矩阵A 的任意两种范数是等价的。
定理 设A ∈C n ×n ,x ∈C n , 则F A 和2x 是相容的 即证明:由于222F2Ax A x Ax ≤⋅≤⋅成立。
定理 设A ∈C n ×n ,则F A 是酉不变的,即对于任意酉矩阵U,V ∈C n ×n ,有 证明: 定义 设A ∈C n ×n,A 的所有不同特征值组成的集合称为A 的谱;特征值的模的最大值称为A 的谱半径,记为ρ(A)。