济南市中考数学精选

合集下载

[中考专题]2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

[中考专题]2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GH HE 的值是( )A .12B .23 CD2、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A .1B .2C .3D .4 3、下列运动中,属于旋转运动的是( ) A .小明向北走了 4 米 B .一物体从高空坠下 C .电梯从 1 楼到 12 楼 D .小明在荡秋千 ·线○封○密○外4ABCD中,点E是对角线AC上一点,且EF AB⊥于点F,连接DE,当22.5ADE∠=︒时,EF=()A.1 B.2C1D.1 45、二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程a(x+5)(x﹣1)=﹣1 有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个6、下列关于x的方程中,一定是一元二次方程的是()A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=07、下列命题中,真命题是()A.同位角相等B .有两条边对应相等的等腰三角形全等C .互余的两个角都是锐角D .相等的角是对顶角.8、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A .60°B .120°C .135°D .150° 9、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A .200(1 + a )2 = 148B .200(1 - a )2 = 148C .200(1 - 2a )2 = 148D .200(1 - a 2)= 148 10、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作·线○封○密○外后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )A .20228B .10128C .5018D .2509第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P 在线段AB 上,如果AP 2=AB •BP ,AB =4,那么AP 的长是_____.2、已知225a ab +=-,223ab b -=-,则代数式221132a ab b ++的值为____________. 3、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .4、定义新运算“*”;其规则为a *b =22a b +,则方程(2*2)×(4*x )=8的解为x =___. 5、方程x (2x ﹣1)=2x ﹣1的解是 ___;三、解答题(5小题,每小题10分,共计50分)1、已知顶点为D 的抛物线()()230y a x a =-≠交y 轴于点()0,3C ,且与直线l 交于不同的两点A 、B (A 、B 不与点D 重合).(1)求抛物线的解析式;(2)若90ADB ∠=︒,①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.2、如图,一次函数y kx b =+的图象与反比例函数()0m y x x =>的图象相交于A (1,3),B (3,n )两点,与两坐标轴分别相交于点P ,Q ,过点B 作BC OP ⊥于点C ,连接OA . (1)求一次函数和反比例函数的解析式; (2)求四边形ABCO 的面积.3、(数学认识) 数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系. (构造模型) (1)如图①,已知△ABC ,在直线BC 上用直尺与圆规作点D ,使得∠ADB =12∠ACB . (不写作法,保留作图痕迹) (应用模型)已知△ABC 是⊙O 的内接三角形,⊙O 的半径为r ,△ABC 的周长为c .·线○封○密·○外(2)如图②,若r =5,AB =8,求c 的取值范围.(3)如图③,已知线段MN ,AB 是⊙O 一条定长的弦,用直尺与圆规作点C ,使得c =MN .(不写作法,保留作图痕迹)4、解方程:3471168x x +=+.5()20120204cos 452⎛⎫---︒ ⎪⎝⎭-参考答案-一、单选题1、B【分析】取BD 的中点M ,连接EM ,交BF 于点N ,则12EM DC =,//EM DC ,由BEN BCF ∆∆∽,得1124EN CF DC ==,由//EM AB ,得EMG ABG ∆∆∽,ENH ABH ∆∆∽,则13EG AE =,15EH AE =,从而解决问题. 【详解】 解:矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点, 12BE BC ∴=,//AB CD ,1122CF DF DC AB ===, 取BD 的中点M ,连接EM ,交BF 于点N ,如图,则EM 是BCD ∆的中位线, 12EM DC ∴=,//EM DC , 12EM AB ∴=,//EM AB , BEN BCF ∴∆∆∽, ∴12EN BE CF BC ==, 1124EN CF DC ∴==,14EN AB ∴=, //EM AB , EMG ABG ∴∆∆∽,ENH ABH ∆∆∽, ·线○封○密○外∴12EG EM AG AB ==,14EH EN AH AB ==, 13EG AE ∴=,15EH AE =, 1123515GH EG EH AE AE AE ∴=-=-=, ∴2215135AE GH HE AE ==, 故选:B .【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出GH 和HE 的长是解题的关键.2、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.3、D【分析】旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可.【详解】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A 不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B 不合题意;C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C 不合题意;D. 小明在荡秋千,是旋转运动,故选项D 符合题意.故选D .【点睛】本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键.4、C 【分析】 证明67.5CDE CED ∠=∠=︒,则CD CE =AC的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长. 【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB , 22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒, 4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒, CDE CED ∴∠=∠,CD CE ∴==2AE ∴= EF AB ⊥,·线○封○密○外90AFE∴∠=︒,AFE∴∆是等腰直角三角形,1EF∴,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.5、C【分析】222494baac baa⎧-=-⎪⎪⎨-⎪=-⎪⎩求解,,a b c的数量关系;将2x=代入①式中求解判断正误;②将45b ac a==-,代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,1222+=-x x求解判断正误;④中求出二次函数与x轴的交点坐标,然后观察方程的解的取值即可判断正误.【详解】解:由顶点坐标知222494baac baa⎧-=-⎪⎪⎨-⎪=-⎪⎩解得45b ac a==-,∵0a>∴当2x=时,4248570a b c a a a a++=+-=>,故①正确,符合题意;554540a b c a a a a-+=--=-<,故②错误,不符合题意;方程的根为2y ax bx c=++的图象与直线1y=的交点的横坐标,即12x x,关于直线2x=-对称,故有1222+=-x x ,即124x x +=-,故③正确,符合题意; ()()()224551y ax bx c a x x a x x =++=+-=+-,与x 轴的交点坐标为()()5,01,0-,,方程()()511a x x +-=-的根为二次函数图象与直线1y =-的交点的横坐标,故可知1251x x -<<<,故④正确,符合题意; 故选C .【点睛】 本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系. 6、C 【分析】 根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:A .当a =0时,ax 2+bx +c =0不是一元二次方程,故此选项不符合题意;B .2ax (x -1)=2ax 2+x -5整理后化为:-2ax -x +5=0,不是一元二次方程,故此选项不符合题意;C .(a 2+1)x 2-x +6=0,是关于x 的一元二次方程,故此选项符合题意;D .当a =-1时,(a +1)x 2-x +a =0不是一元二次方程,故此选项不符合题意. 故选:C . 【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0). 7、C ·线○封○密○外【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.【详解】解:A 、两直线平行,同位角相等,故本选项说法是假命题;B 、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C 、互余的两个角都是锐角,本选项说法是真命题;D 、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、B【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.9、B【分析】第一次降价后价格为()2001a ⨯-,第二次降价后价格为()()20011a a ⨯-⨯-整理即可.【详解】解:第一次降价后价格为()2001a ⨯- 第二次降价后价格为()()()2200112001148a a a ⨯-⨯-=⨯-= 故选B .【点睛】本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.10、B 【分析】 根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128. 【详解】 解:∵第一次操作增加数字:-2,7, 第二次操作增加数字:5,2,-11,9, ∴第一次操作增加7-2=5, 第二次操作增加5+2-11+9=5, 即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128. 故选:B . 【点睛】 此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5. 二、填空题 1、22-+·线○封○密○外【分析】先证出点P 是线段AB 的黄金分割点,再由黄金分割点的定义得到AP AB ,把AB =4代入计算即可.【详解】解:∵点P 在线段AB 上,AP 2=AB •BP ,∴点P 是线段AB 的黄金分割点,AP >BP ,∴AP AB ×4=2,故答案为:2.【点睛】本题考查了黄金分割点,牢记黄金分割比是解题的关键.2、-16.5【分析】先把待求的式子变形,再整体代值即可得出结论.【详解】 解:221132a ab b ++ 221362a ab ab b =+-+ 2213(2)(22)a ab ab b =+--, ∵225a ab +=-,223ab b -=-,∴原式=3×(-5)-12×(-3)=-15-1.5=-16.5.故答案为:-16.5.【点睛】本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.3、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,∵3cm AB =,6cm BC ,5cm AC =,∴周长为:35614++=(cm ), ∵甲乙第一次相距2cm ,则甲乙没有相遇, 设甲行走的时间为t ,则乙行走的时间为(1)t -, ∴1.52(1)214t t +-+=, 解得:4t =; ∴甲出发4秒后,甲乙第一次相距2cm . 故答案为:4. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.4、23 【分析】 先根据已知新运算求出求出2*2=3,4*x =2+x ,根据(2*2)×(4*x )=8求出答案即可. 【详解】 ·线○封○密○外解:∵2*2=2222+⨯=3,4*x=422x+=2+x,又∵(2*2)×(4*x)=8∴(2*2)×(4*x)=3(x+2)=8,解得:x=23,故答案为:23.【点睛】本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键.5、x1=12,x2=1【分析】移项后提公因式,然后解答.【详解】解:移项,得x(2x-1)-(2x-1)=0,提公因式,得,(2x-1)(x-1)=0,解得2x-1=0,x-1=0,x1=12,x2=1.故答案为:x1=12,x2=1.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.三、解答题1、(1)21233y x x =-+ (2【分析】(1)将点()0,3C 代入()()230y a x a =-≠即可求得a 的值,继而求得二次函数的解析式; (2)①设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x NF x =-=-, 联立直线解析式和抛物线解析式,根据根与系数的关系求得2112,x x x x +进而求得12y y ,证明AMD DNB ∽,根据相似比求得12y y ,进而根据两个表达式相等从而得出b 与k 的关系式,代入直线解析式,根据直线过定点与k 无关,进而求得定点坐标;②设P (3,3),由①可知l 经过点P ,则3DP =, 90DFP ∠=︒,进而根据90°圆周角所对的弦是直径,继而判断F 的轨迹是以DP 的中点G 为圆心,PD 为直径的圆,根据点与圆的位置即可求得CF 最小值. (1)解:∵抛物线()()230y a x a =-≠交y 轴于点()0,3C , ∴39a = 解得13a = ∴抛物线为()221132333y x x x =-=-+ (2) ①如图,过点,A B 分别作x 轴的垂线,垂足分别为,M N , ·线○封○密○外设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x ND x =-=-,则,A B 的坐标即为21233y kx b y x x =+⎧⎪⎨=-+⎪⎩的解 即23(2)930x k x b -++-=∴()()2236493936120k b k k b ∆=+--=++>, 121236,93x x k x x b +=+=-()()2212121212()y y kx b kx b k x x kb x x b ∴=++=+++()()229336k b kb k b =-+++2296k kb b =++()23k b =+ 90,ADB AM x ∠=︒⊥轴,BN x ⊥轴90AMD BND ∴∠=∠=︒ADM MAD ADM BDN ∴∠+∠=∠+∠MAD NDB ∴∠=∠AMD DNB ∴∽AM MD DN NB ∴= 112233y x x y -∴=- ()()121233y y x x ∴=--()121239x x x x =+-- ()()336(93)99333k b k b k b =+---=+=+∴()23k b +()33k b =+ ()()3330k b k b ∴++-= ∴30k b +=或330k b +-= 3b k ∴=-或33b k =- y kx b =+ 当3b k =-时,3(3)y kx k k x =-=- 则l 过定点()3,0 A 、B 不与点D 重合 则此情况舍去; 当33b k =-时, 33(3)3y kx b kx k k x =+=+-=-+ 即过定点()33, l ∴必过定点(3,3) ②如图,设P (3,3), ·线○封○密○外DF l ⊥,90DFP ∠=︒,3DP =F ∴在以DP 的中点G 为圆心,PD 为直径的圆上运动3(3,0),(3,3),(3,)2D P G ∴PG =1322DP =CG ∴==CF CG FG ∴≥-=CF ∴【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键.2、(1)一次函数的关系式为y =-x +4,反比例函数的关系式为y =3x ;(2)四边形ABCO 的面积为112. 【分析】(1)将点A 坐标代入,确定反比例函数的关系式,进而确定点B 坐标,把点A 、B 的坐标代入求出一次函数的关系式;(2)将四边形ABCO 的面积转化为S △AOM +S 梯形AMCB ,利用坐标及面积的计算公式可求出结果.【详解】解:(1)A (1,3)代入y =m x得,m =3, ∴反比例函数的关系式为y =3x ; 把B (3,n )代入y =3x 得,n =1, ∴点B (3,1); 把点A (1,3),B (3,1)代入一次函数y =kx +b 得, 331k b k b +=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩, ∴一次函数的关系式为:y =-x +4; 答:一次函数的关系式为y =-x +4,反比例函数的关系式为y =3x ; (2)如图,过点B 作BM ⊥OP ,垂足为M , 由题意可知,OM =1,AM =3,OC =3,MC =OC -OM =3-1=2,∴S 四边形ABCO =S △AOM +S 梯形AMCB , =12×1×3+12×(1+3)×2 ·线○封○密○外=112. 【点睛】本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.3、(1)见解析;(2)16<c ≤8+(3)见解析【分析】(1)可找到两个这样的点:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C 与A 或B 重合时,则8CA CB AB +==,可得此时16c =,根据题意可得16c >,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =,利用等腰三角形的性质及三角形外角性质可得点D 的运动轨迹为一个圆,点C 为优弧AB 的中点时,点C 即为ABD 外接圆的圆心,AC 长为半径,连接CO 并延长交AB 于点E ,连接AO ,根据垂径定理及勾股定理可得AC =AD 为直径时,c 最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB 的垂直平分线交⊙O 于点P ;第2步:以点P 为圆心,PA 为半径作⊙P ;第3步:在MN 上截取AB 的长度;第4步:以A 为圆心,MN 减去AB 的长为半径画弧交⊙P 于点E ;第5步:连接AE 交⊙O 于点C ,即为所求;方法二:第1步:在圆上取点D ,连接AD 、BD ,延长AD 使得ED BD =;第2步:作ABE 的外接圆;第3步:在MN 上截取AB 的长度;第4步:以点A 为圆心,MN 减去AB 的长为半径画弧交△ABE 的外接圆于点F ;第5步:连接AF 交⊙O 于点C ,即为所求.【详解】(1)如图所示:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;证明:①∵AC CD =,∴CDA CAD ∠=∠, ∴12CDA BCA ∠=∠; 同理可证明112CD A BCA ∠=∠; (2)当C 与A 或B 重合时,则8CA CB AB +==, ∴16c CA CB AB =++=, ∵ABC , ∴16c >, ·线○封○密○外如图,当点C为优弧AB的中点时,连接AC并延长至D,使得CD CB=,∴12D ACB ∠=∠,∵同弧所对的圆周角相等,∴ACB∠为定角,∴D∠为定角,∴点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为ABD外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,由垂径定理可得:CE垂直平分AB,∴142AE AB==,在Rt AOE中,3OE==,∴538CE=+=,∴AC=∴AD 为直径时最长,∴AC BC AD +== ∴ABC 的周长最长. ∴c最长为8AB AC BC ++=+,∴c的取值范围为:168c <≤+ (3)方法一: 第1步:作AB 的垂直平分线交⊙O 于点P ; 第2步:以点P 为圆心,PA 为半径作⊙P ; 第3步:在MN 上截取AB 的长度; 第4步:以A 为圆心,MN 减去AB 的长为半径画弧交⊙P 于点E ; 第5步:连接AE 交⊙O 于点C ,即为所求; 方法二:第1步:在圆上取点D ,连接AD 、BD ,延长AD 使得ED BD =;·线○封○密○外第2步:作ABE 的外接圆;第3步:在MN 上截取AB 的长度;第4步:以点A 为圆心,MN 减去AB 的长为半径画弧交△ABE 的外接圆于点F ;第5步:连接AF 交⊙O 于点C ,即为所求.【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.4、6x =-【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:32(47)16x x =++,去括号得:381416x x =++,移项得:381416x x -=+,合并同类项得:530x -=,系数化1得:6x=-.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.5、3 4 -【分析】根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可【详解】()2120204cos452⎛⎫---︒⎪⎝⎭1144=--114=-34=-【点睛】本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.·线○封○密○外。

2021年山东省济南市中考数学试题

2021年山东省济南市中考数学试题

2021年山东省济南市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.9的算术平方根是()A .﹣3B .±3C .3D2.下列几何体中,其俯视图与主视图完全相同的是()A .B .C .D .3.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km ,将数据55000000用科学记数法表示为()A .65.510⨯B .80.5510⨯C .75.510⨯D .65510⨯4.如图,//AB CD ,30A ∠=︒,DA 平分CDE ∠,则DEB ∠的度数为()A .45︒B .60︒C .75︒D .80︒5.以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .6.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是()A .0a b +>B .a b->C .0a b -<D .b a-<7.计算22111m m m m ----的结果是()A .1m +B .1m -C .2m -D .2m --8.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是()A .19B .16C .13D .239.反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是()A .B .C .D .10.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos 350.8︒≈,tan 350.7︒≈,结果保留整数)()A .188mB .269mC .286mD .312m11.如图,在ABC 中,90ABC ∠=︒,30C ∠=︒,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确...的是()A .BE DE =B .DE 垂直平分线段AC C.EDC ABC S S =△△D .2BD BC BE=⋅12.新定义:在平面直角坐标系中,对于点(),P m n 和点()','P m n ,若满足0m ≥时,'4n n =-;0m <时,'n n =-,则称点()','P m n 是点(),P m n 的限变点.例如:点()12,5P 的限变点是()'12,1P ,点()22,3P -的限变点是()'22,3P --.若点(),P m n 在二次函数242y x x =-++的图象上,则当13m -≤≤时,其限变点P'的纵坐标'n 的取值范围是()A .2'2n -≤≤B .1'3n ≤≤C .1'2n ≤≤D .2'3n -≤≤二、填空题13.因式分解:29a -=14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.15.如图,正方形AMNP 的边AM 在正五边形ABCDE 的边AB 上,则PAE ∠=︒.16.关于x 的一元二次方程20x x a +-=的一个根是2,则另一个根是.17.漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位()cm h 是时间()min t 的一次函数,下表是小明记录的部分数据,其中有一个..h 的值记录错误......,请排除后利用正确的数据确定当h 为8cm 时,对应的时间t 为min .()min t …1235…()cm h …2.42.83.44…18.如图,一个由8个正方形组成的“C ”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M ,N ,O ,P ,Q 都在矩形ABCD 的边上,若8个小正方形的面积均为1,则边AB 的长为.三、解答题19.计算:101(1)32tan 454π-⎛⎫+-+-- ⎪⎝⎭︒.20.解不等式组:3(1)25,32,2x x x x -≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.21.如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且ADM CDN ∠=∠,求证:BM BN =.22.为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:方便筷使用数量在515x ≤<范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数A 05x <≤14B510x ≤<C1015x ≤<D 1520x ≤<aE20x ≥10合50请结合以上信息回答下列问题:(1)统计表中的=a __________;(2)统计图中E 组对应扇形的圆心角为__________度;(3)C 组数据的众数是___________;调查的50名居民5月份使用方便筷数量的中位数是__________;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.23.已知:如图,AB 是O 的直径,C ,D 是O 上两点,过点C 的切线交DA 的延长线于点E ,DE CE ⊥,连接CD ,BC .(1)求证:2DAB ABC ∠=∠;(2)若1tan 2ADC ∠=,4BC =,求O 的半径.24.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?25.如图,直线32y x =与双曲线()0k y k x=≠交于A ,B 两点,点A 的坐标为(),3m -,点C 是双曲线第一象限分支上的一点,连接BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值并直接写出....点B 的坐标;(2)点G 是y 轴上的动点,连接GB ,GC ,求GB GC +的最小值;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.26.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系;(2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;②如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.27.抛物线23y ax bx =++过点()1,0A -,点()3,0B ,顶点为C .(1)求抛物线的表达式及点C 的坐标;(2)如图1,点P 在抛物线上,连接CP 并延长交x 轴于点D ,连接AC ,若DAC △是以AC 为底的等腰三角形,求点P 的坐标;(3)如图2,在(2)的条件下,点E 是线段AC 上(与点A ,C 不重合)的动点,连接PE ,作PEF CAB ∠=∠,边EF 交x 轴于点F ,设点F 的横坐标为m ,求m 的取值范围.参考答案:1.C【详解】试题分析:9的算术平方根是3,故选C .考点:算术平方根.2.C【分析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.【详解】解:选项A :俯视图是圆,主视图是三角形,故选项A 错误;选项B :俯视图是圆,主视图是长方形,故选项B 错误;选项C :俯视图是正方形,主视图是正方形,故选项C 正确;选项D :俯视图是三角形,主视图是长方形,故选项D 错误.故答案为:C .【点睛】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.3.C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:55000000=5.5×107,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B【分析】由题意易得30CDA A ∠=∠=︒,然后根据角平分线的定义可得60CDE ∠=︒,进而根据平行线的性质可求解.【详解】解:∵//AB CD ,30A ∠=︒,∴30CDA A ∠=∠=︒,CDE DEB ∠=∠,∵DA 平分CDE ∠,∴260CDE CDA ∠=∠=︒,∴60DEB ∠=︒;故选B .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.5.A【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.6.B【分析】根据数轴可得12,2a b <<=-,由此可排除选项.【详解】解:由数轴可得12,2a b <<=-,∴0a b +<,故A 选项错误;a b ->,故B 选项正确;0a b ->,故C 选项错误;b a ->,故D 选项错误;故选B .【点睛】本题主要考查数轴及实数的运算,熟练掌握数轴上数的表示及实数的运算是解题的关键.7.B【分析】根据分式的减法法则可直接进行求解.【详解】解:()2221212111111m m m m m m m m m m ---+-===-----;故选B .【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.8.C【分析】根据题意,用列表法求出概率即可.【详解】根据题意,设三个宣传队分别为,,A B C 列表如下:小华\小丽A B C A A A A B A C B B A B B B CC C A C B C C总共由9种等可能情况,她们恰好选择同一个宣传队的情况有3种,则她们恰好选到同一个宣传队的概率是31=93.故选C【点睛】本题考查了用列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.9.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.【详解】 反比例函数()0k y k x =≠图象的两个分支分别位于第一、三象限,0k ∴>∴一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限.观察选项只有D 选项符合.故选D【点睛】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键.10.C【分析】根据题意易得OA ⊥MN ,∠N =43°,∠M =35°,OA =135m ,AB =40m ,然后根据三角函数可进行求解.【详解】解:由题意得:OA ⊥MN ,∠N =43°,∠M =35°,OA =135m ,AB =40m ,∴95m OB OA AB =-=,∴135==150m tan 0.9OA ON N =∠,95=136m tan 0.7OB OM M =≈∠,∴286m MN OM ON =+=;故选C .【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.11.C【分析】由题中作图方法易证AP 为线段BD 的垂直平分线,点E 在AP 上,所以BE=DE ,再根据,90ABC ∠=︒,30C ∠=︒得到ABD ∆是等边三角形,由“三线合一”得AP 平分BAC ∠,则30PAC C ∠=∠=︒,AE CE =,且30︒角所对的直角边等于斜边的一半,故12AB AD AC ==,所以DE 垂直平分线段AC ,证明~EDC ABC ∆∆可得ED CD AB BC =即可得到结论.【详解】由题意可得:AD AB =,点P 在线段BD 的垂直平分线上AD AB = ,∴点A 在线段BD 的垂直平分线上∴AP 为线段BD 的垂直平分线点E 在AP 上,∴BE=DE ,故A 正确;90ABC ∠=︒,30C ∠=︒,60BAC ∴∠=︒且12AB AD AC ==ABD ∴∆为等边三角形且AD CD=AB AD BD ∴==,AP ∴平分BAC ∠1302EAC BAC ∴∠=∠=︒,AE EC ∴=,ED ∴垂直平分AC ,故B 正确;30ECD ACB ∠=∠=︒ ,90EDC ABC ∠=∠=︒,EDC ABC ∴∆∆∽,ED CD AB AB BC BC ∴===213EDC ABC s s ∆∆∴==,故C 错误;ED BE = ,AB CD BD==BE BD BD BC∴=,2BD BC BE ∴=⋅,故D 正确故选C .【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.12.D【分析】根据题意,当03x ≤≤时,242y x x =-++的图象向下平移4个单位,当10x -≤<时,,242y x x =-++的图象关于x 轴对称,据此即可求得其限变点P'的纵坐标'n 的取值范围,作出函数图像,直观的观察可得到n '的取值范围【详解】 点(),P m n 在二次函数242y x x =-++的图象上,则当13m -≤≤时,其限变点P'的图像即为图中虚线部分,如图,当03m ≤≤时,242y x x =-++的图象向下平移4个单位,当10m -≤<时,242y x x =-++的图象关于x 轴对称,从图可知函数的最大值是当1m =-时,n '取得最大值3,最小值是当0m =时,n '取得最小值2-,∴2'3n -≤≤.故选D .【点睛】本题考查了新定义,二次函数的最值问题,分段讨论函数的最值,可以通过函数图像辅助求解,理解新定义,画出函数图像是解题的关键.13.(3)(3)a a +-【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可.【详解】解:a 2-9=(a +3)(a -3),故答案为:(a +3)(a -3).点评:本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.14.12/0.5【详解】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P (飞镖落在白色区域)=41=82故答案为:12.15.18【分析】由正方形的性质及正五边形的内角可直接进行求解.【详解】解:∵四边形AMNP 是正方形,五边形ABCDE 是正五边形,∴()52180108,905EAB PAB -⨯︒∠==︒∠=︒,∴18PAE EAB PAB ∠=∠-∠=︒;故答案为18.【点睛】本题主要考查正多边形的性质,熟练掌握正多边形的定义是解题的关键.16.-3【分析】由题意可把x =2代入一元二次方程进行求解a 的值,然后再进行求解方程的另一个根.【详解】解:由题意把x =2代入一元二次方程20x x a +-=得:2220a +-=,解得:6a =,∴原方程为260x x +-=,解方程得:122,3x x ==-,∴方程的另一个根为-3;故答案为-3.【点睛】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.17.15【分析】由题意及表格数据可知记录错误的数据为当t =3时,h =3.4,然后设水位()cm h 与时间()min t 的函数解析式为h kt b =+,进而把t =2,h =2.8和t =5,h =4代入求解即可.【详解】解:由表格可得:当t =1,h =2.4时,当t =2,h =2.8时,当t =5,h =4时,时间每增加一分钟,水位就上升0.4cm ,由此可知错误的数据为当t =3时,h =3.4,设水位()cm h 与时间()min t 的函数解析式为h kt b =+,把t =2,h =2.8和t =5,h =4代入得:2 2.854k b k b +=⎧⎨+=⎩,解得:0.42k b =⎧⎨=⎩,∴水位()cm h 与时间()min t 的函数解析式为0.42h t =+,∴当h =8时,则有80.42t =+,解得:15t =,故答案为15.【点睛】本题主要考查一次函数的应用,熟练掌握一次函数的应用是解题的关键.18【分析】如图,延长,NO QP 交于点E ,连接,OE PE ,根据题意求得OP 的长,设,MB a AM b ==,先证明AMN BQM △≌△,再证明AMN DNO △∽△,PQC QMB △∽△,分别求出矩形的四边,根据矩形对边相等列方程组求得,a b 的值,进而求得AB 的值.【详解】 小正方形的面积为11=,如图,延长,NO QP 交于点E ,连接,OE PE ,4MN MQ ==,90ONM NMQ MQP ∠=∠=∠=︒,∴四边形MNEQ 是正方形,2,1NO PQ == ,42,4413OE NO PE PQ ∴=-==-=-=,OP ===设,MB a AM b ==,四边形ABCD 是矩形,∴90A B C D ∠=∠=∠=∠=︒,90NMQ A ∠=∠=︒ ,90,90AMN BMQ AMN ANM ∴∠+∠=︒∠+∠=︒,ANM BMQ ∴∠=∠,A B ∠=∠ ,MN MQ =,AMN BQM ∴△≌△,AN BM a ∴==,BQ AM b ==,90MNO A ∠=∠=︒ ,90,90ANM DNO AMN ANM ∴∠+∠=︒∠+∠=︒DNO AMN∴∠=A D∠=∠ AMN DNO∴△∽△2142DN DO NO AM AN MN ∴====11112222DO AN a DN b ∴====,90MQP C D ∠=∠=∠=︒90MQB BMQ MQB PQC ∴∠+∠=∠+∠=︒PQC QMB∴∠=∠PQC QMB∴△∽△14PQ QC PC MQ MB QB ∴===1111,4444PC QB b QC MB a ∴====AB DC= DO OP PC AB∴++=即1124a b a b =+① AD BC =124b a b a +=+②联立1124124a b a b b a b a ⎧+=+⎪⎪⎨⎪+=+⎪⎩解得1339a b ⎧=⎪⎪⎨⎪=⎪⎩AB a b ∴=+【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,解二元一次方程组,勾股定理,综合运用以上知识是解题的关键.19.6【分析】根据负指数幂、零次幂及三角函数值可进行求解.【详解】解:原式=642131++-⨯=.【点睛】本题主要考查负指数幂、零次幂及特殊三角函数值,熟练掌握负指数幂、零次幂及特殊三角函数值是解题的关键.20.21x -£<;2,1,0--【分析】分别解不等式①,②,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】3(1)25,32,2x x x x -≥-⎧⎪⎨+<⎪⎩①②解不等式①得:2x ≥-解不等式②得:1x <∴不等式组的解集为:21x -£<它的所有整数解为:2,1,0--【点睛】本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.21.见解析【分析】菱形ABCD 中,四边相等,对角相等,结合已知条件ADM CDN ∠=∠,可利用三角形全等进行证明,得到AM CN =,再线段之差相等即可得证.【详解】 四边形ABCD 是菱形,,BA BC DA DC A C∴==∠=∠在AMD 和CND △中A C DA DC ADM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AMD ≌CND △(ASA)AM CN∴=BA BC= BA AM BC CN∴-=-即BM BN =.【点睛】本题考查了三角形全等的证明,菱形的性质,根据题意找准三角形证明的条件,利用角边角进行三角形全等的证明是解题的关键.22.(1)9;(2)72;(3)12,10;(4)该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【分析】(1)根据扇形统计图可知D 组所占百分比,然后问题可求解;(2)由统计表可得E 组人数为10人,然后可得E 组所占的百分比,然后问题可求解;(3)由题意可把在515x ≤<范围内的数据从小到大排列,进而可得C 组数据的众数及中位数;(4)根据题意可得50名被调查的人中不少于15双的人数所占的百分比,然后问题可求解.【详解】解:(1)由统计图可得:50189a =⨯=%;故答案为9;(2)由统计图可得E 组对应扇形的圆心角为103607250︒⨯=︒;故答案为72;(3)由题意可把在515x ≤<范围内的数据从小到大排列为:5、6、6、7、7、8、8、8、9、9、10、10、11、12、12、12、13;∴在C 组(1015x ≤<)数据的众数是12;调查的50名居民5月份使用方便筷数量的中位数是第25和第26名的平均数,即为1010102+=;故答案为12,10;(4)由题意得:910200076050+⨯=(名);答:该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【点睛】本题主要考查中位数、众数及扇形统计图,熟练掌握中位数、众数及扇形统计图是解题的关键.23.(1)见解析;(2【分析】(1)连接OC ,根据切线的性质,已知条件可得//DE OC ,进而根据平行线的性质可得DAB AOC ∠=∠,根据圆周角定理可得2AOC ABC =∠∠,等量代换即可得证;(2)连接AC ,根据同弧所对的圆周角相等,可得D B ∠=∠,进而根据正切值以及已知条件可得AC 的长,勾股定理即可求得AB ,进而即可求得圆的半径.【详解】(1)连接OC ,如图,EC是O的切线,OC CE∴⊥,DE CE⊥,//OC DE∴,DAB AOC∴∠=∠,AC AC=,2AOC ABC ∴∠=∠,2DAB ABC∴∠=∠.(2)连接ACAB是O的直径,90ACB∴∠=︒,AC AC=,ADC ABC∴∠=∠,1tan2ADC∠=,1tan2ACABCBC∴∠==,4BC=,2AC∴=,22222425 AB AC BC∴+=+=,12AO AB ∴==即O 【点睛】本题考查了切线的性质,圆周角定理,正切的定义,同弧所对的圆周角相等,勾股定理,理解题意添加辅助线是解题的关键.24.(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=,解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得:()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.25.(1)6k =,B (2,3);(2)(3)P (132,0)或(0,133).【分析】(1)根据直线32y x =经过点A (),3m -,可求出点A (-2,-3),因为点A 在()0k y k x =≠图象上,可求出k ,根据点A 和点B 关于原点对称,即可求出点B ;(2)先根据2BC CD =利用相似三角形的性质求出点C ,再根据对称性求出点B 关于y 轴的对称点B ’,连接B ’C ,即B ’C 的长度是GB GC +的最小值;(3)先作出图形,分情况讨论,利用相似三角形的性质求解即可.【详解】(1)解:因为直线32y x =经过点A (),3m -,所以332m -=⨯,所以m =-2,所以点A (-2,-3),因为点A 在()0k y k x=≠图象上,所以()236k =-⨯-=,因为32y x =与双曲线()0k y k x=≠交于A ,B 两点,所以点A 和点B 关于原点对称,所以点B (2,3);(2)过点B ,C 分别作BE ⊥x 轴,CF ⊥x 轴,作B 关于y 轴对称点B’,连接B’C ,因为BE ⊥x 轴,CF ⊥x 轴,所以BE //CF ,所以BED CFD ,所以BE BD CF CD=,因为2BC CD =,所以31BE BD CF CD ==,因为B (2,3),所以BE =3,所以CF =1,所以C 点纵坐标是1,将1C y =代入6y x=可得:x =6,所以点C (6,1),又因为点B’是点B 关于y 轴对称的点,所以点B’(-2,3),所以B’C 2,即GB GC +的最小值是;(3)解:①当点P 在x 轴上时,当∠ABP =90°,四边形ABPQ 是矩形时,过点B 作BH ⊥x 轴,因为∠OBP =90°,BH ⊥OP ,所以OHB BHP ,所以OH BH BH HP=,所以2BH OH HP =⨯,所以232HP =⨯,所以92HP =,所以132OP =,所以点P (132,0);②当点P 在y 轴上时,当∠ABP =90°,四边形ABPQ 是矩形时,过点B 作BH ⊥y 轴,因为∠OBP =90°,BH ⊥OP ,所以OHB BHP ,所以OH BH BH HP=,所以2BH OH HP =⨯,所以223HP =⨯,所以43HP =,所以133OP =,所以点P (0,133)综合可得:P (132,0)或(0,133).【点睛】本题主要考查正比例函数和反比例函数图象性质,相似三角形的性质,解决本题的关键是要熟练掌握正比例函数和反比例函数图象性质,相似三角形的性质.26.(1)BE =;(2)①BE =成立,理由见解析;②平行四边形,理由见解析;【分析】(1)如图1,证明//AB EF ,由平行线分线段成比例可得FC AF EC BE =,由45︒的余弦值可得BE =;(2)①根据两边成比例,夹角相等,证明ABC FEC ∽,即可得BE BC AF AC==②如图3,过A 作AM BC ⊥,连接MF ,,AC EF 交于点N ,根据已知条件证明//ED FM ,根据平行线分线段成比例可得2BE EF =,根据锐角三角函数以及①的结论可得AF EC =,根据三角形内角和以及ABC FEC ∽可得AFE FEC ∠=∠,进而可得//AF EC ,即可证明四边形AECF 是平行四边形.【详解】(1)如图1,90BAC ∠=︒,AB AC =,45B C ∴∠=∠=︒,CEF 是以EC 为斜边等腰直角三角形,45FEC ∴∠=︒,90EFC ∠=︒,B FEC ∴∠=∠,//AB EF ∴,FC AF EC BE∴=,cos cos 45FC C EC ==︒= ,AF BE ∴=,即BE =;(2)①BE =仍然成立,理由如下:如图2,90BAC ∠=︒,AB AC =,45ABC ACB ∴∠=∠=︒,CEF 是以EC 为斜边等腰直角三角形,45FCE \Ð=°,90EFC ∠=︒,FCE ACB ∴∠=∠,cos cos FCE ACB ∴∠=∠,即cos 452FC AC EC BC ==︒=, FCE ACB ∠=∠,12ACE ACE ∴∠+∠=∠+∠,12∴∠=∠,FCA ECB ∴△∽△,2AF AC BE BC ∴==,即BE =;②四边形AECF 是平行四边形,理由如下:如图3,过A 作AM BC ⊥,连接MF ,,AC EF 交于点N ,90BAC ∠=︒,AB AC =,12BM MC BC ∴==,DB DE = ,EBD DEB ∴∠=∠,2EDC EBD ∴∠=∠,CEF 是以EC 为斜边等腰直角三角形,90EFC ∴∠=︒,B ,E ,F 三点共线,BM MC = ,12MF BC BM ∴==,FBC BFM ∴∠=∠,2FMC FBC ∴∠=∠,FMC EDC ∴∠=∠,//ED FM ∴,BE BD EF DM∴=, 13BD BC =,111236DM BM BD BC ∴=-=-=,21BD DM ∴=,21BE BD EF DM ∴==,2BE EF ∴=,由①可知BE =,AF ∴=,CEF 是以EC 为斜边等腰直角三角形,EF FC ∴=,EC =,AF EC ∴=,FCA ECB ∽△△,EBC FAC ∴∠=∠,BNC ANF ∠=∠ ,180,180AFN FAC ANF NCB FBC BNC ∴∠=︒-∠-∠∠=︒-∠-∠,AFN NCB ∴∠=∠,即45AFE ACB ∠=∠=︒,45FEC ∠=︒,AFE FEC ∴∠=∠,//AF EC ∴,∴四边形AECF 是平行四边形.【点睛】本题考查了等腰三角形性质,直角三角形斜边上的中线等于斜边,平行线分线段成比例,相似三角形的性质与判定,平行四边形的判定,熟练掌握平行线分线段成比例以及相似三角形的性质与判定是解题的关键.27.(1)223y x x =-++,(1,4)C ;(2)720(,39P ;(3)514m -<≤【分析】(1)将,A B 的坐标代入解析式,待定系数法求解析式即可,根据顶点在对称轴上,求得对称轴,代入解析式即可的顶点C 的坐标;(2)设(,0)D d ,根据DAC △是以AC 为底的等腰三角形,根据AD CD =,求得D 点的坐标,进而求得CD 解析式,联立二次函数解析式,解方程组即可求得P 点的坐标;(3)根据题意,可得CEP AFE △∽△,设AE n =,根据相似三角形的性质,线段成比例,可得29()120m n =---,根据配方法可得m 的最大值,根据点E 是线段AC 上(与点A ,C 不重合)的动点,可得m 的最小值,即可求得m 的范围.【详解】(1) 抛物线23y ax bx =++过点()1,0A -,点()3,0B ,309330a b a b -+=⎧∴⎨++=⎩,解得12a b =-⎧⎨=⎩,223y x x ∴=-++,2122(1)b x a =-=-=⨯- ,代入223y x x =-++,解得:4y =,∴顶点(1,4)C ,(2)设(,0)D d ,()1,0A -,(1,4)C ,DAC △是以AC 为底的等腰三角形,∴AD CD==∴222(1)(1)4d d +=-+解得4d =(4,0)D ∴ (1,4),(4,0)C D 设直线CD 的解析式为y kx b=+404k b k b +=⎧⎨+=⎩解得43163k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线CD 的解析式为41633y x =-+联立24163323y x y x x ⎧=-+⎪⎨⎪=-++⎩解得:1173209x y ⎧=⎪⎪⎨⎪=⎪⎩,2214x y =⎧⎨=⎩720(,)39P ∴(3) 点F 的横坐标为m ,()1,0A -,(1,4)C ,720(,39P AC ∴==1AF m =+209CP ==设AE n =,则CE n =,DAC △是以AC 为底的等腰三角形,DAC DCA∴∠=∠ PEF CAB EAF ∠=∠=∠,CEF EAF AFE PEF CEP∠=∠+∠=∠+∠CEP AFE∴∠=∠CEP AFE∴△∽△∴AF AE CE CP=209n =整理得29()120m n =---2955(2044m n =-+≤当E 点与C 点重合时,F 与A 点重合,由题意,点E 是线段AC 上(与点A ,C 不重合)的动点,(1,0)A -1 m ∴>-∴m的取值范围为:5 14m-<≤.【点睛】本题考查了二次函数综合,相似三角形的性质与判定,待定系数法求一次函数解析式,待定系数法求解析式,等腰三角形的性质,二次函数的性质,综合运用以上知识是解题的关键.。

2022年山东省济南市中考数学试卷及答案解析

2022年山东省济南市中考数学试卷及答案解析

2022年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(4分)﹣7的相反数是()A.﹣7B.﹣C.7D.2.(4分)如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱3.(4分)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()A.3.56×105B.0.356×106C.3.56×106D.35.6×104 4.(4分)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°5.(4分)下列绿色能源图标中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1 7.(4分)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A.B.C.D.8.(4分)若m﹣n=2,则代数式•的值是()A.﹣2B.2C.﹣4D.49.(4分)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系10.(4分)如图,矩形ABCD中,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF=3,AE =5,以下结论错误的是()A.AF=CF B.∠FAC=∠EAC C.AB=4D.AC=2AB 11.(4分)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为()(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)A.28m B.34m C.37m D.46m12.(4分)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是()A.m<﹣1或m>0B.<m<C.0≤m<D.﹣1<m<1二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案。

(中考精品卷)山东省济南市中考数学真题(解析版)

(中考精品卷)山东省济南市中考数学真题(解析版)

济南市2022年九年级学业水平考试数学试题选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. ﹣7的相反数是( )A. ﹣7B. 7C. 17D. ﹣17【答案】B【解析】【分析】据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【详解】解:根据概念,﹣7的相反数是7.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2. 如图是某几何体的三视图,该几何体是()A. 圆柱B. 球C. 圆锥D. 正四棱柱【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱.故选:A.【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.3. 神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )A. 53.5610⨯B. 60.35610⨯C. 63.5610⨯D. 435.610⨯【答案】A【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:356000=3.56×105.故选:A .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.4. 如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为( )A 45° B. 50° C. 57.5° D. 65°【答案】B【解析】【分析】根据平行线及角平分线的性质即可求解.【详解】解:∵//AB CD ,∴∠AEC =∠1(两直线平行,内错角相等),∵EC 平分∠AED ,∴∠A EC =∠CED=∠1,∵∠1=65°,∴∠CED =∠1=65°,∴∠2=180°-∠CED -∠1=180°-65°-65°=50°.故选:B .【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.5. 下列绿色能源图标中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意; B 、既是轴对称图形,又是中心对称图形,故本选项符合题意;C 、不是轴对称图形,是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B .【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6. 实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A. 0ab >B. 0a b +>C. a b <D. 11+<+a b【答案】D【解析】【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:320a -<<-<,01b <<,∴0ab <,故A 项错误,0a b +<,故B 项错误,a b >,故C 项错误,11+<+a b ,故D 项错误.故选:D.【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.7. 某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A. 19B.16C.13D.23【答案】C【解析】【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率公式求解即可.【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,∴小明和小刚恰好选择同一个主题的概率为31 93 =.故选:C.【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8. 若m-n=2,则代数式222m n mm m n-⋅+的值是()A. -2B. 2C. -4D. 4 【答案】D【解析】【分析】先因式分解,再约分得到原式=2(m-n),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m nm+-=()()•2mm n+=2(m-n),当m -n =2时,原式=2×2=4.故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.9. 某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 反比例函数关系D. 二次函数关系【答案】B【解析】 【分析】根据矩形周长找出关于x 和y 的等量关系即可解答.【详解】解:根据题意得:240x y +=,∴240y x =-+,∴y 与x 满足的函数关系是一次函数;故选:B .【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.10. 如图,矩形ABCD 中,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 分别交AD ,BC 于点E ,F ,连接AF ,若BF =3,AE =5,以下结论错误的是( )A. AF =CFB. ∠FAC =∠EACC. AB =4D. AC =2AB【答案】D【解析】【分析】根据作图过程可得,MN 是AC 的垂直平分线,再由矩形的性质可以证明AFO CEO △≌△,可得5,AF CE AE ===再根据勾股定理可得AB 的长,即可判定得出结论.【详解】解:A ,根据作图过程可得,MN 是AC 的垂直平分线,,AF CF ∴=故此选项不符合题意.B ,如图,由矩形的性质可以证明AFO CEO △≌△,,AE CF ∴=,FA FC =,AE AF ∴=∵MN 是AC 的垂直平分线,,FAC EAC ∴∠∠=故此选项不符合题意.C ,5AE =,5AF AE ∴==,在Rt ABF 中3,BF =4,AB ∴===故此选项不符合题意.D ,358,BC BF FC =+=+=AC ∴===4,AB =2.AC AB ∴≠故此选项符合题意.故选:D .【点睛】本题考查了作图-基本作图,线段垂直平分线的性质、矩形的性质、勾股定理,解决本题的关键是掌握基本作图方法.11. 数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)A. 28mB. 34mC. 37mD. 46m【答案】C【解析】 【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB .【详解】解:在Rt △ABD 中,tan ∠ADB =AB DB , ∴5tan 58 1.68AB AB DB AB =≈=︒,在Rt △ABC 中,tan ∠ACB =AB CB, ∴tan 220.45708AB AB ︒=≈+, 解得:112373AB =≈m , 故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键. 12. 抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( )A. 1m <-或0m >B. 1122m -<<C. 0m ≤<D.11m -<< 【答案】D【解析】【分析】求出抛物线的对称轴、C 点坐标以及当x =m -1和x =m +1时的函数值,再根据m -1<m +1,判断出M 点在N 点左侧,此时分类讨论:第一种情况,当N 点在y 轴左侧时,第二种情况,当M 点在y 轴的右侧时,第三种情况,当y 轴在M 、N 点之间时,来讨论,结合图像即可求解.【详解】抛物线解析式2222y x mx m =-+-+变形为:22()y x m =--,即抛物线对称轴为x m =,当x =m -1时,有22(1)1y m m =---=,当x =m +1时,有22(1)1y m m =-+-=,设(m -1,1)为A 点,(m +1,1)为B 点,即点A (m -1,1)与B (m +1,1)关于抛物线对称轴对称,当x =0时,有222(0)2y m m =--=-,∴C 点坐标为2(0,2)m -,当x =m 时,有22()2y m m =--=,∴抛物线顶点坐标为(,2)m ,∵直线l ⊥y 轴,∴直线l 为22y m =-,∵m -1<m +1,∴M 点在N 点左侧,此时分情况讨论:第一种情况,当N 点在y 轴左侧时,如图,由图可知此时M 、N 点分别对应A 、B 点,即有121y y ==,∴此时不符合题意;第二种情况,当M 点在y 轴的右侧时,如图,由图可知此时M 、N 点满足12y y =,∴此时不符合题意;第三种情况,当y 轴在M 、N 点之间时,如图,或者 ,由图可知此时M 、N 点满足12y y <,∴此时符合题意;此时由图可知:101m m -+<<,解得11m -<<,综上所述:m 的取值范围为:11m -<<,故选:D .【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键.非选择题部分 共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.) 13. 因式分解:244a a ++=______.【答案】()22a + 【解析】【分析】原式利用完全平方公式分解即可.【详解】解:244a a ++=()22a +. 故答案为:()22a +. 【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键. 14. 如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.【答案】4 9【解析】【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解.【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,∴它最终停留在阴影区域的概率是49.故答案为:4 9【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.15. 小的整数_____.【答案】3(答案不唯一)【解析】进行估算,再根据题意即可得出答案.<2<3<45<,小的整数有2,3,4.故答案为:3(答案不唯一).是解题的关键.16. 代数式32x+与代数式21x-的值相等,则x=______.【答案】7【解析】【分析】根据题意列出分式方程,求出方程的解,得到x的值即可.【详解】解:∵代数式32x+与代数式21x-的值相等,∴3221 x x=+-,去分母()() 3122x x-=+,去括号号3324x x-=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 17. 利用图形分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.【答案】16【解析】【分析】设小正方形的边长为x ,利用a 、b 、x 表示矩形的面积,再用a 、b 、x 表示三角形以及正方形的面积,根据面积列出关于a 、b 、x 的关系式,解出x ,即可求出矩形面积.【详解】解:设小正方形边长为x ,∴矩形的长为()a x + ,宽为()b x + ,由图1可得:()()211122222a xb x ax bx x ++=⨯+⨯+, 整理得:20x ax bx ab ++-=,4a = ,2b =,2680x x ∴+-=,268x x ∴+=,∴矩形的面积为()()()()242688816a x b x x x x x ++=++=++=+= .故答案为:16.【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键.18. 规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上的的面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点()0,1经过“011011011”变换后得到点的坐标为______.【答案】()1,1--【解析】【分析】根据题意得出点()0,1坐标变化规律,进而得出变换后的坐标位置,进而得出答案.【详解】解:点()0,1按序列“011011011”作变换,表示点()0,1先向右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--,然后右平移一个单位得到()0,1-,再将()0,1-绕原点顺时针旋转90°得到()1,0-,再将()1,0-绕原点顺时针旋转90°得到()0,1,然后右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--.故答案为:()1,1--【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19. 计算:1134sin 303-⎛⎫--︒++ ⎪⎝⎭. 【答案】6【解析】【分析】先根据绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义进行化简,然后再进行计算即可.【详解】解:1134sin 303-⎛⎫--︒ ⎪⎝⎭ 11342123=-⨯++ 3223=-++6=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义,是解题的关键.20. 解不等式组:()1,232532.x x x x -⎧<⎪⎨⎪-≤-⎩①②,并写出它的所有整数解.【答案】13x ≤<,整数解为1,2【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定出整数解即可.【详解】解不等式①,得3x <,解不等式②,得1≥x ,在同一条数轴上表示不等式①②的解集原不等式组解集是13x ≤<,∴整数解为1,2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.21. 已知:如图,在菱形ABCD 中,E ,F 是对角线AC 上两点,连接DE ,DF ,∠ADF =∠CDE .求证:AE =CF .【答案】见解析【解析】的【分析】根据菱形的性质得出DA DC =,DAC DCA ∠=∠,再利用角的等量代换得出ADE CDF ∠=∠,接着由角边角判定DAE DCF △≌△,最后由全等的性质即可得出结论.【详解】解:∵四边形ABCD 是菱形,E ,F 是对角线AC 上两点,∴DA DC =,DAC DCA ∠=∠.∵ADF CDE ∠=∠,∴ADF EDF CDE EDF ∠-∠=∠-∠,即ADE CDF ∠=∠.在DAE △和DCF 中,DA DC ADE CD DAC DC F A ⎧⎪=⎨⎪∠=∠∠∠⎩=,∴DAE DCF ASA △≌△(), ∴AE CF =.【点睛】本题考查菱形的性质,全等三角形的判定和性质,解题的关键是熟练地掌握这些性质和判定定理,并能从题中找到合适的条件进行证明.22. 某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数 中位数 七年级 76.5 m八年级78.2 79请结合以上信息完成下列问题: (1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.【答案】(1)38,理由见解析(2)77 (3)甲 (4)七年级竞赛成绩90分及以上人数约为64人【解析】【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.【小问1详解】解:由题意可得:70≤x <80这组的数据有16人,∴七年级抽取成绩在60≤x <90的人数是:12+16+10=38人,故答案为:38;补全频数分布直方图如图所示;【小问2详解】解:∵4+12=16<25,4+12+16>25,∴七年级中位数在70≤x <80这组数据中,∴第25、26的数据分别为77,77,∴m =7777772+=,故答案为:77;【小问3详解】的解:∵七年级学生的中位数为77<78,八年级学生的中位数为79>78,∴甲的成绩在本年级抽取成绩中排名更靠前,故答案为:甲;【小问4详解】 解:84006450⨯=(人) 答:七年级竞赛成绩90分及以上人数约为64人.【点睛】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解题意,综合运用这些知识点是解题关键.23. 已知:如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.【答案】(1)见解析(2)【解析】【分析】(1)连接OC ,欲证明CA =CD ,只要证明CAD CDA ∠=∠即可.(2)因为AB 为直径,所以90ACB ∠=︒,可得出三角形CBF 为等腰直角三角形,即可求出BF ,由此即可解决问题.【小问1详解】证明:连接OC∵CD 与O 相切于点C ,∴OC CD ⊥,∴90OCD ∠=︒,∵30CDA ∠=︒,∴9060COB CDA ∠=︒-∠=︒, ∵ BC所对的圆周角为CAB ∠,圆心角为COB ∠, ∴1302CAB COB ∠=∠=︒, ∴CAD CDA ∠=∠,∴CA CD =.【小问2详解】∵AB 为直径,∴90ACB ∠=︒,在Rt ABC 中,30CAB ∠=︒,12AB =, ∴162BC AB ==, ∵CE 平分ACB ∠, ∴1452ECB ACB ∠=∠=︒, ∵BF CE ⊥,∴90CFB ∠=︒,∴sin 456BF BC =⋅==︒ 【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.24. 为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.【答案】(1)甲种树苗每棵40元,乙种树苗每棵30元(2)当购买甲种树苗25棵,乙种树苗75棵时,花费最少,理由见解析【解析】【分析】(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由“购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元”列出方程组,求解即可;(2)设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元得出一次函数,根据一次函数的性质求解即可.【小问1详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意得,2016128010x y x y +=⎧⎨-=⎩,解得4030x y =⎧⎨=⎩, 答:甲种树苗每棵40元,乙种树苗每棵30元.【小问2详解】设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元, 由题意得()4030100W m m =+-,103000W m =+,由题意得1003m m -≤,解得25m ≥,因为W 随m 的增大而增大,所以当25m =时W 取得最小值.答:当购买甲种树苗25棵,乙种树苗75棵时,花费最少.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键.25. 如图,一次函数112y x =+的图象与反比例函数()0k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【答案】(1)4a =,12k =;(2)①8;②符合条件的点P 坐标是()6,2和()3,4.【解析】【分析】(1)将点(),3A a 代入112y x =+,求出4a =,即可得()4,3A ,将点()4,3A代入k y x=,即可求出k ; (2)①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,求出()2,6C ,()2,2E ,得到CE ,进一步可求出△ABC 的面积;②设()11,P x y ,()2,0Q x .分情况讨论:ⅰ、当四边形ABQP 为平行四边形时,ⅱ、当四边形APBQ 为平行四边形时,计算即可.【小问1详解】解:将点(),3A a 代入112y x =+,得4a =,()4,3A , 将点()4,3A 代入k y x=,得4312k =⨯=, 反比例函数的解析式为12y x =. 【小问2详解】解:①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,∴AM CN ∥,∵AC AD =, ∴12AM DA CN DC ==, ∴6CN =, ∴1226C x ==, ∴()2,6C ,∴()2,2E ,∴624CE =-=, ∴114242822ABC ACE BCE S S S =+=⨯⨯+⨯⨯=△△△.②分两种情况:设()11,P x y ,()2,0Q x .ⅰ、如图,当四边形ABQP 为平行四边形时,∵点B 向下平移1个单位、向右平移2x 个单位得到点Q ,∴点A 向下平移1个单位,向右平移2x 个单位得到点P ,∴1312y =-=,11262x ==, ∴()6,2P .ⅱ、如图,当四边形APBQ 为平行四边形时,∵点Q 向上平移1个单位,向左平移2x 个单位得到点B ,∴点A 向上平移1个单位,向左平移2x 个单位得到点P ,∴1314y =+=,11234x ==, ∴()3,4P .综上所述,符合条件的点P 坐标是()6,2和()3,4.【点睛】本题考查一次函数与反比例函数的综合,待定系数法求函数解析式,平行四边形的性质,解题的关键是掌握待定系数法求函数解析式,平行四边形的性质.26. 如图1,△ABC 是等边三角形,点D 在△ABC 的内部,连接AD ,将线段AD 绕点A 按逆时针方向旋转60°,得到线段AE ,连接BD ,DE ,CE .(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED 交直线BC 于点F .①如图2,当点F 与点B 重合时,直接用等式表示线段AE ,BE 和CE 的数量关系为_______;②如图3,当点F 为线段BC 中点,且ED =EC 时,猜想∠BAD 的度数,并说明理由.【答案】(1)BD CE =,理由见解析(2)①BE AE CE =+;②45BAD ∠=︒,理由见解析【解析】【分析】(1)利用等边三角形的性质和旋转的性质易得到()ABD ACE SAS △≌△,再由全等三角形的性质求解;(2)①根据线段AD 绕点A 按逆时针方向旋转60︒得到AE 得到ADE 是等边三角形, 由等边三角形的性质和(1)的结论来求解;②过点A 作AG EF ⊥于点G ,连接AF ,根据等边三角形的性质和锐角三角函数求值得到BAF DAG ∠=∠,AG AF AD AB=,进而得到BAD FAG ∽△△,进而求出90ADB ∠=︒,结合BD CE =,ED =EC 得到BD AD =,再用等腰直角三角形的性质求解.【小问1详解】解:BD CE =.证明:∵ABC 是等边三角形,∴AB AC =,60BAC ∠=︒.∵线段AD 绕点A 按逆时针方向旋转60︒得到AE ,∴AD AE =,60DAE ∠=︒,∴BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在ABD △和ACE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS △≌△,∴BD CE =;【小问2详解】解:①BE AE CE =+理由:∵线段AD 绕点A 按逆时针方向旋转60︒得到AE ,∴ADE 是等边三角形,∴AD DE AE ==,由(1)得BD CE =,∴BE DE BD AE CE =+=+;②过点A 作AG EF ⊥于点G ,连接AF ,如下图.∵ADE 是等边三角形,AG DE ⊥, ∴1302DAG DAE ∠=∠=︒,∴cos AG DAG AD =∠=. ∵ABC 是等边三角形,点F 为线段BC 中点, ∴BF CF =,AF BC ⊥,1302BAF BAC ∠=∠=︒,∴cos AF BAF AB =∠= ∴BAF DAG ∠=∠,AG AF AD AB =, ∴BAF DAF DAG DAF ∠+∠=∠+∠,即BAD FAG ∠=∠,∴BAD FAG ∽△△,∴90ADB AGF ∠=∠=︒.∵BD CE =,ED EC =,∴BD AD =,即ABD △是等腰直角三角形,∴45BAD ∠=︒.【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键.27. 抛物线21164y ax x =+-与x 轴交于(),0A t ,()8,0B 两点,与y 轴交于点C ,直线y =kx -6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t ,k 的值;(2)如图1,连接AC ,AP ,PC ,若△APC 是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ ⊥BC ,垂足为Q ,求12CQ PQ +的最大值. 【答案】(1),2111644y x x =-+-,t =3,34k = (2)点710,2P ⎛⎫-⎪⎝⎭ (3)16916【解析】【分析】(1)分别把()8,0B 代入抛物线解析式和一次函数的解析式,即可求解;(2)作PM x ⊥轴于点M ,根据题意可得2111,644P m m m ⎛⎫-+- ⎪⎝⎭,从而得到2111644PM m m =-+,3AM m =-,再根据COA AMP ∽△△,可求出m ,即可求解;(3)作PN x ⊥轴交BC 于点N ,过点N 作NE y ⊥轴于点E ,则22111316624444PN m m m m m ⎛⎫=-+---=-+ ⎪⎝⎭,再根据PQN BOC ∽△△,可得35NQ PN =,45PQ PN =,然后根据CNE CBO ∽△△,可得54CN m =,从而得到1122CQ PQ CN NQ PQ CN PN +=++=+,在根据二次函数的性质,即可求解. 【小问1详解】解:∵()8,0B 在抛物线21164y ax x =+-上, ∴11648604a +⨯-=, ∴14a =-, ∴抛物线解析式为2111644y x x =-+-, 当0y =时,21116044t t -+-=, ∴13t =,28t =(舍),∴3t =.∵()8,0B 在直线6y kx =-上,∴860k -=, ∴34k =, ∴一次函数解析式为364y x =-. 【小问2详解】 解:如图,作PM x ⊥轴于点M ,对于2111644y x x =-+-,令x =0,则y =-6, ∴点C (0,-6),即OC =6,∵A (3,0),∴OA =3,∵点P 的横坐标为m . ∴2111,644P m m m ⎛⎫-+- ⎪⎝⎭, ∴2111644PM m m =-+,3AM m =-, ∵∠CAP =90°,∴90OAC PAM ∠+∠=︒,∵90APM PAM ∠+∠=︒,∴OAC APM ∠=∠,∵∠AOC =∠AMP =90°,∴COA AMP ∽△△, ∴OA OC PM MA=, ∴OA MA OC PM ⋅=⋅,即21113(3)6644m m m ⎛⎫-=⋅-+ ⎪⎝⎭, ∴13m =(舍),210m =,∴10m =,∴点710,2P ⎛⎫- ⎪⎝⎭. 【小问3详解】解:如图,作PN x ⊥轴交BC 于点N ,过点N 作NE y ⊥轴于点E ,∵2111,644P m m m ⎛⎫-+- ⎪⎝⎭, ∴点3,64N m m ⎛⎫- ⎪⎝⎭, ∴22111316624444PN m m m m m ⎛⎫=-+---=-+ ⎪⎝⎭, ∵PN ⊥x 轴,∴PN ∥y 轴,∴∠PNQ =∠OCB ,∵∠PQN =∠BOC =90°,∴PQN BOC ∽△△, ∴PN NQ PQ BC OC OB==, ∵8OB =,6OC =,∴10BC =, ∴35NQ PN =,45PQ PN =, ∵EN ⊥y 轴,∴EN ∥x 轴,∴CNE CBO ∽△△, ∴CN EN BC OB =,即108CN m = ∴54CN m =,∴1131422525CQ PQ CN NQ PQ CN PN PN CN PN +=++=++⨯=+,∴2221511131131692244444216 CQ PQ m m m m m m⎛⎫+=-+=-+=--+⎪⎝⎭,∴当132m=时,12CQ PQ+的最大值是16916.【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键,是中考的压轴题。

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版

2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017济南)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5550=×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017济南)化简a2+aaa−a÷aaa−a的结果是()A.a2B.a2a−aC.a−aaD.a+aa【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+a)a−aa−aaa=a+aa,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣aa,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣aa、两根之积等于aa是解题的关键.8.(3分)(2017济南)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{a−8a=3a−7a=4B.{a−8a=37a−a=4C.{8a−a=3a−7a=4D.{8a−a=37a−a=4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8a −a =3a −7a =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm【考点】MC:切线的性质.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=1 2∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=aaaa,即aa6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m 处的D点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A .34B .3C .35D .4 【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得aa aa =aa aa,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度.【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴aa aa =aa aa ,即15=0.6aa, 解得CF=3,∴Rt △ACF 中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为aa aa =31=3, 故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√22【考点】LE :正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO ≌△EBO ,得到OG=OE=1,证明△BFG ∽△BOE ,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD 是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF ⊥BE ,∴∠EBO=∠GAO ,在△GAO 和△EBO 中,{∠aaa =∠aaa aa =aa ∠aaa =∠aaa,∴△GAO ≌△EBO ,∴OG=OE=1,∴BG=2,在Rt △BOE 中,BE=√aa 2+aa 2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO ,∴△BFG ∽△BOE ,∴aa aa =aa aa ,即aa 3=2√10, 解得,BF=3√105, 故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017济南)二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a+c <0.其中正确结论的个数是( )A .1B .2C .3D .4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a >0,由y=ax 2+bx+c 与x 轴的另一个交点坐标为(x 1,0 ),且1<x 1<2,则该抛物线的对称轴为x=﹣a 2a =−2+a 12>﹣12,即 a a <1,于是得到b >0;故①正确;②由x=﹣2时,4a ﹣2b+c=0得2a ﹣b=﹣a 2,而﹣2<c >0,解不等式即可得到2a >b ,所以②正确.③由②知2a ﹣b <0,于是得到2a ﹣b ﹣1<0,故③正确;④把(﹣2,0)代入y=ax 2+bx+c 得:4a ﹣2b+c=0,即2b=4a+c >0(因为b >0),等量代换得到2a+c <0,故④正确.【解答】解:如图:①由图象开口向上知a >0,由y=ax 2+bx+c 与x 轴的另一个交点坐标为(x 1,0 ),且1<x 1<2,则该抛物线的对称轴为x=﹣=﹣a 2a =−2+a 12>﹣12,即 a a<1, 由a >0,两边都乘以a 得:b >a ,∵a >0,对称轴x=﹣a 2a<0, ∴b >0;故①正确;②由x=﹣2时,4a ﹣2b+c=0得2a ﹣b=﹣a 2,而﹣2<c <0,∴2a ﹣b >0,所以②错误.③∵2a ﹣b <0,∴2a ﹣b ﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax 2+bx+c 得:4a ﹣2b+c=0,∴即2b=4a+c >0(因为b >0),∵当x=1时,a+b+c <0,∴2a+2b+2c <0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,aâ表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为aâ,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017济南)分解因式:x2﹣4x+4= (x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017济南)计算:|﹣2﹣4|+(√3)0= 7 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90 .【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20 cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120?a?(3a)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120?a?(3a)2360,解得x=10, ∴BD=2x=20cm . 故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017济南)如图,过点O 的直线AB 与反比例函数y=aa的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3aa(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2a ,y=−6a,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=aa 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2a ,y=−6a,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{a =12a a =2a 得:{a 1=2a 1=1,{a 2=−2a 2=−1,∴B (﹣2,﹣1),∵BC∥y轴,∴C点的横坐标为﹣2,∴C点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3a−5≥2(a−2)①a2>a−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3a−5≥2(a−2)①a2>a−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠aaa=∠aaa ∠aaa=∠aaa=aa∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为元,12000 a +90001.5a=150,解得,x=120,经检验x=120是原分式方程的解,∴=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本频频数(本)数(人数)率5a618714b88合计c1(1)统计表中的a= 10,b= ,c= 50 ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷=50,∴a=50×=10,b=1450 =,故答案为10,,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017济南)如图1,OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=aa(x>0)的图象经过的B.(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=a a (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题;(3)结论:BF=DE .如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴于K .设ON=n ,OM=m ,ME=a .则BN=a a ,DM=a a.由△EDM ∽△EBN ,推出aa aa =aa aa ,即a a +a −a =a a a a ,可得a=m ,由△KNO ≌△DEM ,推出DE=KN ,再证明四边形NKFB 是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC 是平行四边形,∴AB=OC=3,∵A (2,1),∴B (2,4),把B (2,4)代入y=a a中,得到k=8, ∴反比例函数的解析式为y=8a.(2)如图2中,设K 是OB 的中点,则K (1,2).∵直线OB 的解析式为y=2x ,∴直线MN 的解析式为y=﹣12x+52, ∴N (0,52), ∴ON=52.(3)结论:BF=DE .理由如下: 如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴于K .设ON=n ,OM=m ,ME=a .则BN=a a ,DM=a a.∵△EDM ∽△EBN ,∴aa aa =aa aa, ∴a a +a −a =aa a a,可得a=m , ∵NK ∥EF ,∴∠KNO=∠DEM ,∠KON=∠DME=90°,ON=EM ,∴△KNO ≌△DEM ,∴DE=KN ,∵FK ∥BN ,NK ∥FB ,∴四边形NKFB 是平行四边形,∴NK=BF,∴BF=DE.【点评】本题考查一次函数,反比例函数、平行四边形,全等三角形,相似三角形等几何知识结合在一起,综合性比较强,要求学生有较强的分析问题好解决问题的能力.28.(9分)(2017济南)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段E F 交C ∴∠B G F =∠D E F .的延长线于点G .∵F 是B D 的中点,∴B F = D F .∵∠A C ∵∠B F G =∠D F E ,∴△B G F ≌△D E F (A S A)=∠A E D = 9 0°,∴E D ∥C G .∴E F = F G .∴C F = E F =1 2 EG .请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC 的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.【考点】RB:几何变换综合题.【分析】(1)①由证明过程即可作出图形;②根据判断三角形全等的方法即可得出结论;(2)先判断出EH=DE ,进而判断出四边形BGEH 是平行四边形,得出∠DEF=∠H=30°,即可求出∠CEF=∠AED ﹣∠DEF=60°,即可得出结论;(3)先判断出△DEF ≌△BGF (SAS ),得出∠CAE=∠CBG ,再判断出aa aa =aa aa,进而得出△BCG ∽△ACE ,得出∠BCG=∠ACE ,进而判断出=90°,即可得出CF=EF=12EG ,再求出aa aa=√3,最后用锐角三角函数求出∠CEG 即可得出结论. 【解答】解:(1)①由题意作图如图1所示图形,②证明:延长线段EF 交CB 的延长线于点G .∵F 是BD 的中点,∴BF=DF .∵∠ACB=∠AED=90°,∴ED ∥CG .∴∠BGF=∠DEF .又∵∠BFG=∠DFE ,∴△BGF ≌△DEF ( ASA ).∴EF=FG .∴CF=EF=12EG . 故答案为ASA ;(2)如图3,延长BA ,DE 相交于点F ,∵∠BAC=60°,∴∠EAH=60°=∠EAD ,∵∠AED=90°,∴∠H=30°,EH=DE ,由(1)②知,△BGF ≌△DEF ,∴DE=BG ,∴EH=BG ,∵DE ∥BG ,∴四边形BGEH 是平行四边形,∠DEF=∠H=30°,∴∠CEF=∠AED ﹣∠DEF=60°,∵CF=EF ,∴△CEF 是等边三角形;(3)如图2,延长EF 至G 使,FG=EF ,∵点F 是BD 的中点,∴DF=BF ,∵∠DFE=∠BFG ,∴△DEF ≌△BGF (SAS ),∴BG ∥DP ,∴∠P+∠CBG=180°,在四边形ACPE 中,∠AEP=∠ACP=90°,根据四边形的内角和得,∠CAE+∠P=180°,∴∠CAE=∠CBG ,在Rt △ADE 中,∠DAE=60°,∴tan ∠DAE=aa aa=√3, 即:aa aa=√3, 同理:aa aa=√3, ∴aa aa =aa aa, ∵∠CBG=∠CAE ,∴△BCG ∽△ACE ,∴∠BCG=∠ACE ,∴∠ECG=∠ACE+∠ACG=∠BCG+∠ACG=90°,在Rt △CEG 中,EF=GF ,∴CF=EF=12EG , ∵△BCG ∽△ACE ,∴aa aa =aa aa=√3, 在Rt △CEG 中,tan ∠CEG=aa aa=√3, ∴∠CEG=60°,∵CF=EF ,∴△CEF 是等边三角形.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数,四边形内角和公式,解本题的关键是构造全等三角形,难点是判断出△BCG ∽△ACE ,是一道典型的中考常考题.29.(9分)(2017济南)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD=2,抛物线M 1:y=ax 2+bx (a ≠0)过A ,D 两点.(1)求点D的坐标和抛物线M的表达式;1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点(2)点P是抛物线M1P的坐标;的图象向下平移m(m>0)个(3)如图2,点E(0,4),连接AE,将抛物线M1.单位得到抛物线M2①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;与直线AE有两个交点,求m的取值范围.②当1≤x≤m(m>1)时,若抛物线M2【考点】HF:二次函数综合题.【分析】(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.在Rt△ADH中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题;(2)如图1﹣1中,设P(2,m).由∠CPA=90°,可得PC2+PA2=AC2,可得22+(m ﹣6)2+22+m2=42+62,解方程即可;(3)①求出D′的坐标;②构建方程组,利用判别式△>0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE的交点的横坐标;结合上述的结论即可判断.【解答】解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.∵四边形CDHO是矩形,∴OC=DH=6,∵tan∠DAH=aaaa=2,∴AH=3,∵OA=4,∴CD=OH=1,∴D(1,6),把D(1,6),A(4,0)代入y=ax2+bx中,则有{a+a=616a+4a=0,解得{a=−2a=8,∴抛物线M1的表达式为y=﹣2x2+8x.(2)如图1﹣1中,设P(2,m).∵∠CPA=90°,∴PC2+PA2=AC2,∴22+(m ﹣6)2+22+m 2=42+62,解得m=3±√13,∴P (2,3+√13),P′(2,3﹣√13).(3)①如图2中,易知直线AE 的解析式为y=﹣x+4,x=1时,y=3,∴D′(1,3),平移后的抛物线的解析式为y=﹣2x 2+8x ﹣m ,把点D′坐标代入可得3=﹣2+8﹣m ,∴m=3.②由{a =−a +4a =−2a 2+8a −a ,消去y 得到2x 2﹣9x+4+m=0, 当抛物线与直线AE 有两个交点时,△>0,∴92﹣4×2×(4+m )>0,∴m <498, ③x=m 时,﹣m+4=﹣2m 2+8m ﹣m ,解得m=2+√2或2﹣√2(舍弃),综上所述,当2+√2≤m <498时,抛物线M 2与直线AE 有两个交点. 【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.。

2020年济南市中考数学试题(WORD精校版带答案)

2020年济南市中考数学试题(WORD精校版带答案)

济南市2020年中考数学试题选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的绝对值是()A.2 B.-2 C.±2 D. 22.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0. 215×108B. 2. 15×107C. 2. 15×106D.21. 5×106 4.如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A B C D6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(-2a3)2=4a6 B.a2·a3=a6C.3a+a2=3a3D.(a-b)2=a2-b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7) B.(0,5) C.(3,4) D.(-3,2)9.若m<-2,则一次函数y=(m+1)x+1-m的图象可能是()A B C D10.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点. 若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A . 52 B .3 C .4 D .511.如图,△ABC 、△FED 区域为驾驶员的盲区,驾驶员视线PB 与地面BE 的夹角∠PBE =43°,视线PE 与地面BE 的夹角∠PEB =20°,点A ,F 为视线与车窗底端的交点,AF ∥BE ,AC ⊥BE ,FD ⊥BE . 若A 点到B 点的距离AB =1.6m ,则盲区中DE 的长度是( ) (参者数据:sin43°≈0.7, tan43°≈0.9,sin20°≈0.3, tan20°≈0.4 )A .2.6mB . 2.8mC .3.4mD . 4.5m12.已知抛物线y =x 2+(2m -6)x +m 2-3与y 轴交于点A ,与直线x =4交于点B ,当x >2时, y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若t ≥-3,则m 的取值范围是( ) A .m ≥32 B .32≤m ≤3 C .m ≥3 D .1≤m ≤3非选择题部分 共102分二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.) 13.分解因式:2a 2-ab = .14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是 .15.代数式3x -1与代数式2x -3的值相等,则x = .16.如图,在正六边形ABCDEF 中,分别以C , F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为 .17. 如图,在一块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种花草,要使绿化面积为126m 2,则修建的路宽应为 米.18.如图,在矩形纸片ABCD 中,AD =10, AB =8,将AB 沿AE 翻折,使点B 落在B' 处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C' 处,EF 为折痕,连接AC'.若CF =3,则tan ∠B'AC'= .三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.) 19.(本小题满分6分)计算:(π2)0-2sin30°+4+(12)-1.20.(本小题满分6分)解不等式组:⎩⎪⎨⎪⎧4(2x -1) ≤3x +1①2x >x -32 ② , 并写出它的所有整数解.21.(本小题满分6分)如图,在 ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点E ,F . 求证:AE =CF .22.(本小题满分8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:请结合上述信息完成下列问题: (1)a =______,b =______; (2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是______;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟铁绳次数达到合格及以上的人数.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(本小题满分10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如下表所示:型号价格某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,23),反比例函数y=kx(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.备用图在等腰△ABC 中,AC =BC ,△ADE 是直角三角形,∠DAE =90°,∠ADE =21∠ACB ,连接BD,BE ,点F 是BD 的中点,连接CF . (1) 当∠CAB =45°时.①如图1,当顶点D 在边AC 上时,请直接写出∠EAB 与∠CBA 的数量关系是 . 线段BE 与线段CF 的数量关系是 ;②如图2,当顶点D 在边AB 上时,(1)中线段BE 与线段CF 的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC 底边上的高CM ,并取BE 的中点N ,再利用三角形全等或相似有关知识来解决问题;思路二:取DE 的中点G ,连接AG , CG ,并把△CAG 绕点C 逆时针旋转90°, 再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB =30°时,如图3,当顶点D 在边AC 上时,写出线段BE 与线段CF 的数量关系,并说明理由.图1 图2 图3如图1,抛物线y=-x2+bx+c过点A(-1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.图1 图21-5ACBCD 6-10BACDD 11-12BA26.27.。

21年济南数学中考题

21年济南数学中考题

21年济南数学中考题
21年济南数学中考题
作为一名学生,数学中考是我们日常学习的一大关键。

在今年的济南市数学中考中,出现了很多不同于以往的考题。

一、数的性质
第一道题目是数的性质,考查学生对数的基本概念的掌握情况。

题目要求求出 (-5)^2 和 -5^2 的值,并解释原因。

这道题目着重考察了学生对数的性质和运算法则的掌握情况。

二、平行四边形
第二题是关于平行四边形的计算题。

题目给出了一个平行四边形ABCD,对角线交点为O,求证AB+CD=AD+BC。

这道题目考察学生对平行四边形及其性质的理解和应用。

三、函数
第三道题目是函数图像的问题,要求给出一个简单的函数,然后画出其函数图像。

此外,还要求给出其函数的解析式,并计算其零点和极
值。

这道题目着重考察了学生对函数的基本概念及其图像的理解能力。

四、二次函数
第四道题目是二次函数,要求求出二次函数 y=ax^2+bx+c 的顶点坐标和对称轴。

这道题目考察了学生对二次函数的基本概念和性质的理解能力。

五、几何
第五道题目是几何题,要求证明两角和与两角余和的大小关系。

这道题目着重考察了学生对几何图形及其性质的理解能力。

最后,通过对以上五道题目的分析,可以发现,今年的济南市数学中考关注的不仅仅是考查学生对知识点的掌握程度,更注重考查学生的应用能力和解决问题的能力。

因此,要想在数学中考中取得好成绩,除了强化基础知识的学习外,还需要不断提高应用能力和解决问题的能力。

济南市中考数学试卷及答案(Word解析版)

济南市中考数学试卷及答案(Word解析版)

济南中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)(•济南)下列计算正确的是()A.=9B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A 、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的答:长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(•济南)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵÷6=335…3,∴当点P第次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250 频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解解:(1)完成图形,如图所示:答:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD 的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。

2023年山东省济南市中考数学试卷及其答案

2023年山东省济南市中考数学试卷及其答案

2023年山东省济南市中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.(4分)下列几何体中,主视图是三角形的为()A.B.C.D.2.(4分)2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为()A.0.68653×108B.6.8653×108C.6.8653×107D.68.653×1073.(4分)如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是()A.20°B.25°C.30°D.45°4.(4分)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b5.(4分)如图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)下列运算正确的是()A.a 2•a 4=a 8B.a 4﹣a 3=aC.(a 2)3=a 5D.a 4÷a 2=a 27.(4分)已知点A (﹣4,y 1),B (﹣2,y 2),C (3,y 3)都在反比例函数y =(k <0)的图象上,则y 1,y 2,y 3的大小关系为()A.y 3<y 2<y 1B.y 1<y 3<y 2C.y 3<y 1<y 2D.y 2<y 3<y 18.(4分)从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A.B.C.D.9.(4分)如图,在△ABC 中,AB =AC ,∠BAC =36°,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于BD 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确的是()A.∠BCE =36°B.BC =AEC.D.10.(4分)定义:在平面直角坐标系中,对于点P (x 1,y 1),当点Q (x 2,y 2)满足2(x 1+x 2)=y 1+y 2时,称点Q (x 2,y 2)是点P (x 1,y 1)的“倍增点”.已知点P 1(1,0),有下列结论:①点Q 1(3,8),Q 2(﹣2,﹣2)都是点P 1的“倍增点”;②若直线y =x +2上的点A 是点P 1的“倍增点”,则点A 的坐标为(2,4);③抛物线y =x 2﹣2x ﹣3上存在两个点是点P 1的“倍增点”;④若点B 是点P 1的“倍增点”,则P 1B 的最小值是;其中,正确结论的个数是()A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.(4分)因式分解:m 2﹣16=.12.(4分)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则盒中棋子的总个数是个.13.(4分)关于x 的一元二次方程x 2﹣4x +2a =0有实数根,则a 的值可以是(写出一个即可).14.(4分)如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为(结果保留π).15.(4分)学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l 1和l 2分别表示两人到小亮家的距离s (km )和时间t (h )的关系,则出发h 后两人相遇.16.(4分)如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若∠ABC =30°,AP =2,则PE 的长等于.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.20.(8分)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC =123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)21.(8分)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D 组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a.B组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.22.(8分)如图,AB ,CD 为⊙O 的直径,C 为⊙O 上一点,过点C 的切线与AB 的延长线交于点P ,∠ABC =2∠BCP ,点E 是的中点,弦CE ,BD 相交于点F .(1)求∠OCB 的度数;(2)若EF =3,求⊙O 直径的长.23.(10分)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?24.(10分)综合与实践如图1,某兴趣小组计划开垦一个面积为8m2的矩形地块ABCD种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为am.【问题提出】小组同学提出这样一个问题:若a=10,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为xm,BC为ym.由矩形地块面积为8m2,得到xy=8,满足条件的(x,y)可看成是反比例函数y=的图象在第一象限内点的坐标;木栏总长为10m,得到2x+y=10,满足条件的(x,y)可看成一次函数y=﹣2x+10的图象在第一象限内点的坐标,同时满足这两个条件的(x,y)就可以看成两个函数图象交点的坐标.:y=﹣2x+10的交点坐标为(1,8)如图2,反比例函数y=(x>0)的图象与直线l1和,因此,木栏总长为10m时,能围出矩形地块,分别为:AB=1m,BC=8m;或AB =m,BC=m.(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若a=6,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为am时,小颖建立了一次函数y=﹣2x+a.发现直线y=﹣2x+a可以看成是直线y=﹣2x通过平移得到的,在平移过程中,当过点(2,4)时,直线y=﹣2x+a与反比例函数y=(x >0)的图象有唯一交点.(3)请在图2中画出直线y=﹣2x+a过点(2,4)时的图象,并求出a的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“y=﹣2x+a与y=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB和BC的长均不小于1m,请直接写出a的取值范围.25.(12分)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.26.(12分)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.2023年山东省济南市中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.(4分)下列几何体中,主视图是三角形的为()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,故此选项符合题意;B、球的主视图是圆,故此选项不符合题意;C、立方体的主视图是正方形,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条虚线,故此选项不符合题意;故选:A.2.(4分)2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为()A.0.68653×108B.6.8653×108C.6.8653×107D.68.653×107【解答】解:686530000=6.8653×108,故选:B.3.(4分)如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是()A.20°B.25°C.30°D.45°【解答】解:如图,∵a∥b,∴∠1=∠3=70°,∴∠2=180°﹣90°﹣70°=20°,故选:A.4.(4分)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b【解答】解:从图中得出:a=2,﹣3<b<﹣2.(1)a和b相乘是负数,所以ab<0,故A选项错误;(2)a和b相加是负数,所以a+b<0,故B选项错误;(3)因为a>b,所以a+3>b+3,故C选项错误;(4)因为a是正数,所以﹣3a<0,又因为b是负数,所以﹣3b>0,即﹣3a<﹣3b,故选项D正确,所以选择D;答案为:D.5.(4分)如图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.该图形既是轴对称图形,又是中心对称图形,符合题意;B.该图形是轴对称图形,不是中心对称图形,不符合题意;C.该图形既不是轴对称图形,也不是中心对称图形,不符合题意;D.该图形不是中心对称图形,是轴对称图形,不符合题意.故选:A.6.(4分)下列运算正确的是()A.a2•a4=a8B.a4﹣a3=a C.(a2)3=a5D.a4÷a2=a2【解答】解:A、a2•a4=a6,原式计算错误,故A不符合题意;B、a4与a3不是同类项,不能合并,故B不符合题意;C、(a2)3=a6,原式计算错误,故C不符合题意;D、a4÷a2=a2,原式计算正确,故D符合题意;故选:D.7.(4分)已知点A(﹣4,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系为()A.y3<y2<y1B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【解答】解:∵,k<0,∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大,又∵点A(﹣4,y1),B(﹣2,y2),C(3,y3),∴点A,B在第二象限内,点C在第四象限内,∴y1>0,y2>0,y3<0,又∵﹣4<﹣2,∴y1<y2,∴y3<y1<y2.故选:C.8.(4分)从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A.B.C.D.【解答】∴一共有12种等可能的情况,其中被抽到的2名同学都是男生的情况有6种情况,∴被抽到的2名同学都是男生的概率==.故选:B.9.(4分)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36°B.BC=AEC.D.【解答】解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB==72°,由题意得:CP平分∠ACB,∴∠BCE=∠ACE=∠ACB=36°,∴∠A=∠ACE=36°,∴AE=CE,∵∠CEB=∠A+∠ACE=72°,∴∠B=∠CEB=72°,∴CB=CE,∴AE=CE=CB,∵△BCE是顶角为36°的等腰三角形,∴△BCE是黄金三角形,∴=,∴=,∴==,∴==,故A、B、D不符合题意,C符合题意;故选:C.10.(4分)定义:在平面直角坐标系中,对于点P(x1,y1),当点Q(x2,y2)满足2(x1+x2)=y1+y2时,称点Q(x2,y2)是点P(x1,y1)的“倍增点”.已知点P1(1,0),有下列结论:①点Q1(3,8),Q2(﹣2,﹣2)都是点P1的“倍增点”;②若直线y=x+2上的点A是点P1的“倍增点”,则点A的坐标为(2,4);③抛物线y=x2﹣2x﹣3上存在两个点是点P1的“倍增点”;④若点B是点P1的“倍增点”,则P1B的最小值是;其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:依据题意,由“倍增点”的意义,∵2(1+3)=8+0,2(1﹣2)=﹣2+0,∴点Q1(3,8),Q2(﹣2,﹣2)都是点P1的“倍增点”.∴①正确.对于②,由题意,可设满足题意得“倍增点”A为(x,x+2),∴2(x+1)=x+2+0.∴x=0.∴A(0,2).∴②错误.对于③,可设抛物线上的“倍增点”为(x,x2﹣2x﹣3),∴2(x+1)=x2﹣2x﹣3.∴x=5或﹣1.∴此时满足题意的“倍增点”有(5,12),(﹣1,0)两个.∴③正确.对于④,设B(x,y),∴2(x+1)=y+0.∴y=2(x+1).∴P1B===.∴当x=﹣时,P1B有最小值为.∴④正确.故选:C.二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.(4分)因式分解:m2﹣16=(m+4)(m﹣4).【解答】解:根据平方差公式:m2﹣16=(m+4)(m﹣4),故答案为:(m+4)(m﹣4).12.(4分)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则盒中棋子的总个数是12个.【解答】解:由题意:3÷=12(个),故答案为:12.13.(4分)关于x 的一元二次方程x 2﹣4x +2a =0有实数根,则a 的值可以是1(写出一个即可).【解答】解:∵关于x 的一元二次方程x 2﹣4x +2a =0有实数根,∴Δ=16﹣8a ≥0,解得:a ≤2,则a 的值可以是1.故答案为:1.14.(4分)如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为(结果保留π).【解答】解:∠BAE ==108°,∴阴影部分的面积为=,故答案为:.15.(4分)学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l 1和l 2分别表示两人到小亮家的距离s (km )和时间t (h )的关系,则出发0.35h 后两人相遇.【解答】解:设l1的函数解析式为y1=kx+b,则,解得,∴l1的函数解析式为S1=5t+3.5;设l2的函数解析式为S2=mt,则0.4m=6,解得m=15,∴l2的函数解析式为S2=15t;令S1=S2,即5t+3.5=15t,解得t=0.35,∴出发0.35小时后两人相遇.故答案为:0.35.16.(4分)如图,将菱形纸片ABCD沿过点C的直线折叠,使点D落在射线CA上的点E处,折痕CP交AD于点P.若∠ABC=30°,AP=2,则PE的长等于+.【解答】解:过点A作AF⊥PE于点F,∵四边形ABCD是菱形,∴∠D=∠ABC=30°,AD=CD,∴∠DAC==75°,由折叠可知:∠E=∠D=30°,∴∠APE=∠DAC﹣∠AEP=45°,在Rt△APF中,PF=AP•cos∠APE,∴PF=AF=2×cos45°=,在Rt△AEF中,tan∠AEP=,∴EF===,∴PE=PF+EF=+,故答案为:+.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.【解答】解:|﹣|+()﹣1+(π+1)0﹣tan60°==3.18.(6分)解不等式组:,并写出它的所有整数解.【解答】解:解不等式①,得x>﹣1,解不等式②,得x<3,在数轴上表示不等式①②的解集如下:∴原不等式组的解集是﹣1<x<3,∴它的所有整数解有:0,1,2.19.(6分)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAO=∠FCO,∠OEA=∠OFC,∵点O为对角线AC的中点,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF,∴AD﹣AE=BC﹣CF,∴DE=BF.20.(8分)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC =123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6,∴B′F=B′C′•cos60°=0.3.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85.∵1.85>1.8,∴没有危险.21.(8分)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D 组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a.B组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E组对应扇形的圆心角为36度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是15.5百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【解答】解:(1)统计图中E 组对应扇形的圆心角为360°×=36°,故答案为:36;(2)D 组个数为30×10%=3(个),所以C 组地区个数为30﹣(12+8+3+3)=4(个),补全图形如下:(3)这30个地区“五一”假期出游人数的中位数是=15.5(百万),故答案为:15.5;(4)(百万),答:这30个地区“五一”假期的平均出游人数是20百万.22.(8分)如图,AB ,CD 为⊙O 的直径,C 为⊙O 上一点,过点C 的切线与AB 的延长线交于点P ,∠ABC =2∠BCP ,点E 是的中点,弦CE ,BD 相交于点F .(1)求∠OCB 的度数;(2)若EF =3,求⊙O 直径的长.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.23.(10分)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8﹣(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.24.(10分)综合与实践如图1,某兴趣小组计划开垦一个面积为8m2的矩形地块ABCD种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为am.【问题提出】小组同学提出这样一个问题:若a=10,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为xm,BC为ym.由矩形地块面积为8m2,得到xy=8,满足条件的(x,y)可看成是反比例函数y=的图象在第一象限内点的坐标;木栏总长为10m,得到2x+y=10,满足条件的(x,y)可看成一次函数y=﹣2x+10的图象在第一象限内点的坐标,同时满足这两个条件的(x,y)就可以看成两个函数图象交点的坐标.:y=﹣2x+10的交点坐标为(1,8)和(4,如图2,反比例函数y=(x>0)的图象与直线l12),因此,木栏总长为10m时,能围出矩形地块,分别为:AB=1m,BC=8m;或AB=4m,BC=2m.(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若a=6,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为am时,小颖建立了一次函数y=﹣2x+a.发现直线y=﹣2x+a可以看成是直线y=﹣2x通过平移得到的,在平移过程中,当过点(2,4)时,直线y=﹣2x+a与反比例函数y=(x >0)的图象有唯一交点.(3)请在图2中画出直线y=﹣2x+a过点(2,4)时的图象,并求出a的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“y=﹣2x+a与y=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB和BC的长均不小于1m,请直接写出a的取值范围.【解答】解:(1)将反比例函数y=与直线l:y=﹣2x+10联立得1,∴=﹣2x+10,∴x2﹣5x+4=0,∴x1=1,x2=4,∴另一个交点坐标为(4,2),∵AB为xm,BC为ym,∴AB=4,BC=2.故答案为:(4,2);4;2;(2)不能围出;y=﹣2x+6的图象,如答案图中l2所示:∵l2与函数图象没有交点,∴不能围出面积为8m2的矩形.(3)如答案图中直线l3所示:将点(2,4)代入y=﹣2x+a,解得a=8.(4)∵AB和BC的长均不小于1m,∴x≥1,y≥1,∴≥1,∴x≤8,∴1≤x≤8,如图所示,直线y=﹣2x+a在l3、l4上面或之间移动,把(8,1)代入y=﹣2x+a得a=17,∴8≤a≤17.25.(12分)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.【解答】解:(1)∵抛物线y=ax2﹣2ax+c过点C(2,3),E(﹣2,0),得,解得,∴抛物线表达式为,当y=0时,,解得x1=﹣2(舍去),x2=4,∴F(4,0);(2)设直线CE的表达式为y=kx+b,∵直线过点C(2,3),E(﹣2,0),得,解得,∴直线CE的表达式为,设点,则点Q向左平移2个单位,向上平移3个单位得到点,将代入,解得t1=﹣4,t2=4(舍去),∴Q点坐标为(﹣4,﹣6);(3)将E(﹣2,0)代入y=ax2﹣2ax+c得c=﹣8a,∴y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,∴顶点坐标为(1,﹣9a),①当抛物线顶点在正方形内部时,与正方形有两个交点,∴0<﹣9a<3,解得,②当抛物线与直线BC交点在点C上方,且与直线AD交点在点D下方时,与正方形有两个交点,,解得综上所述,a的取值范围为或.26.(12分)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.。

济南中招数学真题答案解析

济南中招数学真题答案解析

济南中招数学真题答案解析济南市是山东省的省会,作为一个发展迅速的大都市,教育水平一直备受关注。

中学招生考试一直是家长和学生关注的热点话题之一。

其中,数学科目更是被认为是考生命运的关键之一。

因此,解析济南中招数学真题的答案对于了解考生在该科目上的表现和发展方向具有重要意义。

首先,我们来看一道济南中招数学真题的选择题:1. 已知正数a、b满足a+b=12,那么a^2+b^2的最小值是()A. 48B. 36C. 24D. 18这道题测试了考生对于平方和最小值的理解和运用能力。

首先,我们可以通过分析题意得知a和b的和为12,即a+b=12。

由于a和b为正数,所以它们的和最小值为12/2=6。

然后,我们可以根据平方和等式(a^2+b^2)=(a+b)^2-2ab得到a^2+b^2=(12)^2-2ab。

接下来,我们需要通过计算得到最小值。

假设a和b相等,即a=b,那么2a=12,所以a=6、b=6。

代入计算得到a^2+b^2=72。

综合分析可知,最小值为72,所以答案是A。

接着,我们来看一道济南中招数学真题的填空题:2. 已知sin^2A+sin^2B=1,那么tan^2A+tan^2B的值是______这道题目考察了考生对于三角函数的熟悉程度和运算能力。

首先,我们可以推导出sin^2A+cos^2A=1和sin^2B+cos^2B=1。

根据题意,可以推导出cos^2A=1-sin^2A和cos^2B=1-sin^2B。

然后,我们需要计算tan^2A和tan^2B的值。

tanA=sinA/cosA,所以tan^2A=(sinA/cosA)^2=sin^2A/cos^2A=sin^2A/(1-sin^2A)。

同理,tan^2B=sin^2B/(1-sin^2B)。

最后,我们将tan^2A和tan^2B的值相加即可得出答案。

最后,我们来看一道济南中招数学真题的解答题:3. 若函数y=kx^2-2kx+4(k为常数)的图象在点(2,6)和(x,8)上与坐标轴交,求k和x的值。

济南中考数学真题试卷

济南中考数学真题试卷

济南中考数学真题试卷一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 60°C. 90°D. 120°3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π4. 一个数的平方根是4,那么这个数是:A. 16B. 8C. -16D. 45. 下列哪个是二次根式:A. √3B. √(-1)C. √(2x)D. √(4/9)6. 一个等腰三角形的底边长为10,两腰边长为8,那么它的面积是:A. 20B. 30C. 40D. 507. 一个数列的前四项是2, 4, 6, 8,那么这个数列的第5项是:A. 10B. 12C. 14D. 168. 一个长方体的长、宽、高分别是3, 4, 5,那么它的体积是:A. 60B. 120C. 180D. 2409. 一个分数的分子是8,分母是12,化简后是:A. 2/3B. 4/6C. 1/1D. 3/410. 一个多项式是ax^2 + bx + c,如果a+b+c=1,那么这个多项式的常数项c是:A. 1B. -1C. 0D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。

12. 如果一个数的绝对值是5,那么这个数可能是______或______。

13. 一个直角三角形的两直角边分别是3和4,那么它的斜边长是______。

14. 一个数的立方根是2,那么这个数是______。

15. 一个分数的分母是8,如果分子增加4,那么这个分数的值变为1,原分数是______。

16. 一个数的平方是36,那么这个数是______或______。

17. 一个圆的直径是14,那么它的周长是______。

18. 如果一个数的平方根是±3,那么这个数是______。

2024年济南中考数学试题

2024年济南中考数学试题

选择题:
下列哪个数是无理数?
A. 3/4
B. √2(正确答案)
C. -1
D. 0
已知三角形ABC中,∠A = 50°,∠B = 70°,则∠C的度数为:
A. 50°
B. 60°(正确答案)
C. 70°
D. 80°
下列哪个函数是正比例函数?
A. y = x2
B. y = 2/x
C. y = 3x(正确答案)
D. y = x + 2
下列哪个图形是轴对称图形但不是中心对称图形?
A. 等腰三角形(正确答案)
B. 正方形
C. 圆
D. 平行四边形
已知圆的半径为5cm,则该圆的面积为:
A. 10π cm2
B. 15π cm2
C. 20π cm2
D. 25π cm2(正确答案)
下列哪个选项是方程x2 - 4x + 3 = 0的解?
A. x = -1
B. x = 0
C. x = 1
D. x = 3(正确答案)
在平面直角坐标系中,点P(-3, 4)关于x轴的对称点的坐标是:
A. (-3, -4)(正确答案)
B. (3, 4)
C. (-3, 4)
D. (3, -4)
下列哪个选项是不等式2x - 1 > 5的解集?
A. x > 3(正确答案)
B. x < 3
C. x > -3
D. x < -3
已知数据集{1, 2, 3, 4, 5}的方差是2,若每个数据都乘以2,则新数据集的方差为:
A. 2
B. 4
C. 8(正确答案)
D. 10。

精品2019年山东省济南市中考数学试卷及答案解析

精品2019年山东省济南市中考数学试卷及答案解析

2019年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7B.-17C.7D.12.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×1024.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5B.6a>6b C.﹣a>﹣b D.a﹣b>06.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线7.化简42-4+1??+2的结果是()A.x﹣2B.1-2C.2??-2D.2??+28.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 9.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.10.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9√3-3πB.9√3-2πC.18√3-9πD.18√3-6π11.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m12.关于x的一元二次方程ax2+bx+12=0有一个根是﹣1,若二次函数y=ax2+bx+12的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.14<t<12B.﹣1<t≤14C.-12≤t<12D.﹣1<t<12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:m2﹣4m+4=.14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.15.一个n边形的内角和等于720°,则n=.16.代数式2??-13与代数式3﹣2x的和为4,则x=.17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(12)﹣1+(π+1)0﹣2cos60°+√920.(6分)解不等式组{5??-3≤2??+93??>??+102,并写出它的所有整数解.21.(6分)如图,在?ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.22.(8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?23.(8分)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.(10分)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x >0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.26.(12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.27.(12分)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;经过点A,D是抛物线C上的一点,设D点的横坐标为(2)如图2,直线l:y=kx-125m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.2019年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7B.-17C.7D.1【解答】解:﹣7的相反数为7,故选:C.2.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×102【解答】解:177.6=1.776×102.故选:B.4.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∠ABC=35°,∴∠CBE=12故选:B.5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5B.6a>6b C.﹣a>﹣b D.a﹣b>0【解答】解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.7.化简42-4+1??+2的结果是()A.x﹣2B.1-2C.2??-2D.2??+2【解答】解:原式=4(??+2)(??-2)+??-2(??+2)(??-2)=??+2(??+2)(??-2)=1??-2,故选:B.8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,故选:B.9.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D 符合;故选:D .10.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接AE 、AF .若AB =6,∠B =60°,则阴影部分的面积为()A .9√3-3πB .9√3-2πC .18√3-9πD .18√3-6π【解答】解:连接AC ,∵四边形ABCD 是菱形,∴AB =BC =6,∵∠B =60°,E 为BC 的中点,∴CE =BE =3=CF ,△ABC 是等边三角形,AB ∥CD ,∵∠B =60°,∴∠BCD =180°﹣∠B =120°,由勾股定理得:AE=√62-32=3√3,∴S △AEB =S △AEC =12×6×3√3×12=4.5√3=S △AFC ,∴阴影部分的面积S =S △AEC +S △AFC ﹣S 扇形CEF =4.5√3+4.5√3-120??×32360=9√3-3π,故选:A .11.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为()(参考数据:tan37°≈34,tan53°≈43)A .225mB .275mC .300mD .315m【解答】解:如图,作CE ⊥BA 于E .设EC =xm ,BE =ym .在Rt △ECB 中,tan53°=,即43=????,在Rt △AEC 中,tan37°=,即34=??105+??,解得x =180,y =135,∴AC=√2+2=√1802+2402=300(m ),故选:C .12.关于x 的一元二次方程ax 2+bx+12=0有一个根是﹣1,若二次函数y =ax 2+bx+12的图象的顶点在第一象限,设t =2a+b ,则t 的取值范围是()A .14<t <12B .﹣1<t ≤14C .-12≤t <12D .﹣1<t <12【解答】解:∵关于x 的一元二次方程ax 2+bx+12=0有一个根是﹣1,∴二次函数y =ax 2+bx+12的图象过点(﹣1,0),∴a ﹣b+12=0,∴b =a+12,t =2a+b ,则a=2??-16,b=2??+26,∵二次函数y =ax 2+bx+12的图象的顶点在第一象限,∴-2??>0,12-??24??>0,将a=2??-16,b=2??+26代入上式得:-2??+262×2??-16>0,解得:﹣1<t <12,12-(2??+26)24(2??-16)>0,解得:t ≠12,故:﹣1<t <12,故选:D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:m 2﹣4m+4=(m ﹣2)2.【解答】解:原式=(m ﹣2)2,故答案为:(m ﹣2)214.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于13.【解答】解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有6种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是26=13;故答案为13.15.一个n 边形的内角和等于720°,则n =6.【解答】解:依题意有:(n﹣2)?180°=720°,解得n=6.故答案为:6.16.代数式2??-13与代数式3﹣2x的和为4,则x=﹣1.【解答】解:根据题意得:2??-13+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣117.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元.【解答】解:设当x>120时,l2对应的函数解析式为y=kx+b,{120??+??=480160??+??=720,得{??=6=-240,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB =5,则线段PE 的长等于203.【解答】解:过点P 作PG ⊥FN ,PH ⊥BN ,垂足为G 、H ,由折叠得:ABNM 是正方形,AB =BN =NM =MA =5,CD =CF =5,∠D =∠CFE =90°,ED =EF ,∴NC =MD =8﹣5=3,在Rt △FNC 中,FN =√52-32=4,∴MF =5﹣4=1,在Rt △MEF 中,设EF =x ,则ME =3﹣x ,由勾股定理得,12+(3﹣x )2=x 2,解得:x=53,∵∠CFN+∠PFG =90°,∠PFG +∠FPG =90°,∴△FNC ∽△PGF ,∴FG :PG :PF =NC :FN :FC =3:4:5,设FG =3m ,则PG =4m ,PF =5m ,∴GN =PH =BH =4﹣3m ,HN =5﹣(4﹣3m )=1+3m =PG =4m ,解得:m =1,∴PF =5m =5,∴PE =PF +FE =5+53=203,故答案为:203.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(12)﹣1+(π+1)0﹣2cos60°+√9【解答】解:(12)﹣1+(π+1)0﹣2cos60°+√9=2+1﹣2×12+3=3﹣1+3=520.(6分)解不等式组{5??-3≤2??+93??>??+102,并写出它的所有整数解.【解答】解:{5??-3≤2??+9①3??>+102②解①得:x≤4;解②得:x>2;∴原不等式组的解集为2<x≤4;∴原不等式组的所有整数解为3、4.21.(6分)如图,在?ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∠BAD=∠BCD,AB=CD,∵∠DAF=∠BCE,∴∠BAF=∠DCE,在△ABF和△CDE中,{∠??=∠??=∠=∠,∴△ABF≌△CDE(ASA),∴BF=DE.22.(8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?【解答】解:(1)设B种图书的单价为x元,则A种图书的单价为 1.5x元,依题意,得:30001.5??-1600??=20,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共花费880元.23.(8分)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.【解答】解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC.∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=√3AC=4√3,3∴OB=4√3,即⊙O的半径为4√3.24.(10分)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=8,b=0.15;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【解答】解:(1)由题意知C等级的频数a=8,则C组对应的频率为8÷40=0.2,∴b=1﹣(0.1+0.3+0.2+0.25)=0.15,故答案为:8、0.15;(2)D组对应的频数为40×0.15=6,补全图形如下:(3)估计该校八年级学生视力为“E级”的有400×0.25=100(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率812=23.25.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x >0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.【解答】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=8,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=8的图象于点E,∴E(5,85),∴DE=4-85=125,EF=85,∴=12585=32;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=√(??-2)2+(8-4)2,∴√(??-2)2+(8-4)2=m,∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.26.(12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是∠NAB=∠MAC,NB与MC的数量关系是NB=CM;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠P A1Q,∴∠QA1B1=∠P A1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△P A1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1?sin60°=4√3,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=4√6,∴NC1=A1C1﹣A1N=4√6-8,在Rt△NHC1,∵∠C1=45°,∴NH=4√3-4√2,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4√3-4√2.27.(12分)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx-125经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得{16??-4??=0-??=3解得{=-1=-4∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx-125中,得0=﹣4k-125,解得k=-35,∴直线l解析式为y=-35x-125,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m=-35?(﹣2m)-125,解得:m1=﹣3,m2=-25,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3√2,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB==√23√2=13,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=13,在x轴下方过点O作OH⊥OE,在OH上截取OH=13OE=√2,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则{3??+??=-3-??+??=-1,解得{=-12=-32∴直线EH解析式为y=-12x-32,解方程组{=-12??-32=-??2-4??,得{1=-7-√7341=√73-58,{??2=-7+√734??2=-√73+58,∴点P的横坐标为:-7+√734或√73-74.。

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC 落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8﹣(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)甲种粽子的单价为8元,乙种粽子的单价为4元.(2)最多购进87个甲种粽子.【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)k=6,B(2,3);(2)2;(3)点P的坐标为(,0)或(0,).【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∴=,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:①当点P在x轴上时,如图2,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴a=,∴点P1的坐标为(,0);②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,设点P2的坐标为(0,b),∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,∴△BON∽△P2OB,∴=,即=,∴b=,∴点P2的坐标为(0,);综上所述,点P的坐标为(,0)或(0,).4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.【答案】(1)a=4,k=12;(2)①8;②P(3,4)或(6,2).【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.【答案】(1),F(4,0);(2)(﹣4,﹣6);(3)或.【解答】解:(1)∵抛物线y=ax2﹣2ax+c过点C(2,3),E(﹣2,0),得,解得,∴抛物线表达式为,当y=0 时,,解得x1=﹣2 (舍去),x2=4,∴F(4,0);(2)设直线CE的表达式为y=kx+b,∵直线过点C(2,3),E(﹣2,0),得,解得,∴直线CE的表达式为,设点,则点Q向左平移2个单位,向上平移3个单位得到点,将代入,解得t1=﹣4,t2=4 (舍去),∴Q点坐标为(﹣4,﹣6);(3)将E(﹣2,0)代入y=ax2﹣2ax+c得c=﹣8a,∴y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,∴顶点坐标为(1,﹣9a),①当抛物线顶点在正方形内部时,与正方形有两个交点,∴0<﹣9a<3,解得,②当抛物线与直线BC交点在点C上方,且与直线AD交点在点D下方时,与正方形有两个交点,,解得综上所述,a的取值范围为或.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.【答案】(1)k=,t=3,y=﹣x2+x﹣6;(2)(10,﹣);(3).【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.【答案】(1)y=﹣x2+2x+3;顶点C(1,4);(2)P();(3)﹣1<m≤.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:,解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4).(2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,∵A(﹣1,0),C(1,4),∴OA=1,OE=1,CE=4.∴OA=OE,AC==2.∵FO⊥AB,CE⊥AB,∴FO∥CE,∴OF=CE=2,F为AC的中点.∵△DAC是以AC为底的等腰三角形,∴DF⊥AC.∵FO⊥AD,∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4,0).设直线CD的解析式为y=kx+m,∴,解得:.∴直线CD的解析式为y=﹣.∴,解得:,.∴P().(3)过点P作PH⊥AB于点H,如图,则OH=,PH=,∵OD=4,∴HD=OD﹣OH=,∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x,AE=y,则CE=2﹣y.∵DA=DC,∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°,∠AEF+∠PEF+∠CEP=180°,又∵∠PEF=∠CAB,∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时,x即AF有最大值.∵OA=1,∴OF的最大值为﹣1=.∵点F在线段AD上,∴点F的横坐标m的取值范围为﹣1<m≤.解法二:∵DC=DA,∴∠DAC=∠DCA,∴∠FAE=∠PEF=∠PCE,∴△CEP∽△AFE,∴=,∵C(1,4),A(﹣1,0),∴直线AC的解析式为y=2x+2,设E(n,2n+2),则AE==(n+1),CE==(1﹣n),CP==.∴=,∴45n2+20m﹣25=0,∵Δ>0,∴02﹣4×45×(20m﹣25)≥0,∴m≤,∴F的横坐标m的取值范围为﹣1<m≤.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.【答案】证明过程见解答.【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA,∵∠ADF=∠CDE,∴∠ADF﹣∠EDF=∠CDE﹣∠EDF,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.【答案】证明见解析.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,又∵∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【答案】见试题解答内容【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CFE=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴=•=×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.【答案】(1)证明见解析;(2)6.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.【答案】(1)证明过程见解答;(2)线段BF的长为3.【解答】(1)证明:连接OC,∵CD与⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,∴∠COD=90°﹣∠D=60°,∴∠A=∠COD=30°,∴∠A=∠D=30°,∴CA=CD;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠A=30°,AB=12,∴BC=AB=6,∵CE平分∠ACB,∴∠BCE=∠ACB=45°,∵BF⊥CE,∴∠BFC=90°,∴BF=BC•sin45°=6×=3,∴线段BF的长为3.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 AE=BE﹣CE ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.【答案】(1)BD=CE;(2)AE=BE﹣CE;(3)45°.【解答】解:(1)BD=CE,理由如下:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵AE是由AD绕点A逆时针旋转60°得到的,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,∴△ADE是等边三角形,∴DE=AE,∴AE=DE=BE﹣BD=BE﹣CE,故答案为:AE=BE﹣CE;②如图,∠BAD=45°,理由如下:连接AF,作AG⊥DE于G,∴∠AGD=90°,∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,∴AF⊥BC,∠ABF=∠ADG=60°,∴∠AFB=∠AGD,∴△ABF∽△ADG,∴,∠BAF=∠DAG,∴∠BAF+∠DAF=∠DAG+∠DAF,∴∠BAD=∠FAG,∴△ABD∽△AFG,∴∠ADB=∠AGF=90°,由(1)得:BD=CE,∵CE=DE=AD,∴AD=BD,∴∠BAD=45°.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【答案】(1)车后盖最高点B′到地面的距离为2.15m;(2)没有危险,详见解析.【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6,∴B′F=B′C′•cos60°=0.3.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85.∵1.85>1.8,∴没有危险.。

2020年山东省济南市中考数学试题及参考答案(word解析版)

2020年山东省济南市中考数学试题及参考答案(word解析版)

2020年山东省济南市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3 C.4 D.511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y 值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3二、填空题(本大题共6个小题.每小题4分,共24分)13.分解因式:2a2﹣ab=.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式与代数式的值相等,则x=.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF =3,则tan∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120 a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A 3000 3400B 3500 4000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON 的面积为S2,若S1=2S2,求m的值.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【知识考点】算术平方根;实数的性质.【思路分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.【解答过程】解:﹣2的绝对值是2;故选:A.【总结归纳】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据俯视图是从物体上面看所得到的图形判断即可.【解答过程】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.。

2022年山东省济南市中考数学真题(附答案)

2022年山东省济南市中考数学真题(附答案)
6.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.
【详解】解:根据图形可以得到:
, ,
∴ ,故A项错误,
,故B项错误,
,故C项错误,
,故D项错误.
故选:D.
【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.
【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱.
故选:A.
【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.
3.神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()
【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,
∴小明和小刚恰好选择同一个主题的概率为 .
故选:C.
【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不合题意;
D、是轴对称图形,不是中心对称图形,故本选项不合题意.
故选:B.
【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.

2024年山东省济南市中考数学试卷及答案解析

2024年山东省济南市中考数学试卷及答案解析

2024年山东省济南市中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求。

1.(4分)9的相反数是()A.﹣9B.C.D.92.(4分)黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.(4分)截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%.将数字3465000000用科学记数法表示为()A.0.3465×109B.3.465×109C.3.465×108D.34.65×1084.(4分)若正多边形的一个外角是45°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5.(4分)如图,已知△ABC≌△DEC,∠A=60°,∠B=40°,则∠DCE的度数为()A.40°B.60°C.80°D.100°6.(4分)下列运算正确的是()A.3x+3y=6xy B.(xy2)3=xy6C.3(x+8)=3x+8D.x2•x3=x57.(4分)若关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则实数m的取值范围是()A.B.C.m<﹣4D.m>﹣48.(4分)3月14日是国际数学节.某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参加其中一个活动,则她们恰好选到同一个活动的概率是()A.B.C.D.9.(4分)如图,在正方形ABCD中,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E和F,作直线EF,再以点A为圆心,以AD的长为半径作弧交直线EF于点G(点G在正方形ABCD内部),连接DG并延长交BC于点K.若BK=2,则正方形ABCD的边长为()A.B.C.D.10.(4分)如图1,△ABC是等边三角形,点D在边AB上,BD=2,动点P以每秒1个单位长度的速度从点B出发,沿折线BC﹣CA匀速运动,到达点A后停止,连接DP.设点P的运动时间为t(s),DP2为y.当动点P沿BC匀速运动到点C时,y与t的函数图象如图2所示.有以下四个结论:①AB=3;②当t=5时,y=1;③当4≤t≤6时,1≤y≤3;④动点P沿BC﹣CA匀速运动时,两个时刻t1,t2(t1<t2)分别对应y1和y2,若t1+t2=6,则y1>y2.其中正确结论的序号是()A.①②③B.①②C.③④D.①②④二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.11.(4分)若分式的值为0,则实数x的值为.12.(4分)如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为.13.(4分)如图,已知l1∥l2,△ABC是等腰直角三角形,∠BAC=90°,顶点A,B分别在l1,l2上,当∠1=70°时,∠2=°.14.(4分)某公司生产了A,B两款新能源电动汽车.如图,l1,l2分别表示A款,B款新能源电动汽车充满电后电池的剩余电量y(kw•h)与汽车行驶路程x(km)的关系.当两款新能源电动汽车的行驶路程都是300km时,A款新能源电动汽车电池的剩余电量比B款新能源电动汽车电池的剩余电量多kw•h.15.(4分)如图,在矩形纸片ABCD中,,AD=2,E为边AD的中点,点F在边CD上,连接EF,将△DEF沿EF翻折,点D的对应点为D′,连接BD′.若BD′=2,则DF=.三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.16.(7分)计算:.17.(7分)解不等式组:,并写出它的所有整数解.18.(7分)如图,在菱形ABCD中,AE⊥CD,垂足为E,CF⊥AD,垂足为F.求证:AF=CE.19.(8分)城市轨道交通发展迅猛,为市民出行带来极大方便.某校“综合实践”小组想测得轻轨高架站的相关距离,数据勘测组通过勘测得到了如下记录表:综合实践活动记录表活动内容测量轻轨高架站的相关距离测量工具测倾器,红外测距仪等过程资料轻轨高架站示意图相关数据及说明:图中点A,B,C,D,E,F在同一平面内,房顶AB,吊顶CF和地面DE所在的直线都平行,点F在与地面垂直的中轴线AE上,∠BCD=98°,∠CDE=97°,AE=8.5m,CD=6.7m.成果梳理…请根据记录表提供的信息完成下列问题:(1)求点C到地面DE的距离;(2)求顶部线段BC的长.(结果精确到0.01m,参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268,sin83°≈0.993,cos83°≈0.122,tan83°≈8.144)20.(8分)如图,AB,CD为⊙O的直径,点E在上,连接AE,DE,点G在BD的延长线上,AB=AG,∠EAD+∠EDB=45°.(1)求证:AG与⊙O相切;(2)若,,求DE的长.21.(9分)2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x表示,单位:分).并对数据(成绩)进行统计整理.数据分为五组:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.下面给出了部分信息:a:C组的数据:70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.b:不完整的学生竞赛成绩频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)求随机抽取的八年级学生人数;(2)扇形统计图中B组对应扇形的圆心角为度;(3)请补全频数分布直方图;(4)抽取的八年级学生竞赛成绩的中位数是分;(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.22.(10分)近年来光伏建筑一体化广受关注.某社区拟修建A,B两种光伏车棚.已知修建2个A种光伏车棚和1个B种光伏车棚共需投资8万元,修建5个A种光伏车棚和3个B种光伏车棚共需投资21万元.(1)求修建每个A种,B种光伏车棚分别需投资多少万元?(2)若修建A,B两种光伏车棚共20个,要求修建的A种光伏车棚的数量不少于修建的B种光伏车棚数量的2倍,问修建多少个A种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?23.(10分)已知反比例函数的图象与正比例函数y=3x(x≥0)的图象交于点A(2,a),点B是线段OA上(不与点A重合)的一点.(1)求反比例函数的表达式;(2)如图1,过点B作y轴的垂线l,l与的图象交于点D,当线段BD=3时,求点B 的坐标;(3)如图2,将点A绕点B顺时针旋转90°得到点E,当点E恰好落在的图象上时,求点E的坐标.24.(12分)在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c经过点A(0,2),B(2,2),顶点为D;抛物线C2:y=x2﹣2mx+m2﹣m+2(m≠1),顶点为Q.(1)求抛物线C1的表达式及顶点D的坐标;(2)如图1,连接AD,点E是抛物线C1对称轴右侧图象上一点,点F是抛物线C2上一点,若四边形ADFE是面积为12的平行四边形,求m的值;(3)如图2,连接BD,DQ,点M是抛物线C1对称轴左侧图象上的动点(不与点A重合),过点M作MN∥DQ交x轴于点N,连接BN,DN,求△BDN面积的最小值.25.(12分)某校数学兴趣小组的同学在学习了图形的相似后,对三角形的相似进行了深入研究.(一)拓展探究如图1,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .(1)兴趣小组的同学得出AC 2=AD •AB .理由如下:∵∠ACB =90°∴∠A +∠B =90°∵CD ⊥AB ∴∠ADC =90°∴∠A +∠ACD =90°∴∠B =①_____∵∠A =∠A ∴△ABC ∽△ACD ∴=②_____∴AC 2=AD •AB请完成填空:①;②;(2)如图2,F 为线段CD 上一点,连接AF 并延长至点E ,连接CE ,当∠ACE =∠AFC 时,请判断△AEB 的形状,并说明理由.(二)学以致用(3)如图3,△ABC 是直角三角形,∠ACB =90°,AC =2,,平面内一点D ,满足AD =AC ,连接CD 并延长至点E ,且∠CEB =∠CBD ,当线段BE 的长度取得最小值时.求线段CE 的长.2024年山东省济南市中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求。

山东省济南市中考数学试题(解析版)

山东省济南市中考数学试题(解析版)
7.计算 的结果是()
A. B. C. D.
【答案】B
【解析】
【分析】根据分式的减法法则可直接进行求解.
【详解】解: ;
故选B.
【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.
8.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是()
【详解】由题意可得: ,点P在线段BD的垂直平分线上
, 点A在线段BD 垂直平分线上
AP为线段BD的垂直平分线
点E在AP上, BE=DE,故A正确;
, ,

为等边三角形且

平分


垂直平分 ,故B正确;
, ,


,故C错误;


,故D正确
故选C.
【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.
4.如图, , , 平分 ,则 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】由题意易得 ,然后根据角平分线的定义可得 ,进而根据平行线的性质可求解.
【详解】解:∵ , ,
∴ , ,
∵ 平分 ,
∴ ,
∴ ;
故选B.
【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】根据题意,用列表法求出概率即可.
【详解】根据题意,设三个宣传队分别为 列表如下:

济南市中考数学精选(5)

济南市中考数学精选(5)

中考精选5一、选择题1、如图,AB∥CD,直线EF 与AB 、CD 分别相交于G 、H .∠AGE=60°,则∠EHD 的度数是( )A .30 0B .60°C .120°D .150°2、如图,直线a ∥b ,直线c 与a ,b 相交,∠1=65°,则∠2=( ) A .115° B .65° C .35° D .25°2题3、一个三角形三个内角的度数之比为2:3:7,这个三角形一定是() A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 4、如图,菱形ABCD 的周长是16,∠A=60°,则对角线BD 的长度为( ) A .2 B . C . 4 D . 下图能说明∠1>∠2的是【 】A .B .C .D .5、下列命题是真命题的是( )A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形 6、下列命题是真命题的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线相等的四边形是矩形D .两组对边分别平行的四边形是平行四边形 7、如图,在等腰梯形ABCD 中,AD∥BC,对角线AC 、BD 相交于点O ,下列结论不一定正确.....的是A .AC=BDB .∠OBC=∠OCBC .S △AOB =S △DOCD .∠BCD=∠BDC8、如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O作OE AC 交AD 于E ,则AE 的长是 A .1.6 B .2.5 C .3 D .3.4 9、如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( )A .53°B .37°C .47°D .123°第7题图⑴ 1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=? 第11题图……9题10、如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________. 11、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 ( ) A .90° B .60° C .45° D .30°12、如图,△ABC 中,∠ACB=90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF、△BND、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1= S 3<S 2D .S 2=S 3<S 113、如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .125B .65C .245D .不确定14、在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①f(a,b)=(a -,b).如,f(1,3)=(1-,3); ②g (a ,b)=(b ,a).如,g(1,3)=(3,1);③h(a,b)=(a -,b -).如,h(1,3)=(1-,3-). 按照以上变换有:f (g (2,3-))=f (3-,2)=(3,2),那么f (h (5,3-))等于 A .(5-,3-) B .(5,3) C .(5,3-) D .(5-,3) 15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 A .2(21)n + B .2(21)n - C .2(2)n + D .2n16.观察下列各式:⑴1=12;⑵2+3+4=32;⑶3+4+5+6+7=52;⑷4+5+6+7+8+9+10=72…A B C EF G 第12题图 D S 1 S 2S 313题图DC(第10题)CB A11题图A BCDPE第17题图请你根据观察得到的规律判断下列各式正确的是A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=2011217、如图所示,矩形ABCD 中,AB=4,BC=,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个 18、(如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23D .不能确定19题19、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )1 BC5 D .5220、如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .140°二、1、如图,在△ABC 中,EF 为△ABC 的中位线,D 为BC 边上一点(不与B 、C 重合),AD 与EF 交于点O ,连接DE 、DF ,要使四边形AEDF 为平行四边形,需要添加条件______________.(只添加一个条件)2、如图:矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是__________.3、若3,5a b aa b-==则3、18题图4、“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得则该队主力队员身高的方差是 厘米4、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm5、如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C=5题三、解答题1、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.2、(1)已知:如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF=DE .求证:AE=CF(2)已知:如图1,AB ∥DE ,AC ∥DF ,BE=CF.求证:AB=DE.(3)如图所示,在梯形ABCD 中,BC ∥AD ,AB=DC ,点M 是AD 的中点.求证:BM=CM .C BACDM第3题图A D CE F GB④题图A第5题图 ABC第3题图1 3、、如图,△ABC 中,∠A=60°,∠B∶∠C=1∶5. 求∠B 的度数.4、(1)如图1,在▱ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF .求证:DE=BF . (2)如图2,在△ABC 中,AB=AC ,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数.5、(1)如图2,点M 为正方形ABCD 对角线BD 上一点,分别连接AM 、CM. 求证:AM=CM.⑵如图所示,△ABC 中,∠C =90°,∠B=30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.6、有公路l 1同侧、l 2异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)ABDM四.1、如图,在梯形ABCD 中,AD∥BC,AD=3,DC=5,M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN∥AB 时,求t 的值. (3)试探究:t 为何值时,∆MNC2、如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动. (1)梯形ABCD 的面积等于 ;(2)当P 点离开D 点的时间为几秒时,PQ AB ∥?(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?3、如图,点C 为线段AB 上任意一点(不与A 、B 两点重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△ACD 和等腰△BCE,CA=CD ,CB=CE ,∠ACD 与∠BCE 都是锐角且∠ACD=∠BCE,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC 与△DMP 的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.C BA B C DE M 第28题图NP6、已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM=DN 时(如图1),易证BM+DN=MN . (1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明; (2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.7、如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题: (1)试证明三角形△ABC 为直角三角形; (2)判断△ABC 和△DEF 是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留痕迹,不写作法与证明).8、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( ) A .(-2,3)B .(2,-3) C .(3,-2)或(-2,3) D .(-2,3)或(2,-3) 9、在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ).A .215-B .215+ C .3 D .2B B M BC N C N MC N图1 图2 图3 A A A DD DA B C NM A M N P 1 C P 2 B A C M NP 1 P 2P 2009 …… ……B 第9题图2 第9题图1 第9题图3⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN=∠A .⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N+∠MP 2N=∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N+∠MP 2N+……+∠MP 2009N=____________. (请直接将该小问的答案写在横线上.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考精选5一、选择题1、如图,AB∥CD,直线EF 与AB 、CD 分别相交于G 、H .∠AGE=60°,则∠EHD 的度数是( )A .30 0B .60°C .120°D .150°2、如图,直线a ∥b ,直线c 与a ,b 相交,∠1=65°,则∠2=( ) A .115° B .65° C .35° D .25°2题3、一个三角形三个内角的度数之比为2:3:7,这个三角形一定是() A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 4、如图,菱形ABCD 的周长是16,∠A=60°,则对角线BD 的长度为( ) A .2 B . C . 4 D .下图能说明∠1>∠2的是【 】A .B .C .D .5、下列命题是真命题的是( )A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形 6、下列命题是真命题的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线相等的四边形是矩形D .两组对边分别平行的四边形是平行四边形 7、如图,在等腰梯形ABCD 中,AD∥BC,对角线AC 、BD 相交于点O ,下列结论不一定正确.....的是A .AC=BDB .∠OBC=∠OCBC .S △AOB =S △DOCD .∠BCD=∠BDC8、如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O作OE AC 交AD 于E ,则AE 的长是 A .1.6 B .2.5 C .3 D .3.49、如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( )A .53°B .37°C .47°D .123°第7题图⑴ 1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=? 第11题图……9题10、如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________. 11、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 ( ) A .90° B .60° C .45° D .30°12、如图,△ABC 中,∠ACB=90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF、△BND、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1= S 3<S 2D .S 2=S 3<S 113、如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .125B .65C .245D .不确定14、在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①f(a,b)=(a -,b).如,f(1,3)=(1-,3); ②g(a,b)=(b ,a).如,g(1,3)=(3,1);③h(a,b)=(a -,b -).如,h(1,3)=(1-,3-). 按照以上变换有:f (g (2,3-))=f (3-,2)=(3,2),那么f (h (5,3-))等于 A .(5-,3-) B .(5,3) C .(5,3-) D .(5-,3) 15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 A .2(21)n + B .2(21)n - C .2(2)n + D .2n16.观察下列各式:⑴1=12;⑵2+3+4=32;⑶3+4+5+6+7=52;⑷4+5+6+7+8+9+10=72…A B C EF G M 第12题图 D S 1 S 2S 313题图DC(第10题)CB A11题图A BCDPE第17题图请你根据观察得到的规律判断下列各式正确的是A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=2011217、如图所示,矩形ABCD 中,AB=4,BC=E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个 18、(如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23 D .不能确定19题19、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )1 BC.55 D .5220、如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .140°二、1、如图,在△ABC 中,EF 为△ABC 的中位线,D 为BC 边上一点(不与B 、C 重合),AD 与EF 交于点O ,连接DE 、DF ,要使四边形AEDF 为平行四边形,需要添加条件______________.(只添加一个条件)2、如图:矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是__________.3、若3,5a b aa b-==则3、18题图4、“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得则该队主力队员身高的方差是 厘米4、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm5、如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C=5题三、解答题1、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.2、(1)已知:如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF=DE .求证:AE=CF(2)已知:如图1,AB ∥DE ,AC ∥DF ,BE=CF.求证:AB=DE.(3)如图所示,在梯形ABCD 中,BC ∥AD ,AB=DC ,点M 是AD 的中点.求证:BM=CM .C BACDM第3题图A D CE F GB④题图AC D 第5题图 ABC第3题图1 3、、如图,△ABC 中,∠A=60°,∠B∶∠C=1∶5. 求∠B 的度数.4、(1)如图1,在▱ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF .求证:DE=BF . (2)如图2,在△ABC 中,AB=AC ,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数.5、(1)如图2,点M 为正方形ABCD 对角线BD 上一点,分别连接AM 、CM. 求证:AM=CM.⑵如图所示,△ABC 中,∠C =90°,∠B=30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.6、有公路l 1同侧、l 2异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)ABDM四.1、如图,在梯形ABCD 中,AD∥BC,AD=3,DC=5,M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN∥AB 时,求t 的值. (3)试探究:t 为何值时,∆MNC2、如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动. (1)梯形ABCD 的面积等于 ;(2)当P 点离开D 点的时间为几秒时,PQ AB ∥?(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?3、如图,点C 为线段AB 上任意一点(不与A 、B 两点重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△A CD 和等腰△BCE,CA=CD ,CB=CE ,∠ACD 与∠BCE 都是锐角且∠ACD=∠BCE,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC 与△DMP 的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.C BA B C DE M 第28题图NP6、已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM=DN 时(如图1),易证BM+DN=MN . (1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明; (2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.7、如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题: (1)试证明三角形△ABC 为直角三角形;(2)判断△ABC 和△DEF 是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留痕迹,不写作法与证明).8、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( ) A .(-2,3)B .(2,-3) C .(3,-2)或(-2,3) D .(-2,3)或(2,-3) 9、在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ).A .215-B .215+ C .3 D .2B B M BC N C N MC N M 图1 图2图3 A A A D D DA B C NM P A M N P 1 C P 2 B A C M NP 1 P 2 P2009 …… ……B 第9题图2 第9题图1 第9题图3⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN=∠A .⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N+∠MP 2N=∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N+∠MP 2N+……+∠MP 2009N=____________. (请直接将该小问的答案写在横线上.)。

相关文档
最新文档