(预测题)中考数学专题37动态几何之动点形成的等腰三角形存在性问题(含解析)

合集下载

2018年中考数学压轴题专题汇编37动态几何之动点形成的等腰三角形存在性问题(压轴题)(解析版)

2018年中考数学压轴题专题汇编37动态几何之动点形成的等腰三角形存在性问题(压轴题)(解析版)

2.( 湖北省武汉市) 平面直角坐标系中,已知 A( 2, 2)、B( 4,0).若在坐标轴上取点 C,使△ ABC 为
等腰三角形,则满足条件的点 C 的个数是(

A.5 【答案】 A .
B.6
C. 7
D .8
【分析】由点 A、B 的坐标可得到 AB= 2 2 ,然后分类讨论:若 AC=AB;若 BC=AB;若 CA=CB,确定 C
分类讨论:当 0≤ x≤2 时,如图 1,易得 PD=BD =x,根据三角形面积公式得到
y= 1 x 2 ;当 2< x≤ 4 时,如 2
图 2,易得 PD =CD =4﹣ x,根据三角形面积公式得到
y= 1 x2 2 x ,于是可判断当 0≤ x≤ 2 时, y 与 x 的函 2
数关系的图象为开口向上的抛物线的一部分,当
AD=BD 得到∠ A=∠ ABD ,所以∠ ABC>∠ A,则对各 C、D
选项进行判断;根据大边对大角可对 A、 B 进行判断. 【解析】∵ AD =BD ,∴∠ A=∠ ABD,∴∠ ABC>∠ A,所以 C 选项和 D 选项错误;
∴ AC> BC,所以 A 选项正确; B 选项错误.
故选 A . 考点:等腰三角形的性质.
A.
B.
【答案】 A .
【分析】根据题意作出合适的辅助线,可以先证明△
从而可以得到哪个选项是正确的.
C.
D.
ADC 和△ AOB 的关系,即可建立 y 与 x 的函数关系,
考点:动点问题的函数图象.
二、填空题
8.( 广东省梅州市) 如图,抛物线 y x2 2 x 3 与 y 轴交于点 C,点 D( 0,1),点 P 是抛物线上的动
②当 AB=AP 时,以 A 点为圆心, AB 长度为半径做圆,与抛物线交于 C、 M 两点,;

中考数学压轴题分析:几何动点产生的等腰三角形存在性问题

中考数学压轴题分析:几何动点产生的等腰三角形存在性问题

中考数学压轴题分析:几何动点产生的等腰三角形存在性问题本文内容选自2021年南通中考数学几何压轴题。

以正方形为背景,涉及轴对称、旋转等有关的问题。

通过讨论等腰三角形的存在性求三角函数值。

【中考真题】(2021·南通)如图,正方形中,点在边上(不与端点,重合),点关于直线的对称点为点,连接,设.(1)求的大小(用含的式子表示);(2)过点作,垂足为,连接.判断与的位置关系,并说明理由;(3)将绕点顺时针旋转得到,点的对应点为点,连接,.当为等腰三角形时,求的值.【分析】(1)连接BF,可以得到△ABF与△CBF都是等腰三角形,再利用三角形的内角和,可以得到∠BCF=135°﹣α。

(2)通过观察,易得两直线平行。

只需证明一组内错角相等即可。

易得∠CFG=45°,那么只需证明∠AGD=45°即可。

由于∠ADC=∠AGC=90°,说明点A、D、G、C四点共圆,那么∠AGD=∠ACD=45°,结论易得。

(3)通过旋转,可以得到BH=BE>AB=BF,所以△BFH为等腰三角形时,只能BF=FH或BH=FH,分别进行讨论即可。

①当BH=FH时,易得∠BFH=∠ABF=2α,此时AB与CF重合,易得点C与F重合,不符合题意。

②当BH=FH时,过点H作BF的垂线,构造三线合一。

易得△ABE≌△BHB,那么就可以得到AB=BF=2BN=2AE,那么就可以得到sinα的值了。

【答案】解:(1)如图1,连接,点关于直线的对称点为点,,,,,四边形是正方形,,,;(2),理由如下:如图2,连接,四边形是正方形,,,,,点,点,点,点四点共圆,,,,,,,;(3),,;如图3,当时,过点作于,将绕点顺时针旋转得到,,,,,,,,,,,,,,,,,,当时,,,,即点与点重合,则点与点重合,点在边上(不与端点,重合),不成立,综上所述:的值为.。

初中数学中考模拟复习专题37 动态几何之动点形成的等腰三角形存在性问题考试卷及答案.docx

初中数学中考模拟复习专题37 动态几何之动点形成的等腰三角形存在性问题考试卷及答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是【】A.1 B.2 C.3 D.4试题2:如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.评卷人得分(1)求梯形ABCD的面积;(2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.试题3:如图,在直角梯形ABCD中,AD∥CB,,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q 从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P 随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形ABQP是平行四边形.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?【试题4:如图,已知抛物线与x轴交于点A,与y轴交于点B,动点Q从点O出发,以每秒2个单位长度的速度在线段OA上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒。

中考数学压轴题因动点产生的等腰三角形问题[含答案]

中考数学压轴题因动点产生的等腰三角形问题[含答案]

因动点产生的等腰三角形问题例1(20XX 年湖州市中考第24题)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2(20XX年盐城市中考第28题)如图1,已知一次函数y=-x+7与正比例函数43 y x =的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A 的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA 或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1满分解答(1)解方程组7,4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例3(20XX年上海市闸北区中考模拟第25题)如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4(20XX 年南通市中考第27题)如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+.(2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例5(20XX 年重庆市中考第26题)已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1 图2满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO . (3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

动态几何之面动形成的等腰三角形存在性问题

动态几何之面动形成的等腰三角形存在性问题

动态几何之面动形成的等腰三角形存在性问题一、选择题二、填空题三、解答题1.( 2013年重庆市B12分)已知:在矩形ABCD中,E为边BC上的一点,AE丄DE , AB=12 , BE=16 , F为线段BE上一点,EF=7,连接AF。

如图1,现有一张硬纸片厶GMN,/ NGM=90°, NG=6 , MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上。

如图2, △ GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ。

当点N到达终点B时,△ GMNP和点同时停止运动。

设运动时间为t秒,解答问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点卩,使厶APQ是等腰三角形,若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与厶AEF重叠部分的面积为S,请直接写出S与t的函数关系式以及自变量t的取值范围。

【答案】解:(1 )•••/ NGM=90°, NG=6, MG =8,,•••由勾股定理,得NM=10。

当点G在线段AE上时,如图,此时,GG ' MN=10。

•••△ GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,• t=10 秒。

(2)存在。

由矩形ABCD 中,AB=12, BE=16,得AE=20。

①当0 v tw 10时,线段GN与线段AE相交,如图,过点Q作QH丄BC于点H , QI丄AB 于点I,过点P作PJ丄IJ于点J。

根据题意,知AP=EN=t,由厶QNEGNM得,即,二。

由厶QHENGM得,即,锦元数学工作室绘制若AP=AQ,则,解得,不存在;若AP=PQ」・△< 0,无解,不存在;若AQ=PQ,则,无正数解,不存在。

由(2)①,EN=t,,二式相加,得。

中考压轴题之等腰三角形存在问题

中考压轴题之等腰三角形存在问题

等腰三角形的存在性问题在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.类型一【二次函数综合题中根据条件判定三角形的形状】例1:如图,在平面直角坐标系xoy中,抛物线C1:(m≠0)与x轴交于A、B两点,与y轴的负半轴交于点C,其中A(-1,0),C(0,-1).(1)求抛物线C1及直线AC的解析式;(2)沿直线AC上A至C的方向平移抛物线C1,得到新的抛物线C2,C2上的点D为C1上的点C的对应点,若抛物线C2恰好经过点B,同时与x轴交于另一点E,连结OD、DE,试判断ΔODE的形状,并说明理由;(3)在(2)的条件下,或P为线段OE(不含端点)上一动点,作PF⊥DE于F,PG⊥OD于G,设PF=h1,PG=h2,试判断h1.h2的值是否存在最大值,若存在,求出这个最大值,并求出此时P点的坐标,若不存在,请说明理由.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.类型二 【利用二次函数的性质与等腰三角形的性质确定点的坐标】例2;如图,已知抛物线y=﹣21x +bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为(﹣2,0).(1)求抛物线的解析式;(2)连接AC、BC,求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.【举一反三】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D(1)求直线AC 的解析式.(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得△DMC 为等腰三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)抛物线y=﹣x 2经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且△ODE 沿DE 折叠后点O 落在边AB 上O′处?类型三 【确定满足等腰三角形的动点的运动时间】例3:如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与X 轴的交点为A,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当92t<<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.【举一反三】如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【新题训练】1.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.3.已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB 于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.5.如图,抛物线C1:y1=ax2+2ax(a>0)与x轴交于点A,顶点为点P.(1)直接写出抛物线C1的对称轴是,用含a的代数式表示顶点P的坐标;(2)把抛物线C1绕点M(m,0)旋转180°得到抛物线C2(其中m>0),抛物线C2与x轴右侧的交点为点B,顶点为点Q.①当m=1时,求线段AB的长;②在①的条件下,是否存在△ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.6.如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A,B两点,与y轴相交于点C,若已知B点的坐标为B(8,0)(1)求抛物线的解析式及其对称轴.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.8.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方图形上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.9.如图,直线y1=﹣x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;(3)在抛物线上的对称轴上: 是否存在一点M,使|MA﹣MC|的值最大; 是否存在一点N,使△NCD是以CD 为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线试纸y=ax2+bx+c与x轴交于点A,C,与y轴交于点B.已知点A坐标为(8,0),点B为(0,8),点D为(0,3),tan∠DCO=34,直线AB和直线CD相交于点E.⑴求抛物线的解析式,并化成y=a(x-m)2+h的形式;⑵设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得S△ABP=S△ABG.⑶点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.。

动态几何之动点形成的等腰三角形存在性问题

动态几何之动点形成的等腰三角形存在性问题

动态几何之动点形成的等腰三角形存在性问题一、选择题1.(2013福建龙岩4分)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是【】A.2 B.3 C.4 D.52.(2011年内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是【】A、2.5秒B、3秒C、3.5秒D、4秒二、填空题1.(2013年四川凉山5分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当是腰长为5的等腰三角形时,点P的坐标为▲ 。

,2. (2012辽宁丹东3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有▲ 个.【答案】5。

【考点】动点问题,正方形的性质,等腰三角形的判定,勾股定理,锐角三角函数定义,特殊角的三角函数值,线段中垂线的性质,等边三角形的判定。

【分析】如图,符合条件的Q点有5个。

3. (2012青海西宁2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标▲ .∴OK=。

∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK。

∴OP:OE=OF:OK,即OP:5=:4,解得:OP=。

∴P点坐标为(,0)。

∴其余所有符合这个条件的P点坐标为:(8,0),(,0)。

2024成都中考数学二轮复习专题:动点引起的等腰直角三角形存在性问题

2024成都中考数学二轮复习专题:动点引起的等腰直角三角形存在性问题

动点引起的等腰直角三角形存在性问题△ABP 为等腰直角三角形,黑色部分为P 点位置.【一题多解·典例剖析】例题1.(2021·湖南衡阳市中考)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)、(-2,-2);(2)①0<c<4;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或312⎛⎫ ⎪ ⎪⎝⎭或31,2⎛⎫ ⎪⎝⎭.【解析】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得:22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩即:函数4y x=上的雁点坐标为(2,2)、(-2,-2).(2)①联立25y x y ax x c=⎧⎨=++⎩得ax 2+4x+c=0∵这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴△=16-4ac=0,即ac=4∵a>1∴a=4c >1,即4c -1>0,4c c->0,解得:0<c<4.②由①知,E 点坐标为:x=422a a-=-,即E 22,a a ⎛⎫-- ⎪⎝⎭在y=ax 2+5x+4a 中,当y=0时,得:x=-4a ,x=-1a即M 点坐标为(-4a ,0),N 点坐标为(-1a ,0)过E 点向x 轴作垂线,垂足为H 点,EH=2a,MH=242()a a a---=∴EH=MH即△EMH为等腰直角三角形,∠EMN=45°.(3)存在,理由如下:①如图所示:过P作直线l垂直于x轴于点k,过C作CH⊥PK于点H方法一设C(m,m),P(x,y)∵△CPB为等腰三角形,∴PC=PB,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x -=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩即P (32,154).方法二设P (m ,-m 2+2m+3),同理,CH =PK ,HP =KB ,则C (m -m 2+2m+3,-m 2+2m+3+3-m )∵C 为雁点∴m -m 2+2m+3=-m 2+2m+3+3-m ,解得:m=32,即P (32,154).②如图所示,同理可得:△KCP ≌△JPB∴KP =JB ,KC =JP方法一设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩则P 2103(,)22或2103(,)22方法二设P (m ,-m 2+2m+3),则C (m -(-m 2+2m+3),-m 2+2m+3-(3-m ))∴m -(-m 2+2m+3)=-m 2+2m+3-(3-m ),解得:③如图所示,此时P 与第②种情况重合综上所述,符合题意P 的坐标为(32,154)或3()22,或23()22,.【一题多解·对标练习】练习1.(2021·湖南省怀化市中考)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =.(1)求抛物线的解析式;(2)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,13313322Q⎫++⎪⎪⎝⎭或34141322Q⎛⎫⎪⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0),B(4,0),C(0,8),设二次函数的解析式为y=a(x+2)(x-4),将(0,8)代入得:a=-1即抛物线的解析式为:y=-x2+2x+8;(2)存在以点Q为直角顶点的等腰直角△CQR,理由如下:①当点Q在第二象限时,如图所示过点Q作QL⊥x轴于点L,过点C作CK⊥QL,交其延长线于点K,∴∠CKQ=∠QLR=∠COL=90°,∴四边形COLK是矩形,∴CK=OL,∵CQR为等腰直角三角形,∴CQ=QR,∠CQR=90°,∴∠KCQ=∠LQR∴△KCQ ≌△LQR∴RL=QK ,QL=CK ,设R (m ,0),Q (x ,y )则m -x=8-y-x=y即-x=-x 2+2x+8,解得:x=3412-或x=3412+(舍)则Q (3412-,4132)②当点Q 在第一象限时,如图所示同理可得:x=-x 2+2x+8,解得:x=1332或x=1332-(舍),∴Q ⎫⎪⎝⎭.综上所述,满足题意的Q 点坐标为13313322⎛⎫ ⎪⎝⎭或34141322⎛⎫- ⎪⎝⎭.【多题一解·典例剖析】例题2.(2021·四川省广安市中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)【解析】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0),则09301b c b c =-++⎧⎨=--+⎩,解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∴当t =2时,四边形BCPQ 的面积最小,最小值为4.(3)如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP ,∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∴4-t =-(3-2t )2+2(3-2t )+3,解得:t,∴M.【多题一解·对标练习】练习2.(2021·山东枣庄中考)如图,在平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线213y x bx c =++经过坐标原点和点A ,顶点为点M .(1)求抛物线的关系式及点M 的坐标;(2)将直线AB 向下平移,得到过点M 的直线y mx n =+,且与x 轴负半轴交于点C ,取点()2,0D ,连接DM ,求证:45ADM ACM ∠-∠=︒.【答案】(1)y=13x2-2x,M(3,-3);(2)见解析.【解析】解:(1)∵直线AB:y=-12x+3交坐标轴与A、B∴A(6,0),B(0,3)将(6,0),(0,0)代入y=13x2+bx+cx得:1260b cc++=⎧⎨=⎩,解得:2bc=-⎧⎨=⎩,∴抛物线的关系式为y=13x2-2x,顶点M的坐标为(3,-3);(2)由题意得:m=1 2-,将点(3,-3)代入y=12-x+n得:n=32-,则直线CM的解析式为y=12-x32-,如图,过点D作DH⊥CM于H,设直线DM的解析式为y=2x+k,将点(2,0)代入得:4+k=0,解得k=-4,则直线DH的解析式为:y=2x-4,联立132224y x y x ⎧=--⎪⎨⎪=-⎩,解得12x y =⎧⎨=-⎩,即H (1,-2),∴=,=即DH=MH ,又DH ⊥CM ,即三角形DHM 是等腰直角三角形,∠DMH=45°,∴∠ADM=∠ACM+45°即∠ADM -∠ACM=45°.练习3.(2021·湖北黄石中考)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF的面积.【答案】(1)y=-x 2+6x -3;(2)4.【解析】解:(1)由抛物线与y 轴相交于点(0,-3),得b=-3,∵抛物线的对称轴为x=3,即232b a--=,解得:a=-1∴抛物线的解析式为y=-x 2+6x -3.(2)过点E 作EM ⊥AB 于点M ,过点F 作FN ⊥AB 于N ,∵△DEF是等腰直角三角形∴DE=DF,∠FED=∠EFD=45°∵EF∥x轴∴∠EDM=45°∴△EMD为等腰直角三角形∴EM=DM设E(m,-m2+6m-3),则M(m,0),DM=3-m,EM=-m2+6m-3,∴3-m=-m2+6m-3解得:m=1或m=6当m=1时,E(1,2),符合题意,DM=EM=2,MN=4,△DEF的面积为4当m=6时,E(6,-3),舍去,综上所述:△DEF的面积为4.。

中考数学压轴题专题39 动态几何之面动形成的等腰三角形存在性问题(解析版)

中考数学压轴题专题39 动态几何之面动形成的等腰三角形存在性问题(解析版)

一、选择题 二、填空题 三、解答题1.(2016广西来宾市)如图,在矩形ABCD 中,AB =10,AD =6,点M 为AB 上的一动点,将矩形ABCD 沿某一直线对折,使点C 与点M 重合,该直线与AB (或BC )、CD (或DA )分别交于点P 、Q .(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹) (2)如果PQ 与AB 、CD 都相交,试判断△MPQ 的形状并证明你的结论;(3)设AM =x ,d 为点M 到直线PQ 的距离,2y d =,①求y 关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.【答案】(1)作图见解析;(2)△MPQ 是等腰三角形;(3)10. 【分析】(1)作线段CM 的垂直平分线即可;(2)由矩形的性质得出AB ∥CD ,CD =AB =10,得出∠QCO =∠PMO ,由折叠的性质得出PQ 是CM 的垂直平分线,由线段垂直平分线的性质得出CQ =MQ ,由ASA 证明△OCQ ≌△OMP ,得出CQ =MP ,得出MP =MQ 即可;(3)①作MN ⊥CD 于N ,如图2所示:则MN =AD =6,DN =AM =x ,CN =10﹣x ,在Rt △MCN 中,由勾股定理得出222(2)6(10)d x =+-,即可得出结果;②当直线PQ 恰好通过点D 时,Q 与D 重合,DM =DC =10,由勾股定理求出AM ,得出BM ,再由勾股定理求出CM ,即可得出结果.【解析】(1)如图1所示:(2)△MPQ是等腰三角形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,CD=AB=10,∴∠QCO=∠PMO,由折叠的性质得:PQ是CM的垂直平分线,∴CQ=MQ,OC=OM,在△OCQ和△OMP中,∵∠QCO=∠PMO,OC=OM,∠COQ=∠MOP,∴△OCQ≌△OMP(ASA),∴CQ=MP,∴MP=MQ,即△MPQ 是等腰三角形;考点:四边形综合题;动点型;探究型;压轴题.2.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)4;(2)163;(3)2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得PA DEAC DC==23,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当163<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.(3)①当0<x ≤4时,如图2中,设PM 、PQ 分别交AD 于点E 、F ,则重叠部分为△PEF ,∵AP =2x ,∴EF =PE =x ,∴y =S △PEF =12•PE •EF =212x . ②当4<x ≤163时,如图3中,设PM 、MQ 分别交AD 于E 、G ,则重叠部分为四边形PEGQ .∵PQ =PC =822x -,∴PM =16﹣2x ,∴ME =PM ﹣PE =16﹣3x ,∴y =S △PMQ ﹣S △MEG =2211(822)(163)22x x ---=2732642x x -+-.③当163<x <8时,如图4中,则重合部分为△PMQ ,∴y =S △PMQ =212PQ =21(822)2=21664x x -+.综上所述2221 (04)27163264 (4)23161664 (8)3x x y x x x x x x ⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.考点:三角形综合题;分类讨论;分段函数;动点型;压轴题.3.(2016江苏省苏州市)如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm /s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3m /s ,以O 为圆心,0.8cm 为半径作⊙O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <85). (1)如图1,连接DQ 平分∠BDC 时,t 的值为 ;(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值; (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与⊙O 相切时,求t 的值;并判断此时PM 与⊙O 是否也相切?说明理由.【答案】(1)1;(2)4049;(3)①证明见解析;②t =43s 时,⊙O 与直线QM 相切,PM 与⊙O 不相切.【分析】(1)先利用△PBQ ∽△CBD 求出PQ 、BQ ,再根据角平分线性质,列出方程解决问题.(2)由△QTM ∽△BCD ,得QM TQBD BC=列出方程即可解决. (3)①如图2中,由此QM 交CD 于E ,求出DE 、DO 利用差值比较即可解决问题. ②如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .由△OHE ∽△BCD ,得OH OEBC BD=,列出方程即可解决问题.利用反证法证明直线PM 不可能由⊙O 相切.【解析】(1)解:如图1中,∵四边形ABCD 是矩形,∴∠A =∠C =∠ADC =∠ABC =90°,AB =CD =6.AD =BC =8,∴BD 22AD AB +2268+=10,∵PQ ⊥BD ,∴∠BPQ =90°=∠C ,∵∠PBQ =∠DBC ,∴△PBQ ∽△CBD ,∴PB PQ BQ BC DC BD ==,∴48610t PQ BQ==,∴PQ =3t ,BQ =5t ,∵DQ 平分∠BDC ,QP ⊥DB ,QC ⊥DC ,∴QP =QC ,∴3t =8﹣5t ,∴t =1,故答案为:1.(2)解:如图2中,作MT ⊥BC 于T .∵MC =MQ ,MT ⊥CQ ,∴TC =TQ ,由(1)可知TQ =12(8﹣5t ),QM =3t ,∵MQ ∥BD ,∴∠MQT =∠DBC ,∵∠MTQ =∠BCD =90°,∴△QTM ∽△BCD ,∴QM TQBD BC=,∴1(85)32108t t -=,∴t =4049(s ),∴t =4049s 时,△CMQ 是以CQ 为底的等腰三角形.(3)①证明:如图2中,由此QM 交CD 于E ,∵EQ ∥BD ,∴EC CQ CD CB =,∴EC =34(8﹣5t ),ED =DC ﹣EC =6﹣34(8﹣5t )=154t ,∵DO =3t ,∴DE ﹣DO =154t ﹣3t =34t >0,∴点O 在直线QM 左侧.②解:如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E . ∵EC =34(8﹣5t ),DO =3t ,∴OE =6﹣3t ﹣34(8﹣5t )=34t ,∵OH ⊥MQ ,∴∠OHE =90°,∵∠HEO =∠CEQ ,∴∠HOE =∠CQE =∠CBD ,∵∠OHE =∠C =90°,∴△OHE ∽△BCD ,∴OH OE BC BD =,∴30.84810t=,∴t =43,∴t =43s 时,⊙O 与直线QM 相切. 连接PM ,假设PM 与⊙O 相切,则∠OMH =12PMQ =22.5°,在MH 上取一点F ,使得MF =FO ,则∠FMO =∠FOM =22.5°,∴∠OFH =∠FOH =45°,∴OH =FH =0.8,FO =FM =0.82,∴MH =0.8(21)+,由OH HE BC DC =得到HE =35,由EC CQ BD CB =得到EQ =53,∴MH =MQ ﹣HE ﹣EQ =4﹣35﹣53=2625,∴0.8(21)+≠2625,矛盾,∴假设不成立,∴直线PM 与⊙O 不相切.考点:圆的综合题;动点型;探究型;压轴题. 4.(2016河南省)如图1,直线43y x n =-+交x 轴于点A ,交y 轴于点C (0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B (0,﹣2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD ′P ′,且旋转角∠PBP ′=∠OAC ,当点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标.【答案】(1)224233y x x =--;(2)PD =12或PD =72;(3)P (﹣5,4543+)或P (5,4543-+)或P (258,1132). 【分析】(1)先确定出点A 的坐标,再用待定系数法求出抛物线解析式;(2)由△BDP 为等腰直角三角形,判断出BD =PD ,建立m 的方程计算出m ,从而求出PD ; (3)分点P ′落在x 轴和y 轴两种情况计算即可.(3)∵∠PBP '=∠OAC ,OA =3,OC =4,∴AC =5,∴sin ∠PBP '=45,cos ∠PBP '=35,分两种情况讨论:①当点P '落在x 轴上时,过点D '作D 'N ⊥x 轴,垂足为N ,交BD 于点M ,∠DBD '=∠ND 'P '=∠PBP ',如图1,ND '﹣MD '=2,∴23244()()25335m m m ---=,∴m =5(舍),或m =﹣5; 如图2, ND '+MD '=2,∴23244()25335m m m -+=,∴m =5,或m =﹣5(舍),∴P(﹣5,4543+)或P (5,4543-+);②当点P '落在y 轴上时,如图3,过点D ′作D ′M ⊥x 轴,交BD 于M ,过P ′作P ′N ⊥y 轴,∴∠DBD ′=∠ND ′P ′=∠PBP ′,∵P ′N =BM ,∴24243()5335m m m -=,∴m =258,∴P (258,1132); 综上所述:P (﹣5,4543+)或P (5,4543-+)或P (258,1132).考点:二次函数综合题;分类讨论;动点型;压轴题.5.(2016甘肃省天水市)如图,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于点C ,且B (1,0),C (0,3),将△BOC 绕点O 按逆时针方向旋转90°,C 点恰好与A 重合.(1)求该二次函数的解析式;(2)若点P 为线段AB 上的任一动点,过点P 作PE ∥AC ,交BC 于点E ,连结CP ,求△PCE 面积S 的最大值;(3)设抛物线的顶点为M ,Q 为它的图象上的任一动点,若△OMQ 为以OM 为底的等腰三角形,求Q 点的坐标.【答案】(1)223y x x =--+;(2)S △PCE 的最大值为32;(3)Q (91378-+,813732+),或(91378--,5913732-). 【分析】(1)先求出点A 坐标,再用待定系数法求出抛物线解析式; (2)先求出S △PCE =S △PBC ﹣S △PBE ,即可求出最大面积;(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q 坐标.(3)∵二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标(﹣1,4),∵△OMQ 为等腰三角形,OM 为底,∴MQ =OQ ,∴222(1)(234)x x x ++--+-=222(23)x x x +--+,∴281870x x +-=,∴x =91378-±,∴y =813732+或y =5913732-,∴Q (91378-+,813732+),或(91378--,5913732-). 考点:二次函数综合题;动点型;旋转的性质;最值问题;二次函数的最值;综合题. 6.(2015四川)如图,在△ABC 中,已知AB =AC =5,BC =6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 、始终经过点A ,EF 与AC 交于M 点. (1)求证:△ABE ∽△ECM ;(2)探究:在△DEF 运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.此时,EF ⊥AC ,∴22221612EM=AE AM 455⎛⎫-=-= ⎪⎝⎭.∴AEM 11161296S =AM EM 225525∆⋅⋅=⋅⋅=. ∴当线段AM 最短时,重叠部分的面积为9625.7.(2014年重庆市A 12分)已知:如图①,在矩形ABCD 中,AB =5,AD =320,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF . (1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P .与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.【答案】解:(1)∵AB =5,AD =203,∴由勾股定理得22222025BD AB AD 533⎛⎫=+=+= ⎪⎝⎭.∵SBD 11S AB AD BD AE 22∆=⋅=⋅,∴1201255AE 2323⨯⨯=⨯,解得AE =4. ∴2222BE AB AE 543=-=-=.(2)当点F 在线段AB 上时,m 3=;当点F 在线段AD 上时,16m 3=. (3)存在,理由如下:①当DP =DQ 时,若点Q 在线段BD 的延长线上时,如答图1,有∠Q =∠1,则∠2=∠1+∠Q =2∠Q .∵∠3=∠4+∠Q ,∠3=∠2,∴∠4+∠Q =2∠Q . ∴∠4=∠Q .∴A ′Q =A ′B =5. ∴F ′Q =4+5=9.在Rt △BF ′Q 中,2222593DQ 3⎛⎫+=+ ⎪⎝⎭,解得25DQ 3103=-或25DQ 3103=--(舍去). 若点Q 在线段BD 上时,如答图2,有∠1=∠2=∠4, ∵∠1=∠3,∴∠3=∠4. ∵∠3=∠5+∠A ′,∠A ′=∠CBD ,∴∠3=∠5+∠CBD =∠A ′BQ . ∴∠4=∠∠A ′BQ . ∴A ′Q = A ′B =5.∴F ′Q =5-4=1. ∴22BQ 3110=+=. ∴25DQ 103=-. ②当QP =QD 时,如答图3,有∠P =∠1, ∵∠A ′=∠1,∠2=∠3, ∴∠4=∠P . ∴∠4=∠A ′. ∴QB =Q A ′. 设QB =Q A ′=x ,在Rt △BF ′Q 中,()22234x x +-=, 解得2525125x 3824=-=. ③当PD =PQ 时,如答图4, 有∠1=∠2=∠3,∵∠1=∠A ′,∴∠3=∠A ′.∴BQ =A ′B =5. ∴2510DQ 533=-=. 综上所述,当△DPQ 为等腰三角形时,DQ 的长为252512510310,10,,33243-- .【考点】1.轴对称、平移和旋转问题;2.矩形的性质;3.勾股定理;4.等腰三角形存在性问题;5.勾股定理;6.分类思想的应用.【分析】(1)由勾股定理求得BD 的长,根据三角形面积公式求出AE 的长,再应用勾股定理即可求得BE 的长.(2)根据平移的性质求解即可.(3)分DP =DQ (考虑点Q 在线段BD 的延长线和点Q 在线段BD 上两种情况),QP =QD ,PD =PQ 三种情况求解即可. 8.(2014年重庆市B 12分)如图1,在□ABCD 中,AH ⊥DC ,垂足为H ,AB =7,AD =7,AH 21.现有两个动点E 、F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动. 在点E 、F 运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E 、F 两点同时停止运动. 设运转时间为t 秒. (1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度(0360)αα︒<<︒.在旋转过程中,点E 与点C 重合,F 的对应点为F ′,G 的对应点为G ′. 设直线F ′G ′与射线DC 、射线AC 分别相交于M 、N 两点.试问:是否存在点M 、N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出线段CM 的长度;若不存在,请说明理由.(3)存在.如图2,当等边△EFG 的顶点E 到达点C 时,AE =AC =7,AF =21,EF =14. △EFG 绕点C 旋转过程中,以∠MCN 为底角的等腰三角形△CMN 有两种情况:①当∠CMN 为等腰△CMN 的另一底角时,如答图1,过点C 作CI ⊥MN 于点I ,过N 作NJ ⊥CM 于点J .在等边△CG ′I 中,易得77IG ',CI 322== .设IN a,CN MN b === , 易得△ACH ∽△NCJ ,∴AC CH NC CJ =,即727b CJ=, ∴27CJ b 7=.∴47CM b 7=.在△CNI 中,由勾股定理得222CI IN CN +=,即22273a b 2⎛⎫+= ⎪⎝⎭,在△CMI 中,由勾股定理得222CI IM CM +=,即()2227473a b b 27⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭, 二者联立,解得49b 4=,∴47CM b 777==.二者联立,解得49b 4=,∴49CM b 4==.综上所述,线段CM 的长度为77或494. 【考点】1.双动点和面动旋转问题;2.勾股定理;3.线段垂直平分线的性质;4.等边、腰三角形的性质;5.由实际问题列函数关系式;6.旋转的性质;7.相似三角形的判定和性质;8.等腰三角形存在性问题;9.分类思想的应用.【分析】(1)由勾股定理求出DH 的长,证明点H 为DC 的中点,从而根据线段垂直平分线上的点到线段两端距离相等的性质,得AC =AD =7.(2)分770t ,<t 4,4<t 733≤≤≤≤ 三种情况讨论即可.(3)分∠CMN 为等腰△CMN 的另一底角和∠CNM 为等腰△CMN 的另一底角两种情况讨论即可.。

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析二次函数与特殊三角形的存在性问题主要分为两类:一类是静态的特殊三角形的存在性问题;一类是动态的特殊三角形的存在性问题 .静态的特殊三角形的存在性问题难度相对较小,可根据抛物线的对称性以及三角形的特点为切入点来解决;动态的特殊三角形的存在性问题难度相对较大,解决此类问题的关键是根据题意分析出动点在动的过程一些不变的量以及不变的关系 .本节主要来讨论下关于动态的特殊三角形的存在性问题 .类型一:等腰三角形存在性问题【例题1】如图,已知抛物线y = -1/4 x^2 - 1/2 x + 2 与x 轴交于A , B 两点,与y 轴交于点C . (1)求点A , B , C 的坐标;(2)此抛物线的对称轴上是否存在点M,使得△ACM 是等腰三角形?若存在请求出点M 的坐标;若不存在,请说明理由 .【分析】(1)分别令y = 0 , x = 0 , 即可解决问题;(2)分A、C、M 为顶点三种情形讨论,分别求解即可 . 【解析】(1)令y = 0 , 得-1/4 x^2 - 1/2 x + 2 = 0 ,∴x^2 + 2x - 8 = 0 ,∴x = - 4(舍)或2 ,∴点A 坐标(2,0),点B 坐标(-4,0),令x = 0 , 得y = 2 ,∴点C 的坐标(0,2).(2)如图所示,①当C 为顶点时,CM1 = CA , CM2 = CA , 作M1N⊥OC 于N , 在Rt△CM1N 中,∴点M1 坐标(-1,2+√7),点M2 坐标(-1 , 2-√7).②点M3 为顶点时,∵直线AC 解析式为y = -x + 2 , 线段AC 的垂直平分线为y = x , ∴点M3 坐标为(-1,-1).③当点A 为顶点的等腰三角形不存在 .综上所述M 坐标为(-1,-1)或(-1,2+√7)或(-1 , 2-√7).类型二:直角三角形存在性问题【例题2】如图,△OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA = OB,点P 在线段OB 上,点Q 在y 轴的正半轴上,OP = 2OQ,过点Q 作x 轴的平行线分别交OA,AB 于点E , F .(1)求直线AB 的解析式;(2)是否存在点P,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由 .【分析】(1)由点A 的坐标可确定出OA 的长,即为OB 的长,从而可确定出B 点坐标,利用待定系数法即可求出直线AB 的解析式;(2)分三种情况来考虑:若∠PEF = 90°;若∠PFE = 90°,若∠EPF = 90°,过点E , F 分别作x 轴垂线,垂足分别为G、H,分别求出t 的值,确定出满足题意P 坐标即可 .【解题策略】此类问题主要考查特殊三角形的存在性问题:首先运用特殊三角形的性质画出相应的图形,确定动点问题的位置;其次借助特殊三角形的性质找到动点与已知点的位置关系和数量关系;最后结合已知列出方程求解即可 .要注意分类讨论时考虑全面所有可能的情形 .。

初中数学等腰三角形存在性问题(含答案)

初中数学等腰三角形存在性问题(含答案)

等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点 A坐标为( 1,1),点 B坐标为( 4,3),在 x轴上取点 C使得△ ABC是等腰三角形.几何法】“两圆一线”得坐标1)以点 A 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有AB=AC;2)以点 B 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有BA=BC;3)作 AB 的垂直平分线,与 x 轴的交点即为满足条件的点 C,有 CA=CB .y【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.AC1=AB= (4-1)2+(3-1)2= 13 作AH x轴于 H点, AH=1 C1H=C2H= 13-1=2 3C1(1-2 3,0) C2(1+2 3,0)C3、C4 同理可求,下求 C5.显然垂直平分线这个条件并不太适合这个题目,如果 A、B 均往下移一个单位,当点为( 1,0),点 B坐标为( 4,2)时,可构造直角三角形勾股解:AH =3, BH=2设AC5= x,则 BC5=x,C5H=3-x13解得: x=619故 C5坐标为( ,0)而对于本题的 C5 ,或许代数法更好用一些.A 坐标222(3-代数法】表示线段构相等1)表示点:设点 C 5坐标为( m , 0),又 A 点坐标( 1,1 )、 B 点坐标( 4,3),2)表示线段: AC 5 (m 1) (0 1) , BC 5 (m 4) (0 3) 3)分类讨论:根据 AC 5 BC 5 ,可得: (m 1)2 12(m 4)2 32 ,【小结】 几何法:( 1)“两圆一线 ”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标 A 、 B 、C ;(2)由点坐标表示出三条线段: AB 、AC 、BC ; (3)根据题意要求取① AB=AC 、②AB=BC 、③ AC=BC ; (4)列出方程求解.问题总结:1)两定一动:动点可在直线上、抛物线上;2)一定两动:两动点必有关联,可表示线段长度列方程求解; 3)三动点:分析可能存在的特殊边、角,以此为突破口. 2018 泰安 中考】4)求解得答案:解得: 23 6故 C 5 坐标为23,0如图,在平面直角坐标系中,二次函数 y ax2 bx c交x轴于点 A( 4,0) 、 B(2,0) ,交y轴于点 C(0,6) ,在y轴上有一点 E(0, 2) ,连接AE .1)求二次函数的表达式;2)若点D为抛物线在x 轴负半轴上方的一个动点,求ADE 面积的最大值;3)抛物线对称轴上是否存在点P,使AEP为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.分析】 1) y3x 2 3x 6; 422) 可用铅垂法,当点 D 坐标为 ( 2,6 )时,△ ADE 面积最大,最大值为 14; 3) 这个问题只涉及到 A 、 E 两点及直线 x=-1(对称轴)① 当 AE=AP 时,以 A 为圆心, AE 为半径画圆,与对称轴交点即为所求 P 点.∵AE=2 5 ,∴ AP 1=2 5,又 AH=3,∴ P 1H故P 1( 1, 11)、 P 2 ( 1, 11).② 当 EA=EP 时,以 E 点为圆心, EA 为半径画圆,故 P 5 ( 1,1) . P 5 ( 1,1).补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.P 1HP 4Bx11,与对称轴交点即为所求 P 点.过点 E 作EM 垂直对称轴于 M 点,则 EM=1, 1, 2 19)故P 3( 1, 2 19)、 P 4( 作 AE 的垂直平分线,与对称轴交点即为所求 ③当 PA=PE 时,P 点.设 P 5 ( 1,m ),P 5A 2 2 2 2 ( 1 4)2 (m 0)2, P 5E 2=( 1 0)2(m 2)2 ∴ m 2 9 (m2)2 1,解得: m=1 .综上所述, P 点坐标为 P 1( 1, 11)、P 2( 1, 11 )、P 3( 1,19 )、P 4 ( 1, 2 19)、19 ,P 3M P4 M【 2019 白银中考(删减)】如图,抛物线 y ax2 bx 4交x轴于 A( 3,0), B(4,0)两点,与y轴交于点 C ,连接AC ,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作 PM x轴,垂足为点M ,PM 交 BC 于点 Q .试探究点P在运动过程中,是否存在这样的点 Q,使得以A, C , Q为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标,若不存在,请说明理由;yCP分析】1) y1x2 1x 4 ;332)①当 CA=CQ 时,∵ CA=5,∴ CQ=5,考虑到 CB 与 y 轴夹角为 45°,故过点 Q作 y 轴的垂线,垂足记为 H ,则 CH QH 5 2,故 Q 点坐标为5 2,4 5 2.2 2 2②当 AC=AQ 时,考虑直线 BC 解析式为 y=-x+4,可设 Q 点坐标为( m, -m+4),AQ (m 3)2( m 4 0)2,即(m 3) ( m 4 0) 5 ,解得: m=1 或 0(舍),故 Q 点坐标为( 1, 3).③当 QA=QC 时,作 AC 的垂直平分线,显然与线段 BC 无交点,故不存在.综上所述, Q点坐标为5 2 ,4 5 2或( 1, 3).22记直线 x=2 与 x 轴交点为 H 点, ∵ OH =2,∴ BH=1,故 B 点坐标为( 2,1)或( 2,-1),k=-1 或 -3. ②当 AO=AB 时,易知 B 点坐标为( 2,0),k=-2. 综上所述, k 的值为 -1或-2 或-3. 【 2018 贵港中考(删减) 】2019 盐城中考删减 】如图所示, 二次函数 y k (x 1)2 2 的图像与一次函数 y kx k 2 的图像交于 A 、B 两点, 点 B 在点 A 的右侧,直线 AB 分别与 x 、 y 轴交于 C 、 D 两点,其中 k 0 . 1)求 A 、 B 两点的横坐标;2)若 OAB 是以 OA 为腰的等腰三角形,求 k 的值.分析】1)A 、B 两点横坐标分别为 1、 2;B 点横坐标始终为 2 ,故点 B 可以看成是直线 x=2 上的一个动点, 满足△ OAB 是以 OA 为腰的等腰三角形, 又 A 点坐标为( 1, 2),故 OA 5 ① 当 OA=OB 时,即 OB 5 ,如图,已知二次函数 y ax2 bx c 的图像与x 轴相交于 A( 1,0) , B(3,0) 两点,与y 轴相交于点 C(0, 3) .(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图像上任意一点,P H x轴于点H ,与线段 BC 交于点M ,连接 PC .当 PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.y② 当 MP =MC 时,(表示线段列方程)设 P 点坐标为 (m,m 22m 3),则 M 点坐标为 (m, m 3), 故线段 PM (m 3) (m 2 2m 3) m 2 3m 故点M 作y 轴的垂线,垂足记为 N ,则 MN =m ,考虑△ MCN 是等腰直角三角形,故 MC 2m ,m 2 3m 2m ,解得 m 32 或 0(舍),故 P 点坐标为 (3 2,2 综上所述, P点坐标为( 2, -3)或 (3 2,2 分析】1) y x 2 2 x 3 ;2)①当 PM=PC 时,(特殊角分析) 考虑∠ PMC =45°,∴∠ PCM=45°, 即△ PCM 是等腰直角三角形, P 点坐标为( 2,-3);4 2 ).【2019 眉山中考删减】如图,在平面直角坐标系中,抛物线 y 4 x2 bx c经过点 A( 5,0)和点 B(1,0).9(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD、BD,点M在线段AB上(不与A 、B重合),作 DMN DBA,MN 交线段AD 于点 N ,是否存在这样点M ,使得 DMN 为等腰三角形?若存在,求出 AN 的长;若不存在,请说明理由.x分析】1) y 4 x2 16 x 20,顶点 D 坐标为( 2,4 );9 9 92)考虑到∠ DAB=∠DBA=∠DMN,即有△ BMD ∽△ ANM(一线三等角)①当 MD=MN 时,有△ BMD≌△ ANM,可得 AM=BD =5,故 AN=BM=1;②当 NM=ND 时,则∠ NDM =∠ NMD =∠DAB,③当 DM=DN时,∠ DNM =∠DMN =∠DAB,显然不成立,故不存在这样的点M.△ MAD ∽△ DAB ,可得AM=25,6BM116ANBMAM,即BDAN116256,5解得: AN5536AN 的值为 1 或55.综上,36【2019 葫芦岛中考(删减)】如图,直线 y x 4与x轴交于点B,与y轴交于点 C,抛物线 y x2 bx c经过B,C 两点,与x轴另一交点为A.点P以每秒 2个单位长度的速度在线段 BC上由点B向点 C 运动(点P 不与点B 和点 C 重合),设运动时间为 t 秒,过点P 作x 轴垂线交x轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图,连接AM 交 BC 于点D ,当PDM 是等腰三角形时,直接写出 t 的值.y分析】1) y x2 3x 4 ;2)①考虑到∠ DPM =45°,当 DP=DM 时,即∠ DMP =45°,直线 AM :y=x+1,联立方程:x 3 x 4 x 1,解得: x1 3 , x2 1 (舍).此时 t=1 .②当 PD=PM 时,∠ PMD =∠ PDM =67.5°,∠ MAB=22.5°,考虑 tan∠ 22.5 °= 2 1 ,直线 AM :综上所述, t 的值为附: tan22.5 =° 2 1 .总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,联立方程:x2 3 x 4 ( 2 1)x 21解得:x1 5 2 , x2 1 (舍).此时 t= 2 1.222.5 °tan 22.5 1 2 121可减轻计算量.。

中考数学因动点产生的等腰三角形问题详解

中考数学因动点产生的等腰三角形问题详解

中考数学因动点产生的等腰三角形问题详解近年来,中考数学中因动点产生的图象问题,因其能较好地考查学生的空间想象能力和实际操作能力而备受
命题者的青睐。

思路点拨
1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.
2.第(2)题的本质是先代入,再配方求二次函数的最值.
3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.
满分解答
第 1 页。

中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题 含答案

中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题 含答案

一、动点产生的相似三角形问题1、 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==COAOPM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6,2、 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BCBE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.二、因动点产生的等腰三角形问题 满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PHBO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,.③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图54.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 三、①因动点产生的直角三角形问题5、满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭.直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==.②1(12)P -,25(1)2P -.图2 图3 图4②动点产生的平行四边形问题 2 满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-.①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=. 解得4x=-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).。

动点产生的等腰三角形问题

动点产生的等腰三角形问题

动点产生的等腰三角形问题类型1:一动点两定点如图,在平面中找点P,使得点P与已知点A.B构成等腰三角形分类讨论:第一种情况:以AB为腰,分别以AB为圆心,AB长为半径画圆,则在圆上的点(除去AB重合或共线的点)都能与AB构成等腰三角形;第二种情况:以AB为底,即为两圆的交点P1P2,P1P2是线段AB的垂直平分线总结:就是“两圆一线”模型解题技巧:步骤1:通过“两圆一线”确定动点位置;步骤2:分类讨论,建立方程模型求动点坐标注意:去除与直线AB共线的点的方法:求直线AB的解析式,再验证P点是否在直线AB 上,在则共线,不在,则不共线或用几何方法证明例题1:在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.5B.6C.7D.8例题2:如图,在平面直角坐标系中,抛物线2y x x =--x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,对称轴与x 轴交于点D,点E(4,n)在抛物线上.(1) 求直线AE 的解析式;(2) 点P 为直线CE 下方抛物线上的一点,连接PC,PE.当△PCE 的面积最大时,求P 点坐标.(3) 点G 是线段CE 下方的中点,将抛物线2y x =x 轴正方向平移得到新抛物线'y ,'y 经过点D, 'y 的顶点为点F.在新抛物线'y 的对称轴上,是否存在点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.练习1:如图1,已知二次函数2y ax bx c =++(a,b,c 为常数,a ≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M 的纵坐标为83-.直线l 的解析式为y=x.(1) 求二次函数的解析式;(2) 直线l 沿x 轴向右平移,得到直线'l ,'l 与线段OA 相交于B,与x 轴下方的抛物线相交于点C,过点C 作CE ⊥x 轴于点E,把△BCE 沿直线'l 折叠,当点E 恰好落在抛物线上'E 点时,(图2),求直线'l 的解析式;(3) 在(2)的条件下, 'l 与y 轴交于点N,把△BON 绕点O 逆时针旋转135°得到△''B ON ,P为'l 上的动点,当△''PB N 为等腰三角形时,求符合条件的点P 的坐标.练习2:如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点A(-5,0)和点B(1,0). (1) 求抛物线的解析式及顶点D 的坐标;(2) 如图2,连接AD,BD,点M 在线段AB 上(不与A,B 重合),∠DMN=∠DBA,MN 交线段AD 于点N,是否存在这样点M,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.类型2:多个动点1.在平面内使构成等腰三角形的三个点中,动点个数≥2个;解决这类问题的方法:让三个点分别做顶角顶点,进行分类讨论;如图,在平面内点A、B、P为动点,使得△PAB是等腰三角形?分类:①以P为顶点,PA=PB;②以A为顶点,AP=AB③以B为顶点,BA=BP2.在具体的题目中有时不仅要找出符合题意的点,还要计算出点的坐标,计算点的坐标的方法可以参考以下几种方法:①全等;②相似;③勾股定理;④锐角三角函数;⑤面积法;⑥方程或者方程组.例题1:如图,△ABC是边长为8的等边三角形,现有两点M,N分别从点A,点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运动速度为每秒2个单位长度,当点M第一次到达B点时,M,N同时停止运动.(1)点M,N运动几秒后,可得到等边三角形AMN?(2)点M,N运动几秒后,M,N两点重合?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰△AMN?若存在,请求出此时M,N运动的时间.例题2:如图1,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++与y 轴交于点A(0,6),与x 轴交于点B(-2,0),C(6,0).(1) 直接写出抛物线的解析式及其对称轴;(2) 如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD ⊥AC 于点E,交x 轴于点D,过点P 作PG ∥AB 交AC 于点F,交x 轴于点G.设线段DG 的长为d,求d 与m 的函数关系式,并注明m 的取值范围;(3) 在(2)的条件下,若△PDG 的面积为4912. ①求点P 的坐标;②设M 为直线AP 上一动点,连接OM 交直线AC 与点S,则点M 在运动过程中,在抛物线上是否存在点R,使得△ARS 为等腰直角三角形?若存在,请直接写出点M 及其对应的点R 的坐标;若不存在,请说明理由.练习1:如图①,在平面直角坐标系中,已知A(-2,2),B(-2,0),C(0,2),D(2,0)四点,动点M 以B →C →D 运动(M 不与点B,点D 重合),设运动时间为t(秒).(1) 求经过A,C,D 三点的抛物线的解析式;(2) 点P 在(1)中的抛物线上,当M 为BC 的中点时,若△PAM ≌PBM,求点P 的坐标;(3) 当点M 在CD 上运动时,如图②,过点M 作MF ⊥x 轴,垂足为F,ME ⊥AB,垂足为E,设矩形MEBF 与△BCD 重叠部分的面积为S,求S 与t 的函数关系,并求出S 的最大值;(4) 点Q 为x 轴上一点,直线AQ 与直线BC 交于点H,与y 轴交于点K,是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.练习2:抛物线229y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,顶点为C,对称轴交x 轴于点D,点P 为抛物线对称轴CD 上的一动点(点P 不与C,D 重合),过点C 作直线PB 的垂线交PB 于点E,交x 轴于点F.(1) 求抛物线的解析式;(2) 当△PCF 的面积为5时,求点P 的坐标;(3) 当△PCF 为等腰三角形时,请直接写出点P 的坐标.课后练习:1.如图所示,二次函数2(1)2y k x =-+的图象与一次函数y=kx-k+2的图象交于A,B 两点,点B 在点A 的右侧,直线AB 分别与x,y 轴交于C,D 两点,其中k <0.(1)求A,B 两点的横坐标;(2)若△OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图象的对称轴与x 轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点A(-4,0),B(2,0),交y 轴于点C(0,6),在y 轴上有一个点E(0,-2),连接AE.(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求△ADE 面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在,请说明理由.3.抛物线263y x x =-+-与y 轴相交于点C(0,-3),且抛物线的对称轴为x=3,D 为对称轴与x 轴的交点,在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E,F 两点,若△DEF 是等腰三角形,求△DEF 的面积.4.如图,抛物线2y ax bx c =++交x 轴于A,B 两点,交y 轴于点C(0,3),顶点F 的坐标为(1,4),对称轴交x 轴于点H,直线112y x =+交x 轴于点D,交y 轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c 的值;(2)点M 为抛物线对称轴上一个动点,若△DGM 是以DG 为腰的等腰三角形时,请求出点M 的坐标;(3)点P 为抛物线上的一个动点,当点P 关于直线112y x =+的对称轴恰好落在x 轴上时,请直接写出此时点P 的坐标.5.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C(0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=-1.(1) 求抛物线的函数表达式;(2) 若点P 在第二象限内,且PE=14OD,求△PBE 的面积; (3) 在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.6.如图,一次函数3y x =-图象与坐标轴交于点A(3,0),B (0,,二次函数233y x x =-A,B 两点,点B 关于抛物线对称轴的对称点为点C,点P 是对称轴上一动点,在抛物线上是否存在点Q,使得以B,C,P,Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.7.如图,抛物线213222y x x =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C,连接AC,BC,点P 在抛物线上运动,如图,若点P 在第一象限,直线AP 交BC 于点F,过点P 作x 轴的垂线交BC 于点H,当△PFH 为等腰三角形时,求线段PH 的长.8.如图,已知两直线1l ,2l 分别经过点A(1,0),点B(-3,0),且两条直线相交于y 轴的正半轴上的点C,当点C 的坐标为时,恰好有1l ⊥2l ,经过点A,B,C 的抛物线的对称轴与1l ,2l ,x 轴分别交于点G,E,F,D 为抛物线的顶点.(1)抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线2l 绕点C 旋转时,与抛物线的另一个交点为M,当△MCG 为等腰三角形时,请直接写出点M 的坐标.9.如图,已知抛物线2y=ax 9a --与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC 的平分线AE 交y 轴于点D,交BC 于点D,交BC 于点E,过点D 的直线l 与射线AC,AB 分别交于点M,N.(1)直接写出a 的值,点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时, 11AM AN+均为定值,并求出该定值.。

初中数学等腰三角形的存在性问题(word版+详解答案)

初中数学等腰三角形的存在性问题(word版+详解答案)

等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx+c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)

专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)

《中考压轴题》专题37:动态几何之动点形成的等腰三角形存在性问一、选择题1.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.5二、填空题1.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。

中点,点P在BC上运动,当ODP2.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q点有个.3.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x 轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题1.如图,抛物线21y x mx n 2=-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.2.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.3.已知抛物线经过A (﹣2,0),B (0,2),C (32,0)三点,一动点P 从原点出发以1个单位/秒的速度沿x 轴正方向运动,连接BP ,过点A 作直线BP 的垂线交y 轴于点Q .设点P 的运动时间为t 秒.(1)求抛物线的解析式;(2)当BQ=12AP 时,求t 的值;(3)随着点P 的运动,抛物线上是否存在一点M ,使△MPQ 为等边三角形?若存在,请直接写t 的值及相应点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.5.在平面直角坐标系xOy 中,二次函数213y x x 222=-++的图像与x 轴交于点A ,B (点B 在点A 的左侧),与y 轴交于点C ,过动点H (0,m )作平行于x 轴的直线,直线与二次函数213y x x 222=-++的图像相交于点D ,E.(1)写出点A,点B 的坐标;(2)若m >0,以DE 为直径作⊙Q ,当⊙Q 与x 轴相切时,求m 的值;(3)直线上是否存在一点F ,使得△ACF 是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.6.如图1,抛物线y=ax 2+bx ﹣1经过A (﹣1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E .(1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为32时,求证:△OBD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE=2PE 时,求△POD 的面积.(4)当以点O 、C 、D 为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.7.如图,抛物线y=-x 2+bx+c 交x 轴于点A ,交y 轴于点B ,已知经过点A ,B 的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C 的坐标;(2)如图①,点P (m ,0)是线段AO 上的一个动点,其中-3<m <0,作直线DP ⊥x 轴,交直线AB 于D ,交抛物线于E ,作EF ∥x 轴,交直线AB 于点F ,四边形DEFG 为矩形.设矩形DEFG 的周长为L ,写出L 与m 的函数关系式,并求m 为何值时周长L 最大;(3)如图②,在抛物线的对称轴上是否存在点Q ,使点A ,B ,Q 构成的三角形是以AB 为腰的等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.8.如图,抛物线2y ax bx c =++(a≠0)的图象过点M (2,-,顶点坐标为N 1,3⎛⎫- ⎪ ⎪⎝⎭,且与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。

中考数学总复习-中考数学专题复习 等腰三角形的存在性问题复习讲义 含解析

中考数学总复习-中考数学专题复习 等腰三角形的存在性问题复习讲义 含解析

中考数学专题复习-等腰三角形的存在性问题【问题描述】如图,已知点A 坐标为(1,1),点B 坐标为(4,3),在x 轴上取点C 使得△ABC 是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB =AC ; (2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA =BC ; (3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA =CB .一.选择题1.直线112y x =-+交x 、y 轴于A 、B 两点,点C 在x 轴上,且ABC ∆为等腰三角形,则满足条件的点C 有( )个. A .1B .2C .3D .42.已知直线3y =+与坐标轴分别交于点A ,B ,点P在抛物线2(4y x =--+上,能使ABP ∆为等腰三角形的点P 的个数有( ) A .8个B .4个C .5个D .6个3.如图,抛物线22y x m =-的顶点为P ,与x 轴交于点A ,B ,且ABP ∆是等腰直角三角形,则m 的值是( )A .2-B .12C .2D .12-二.填空题4.已知抛物线2y x k =-的顶点为P ,与x 轴交于点A ,B ,且ABP ∆是等腰直角三角形,则k 的值是 .5.如图,直线4y x =-+分别交x 、y 轴于A 、B 点,若第一象限内一点P 在直线4y x =-+上且使得APO ∆是等腰三角形,点P 的坐标是 .6.如图,一次函数22y x =-+的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,且90BAC ∠=︒,则点C 坐标为 .7.如图,抛物线223y x x =-++与y 轴交于点C ,点(0,1)D ,点P 在抛物线上,且PCD ∆是以CD 为底的等腰三角形,则点P 的坐标为 .8.如图,在平面直角坐标系中,点1A ,2A ,3A ⋯都在x 轴上,点1B ,2B ,3B ⋯都在直线y x =上,△11OA B ,△112B A A ,△212B B A ,△223B A A ,△323B B A ⋯都是等腰直角三角形,且11OA =,则点2019B 的坐标是 .9.二次函数22y x =的图象如图所示,坐标原点O ,点1B ,2B ,3B 在y 轴的正半轴上,点1A ,2A ,3A 在二次函数22y x =位于第一象限的图象上,若△11A OB ,△212A B B ,△323A B B 都为等腰直角三角形,且点1A ,2A ,3A 均为直角顶点,则点3A 的坐标是 .10.如图,抛物线224y x x =-++与y 轴交于点C ,点(0,2)D ,点M 是抛物线上的动点.若MCD ∆是以CD 为底的等腰三角形,则点M 的坐标为 .11.已知抛物线21242y x x =-+如图,点A 是抛物线上一点,点A 的横坐标为2,过点A 作AC x ⊥轴于点C ,则以AC 为斜边的等腰直角三角形的面积是 .12.如图,在平面直角坐标系中,正方形OABC 的顶点A 在y 轴正半轴上,顶点C 在x 轴正半轴上,抛物线2(1)(0)y a x c a =-+<的顶点为D ,且经过点A 、B .若ABD ∆为等腰直角三角形,则a 的值为 .三.解答题13.如图,正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x=≠的图象交于点(,6)A a ,且点(9,2)C 在反比例函数的图象上,点B 的坐标为(4,0).(1)求正比例函数1y k x =的解析式;(2)若P 为射线OA 上一点,①若点P 的横坐标为x ,OPB ∆的面积为S ,写出S 关于x 的函数解析式,并指出自变量x 的取值范围;②当POB ∆是等腰三角形时,求点P 的坐标.14.如图,A 、B 分别是x 轴上位于原点左右两侧的点,点(2,)P p 在第一象限,直线PA 交y 轴于点(0,2)C ,直线PB 交y 轴于点D ,AOP ∆的面积为6.(1)求点A 的坐标; (2)求点P 的坐标;(3)若BOP ∆是以OP 为腰的等腰三角形,直接写出直线点D 坐标.15.已知(0,6)A ,点(,0)B t 是x 轴正半轴上的一个动点,连接AB ,作BC AB ⊥,且:1:2BC AB =.又BD x ⊥轴交直线AC 于点D .(1)如图,用含t 的代数式表示点C 的坐标及ABC ∆的面积; (2)当ABD ∆为等腰三角形时,求出所有符合条件的点B 的坐标.16.在平面直角坐标系中,点O 为坐标原点,抛物线25y ax bx =++经过点(1,3)M 和(3,5)N . (1)求该抛物线的解析式及顶点坐标;(2)把该抛物线向 (填“上”成“下” )平移 个单位长度,得到的抛物线与x 轴只有一个公共点;(3)平移该抛物线,使平移后的抛物线经过点(2,0)A -,且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.17.如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于点A 和点(1,0)B ,与y 轴相交于点(0,3)C .(1)求抛物线的解析式和顶点D 的坐标; (2)求证:DAB ACB ∠=∠;(3)点Q 在抛物线上,且ADQ ∆是以AD 为底的等腰三角形,求Q 点的坐标.18.已知二次函数23y ax bx a =+-经过点(1,0)A -、(0,3)C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:BCD ∆是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得PDC ∆为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.19.如图,抛物线的顶点A 的坐标为(1,4),抛物线与x 轴相交于B ,C 两点,与y 轴交于点(0,3)D .(1)求抛物线的表达式以及点B 的坐标;(2)在抛物线的对称轴上是否存在一点P ,使得DP CP +最小,如果存在,求出点P 的坐标;如果不存在,请说明理由.(3)点Q是线段BD上方抛物线上的一个动点.过点Q作x轴的垂线,交线段BD于点E,再过点Q作//为等腰直角QF x轴交抛物线于点F,连结EF,请问是否存在点Q使QEF三角形?若存在,求出点Q的坐标;若不存在,说明理由.参考答案一.选择题(共5小题)1.直线112y x =-+交x 、y 轴于A 、B 两点,点C 在x 轴上,且ABC ∆为等腰三角形,则满足条件的点C 有( )个. A .1B .2C .3D .4【解答】解:如图由图象可知,满足条件的点C 有三个. 故选D .3.已知直线33y x =-+与坐标轴分别交于点A ,B ,点P 在抛物线2(3)4y x =--+上,能使ABP ∆为等腰三角形的点P 的个数有( ) A .8个B .4个C .5个D .6个【解答】解:分三种情况考虑:①以点B 为圆心,AB 长度为半径作圆,交抛物线于点1P 、2P ;②以点A 为圆心,AB 长度为半径作圆,交抛物线于点3P 、4P 、5P 、6P ; ③作线段AB 的垂直平分线,交抛物线于点7P 、8P . 综上所述:能使ABP ∆为等腰三角形的点P 的个数为8个. 故选:A .4.如图,抛物线22y x m =-的顶点为P ,与x 轴交于点A ,B ,且ABP ∆是等腰直角三角形,则m 的值是( )A .2-B .12C .2D .12-【解答】解:Q 抛物线解析式为22y x m =-, ∴该抛物线的顶点P 的坐标为(0,)m -,Q 抛物线和x 轴有两个交点, ∴△042()0m =-⨯->,0m ∴>,令0y =,得2mx =, 又ABP ∆Q 是等腰直角三角形, ∴2mm =, 解得12m =,故选:B .二.填空题(共10小题)6.已知抛物线2y x k =-的顶点为P ,与x 轴交于点A ,B ,且ABP ∆是等腰直角三角形,则k 的值是 1 .【解答】解:Q 抛物线解析式为2y x k =-, ∴该抛物线的顶点(0,)k -,Q 抛物线和x 轴有两个交点, 40k ∴>, 0k ∴>,令0y =,得x k =又Q 抛物线2y x k =-与x 轴的两个交点以及顶点围成的三角形是等腰直角三角形,∴k k =.解得1k =, 故答案为1.7.如图,直线4y x =-+分别交x 、y 轴于A 、B 点,若第一象限内一点P 在直线4y x =-+上且使得APO ∆是等腰三角形,点P 的坐标是 (2,2)或(422-,22) .【解答】解:Q 直线4y x =-+分别交x 、y 轴于A 、B 点, (4,0)A ∴,(0,4)B ,设(,4)P m m -+,当OP PA =时,则22OP PA =,即2222(0)(40)(4)(4)m m m m -+-+-=-+-+, 解得2m =; ∴此时(2,2)P ;当PA OA =时,则22PA OA =,即222(4)(4)4m m -+-+=, 解得42m =-422m =+(舍去), ∴此时(42P -,2);综上,P 点的坐标为(2,2)或(42-22), 故答案为(2,2)或(422-22).8.如图,一次函数22y x =-+的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,且90BAC ∠=︒,则点C 坐标为 (3,1) .【解答】解:如图,过点C 作CD x ⊥轴于D , 令0x =,得2y =, 令0y =,得1x =, (1,0)A ∴,(0,2)B , 1OA ∴=,2OB =, ABC ∆Q 是等腰直角三角形, AB AC ∴=,90BAC ∠=︒, 90BAO CAD ∴∠+∠=︒, 90ACD CAD ∠+∠=︒Q , BAO ACD ∴∠=∠, 90BOA ADC ∠=∠=︒Q ,()ABO CAD AAS ∴∆≅∆, 2AD BO ∴==,1CD AO ==, 3OD ∴=,(3,1)C ∴故答案为(3,1).9.如图,抛物线223y x x =-++与y 轴交于点C ,点(0,1)D ,点P 在抛物线上,且PCD ∆是以CD 为底的等腰三角形,则点P 的坐标为 (12+,2)或(12-,2) .【解答】解:Q 抛物线223y x x =-++与y 轴交于点C , (0,3)C ∴.PCD ∆Q 是以CD 为底的等腰三角形, ∴点P 在线段CD 的垂直平分线上,(0,1)D Q ,(0,3)C , (0,2)E ∴,过点E 作PE y ⊥轴,交抛物线于点P ,则点P 即为所求. P ∴点纵坐标为2,在223y x x =-++中,令2y =,可得2232x x -++=,解得12x =±, P ∴点坐标为(12+,2)或(12-,2),故答案为:(12+,2)或(12-,2).10.如图,在平面直角坐标系中,点1A ,2A ,3A ⋯都在x 轴上,点1B ,2B ,3B ⋯都在直线y x =上,△11OA B ,△112B A A ,△212B B A ,△223B A A ,△323B B A ⋯都是等腰直角三角形,且11OA =,则点2019B 的坐标是 2018(2,20182) .【解答】解:11OA =Q , ∴点1A 的坐标为(1,0),Q △11OA B 是等腰直角三角形, 111A B ∴=,1(1,1)B ∴,Q △112B A A 是等腰直角三角形, 121A A ∴=,122B A =Q △212B B A 为等腰直角三角形, 232A A ∴=, 2(2,2)B ∴,同理可得,23(2B ,22),34(2B ,32),1(2n n B -⋯,12)n -, ∴点2019B 的坐标是2018(2,20182).故答案为2018(2,20182).11.二次函数22y x =的图象如图所示,坐标原点O ,点1B ,2B ,3B 在y 轴的正半轴上,点1A ,2A ,3A 在二次函数22y x =位于第一象限的图象上,若△11A OB ,△212A B B ,△323A B B 都为等腰直角三角形,且点1A ,2A ,3A 均为直角顶点,则点3A 的坐标是 (2,2.【解答】解:分别过1A ,2A ,3A 作y 轴的垂线,垂足分别为A 、B 、C , 设1OB a =,12B B b =,23B B c =,则112AA a =,212BA b =,312CA c =, 在等腰直角△11OB A 中,11(2A a ,1)2a ,代入22y x =中,得2112()22a a =,解得1a =,11(2A ∴,1)2,在等腰直角△122B A B 中,21(2A b ,11)2b +,代入22y x =中,得21112()22b b +=g ,解得2b =,2(1,2)A ∴,在等腰直角△233B A B 中,31(2A c ,3)2c+,代入22y x =中,得21132()22c c +=g ,解得3c =,33(2A ∴,9)2,故答案为3(2,9)2.13.如图,抛物线224y x x =-++与y 轴交于点C ,点(0,2)D ,点M 是抛物线上的动点.若MCD ∆是以CD 为底的等腰三角形,则点M 的坐标为 (12+,3)或(12-,3) .【解答】解:MCD ∆Q 是以CD 为底的等腰三角形, ∴点M 在线段CD 的垂直平分线上,Q 抛物线224y x x =-++与y 轴交于点C , (0,4)C ∴,且(0,2)D , CD ∴中点E 的坐标为(0,3),如图,过点E 作CD 的垂线与抛物线交于点M ,M ∴点纵坐标为3,在224y x x =-++中,令3y =,可得2243x x -++=,解得12x =±,M ∴点坐标为(12+,3)或(12-,3),故答案为:(12+,3)或(12-,3). 14.已知抛物线21242y x x =-+如图,点A 是抛物线上一点,点A 的横坐标为2,过点A 作AC x ⊥轴于点C ,则以AC 为斜边的等腰直角三角形的面积是 1 .【解答】解:Q 点A 是抛物线上一点,点A 的横坐标为2, 21222422y ∴=⨯-⨯+=, (2,2)A ∴,AC x ⊥Q 轴于点C , 2AC ∴=,ABC ∆Q 是以AC 为斜边的等腰直角三角形, AB BC ∴=,设AB BC a ==, 2222a a ∴+=, 22a ∴=, 2112ABC S a ∆∴==, 故答案为:1.15.如图,在平面直角坐标系中,正方形OABC 的顶点A 在y 轴正半轴上,顶点C 在x 轴正半轴上,抛物线2(1)(0)y a x c a =-+<的顶点为D ,且经过点A 、B .若ABD ∆为等腰直角三角形,则a 的值为 1- .【解答】解:Q 抛物线2(1)(0)y a x c a =-+<的顶点为D ,且经过点A 、B , ∴抛物线的对称轴是直线1x =,且A 、B 关于直线1x =对称,过D 作DF x ⊥轴于F ,交AB 于E , ABD ∆Q 为等腰直角三角形, 1AE BE ∴==, 2AB ∴=,112DE AB ==, Q 四边形OABC 是正方形,2OA AB BC OC ∴====,123DF =+=,(0,2)A ∴,(1,3)D ,把A 、D 的坐标代入2(1)y a x c =-+得:22(01)2(11)3a c a c ⎧-+=⎨-+=⎩解得:1a =-, 故答案为:1-.三.解答题(共15小题)16.如图,正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x=≠的图象交于点(,6)A a ,且点(9,2)C 在反比例函数的图象上,点B 的坐标为(4,0).(1)求正比例函数1y k x =的解析式;(2)若P 为射线OA 上一点,①若点P 的横坐标为x ,OPB ∆的面积为S ,写出S 关于x 的函数解析式,并指出自变量x 的取值范围;②当POB ∆是等腰三角形时,求点P 的坐标.【解答】解:(1)Q 点(2,9)C 在反比例函数2k y x=的图象上, 218k ∴=,∴反比例函数的解析式为18y x=, Q 点(,6)A a 在反比例函数18y x=的图象上, 3a ∴=,(3,6)A ∴,Q 点(3,6)A 在正比例函1y k x =的图象上 12k ∴=,∴正比例函数的解析式为2y x =;(2)由(1)知,正比例函数的解析式为2y x =, (,2)P x x ∴,①(4,0)B Q , 4OB ∴=1424(0)2S x x x ∴=⨯⨯=>;②由①知,(,2)P x x ,4OB =,22(2)5OP x x x ∴=+=,222(4)(2)5816BP x x x x =-+=-+POB ∆Q 是等腰三角形, ∴Ⅰ、当OP OB =时,45x ∴=,455x ∴=, 45(5P ∴,85)5, Ⅱ、当OP PB =时, ∴255816x x x =-+,2x ∴=,(2,4)P ∴Ⅲ、当PB OB =时, ∴258164x x -+=,85x ∴=或0x =(舍), 8(5P ∴,16)5,∴点P 坐标为45(5,85)5或(2,4)或8(5,16)5. 17.如图,A 、B 分别是x 轴上位于原点左右两侧的点,点(2,)P p 在第一象限,直线PA 交y 轴于点(0,2)C ,直线PB 交y 轴于点D ,AOP ∆的面积为6.(1)求点A 的坐标; (2)求点P 的坐标;(3)若BOP ∆是以OP 为腰的等腰三角形,直接写出直线点D 坐标.【解答】解:(1)作PE y ⊥轴于E , P Q 的横坐标是2,则2PE =. 1122222COP S OC PE ∆∴==⨯⨯=g ;624AOC AOP COP S S S ∆∆∆∴=-=-=,142AOC S OA OC ∆∴==g ,即1242OA ⨯⨯=,4OA ∴=,A ∴的坐标是(4,0)-.(2)设直线AP 的解析式是y kx b =+,则 402k b b -+=⎧⎨=⎩, 解得:122k b ⎧=⎪⎨⎪=⎩,则直线的解析式是122y x =+. 当2x =时,3y =,即3p =, ∴点P 的坐标为(2,3);(3)①当OP PB =时,作PF x ⊥轴于F , (2,0)F ∴,F 是线段OB 的中点, (4,0)B ∴,∴直线3:62BP y x =-+,(0,6)D ∴;②当OP OB =时,OP =Q ,B ∴,0), ∴直线:BP y =+D ∴. 19.已知(0,6)A ,点(,0)B t 是x 轴正半轴上的一个动点,连接AB ,作BC AB ⊥,且:1:2BC AB =.又BD x ⊥轴交直线AC 于点D .(1)如图,用含t 的代数式表示点C 的坐标及ABC ∆的面积; (2)当ABD ∆为等腰三角形时,求出所有符合条件的点B 的坐标.【解答】解:(1)过点C 作CE OB ⊥于E .在AOB ∆与BEC ∆中,90AOB BEC ∠=∠=︒Q ,90ABO BCE CBE ∠=∠=︒-∠,AOB BEC ∴∆∆∽, ∴2OA OB AB EB EC BC===, 即62t BE EC ==, 3BE ∴=,12EC t =, 3OE OB BE t ∴=+=+,∴点C 的坐标为1(3,)2t t +; 在Rt BCE ∆中,2222194BC CE BE t =+=+, AB BC ⊥Q ,2AB BC =,212ABC S AB BC BC ∆∴==g , 2194ABC S t ∆∴=+;(2)(0,6)A Q ,1(3,)2C t t +; ∴直线AC 的解析式为16263t y x t -=++. Q 点(,0)B t ,∴设162(,6)3t D t t t -++, 2236AB t ∴=+,222162()3t AD t t t -=++,22162(6)3t BD t t -=++.分三种情况:①当AD AB =时,222162()363t t t t t -+=++,2162()363t t t -=+, ∴16263t t t -=+或16263t t t -=-+, 当16263t t t -=+时,整理得224360t t --=,解得112t =+,212t =-(不合题意,舍去),1(12B ∴+,0); 当16263t t t -=-+时,整理得2360t +=, 此方程无解;②当AD BD =时,222116622()(6)33t t t t t t t --+=+++, 整理得323361080t t t -+-=,2(3)(36)0t t ∴-+=,解得3t =,2(3,0)B ∴;③当AB BD =时,2216236(6)3t t t t -+=++, 整理得328362880t t t +++=,2(8)(36)0t t ∴++=,解得8t =-(不合题意,舍去).综上可知,符合条件的点B的坐标为1(12B +0),2(3,0)B .21.在平面直角坐标系中,点O 为坐标原点,抛物线25y ax bx =++经过点(1,3)M 和(3,5)N .(1)求该抛物线的解析式及顶点坐标;(2)把该抛物线向 下 (填“上”成“下” )平移 个单位长度,得到的抛物线与x 轴只有一个公共点;(3)平移该抛物线,使平移后的抛物线经过点(2,0)A -,且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【解答】解:(1)将点M 、N 的坐标代入抛物线表达式得:539355a b a b ++=⎧⎨++=⎩,解得:13a b =⎧⎨=-⎩, 故抛物线的表达式为:2231135()24y x x x =-+=-+, 故顶点坐标为:3(2,11)4;(2)由抛物线的顶点坐标知,把该抛物线向下平移114个单位长度,得到的抛物线与x 轴只有一个公共点, 故答案为:下,114;(3)A ,O ,B 为顶点的三角形是等腰直角三角形,则点B 的坐标为:(0,2)或(0,2)-, ①当点(0,2)B 时,抛物线的表达式为:22y x bx =++,将点A 的坐标代入上式并解得:3b =, 故抛物线的表达式为:223132()24y x x x =++=+-, 此时顶点坐标为:3(2-,1)4-; ②当点(0,2)B -时,同理可得顶点坐标为:1(2-,9)4-, 故将原抛物线向左平移3个单位向下平移3或向左平移2个单位向下平移5个单位即可满足条件.23.如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于点A 和点(1,0)B ,与y 轴相交于点(0,3)C .(1)求抛物线的解析式和顶点D 的坐标;(2)求证:DAB ACB ∠=∠;(3)点Q 在抛物线上,且ADQ ∆是以AD 为底的等腰三角形,求Q 点的坐标.【解答】解:(1)把(1,0)B 和(0,3)C 代入22y ax x c =-+中, 得203a c c -+=⎧⎨=⎩,解得13a c =-⎧⎨=⎩, ∴抛物线的解析式是:223y x x =--+,2223(1)4y x x x =--+=-++Q ,∴顶点坐标(1,4)D -;(2)令0y =,则2230x x --+=,解得13x =-,21x =,(3,0)A ∴-,3OA OC ∴==,CAO OCA ∴∠=∠,在Rt BOC ∆中,1tan 3OB OCB OC ∠==,AC ==Q,DC ==,AD ==,22220AC DC AD ∴+==;ACD ∴∆是直角三角形且90ACD ∠=︒,1tan 3DC DAC AC ∴∠===, 又DAC ∠Q 和OCB ∠都是锐角,DAC OCB ∴∠=∠,DAC CAO BCO OCA ∴∠+∠=∠+∠,即DAB ACB ∠=∠;(3)令(,)Q x y 且满足223y x x =--+,(3,0)A -,(1,4)D -, ADQ ∆Q 是以AD 为底的等腰三角形,22QD QA ∴=,即2222(3)(1)(4)x y x y ++=++-,化简得:220x y -+=,由222023x y y x x -+=⎧⎨=--+⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点Q的坐标是,. 26.已知二次函数23y ax bx a =+-经过点(1,0)A -、(0,3)C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:BCD ∆是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得PDC ∆为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)Q 二次函数23y ax bx a =+-经过点(1,0)A -、(0,3)C ,∴根据题意,得3033a b a a --=⎧⎨-=⎩, 解得12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++.(2)由2223(1)4y x x x =-++=--+得,D 点坐标为(1,4), 定义抛物线223y x x =-++.令0y =,2230x x -++=,解得1x =-或3, (1,0)A ∴-,(3,0)B ,22(10)(43)2CD ∴=-+-=,223332BC =+=,22(31)(40)5BD =-+-=2222(2)(32)20CD BC +=+=Q ,22(25)20BD ==,222CD BC BD ∴+=,BCD ∴∆是直角三角形;(3)存在.223y x x =-++对称轴为直线1x =.①若以CD 为底边,则11PD PC =, 设1P 点坐标为(,)x y ,根据勾股定理可得2221(3)PCx y =+-,2221(1)(4)PD x y =-+-, 因此2222(3)(1)(4)x y x y +-=-+-,即4y x =-.又1P 点(,)x y 在抛物线上,2423x x x ∴-=-++,即2310x x -+=, 解得1352x +=,23512x -=<,应舍去, 352x +∴=, 5542y x -∴=-=, 即点1P 坐标为35(2+,55)2-. ②若以CD 为一腰,Q 点2P 在对称轴右侧的抛物线上,由抛物线对称性知,点2P 与点C 关于直线1x =对称, 此时点2P 坐标为(2,3).∴符合条件的点P 坐标为35(2+,55)2-或(2,3).28.如图1,抛物线的顶点A 的坐标为(1,4),抛物线与x 轴相交于B ,C 两点,与y 轴交于点(0,3)D .(1)求抛物线的表达式以及点B 的坐标;(2)在抛物线的对称轴上是否存在一点P ,使得DP CP +最小,如果存在,求出点P 的坐标;如果不存在,请说明理由.(3)点Q 是线段BD 上方抛物线上的一个动点.过点Q 作x 轴的垂线,交线段BD 于点E ,再过点Q 作//QF x 轴交抛物线于点F ,连结EF ,请问是否存在点Q 使QEF ∆为等腰直角三角形?若存在,求出点Q 的坐标;若不存在,说明理由.【解答】解:(1)Q 抛物线的顶点A 的坐标为(1,4),∴设抛物线的表达式为:2(1)4y a x =-+,把(0,3)代入得:23(01)4a =-+,1a =-,∴抛物线的表达式为:22(1)423y x x x =--+=-++;令0y =,2(1)40x --+=,解得13x =,21x =-,B ∴的坐标是(3,0),C 的坐标是(1,0)-;(2)存在,如图1,因为B ,C 关于对称轴对称,连接BD 交对称轴于P ,此时DP CP +的值最小,(0,3)D Q ,(3,0)B ,易得BD 的解析式为:3y x =-+,当1x =时,132y =-+=,P ∴的坐标是(1,2);(3)如图2,存在点Q ,使QEF ∆为等腰直角三角形,设2(,23)Q n n n -++,则(,3)E n n -+,2(2,23)F n n n -+-++, 22(23)(3)3QE n n n n n ∴=-++--+=-+,|22|QF n =-, QE x ⊥Q 轴、//QF x 轴,90EQF ∴∠=︒,∴当QE QF =时,QEF ∆为等腰直角三角形,即:23|22|n n n -+=-, ①2322n n n -+=-,解得:11n =-(不合题意,舍去),22n =, 则(2,3)Q ;②2322n n n -+=-+, 解得:15173n +=>(不合题意,舍去),2517n -= 则517(Q -3175-. 综上,点Q 的坐标为(2,3)或517(-3175-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题37 动态几何之动点形成的等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。

本专题原创编写动点形成的等腰三角形存在性问题模拟题。

在中考压轴题中,动点形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。

1.如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线
1
l:y x
2
上,若以A、B、C三点
为顶点的三角形是等腰三角形,则点C的个数是【】
A.1 B.2 C.3 D.4
【答案】A。

【考点】单动点问题,坐标与图形性质,等腰三角形的判定,含30度角直角三角形的性质。

【解析】如图,AB的垂直平分线与直线
1 l:
y x
2
=相交于点C,则以A、B、C三点为顶点的三角形是等腰三角形。

∴AB=BC=CA。

点C的个数是1。

故选A。

2.如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.
(1)求梯形ABCD的面积;
(2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问:
①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由.
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
【答案】(1)40;(2)①不存在;②或或.
【解析】
1334
3
t
-
=
45
t≤<56
t<≤
∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴D H=AB=8;BH=AD=2.∵CD=10,∴HC=,∴BC=BH+CH=8,
∴S ABCD=(AD+BC)AB=×(2+8)×8=40.
=,
所以PQ不平分梯形ABCD的面积;
②第一种情况:当0≤t≤4时.过Q点作QH⊥AB,垂足为H.
226
CD DH
-=
1
2
1
2
11
(2.43) 6.2 2.4 1.818.9
22
⨯+⨯+⨯⨯=
解得:
,(不合题意舍去),


∴第二种情况:4≤t<5时.DP=DQ=10﹣2t .
∴当4≤t <5时,以DQ 为腰的等腰△DPQ 恒成立. 第三种情况:5<t≤6时.DP=DQ=2t ﹣10.
∴当5<t≤6时,以DQ 为腰的等腰△DPQ 恒成立.
综上所述,
或4≤t<5或5<t≤6时,以DQ 为腰的等腰△DPQ 成立.
考点:1.直角梯形;2.等腰直角三角形;3.动点型.
3. 如图,在直角梯形ABCD 中,AD ∥CB, ,动点P 从点D 出发,沿射
线DA 的方向以每秒2个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒一个单位长的速度向点B
运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t (秒).
13343t -=
1334
4
3t +=>13343t -=
1334
3t -=
90,16,12,21o C BC DC AD ∠====
(1)设△BPQ 的面积为S,求S 与t 之间的函数关系式;
(2)当t 为何值时,四边形ABQP 是平行四边形.
(3)当t 为何值时,以B,P,Q 三点为顶点的三角形是等腰三角形?
【答案】(1)S=96-6t (0≤t <16).(2)5;(3)
t=或
t=
【解析】
试题解析:(1)过点P 作PM ⊥BC 于M ,则四边形PDCM 为矩形.
∴PM=DC=12, ∵QB=16-t ,
∴s=QB•PM=(16-t )×12=96-6t (0≤t <16).
(2)当四边形ABQP 是平行四边形时,AP=BQ , 即21-2t=16-t , 解得:t=5,
∴当t=5时,四边形ABQP 是平行四边形.
1
2127216
3
③若PB=PQ ,由PB 2=PQ 2得t 2+122=(16-2t )2+122
得t 1
=,t 2=16(不合题意,舍去). 综上所述,当t=或t=时,以B ,P ,Q 三点为顶点的三角形是等腰三角形.
考点:1.直角梯形;2.等腰三角形的判定;3.勾股定理;4.平行四边形的判定.
4. 如图,已知抛物线2y x 4=-+与x 轴交于点A ,与y 轴交于点B ,动点Q 从点O 出发,以每秒2个单位长度的速度在线段OA 上运动,过点Q 作x 轴的垂线交线段AB 于点N ,交抛物线于点P ,设运动的时间为t 秒。

问:△AON 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由。

【答案】解:∵抛物线2y x 4=-+与x 轴交于点A ,与y 轴交于点B ,
∴A(2,0),B(0,4),即OA=2,OB=4。

∴tan ∠OAB=2。

若△AON 为等腰三角形,有三种情况:
16
37216
3
(I)若ON=AN,如图1所示,过点N作NQ⊥OA于点Q,
则Q为OA中点,OQ=1
2
OA=1,
∴t=1
2。

∴t=3
5。

(III )若OA=AN ,如图3所示, 过点N 作NQ ⊥OA 于点Q , 设AQ=x ,则AQ•tan∠O AB=2x ,
在Rt △AND 中,由勾股定理得:NQ 2
+AQ 2
=AN 2
, 即()2
22x 2x 2+=,解得x 1=255,x 2=25
5
-(舍去)。

∴x=
255,OD=2﹣x=2﹣25
5。

∴t=1﹣
5。

综上所述,当t 为
12秒、35
秒,1﹣5秒时,△AON 为等腰三角形。

【考点】双动点问题,曲线上点的坐标与方程的关系,待定系数法,矩形的性质,等腰三角形的性质,勾股定理,解一元二次方程,分类思想的应用。

相关文档
最新文档