济南市商河县2018-2019学年七年级上期末考试数学试题(含答案)
2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
2018-2019学年度第一学期七年级数学上册期末教学质量检测(有答案解析)
2018-2019学年度第一学期期末教学质量检测七年级数学试卷一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣22.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×10123.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣15.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=129.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 .14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= .15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 .16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= .17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= .18.(3分)按照下列程序计算输出值为2018时,输入的x值为 .三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=022.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ (同位角相等,两直线平行)∴∠1=∠ (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ (等量代换)∴EB∥DG ∴∠GDE=∠BEA GD⊥AC(已知)∴ (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ ﹣∠ =90°﹣65°=25°(等式的性质)23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(3)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣2【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1682亿=1.682×1011.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣1【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:a x b2与ab y是同类项,∴x=1,y=2,∴原式=(﹣1)2=1,故选:B.【点评】本题考查同类项的概念,解题的关键是熟练运用同类型的概念,本题属于基础题型.5.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x【分析】根据合并同类项的法则进行计算即可.【解答】解:A、19a2b﹣9ab2,不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2﹣7y2=9y2,故错误;D、2x﹣5x=﹣3x,故正确;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB【分析】根据线段中点的定义可判断.【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.【点评】本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=12【分析】根据解一元一次方程的基本步骤逐一判断即可得.【解答】解:A、由2x+4=3x+1,得2x﹣3x=1﹣4,此选项错误;B、由7(x﹣1)=3(x+3),得7x﹣7=3x+9,此选项错误;C、由0.2x﹣0.3=2﹣1.3x,得2x﹣3=20﹣13x,此选项错误;D、由,得2x﹣2﹣x﹣2=12,此选项正确;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.9.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°【分析】根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD 于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.【解答】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180°﹣100°=80°.故选:B.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)【分析】设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38﹣x).故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°【分析】先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【解答】解:∵∠1=155°,∴∠CDE=180°﹣155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°﹣25°=65°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 18° .【分析】设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.【解答】解:设这个角的度数为x,由题意得,180°﹣x=2(90°﹣x)+18°,解得,x=18°,故答案为:18°.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= 7 .【分析】利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:a=3,b=﹣4,则原式=3﹣(﹣4)=3+4=7,故答案为:7【点评】此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 ﹣3 .【分析】首先求出x﹣3y的值是多少,然后把它代入5+6y﹣2x,求出算式的值为多少即可.【解答】解:∵x﹣3y﹣1=3,∴x﹣3y=4,∴5+6y﹣2x=5﹣2(x﹣3y)=5﹣2×4=5﹣8=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= 1cm 或9cm .【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=5﹣4=1(cm);当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=5+4=9(cm),故答案为:1cm或9cm.【点评】本题考查了两点间的距离,分类讨论是解题关键,以防漏掉.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= 35° .【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.【解答】解:∵∠1=20°,∠ACB=90°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.18.(3分)按照下列程序计算输出值为2018时,输入的x值为 202 .【分析】利用计算程序得到2(5x﹣1)=2018,然后解关于x的方程即可.【解答】解:根据题意得2(5x﹣1)=2018,5x﹣1=1009,所以x=202.故答案为202.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了一元一次方程的应用,三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.【分析】(1)运用乘法的分配律计算可得;(2)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=(﹣)×(﹣12)+×(﹣12)+(﹣)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3=12﹣3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x﹣6=24﹣8x+4,移项合并得:17x=34,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=0【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣6x2+12y+2x2﹣2y=﹣3x2+10y,∵|x+2|+(5y﹣1)2=0,∴x=﹣2,y=,则原式=﹣12+2=﹣10.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ EF∥BC (同位角相等,两直线平行)∴∠1=∠ EBC (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ ∠EBC+∠2=180° (等量代换)∴EB∥DG 同旁内角互补,两直线平行 ∴∠GDE=∠BEA 两直线平行,同位角相等 GD⊥AC(已知)∴ ∠GDE=90° (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ BEA ﹣∠ AEF =90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG (同旁内角互补,两直线平行)∴∠GDE=∠BEA (两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.【点评】本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题是本题的关键.23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【解答】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=32°.【点评】考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【分析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1830<1930,∴按套装打折购买更划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ﹣4或2 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 ﹣2或﹣1或0或1或2或3或4 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB ⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
2018-2019学年第一学期期末测试七年级数学试题及答案
2018—2019学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列算式:(1)(2)--;(2)2- ;(3) 3(2)-;(4)2(2)-.其中运算结果为正数的个数为(A )1 (B )2 (C )3 (D )4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n(C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A )1 (B )2 (C )3 (D )4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A )4 (B )3 (C )2 (D )1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+(B )ab 2(C )ab ba +(D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为.14.若xm-1y 3与2xy n 的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -=. 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+--(2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2.21.(每小题分5分,本小题满分10分)解方程:(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13 还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算:解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+………………………………………………2分=13(0.57.5)(64)44--++………………………………………………4分=3.………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分 =[﹣15+8]×(﹣8)÷7………………………………………………2分 =﹣7×(﹣8)÷7 (3)分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值:解:(1)原式, ………………………3分当时,原式; ………………………5分 (2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程:解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分移项,得215-49+=+x x . …………4分合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分答:这个角的度数为60°. …………8分23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+………………………………………5分 解方程,得4300360x x -=-………………………………………7分240x =………………………………………9分答:甲地和乙地相距240公里. ……………………………10分24.(本小题满分12分)解:(1)∠AOC =40°时, ∠MON =∠MOC -∠CON ………………………………………1分=12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分 =45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
七年级(上)期末数学试题(含答案)
2018—2019学年度七年级第一学期期末考试数 学 试 卷本次考试内容:人教版七年级(上册) 考试时间:120分钟;满分:120分.一、选择题:(每小题2分,共28分)1.数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4B .-4C .4或-4D .2或-2 2.下列说法正确的是( )A .负数没有倒数B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-13.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( )A .6.5×105B .6.5×104C .-6.5×104D .65×104 4.按括号内的要求用四舍五人法取近似数,下列正确的是( ) A .0.0234≈0.0(精确到0.1) B .2.604≈2.60(精确到十分位) C .403.53≈403(精确到个位) D .0.0136≈0.014(精确到0.0001) 5.下列说法中正确的是( ) A .两点之间线段最短B .若两个角的顶点重合,那么这两个角是对顶角C .一条射线把一个角分成两个角,那么这条射线是角的平分线D .过直线外一点有两条直线平行于已知直线6.一只蚂蚁从如图的正方体的顶点A 沿着棱爬向B ,只能经过3条棱, 共有( )种走法.A .8种B .7种C .6种D .5种(6题图)7.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .7 C .1 D .-18.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是( ) A .甲 B .乙 C .丙 D .丁9.关于多项式0.3x 2y -2x 3y 2-7xy 3+1,下列说法错误的是( ) A .这个多项式是五次四项式 B .四次项的系数是7C .常数项是1D .按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y +1 10.下列各项中,去括号正确的是( )A .x 2-2(2x -y +2)=x 2-4x -2y +4B .-3(m +n )-mn =-3m +3n -mnC .-(5x -3y )+4(2xy -y 2)=-5x +3y +8xy -4y 2D .ab -5(-a +3)=ab +5a -311.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .710b a +B .107b a +C .710a b +D .107ab + 12.下列通过移项变形,错误的是( )A .由x +2=2x -7,得x -2x =-7-2B .由x +3=2-4x ,得x +4x =2-3C .由2x -3+x =2x -4,得2x -x -2x =-4+3D .由1-2x =3,得2x =1-3 13.轮船在静水中的速度为20 km/h ,水流速度为4 km/h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km ,则列出的方程正确的是( ) A .(20+4)x +(20-4)x =5 B .20x +4x =5 C .x 20+x 4=5 D .x 20+4+x 20-4=5甲乙丙丁(8题图)14.用大小相同的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .2n +1B .n 2-1C .n 2+2nD .5n -2 二、填空题(每小题3分,共18分)15.已知3x -8与2互为相反数,则x = ___________. 16.如图是棱长为2cm 的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为__________cm 2 .17.若一个角的3倍比这个角补角的2倍还少2°,则这个角等于________. 18.将线段AB 延长至点C ,使BC =31AB ,延长BC 至点D ,使CD =31BC ,延长CD 至点E ,使DE =31CD ,若CE =8 cm ,则AB =________ cm. 19.当x =1时,代数式ax 5+bx 3+cx +1=2019,当x =-1时,ax 5+bx 3+cx +1=___________.20.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解为x =_____________.三、解答题(本大题共74分,解答应写出文字说明、证明过程或演算步骤) 21.计算(每小题4分,共8分)(1)(-12)-5+(-14)-(-39); (2)127-41173⨯⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-.第1个图形第2个图形 第3个图形(16题图)22.化简:(每小题5分,共10分)(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2)14a 2b -0.4ab 2-12a 2b +25ab 2.23.解下列方程:(每小题6分,共12分) (1)2(x -2)-3(4x -1)=9(1-x ); (2)2221625312--=+--xx x .24.(本小题10分)如果方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求式子a -1a 的值.25.(本小题10分)观察下面一列数,探求其规律: 12,-23,34,-45,56,-67,… (1)这一列数属于有理数中的哪一类; (2)写出第7,8,9项的三个数; (3)第2 017个数是什么?(4)如果这一列数无限排列下去,与哪两个数越来越接近?26.(本小题12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见下表:算.(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5 t),共交水费44元,则该户居民3,4月份各用水多少吨?27.(本小题12分)已知O 为直线AB 上一点,∠COE 是直角,OF 平分∠AOE .(1)如图①,若∠COF =34°,则∠BOE =________;若∠COF =n °,则∠BOE =________;∠BOE 与∠COF 的数量关系为________________.(2)当射线OE 绕点O 逆时针旋转到如图②的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF =65°,在∠BOE 的内部是否存在一条射线OD ,使得2∠BOD 与∠AOF 的和等于∠BOE 与∠BOD 的差的一半?若存在,请求出∠BOD 的度数;若不存在,请说明理由.18-19学年七年级(上)期末考试数学答案一、选择题AO BC F E①E FA OBC② ③ E F A OBCD15.2; 16.24; 17.71.6°; 18.54; 19.-2017; 20.131. 三、解答题21.(1)解:原式=-12-5-14+39=-31+39=8;……………………………………4分 (2)解:原式=-73×54×127=-51;……………………………………………4分 22. (1)原式=(3x 2-3x 2+x 2)+(y 2-y 2)+(5y -5y )=x 2. ………………………………5分(2)原式=(14a 2b -12a 2b )+(-0.4a b 2+25ab 2)=-14a 2b . ………………………………5分23.(1)去括号,得2x -4-12x +3=9-9x ,…………………………………………2分 移项合并同类项,得-x =10,两边同时除以-1,得x =-10. ………………………………………………6分 (2)去分母,得2(2x -1)-(5x +2)=3(1-2x )-12,………………………………2分 去括号,移项合并同类项得5x =-5,两边同时除以5,得x =-1. …………………………………………………6分 24.解:x -43-8=-x +22,得x =10. …………………………………………………4分因为方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,所以把x =10代入方程4x -(3a +1)=6x +2a -1,………………………………6分 得4×10-(3a +1)=6×10+2a -1,解得a =-4. ………………………………8分 所以a -1a =-4+14=-334.………………………………………………………10分25.解:(1)分数.………………………………………………………………………2分(2)78,-89,910.………………………………………………………………………4分 (3)2 0172 018. ……………………………………………………………………………7分 (4)1与-1. …………………………………………………………………………10分 26.解:(1)48……………………………………………………………………………3分(2)设该户居民3月份用水x t ,则4月份用水(15-x )t ,其中x <5,15-x >10. ………………4分 根据题意,得2x +2×6+4×4+(15-x -10)×8=44. ……………………………9分 解得x =4,则15-x =11. …………………………………………………………11分 答:该户居民3月份用水4 t ,4月份用水11 t …………………………………12分 27.解:(1)68°;………………………………………………………………………2分2n °;………………………………………………………………………………4分 ∠BOE =2∠COF …………………………………………………………………5分 (2)仍然成立.………………………………………………………………………6分 理由如下:设∠COF =n °,则∠EOF =90°-n °. 所以∠AOE =2∠EOF =180°-2n °.所以∠BOE =180°-(180°-2n °)=2n °,即∠BOE =2∠COF . …………………9分 (3)存在.……………………………………………………………………………10分 由(2)可知,∠BOE =2∠COF =2×65°=130°.因为OF 平分∠AOE ,所以∠AOF =∠EOF =90°-65°=25°. 当2∠BOD +∠AOF =12(∠BOE -∠BOD )时,有2∠BOD +25°=12(130°-∠BOD ).所以∠BOD =16°. ………………………12分。
2018-2019学年七年级(上)期末数学试题(解析版)
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2018—2019学年度上学期期末试题七年级数学
2018—2019学年度上学期期末试题七年级数学(时间:90分钟 总分120分) 2019.1注意事项:1.答题前,请先将自己的姓名、考号、座号在答题纸的相应位置填写清楚;2.选择题答案用2B 铅笔涂在答题纸的答题卡上,非选择题用0.5mm 黑色中性笔直接写在答题纸相应题号上.一、选择题(本大题共12小题,每小题3分,共36分)1.12-的倒数是( ) A . -2 B . 12 C . 12- D . 22.单项式23πn h的系数和次数分别是( )A .13π,1B . 13π,2C . 13π,3D . 13π,43.下面说法中 ①a -一定是负数;②0.5πab 是二次单项式;③倒数等于它本身的数是±1;④若a a =-,则0a <;⑤由2(4)2x --=变形为41x -=-,正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.根据阿里巴巴发布的实时数据,截至2018年11月11日24时,天猫双11全球狂欢节总交易额约2135亿,把这个数据用科学记数法表示为( ) A .8213510⨯元 B .120.213510⨯元 C .82.13510⨯元D .112.13510⨯元5.下列去括号正确的是( )A .2()22a b c a b c --+=--B .2()22a b c a b c --+=+-C .2()2a b c a b c --+=+-D .2()22a b c a b c --+=++ 6.有理数a b c 、、在数轴上的位置如图,化简a b c b +--的结果为( )A .a c +B .a c -C .2a b c --+D .a c -+ 7.下列各式运用等式的性质变形,错误的是( ) A . 若a b -=-,则a b = B . 若a bc c=,则a b = C . 若ac bc =,则a b = D .若22(1)(1)m a m b +=+,则a b =8.已知方程221x x -=+ 的解与方程1(2)2x k x +-=的解相同,则k 的值是( ) A .15 B .15- C . 2 D . -2 9.时钟在2时40分时,时针与分针所夹的角的度数是( ) A .180° B .170° C .160° D .150°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .2216(27)x x =⨯-B .1622(27)x x =⨯-C .21622(27)x x ⨯=⨯-D .22216(27)x x ⨯=⨯-11.已知某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店( )A . 不盈不亏B . 盈利10元C . 亏损10元D . 盈利50元 12.将长方形如图折叠,D 点折叠到D′的位置,已知∠D′FC =76°,则∠EFC =( ) A . 124° B . 108° C . 118° D . 128°二、填空题(本题共1大题,8小题,每小题3分,共24分).13(1)若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k x +=________(2)若关于,x y 的多项式323225mx nxy x xy y ---++中不含三次项,则25m n +的值为(3)如果单项式3m x y 与42m nxy -的和是单项式,那么mn 的值为_______(4)已知8a =,10b =,a b <,则a b -的值为_______(5)如果一个角的补角比这个角的余角的3倍大10°,则这个角的度数是________ (6)若代数式223x x -的值为5,则代数式2469x x -+-的值是_______(7)某项工程,甲单独完成要12天,乙单独完成要18天,如果甲先做了7天后,乙来支援由甲、乙合作完成余下的工程,则乙共做了______天.(8)若1314a =-,2111a a =-,3211a a =-,......,则2019a =________三、解答题(共60分) 14. (本题满分10分)计算: (1)212(4)232-+-÷⨯--. (2) 531()(36)9418-+⨯-15.(本题满分6分) 解方程:523143x x +--=16.(本题满分12分)已知:A +2B=277a ab -,B=2467a ab --.(1)求A . (2)21(2)0,a b ++-=若计算A 的值.17.(本题满分10分) (1)【观察思考】 如图,线段AB 上有两个点C 、D ,图中共有 条线段;(2)【模型构建】如果线段上有m 个点(包括线段的两个端点),则该线段上共有 条线段. 请简要说明结论的正确性; (3)【拓展应用】8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行 场比赛.类比【模型构建】简要说明.18.(本题满分10分)在艺术节中,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套) 参加演出.下面是服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装节省了多少钱? (2)甲、乙两校各有多少名学生准备参加演出? (3)如果甲校有9名同学抽调去参加科技创新比赛不能参加演出,那么你有几种购买方案?通过比较,你该如何购买服装才能最省钱?19.(本题满分12分)已知:点O 为直线AB 上一点,∠COD =90°,射线OE 平分∠AOD . (1)如图①,若∠COE =20°,则∠BOD =________.(2)若将∠COD 绕点O 旋转至图②的位置,试判断∠BOD 和∠COE 的数量关系,并说明理由;(3)若将∠COD 绕点O旋转至图③的位置,∠BOD和∠COE 的数量关系是否发生变化?并请说明理由.(4)若将∠COD 绕点O 旋转至图④的位置,继续探究∠BOD 和∠COE 的数量关系,请直接写出∠BOD 和∠COE 之间的数量关系:_______ .②2018—2019学年度上学期期末学业水平质量调研试题七年级数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)13(1)12 (2)-1 (3)32(4)-2或-18 (5)50° (6)-19 (7)3 (8)43三、解答题(共60分) 14.(本题满分10分)(1)4138=---=-原式………………5分 (2)原式=5 ………………10分 15.(本题满分6分)3x = ……………5分16.(本题满分12分) (1)2514A a ab =-++ ……………6分(2)21(2)0,a b ++-=若则1,2a b =-=,所以A =3 ……………12分17.(本题满分10分)解:(1)以点A 为左端点向右的线段有:线段AB 、AC 、AD ,以点C 为左端点向右的线段有线段CD 、CB ,以点D 为左端点的线段有线段DB ,共有3+2+1=6条线段. ……………2分 (2)(1)2m m -……………5分 理由:设线段上有m 个点,该线段上共有线段x 条,则x =(m -1)+(m -2)+(m -3)+…+3+2+1, ∴倒序排列有x =1+2+3+…+(m -3)+(m -2)+(m -1),∴2x =(1)m m m m m -+++⋅⋅⋅+=m (m -1),∴x =(1)2m m - ……………7分(此题酌情赋分) (3)28 ……………(9分)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数, 因此一共要进行8(81)2⨯-=28场比赛 ……………(10分) 18.(本题满分10分) (1)解: 若甲、乙两校联合起来购买服装需40×92=3680(元)即比各自购买服装节省了:5000-3680=1320(元)……………(2分)(2)解:∵50×92=4600<5000,∴甲校人数多于45,乙校人数少于46………(3分)设准备参加演出的学生中甲校有x人,则乙校有(92-x)人.依题意得:50 x+60×(92-x) =5000.解得:x=52.经检验x=52符合题意.∴92-x=40.故准备参加演出的学生中甲校有52人,乙校有40人……………(7分)(3)解:方案一:各自购买服装需(52-9)×60+40×60=4980(元);方案二:联合购买服装需(52-9+40)×50=4150(元);方案三:联合购买91套服装需91×40=3640(元);综上所述:∵4980>4150>3640故甲、乙两校联合起来按40元一次购买91套服装最省钱……………(10分)19.(本题满分12分)(1)40°……………(2分)(2)解:∠BOD=2∠COE.……………(3分)理由如下:∵∠COD=90°,∴∠DOE=90°﹣∠COE,∵OE平分∠AOD,∴∠AOE=∠DOE=90°﹣∠COE,∴∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,∵A、O、B在同一直线上,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣(90°﹣2∠COE)=2∠COE,即:∠BOD=2∠COE.……………(6分)(3)解:∠BOD=2∠COE……………(7分)理由如下;∵OE平分∠AOD,∴∠AOD=2∠EOD,∵∠BOD+∠AOD=180°,∴∠BOD+2∠EOD=180°.∵∠COD=90°,∴∠COE+∠EOD=90°,∴2∠COE+2∠EOD=180°,∴∠BOD=2∠COE;……………(10分)(4)∠BOD+2∠COE=360°……………(12分)。
2018—2019学年度第一学期7年级数学期末试题(含答案)
2018—2019学年度第一学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作A. -6℃B. -3℃C. 0℃ D .+3℃ 2.下列各组数中,互为相反数的是A .2和-2B .2和12C .2和12-D .12和-2 3.三个数a ,b ,c 在数轴上的位置如图所示,下列结论不正确的是A. a +b <0B. b +c <0C. b -a >0 D .c -a >0 4.下列说法正确的是A. 23xy -的系数是-2B. 2ab π-的系数是-1,次数是4(第3题图)C. 2x y +是多项式D.31x xy --的常数项是15.下列式子中,互为同类项的是A.2xy -与2y xB.2218x y 与229x y +C. a +b 与a -bD.32a b -与33ab 6.下列方程中是一元一次方程的是A.213x y -=B. 756(1)x x +=-C.21(1)12x x +-=D.12x x-= 7.关于x 的方程(3)10k x --=的解是x =﹣1,那么k 的值是A. k =2B. k =3C. k =-4 D .k =-28.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则永辉超市出售这两台空调会A.不赔不赚B.亏20元C.赚20元D.赚90元9.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是A. 三棱锥B.球C. 圆柱 D 圆锥 10.观察图形,下列说法正确的个数是(1)直线BA 和直线AB 是同一条直线(2)射线AC 和射线AD 是同一条射线(3)AB +BD >AD(4)三条直线两两相交时,一定有三个交点A.1个B. 2个C. 3个D. 4个11.如图,O 为我国南海某人造海岛,某商船在A 的位置,∠1=40°,下列说法正确的是A.商船在海岛的北偏西50°方向B.商船在海岛的北偏西140°方向C.商船在海岛的东偏南40°方向D.商船在海岛的南偏东40°方向 12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中正确的是①90°-∠β; ②∠α-90°; ③180°-∠α; ④12(∠α﹣∠β). A. ①②③④ B. ①②③C. ①②④ D .①②(第10题图)(第11题图)第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.有理数-0.2的倒数是 .14.若一个有理数的绝对值是18,则这个数是 . 15.水星和太阳之间的距离约为57900000km ,这个数用科学记数法表示为 km .16.一个多项式加上-x 2-3x 得5x 2-4x -3,则这个多项式为 .17.李强在解方程5623x x -=时,他是这样做的:同桌张明对李强说:“你做错了,第一步应该去分母”,但李强认为自己没有做错.你认为李强做 (填“对”或“错”)了,他第一步变形的依据是 .18.一张桌子由一张桌面和四条桌腿拼装而成,若做一张桌面需要木材0.03m 3,做一条桌腿需要木材0.002m 3.现在做一批桌子恰好用去木材19m 3,求这批桌子有多少张?如果设这批桌子有x 张,那么根据题意,列得方程为 .19.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔4米栽1棵,则树苗缺21棵;如果每隔5米栽1棵,则树苗正好用完.则原有树苗 棵.20.如图,O 是线段AB 的中点,线段AB 上有一个点C 使得AC =8,CB =6,那么OC = .21.已知∠AOB =55°,∠BOC =25°,则∠AOC = .22.对于一组数:2,-4,8,-16,32,…;按它的排列规律,这组数的第2019个数是 .(第20题图)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)()()1321372142-+÷-; (2)()()231212*********-÷--⨯+⨯-. 24.(1)解方程:2151234x x +--=-; (2如果一个月累计通话t 分钟时两种计费方式所付话费一样,那么通话时间t 等于多少分钟?(列方程解题)25.(1)x 为何值时,代数式().3102x --的值比代数式.105x x +-的值大3? (2)如图,已知B ,C 两点把线段AD 从左至右依次分成2∶4∶3三部分,M 是AD 的中点,BM =5,求线段MC 的长.26.已知代数式22321A x xy y =++-,2332B x xy x =-+-. (1)当x =-1,y =2时,求代数式32A B -的值;(2)若代数式32A B -的值与x 的取值无关,求y 的值.27.已知A 车的平均速度为60km /h ,B 车的平均速度为A 车的1.5倍,若两车同时从甲地驶向乙地,则B 车比A 车提前45分钟到达乙地. (1)求甲乙两地间的路程是多少km ?(2)若A 车从甲地、B 车从乙地分别以各自的平均速度同时相向而行,问经过多少时间两车之间的路程相距15km ?28.如图,已知OD 是∠AOB 的平分线,∠AOC =2∠BOC .(1)∠AOB =120°,求∠COD 的度数; (2)若∠COD =36°,则∠AOB = °;(直接写出结果,不需要写出解答过程)(3)求∠BOC 与∠COD 的有怎样的数量关系?并说明理由.(第28题图) (第25题图)2018—2019学年第一学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.–5;14.18或18-;15.75.7910⨯; 16.263x x--;17.对;合并同类项18.0.03x+0.002×4x=19;19.85;20. 1;21.80°或30°;22.20192.三、解答题:(共74分)23.解:(1)原式=……………………………1分==﹣14+18﹣4 ………………………………4分=0.………………………………………5分(2)原式=﹣9÷3﹣(6﹣8)+ ×(﹣)…………………8分=﹣3+2﹣………………………………………9分=213-. ………………………………………10分24.(1)解:去分母,得﹣4(2x+1)=24﹣3(5x﹣1)………………1分去括号,得﹣8x﹣4=24﹣15x+3 …………………2分移项,得﹣8x+15x=24+3+4 …………………3分合并同类项,得7x=31 …………………4分系数化为1,得x=……………………5分(2)解:根据题意,得30+0.1t=0.3t………………………9分解得 t =150 ……………………11分答:当t 等于150分钟时,两种方式所付话费是一样的. …12分25. 解:(1)由题意,得 3(1)130.20.5x x x -+-=-+ ……………………1分 去分母,得 15(1)2(1)x x x --=+-+……………………2分 去括号,得 ﹣15x +15=2x +2﹣x +3 ……………………3分移项,得 ﹣15x -2x +x =2+3-15 ……………………4分合并同类项,得 1610x -=- ………………………5分系数化为1,得 x =58……………………6分 (2)由题意设AB =2k ,BC =4k ,CD =3k ,则AD =9k , …………………………7分 ∵M 是AD 中点,∴AM =4.5k , …………………………9分 ∴BM =AM ﹣AB =2.5k =5, …………………………10分 ∴k =2, …………………………11分∴CM =DN ﹣CD =4.5k ﹣3k =1.5k =3.…………………………12分 26. 解:(1)3A ﹣2B =()232321x xy y ++-()23232x xy x --+- ……………1分 =6x 2+9xy +6y ﹣3﹣6x 2+2xy ﹣2x +3 ………………………5分=11xy +6y ﹣2x …………………………6分 当x =﹣1,y =2时,3A ﹣2B =11xy +6y ﹣2x=11×(﹣1)×2+6×2﹣2×(﹣1) ……………7分=﹣8; …………………………………8分(2)由(1)可知3A ﹣2B =11xy +6y ﹣2x =(11y ﹣2)x +2y ……………………10分若3A ﹣2B 的值与x 的取值无关,则11y ﹣2=0,…………12分 解得 211y = . ………………………………13分 27.(1)解:设甲乙两地间的路程是xkm ,则456060 1.560x x -=⨯ …………………………………3分 解得 x =135. …………………………………5分 答:甲乙两地间的路程是135 km ;…………………………………6分(2)解:设经过th 两车相距15km ,根据题意,需要分两种情况①当相遇前两车相距15km 时,60t +1.5×60t +15=135,…………………………………8分 解得t =; …………………………………9分 ②当相遇后两车相距15km 时,60t +1.5×60t ﹣15=135,………………………………11分 解得t =1. ………………………………12分 答:经过h 或1h 两车相距15km .………………………………13分28. 解:(1)∵∠AOB =120°,∠AOC =2∠BOC ,∴∠BOC =∠AOB =40°, ………………………………2分 ∵OD 平分∠AOB ,∴∠BOD =∠AOB =60°, ………………………………4分 ∴∠COD =60°﹣40°=20°;………………………………5分(2)∠AOB = 216 °;…………………7分(3)∠BOC =2∠COD ;…………………9分理由如下:∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,……………………………10分∵OD平分∠AOB,∴∠BOD=∠AOB=∠BOC,……………………………12分∴∠COD=∠BOD﹣∠BOC………………………………13分=∠BOC﹣∠BOC=∠BOC,即∠BOC=2∠COD.…………………………………14分。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
山东省济南市2018-2019学年七年级数学上册期末检测考试题
2018-20佃学年第一学期七年级期末测试(2018.1)数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. - 6的绝对值是()A. 6B. - 6C. ±6D. 16【考点】实数的相关概念【试题解析】非负数的绝对值是它本身,负数的绝对值是它的相反数,所以选A【答案】A2•新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109 x 105B.1.09X 104C.1.09X 103D.109X 102【考点】科学记数法和近似数、有效数字【试题解析】In I:_■ |II:【答案】B3.计算- 32的结果是()A. 9B.-9C. 6 D .-6【考点】幕的运算【试题解析】「二i【答案】B4.如图是每个面上都有一个汉字的正方体的一种展开图, 那么在正方体的表面与“生”相对应的A .数B .学C.活 D .的【考点】立体图形的展开与折叠【试题解析】把平面展开图折回正方体,可以得知,与“生”相对应的是“学”,选B【答案】B5. 某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查. 你认为抽样比较合理的是()A. 在公园调查了1000名老年人的健康状况B. 在医院调查了1000名老年人的健康状况C. 调查了10名老年邻居的健康状况D. 利用派出所的户籍网随机调查了该地区10%勺老年人的健康状况【考点】数据的收集与整理【试题解析】根据抽样调查的原则,就是尽量的让选取的样本具有普遍代表性,所以选D【答案】DA . 3x 2x2二5x3 B. 2a b -a b = 14.如图是每个面上都有一个汉字的正方体的一种展开图, 那么在正方体的表面与“生”相6. 下面合并同类项正确的是()A . 3x 2x2二5x3 B. 2a b -a b = 1【考点】合并同类项【试题解析】同类项是指所含字母相同,相同字母的次数相等,然后 合并同类项是系数相加减,次数和字母不变,选 D 【答案】D7.如图,已知点 0在直线AB 上,CO 丄DO 于点O ,若/ 1 = 145 ,则/ 3的度数为()【考点】角及角平分线 【试题解析】•••/ 仁 145°,/.Z 2=180° -145° =35 °, T CO 丄 DO , /.z COD=90 ° ,/.Z 3=90° -Z 2=90° -35° =55°【答案】C8.下列说法中错误的是( )22A. x 2y 的系数是B . 0是单项式3 32C. 一 xy 的次数是1D . - x 是一次单项式3C. -ab -ab = 0D 22小._ xy xy 0C . 55°D . 65°45【考点】整式的有关概念【试题解析】单项式的次数是指所以字母次数的和,所以C选项的次数2,选C【答案】C9. 方程2▲二x,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是()3A. 2 B . 3 C . 4 D . 6【考点】一次方程及其解法【试题解析】设盖住的数为a,根据题意得:2+a=3x2+a=6解得:a=4【答案】C10. 如果A B C三点在同一直线上,且线段AB=6cm BC=4cm 若M,N分别为AB BC的中点,那么M,N两点之间的距离为()A. 5cm B . 1cm C. 5 或1cm D.无法确定【考点】线段、射线与直线【试题解析】①C点在线段AB中间那么MN=1cm②C点在B点的右侧那么MN=5cm所以选C【答案】C11. A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A. 2(x - 1)+3x=13B. 2 (x+1)+3x=13C. 2x+3 (x+1)=13 D . 2x+3 (x - 1)=13【考点】一次方程(组)的应用【试题解析】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1 )元,根据小峰买了2瓶A 种饮料和3瓶B种饮料,一共花了13元,可得方程为:2 (x-1)+3x=13.选A【答案】A12. 从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形•则m n的值分别为()A. 4, 3B. 3, 3 C . 3, 4 D. 4, 4【考点】多边形及其性质【试题解析】对角线的数量=6-3=3条;分成的三角形的数量为n-2=4个.故选C.【答案】C13 .钟表在& 25时,时针与分针的夹角是()度.A. 101.5B. 102.5C. 120D. 125【考点】角及角平分线【试题解析】T时针在钟面上每分钟转0. 5°,分针每分钟转6°, 钟表上8 25时,时针与分针的夹角可以看成时针转过8时0. 52 2 2I n I1+8二?2A. (2n+1)B.(2n-1 )C.(n+2)D.n° X 25=12. 5°,分针在数字5上.•.•钟表12个数字,每相邻两个数字之间的夹角为 30°,8 25时分针与时针的夹角 3X 30° +12. 5° =102. 5°.故选B . 【答案】B14 .某商品的标价为132元,若以9折出售仍可获利10%则此商品的进价为( )A. 88 元B. 98 元 C . 108 元D. 118 元【考点】一次方程(组)的应用 【试题解析】设进价为X 元,则依题意可列方程:132X 90%-x=10%?x , 解得:x=108.答:此商品的进价为108元. 故选C . 【答案】C15.观察下列图形及图形所对应的算式, 整数)的结果为()【考点】数与形结合的规律 【试题解析】根据你发现的规律计算 1+8+16+24+…+8n (n 是正1+8+16=?(3)1+8+16+24=?图(1): 1+8=9= (2X 1 + 1) 2;图(2):1+8+16=25= (2X 2+1) 2;图(3):1+8+16+24=49= (3X 2+1) 2;那么图(n): 1+8+16+24+…+8n= (2n+1)2【答案】A二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16. _____________________ 比较大小:30.15°30° 15’(用>、二、v填空)【考点】角及角平分线【试题解析】30. 15° =30° 9',二30. 15°v 30° 15’【答案】v17. 若代数式-3a2><」和3a“是同类项,则x= .4【考点】合并同类项【试题解析】2x-仁x+2解得:x=3【答案】318. ____________________________________________ 若m-2x m|J =5是一元一次方程,则m= _____________________________【考点】一次方程及其解法【试题解析】网-1 二1, 解得;m-±2 m-2^0 所以心【答案】-219 .如图,将一副三角尺的直角顶点重合,摆放在桌面上,若/ BOC=35 , 则/ AOD ________________ °.【考点】角的余角和补角【试题解析I:/ AOB= / COD=90 °,Z BOC=35 ° ,/.Z BOD= / COD- / BOC=90 °-35°=55°,/./ AOD= Z AOB+ Z BOD=90°+55°=145°.故【答案】为:145.【答案】14520 .已知3x+1和2x+4互为相反数,则x= ______________ .【考点】一次方程(组)的应用【试题解析】3x+1=-2x-4解得:x=-1【答案】x=-121•小明与小刚规定了一种新运算△:,则a^b = 3a-2b.小明计算出2^5= -4,请你帮小刚计算2^ (-5) = ________________ .【考点】实数运算【试题解析】2^( -5) =3X 2-2 X (-5)=6+10=16【答案】16三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
2018-2019学年七年级(上)数学期末期末检测试题-带答案
2018-2019学年七年级(上)数学期末期末检测试题一、选择题(本大题共9小题,共27.0分) 1. 下列各式是等式的是()A. a +b >CB. 4+(-3)=1C. x +5 8D. 6-x <7 2. 7的相反数是( )A. 7B. -7C. +7或-7D. 0和7 3. (-1)2011等于( )A. -1B. 1C. 2011D. -20114. 根据下列条形统计图,下面回答正确的是 ( )A. 步行人数为50人B. 步行与骑自行车的人数和比坐公共汽车的人要少C. 坐公共汽车的人占总数的50%D. 步行人最少只有90人5. 下列运算正确的是( )A. -3-2=-1B. -32=8C. 2xy +xy =3xyD. 2x +x 2=3x 3 6. 如图,∠AOB =180°,OD 、OE 分别是∠AOC 和∠BOC 的平分线,则与OD 垂直的射线是( )A. OAB. OCC. OED.OB7. 下列方程的变形正确的个数有( )(1)由3+x =5,得x =5+3;(2)由7x =-4,得x =-; (3)由y =0得y =2;(4)由3=x -2得x =-2-3. A. 1个 B. 2个 C. 3个 D. 4个 8. 一个两位数,个位上是x ,十位上是y ,用代数式表示这个两位数( )A. xyB. yxC. 10x +yD. 10y +x 9. 将591000000用科学记数法表示应为( )A. 0.591×109B. 59.1×107C. 5.91×107D. 5.91×108 二、填空题(本大题共5小题,共19.0分)10. 在数轴上距-1.5有2个单位长度的点表示的数是______.11. 有4名同学,他们得到的苹果数恰好是一个比一个多1个,而他们的苹果数的乘积是5040,那么他们得到的苹果数之和是______.12. 若a m -2b n +7与-3a 4b 4是同类项,则m +n =______.13. 已知2+=22×,3+=32×,4+=42×,…10+=102×(a ,b 为正整数),则b -a =______.14.若把年某市初中毕业、升学考试各学科满分值比例绘成扇形统计图,则数学学科所在的扇形的圆心角是______度.三、计算题(本大题共1小题,共21.0分)15. (1)计算:-23+[18-(-3)×2]÷4 (2)化简求值:2(3x 2-5y )-[-3(x 2-3y )],其中x =,y =-2(3)解方程-x =.四、解答题(本大题共3小题,共26.0分)16. 某地电话拨号入网有两种收费方式,用户可任选其一:A .记时制:3元/时;B .包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x 小时,请写出两种收费方式下该用户应该支付的费用; (2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算.17. 已知关于x 的方程mx +2=2(m -x )的解满足|x -|-1=0,则m 的值.18. 甲、乙两车同时从A 城去B 城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B 城.问A 、B 两城间的路程有多少千米?第2页,共5页答案和解析1.【答案】B【解析】解:用等号连接的式子叫等式,用<、>、等符号连接的式子叫做不等式,所以B 正确. 故选B.本题考查的是等式的定义.2.【答案】B【解析】解:7的相反数是-7. 故选:B .只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数. 3.【答案】A【解析】解:(-1)2011=-1.故选:A .所求式子表示2011个-1的乘积,计算即可得到结果.此题考查了有理数的乘方,弄清-1的偶次幂为1,奇次幂为-1是解本题的关键. 4.【答案】C【解析】解:A 、从图中可以发现:步行人数最少,但人数是60人,不是50人; B 、步行与骑自行车的人数和与坐公共汽车的人相等,都是150人; C 、坐公共汽车的人数占总数的150÷(60+90+150)=50%; D 、从图中可以发现:步行人数是60人; 故选:C .从图中可获取步行人数、骑自行车的人数、做公共汽车的人数,进而求得学生的总人数,以及步行人数、坐公共汽车的人数占总数的比值.再进行判断.本题考查了条形统计图,条形统计图能清楚地表示各个项目的具体数目.能够读懂统计图,根据图中的数据进行正确计算. 5.【答案】C【解析】解:(A )-3-2=-5,故A 不正确,(B )-32=-9,故B 不正确,(D )2x 与x 2不是同类项,故D 不正确,故选:C .根据有理数运算法则以及合并同类项法则即可作出判断.本题考查学生的计算能力,解题的关键是熟练运用有理数运算法则以及合并同类项法则进行计算,本题属于基础题型. 6.【答案】C【解析】解:∵∠AOC+∠BOC=∠AOB=180°, OD ,OE 分别是∠AOC 和∠BOC 的平分线, ∴∠DOC+∠COE=(∠AOC+∠BOC )=90°. ∴与OD 垂直的射线是OE . 故选:C .由图可知,∠AOC 和∠BOC 是邻补角,它们的角平分线OD ,OE 相互垂直.此题主要考查了垂线的定义即:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直. 7.【答案】A【解析】解:(1)由3+x=5;得x=5+3不正确,因为移项时,符号没有改变; (2)由7x=-4,得x=-正确;(3)由y=0得y=2不正确,系数化为1时,出现错误; (4)由3=x-2得x=-2-3不正确,因为移项时,符号没有改变. 故选:A .此题主要考查解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1等,移项,系数化为1的依据是等式的性质.方程的变形包括去分母,去括号,移项,合并同类项,系数化为1等,要注意移项时符号的变化,系数化为1时,方程两端都除以未知数的系数.8.【答案】D【解析】解:个位上是x,十位上是y,则这个两位数是10y+x.故选:D.两位数的表示方法为:十位数字×10+个位数字,直接根据此公式表示即可.本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,即两位数的表示方法为:十位数字×10+个位数字.9.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:把数591000000用科学记数法表示为:5.91×108,故选:D.10.【答案】-3.5或0.5【解析】【分析】根据数轴的特点进行解答即可.本题考查的是数轴的特点,即在数轴上到原点的距离相等的数有两个,这两个数互为相反数.【解答】解:设在数轴上距离-1两个单位长度的点表示的数是x,则|x-(-1.5)|=2,解得x=0.5或x=-3.5.故答案为-3.5或0.5.11.【答案】34【解析】解:设第一名同学有x个苹果,依题意得:x(x+1)(x+2)(x+3)=5040解之得:x=7则他们得到的苹果数之和是7+8+9+10=34.依题意即是四个连续自然数的积是5040,求其和.设其中一个为x,易得方程求解.本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.12.【答案】3【解析】解:∵a m-2b n+7与-3a4b4是同类项,∴m-2=4,n+7=4,解得:m=6,n=-3,则m+n=6+(-3)=3.故答案为:3.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m-2=4,n+7=4,求出m,n 的值,再代入代数式计算即可.本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是关键,①所含字母相同,②相同字母的指数相同.13.【答案】89【解析】解:由题意可得,a=10,b=102-1=99,∴b-a=99-10=89,故答案为:89.根据题目中式子的特点,可得n+(n为正整数),从而可以得到a、b的值,进而第4页,共5页求得b-a 的值.本题考查分式的混合运算、数字的变化类,解答本题的关键是发现题目中式子的变化特点,求出a 、b 的值. 14.【答案】72【解析】解:根据表格,得总分=150+150+150+70+180+50=750. 所以数学所在的扇形的圆心角=×360°=72°.故答案为:72°.首先计算总分,再根据数学所在的扇形的圆心角=×360°,进行计算.本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.15.【答案】解:(1)-23+[18-(-3)×2]÷4 =-8+(18+6)÷4 =-8+6 =-2;(2)2(3x 2-5y )-[-3(x 2-3y )] =6x 2-10y +3x 2-9y =9x 2-19y ,当x =,y =-2时,原式=1+38=39; (3)-x =,去分母得2(x -6)-8x =4(x +5), 去括号得2x -12-8x =4x +20, 移项得 2x -8x -4x =12+20, 合并同类项得-10x =32, 系数化为1得x =-3.2. 【解析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据乘法分配律先去括号再合并同类项化简,然后代入求值. (3)此题先去分母,再去括号,然后移项合并同类项、系数化为1求解.此题考查的知识点是有理数的混合运算、解一元一次方程及整式的加减-化简求值.其关键是分析题意,按要求及解题方法进行解答.16.【答案】解:(1)采用记时制应付的费用为3x +1.2x =4.2x (元),采用包月制应付的费用为(50+1.2x )元;(2)若一个月内上网的时间为25小时,则计时制应付的费用为4.2×25=105(元), 包月制应付的费用为50+1.2×25=80(元). ∵105>80 ∴包月制合算. 【解析】(1)根据第一种是费用=每小时的费用×时间+通讯费,第二种的费用=包月费+通讯费,列出代数式即可.(2)将25小时分别代入(1)计算出费用的大小,再进行比较就可以得出结论.本题考查了列代数式,表示费用的时候注意单位的统一.解决问题的关键是读懂题意,找到所求的量的等量关系. 17.【答案】解:先由|x -|-1=0,得出x =或-;当x =-时,原方程为-m +2=2(m +),解得m =; 当x =时,原方程为m +2=2(m -),解得m =10, 综上m 的值为或10. 【解析】求出|x-|-1=0的解,然后把求出的解代入方程mx+2=2(m-x ),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.解答本题时要格外注意,|x-|-1=0的解有两个.解出x 的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.18.【答案】解:设甲到达B 城需x 半小时,根据题意得35x =40(x -0.5) 解得x =4A、B两城间的路程为35×4=140(千米)答:A、B两城间的路程为140千米.【解析】相等关系:甲车行驶的时间-乙车行驶的时间=0.5.可设路程表示时间,列方程求解.本题主要考查了一元一次方程的应用,在解题时要能根据题意得出等量关系,列出方程是本题的关键.。
2018-2019学年度七年级上数学期末试题(含答案)
(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。
2018-2019学年七年级(上)期末数学试卷含答案解析
2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。
2018-2019学年度第一学期七年级数学期末考试试卷(解析版)
2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年度上学期质量监测七年级数学试卷一、选择题(本题共10道小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 中国是世界上最早认识和应用负数的国家,比西方早一千多年.在我国古代著名的数学专著《九章算术》中,首次引入负数.若气温为零上8C 记为8C +,则2C -表示气温为( )A. 零上2CB. 零下2CC. 零上6CD. 零下6C【答案】B【解析】【分析】正数和负数可以表示相反意义的量,正数表示零上,我们就用负数表示零下即可.【详解】零上8C 记为8C +,2C -表示气温为零下2C故选B【点睛】本题考查相反意义的量,属于基础题,熟练掌握用正负数表示具有相反意义的量是解答本题的关键.2. 2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,会上交易采购成果丰硕,按一年计,累计意向成交578.3亿美元.578.3亿用科学记数法表示应为( )A. 8578.310⨯B. 957.8310⨯C. 105.78310⨯D. 110.578310⨯ 【答案】C【解析】【分析】先把578.3亿改写成数字形式,再利用科学记数法表示即可.【详解】578.3亿:57 830 000 000;用科学记数法表示为105.78310⨯故选C【点睛】用科学记数法表示一个数,是把一个数写成10n a ⨯形式,其中1||10a ≤<,n 为整数.3. 将下列图形绕着直线旋转一周正好得到如图所示的图形的是( )A. B. C. D.【答案】A【解析】【分析】根据面动成体,所得图形是两个圆柱的组合体进行分析即可得.【详解】A 选项的图形绕直线旋转一周可得到如图所示的几何体,故符合题意;B 选项的图形绕直线旋转一周可得的几何体下面是一个大的圆柱体,上面是一个小的圆柱体,但小的圆柱体中间是空的,故不符合题意;C 选项的图形绕直线旋转一周得到的几何体中间是一个大的圆柱,上下各得一个中间空的小的圆柱,故不符合题意;D 选项的图形绕直线旋转一周得到的几何体中间是一个大的圆柱,上下各有一个小的圆柱,故不符合题意, 故选A.【点睛】本题考查了点、线、面、体,熟知常见平面图形旋转得到的立体图形是解题的关键.注意要对组合图形进行分解.4. 大鹏做了以下四道题:①()3327--=-;②()2213-+-=;③3366410a a a +=;④358a b ab +=,请你帮他检查一下,他一共做对了( )A. 1题B. 2题C. 3题D. 4题 【答案】A【解析】【分析】根据有理数及整式的运算法则分析即可.【详解】①()3327--=,故①错误; ②()2213-+-=,故②正确;③3336410a a a +=,故③错误;④35a b +不能合并同类项,故④错误;所以正确的是②,共1个故选A【点睛】本题考点涉及有理数的乘方、加减以及整式合并同类项等知识点,熟练掌握相关运算法则是解答本题的关键.5. 下列调查中,适合采用抽样调查的是()A. 对乘坐飞机的旅客是否携带违禁物品的调查B. 对辽阳市某中学某班学生进行“创建全国文明城市”知晓率的调查C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查D. 对一批LED节能灯使用寿命的调查【答案】D【解析】【分析】对于精确度要求高的调查,事关重大的调查往往选用普查,逐个分析选项即可.【详解】A. 对乘坐飞机的旅客是否携带违禁物品的调查,事关重大,必须普查;B. 对辽阳市某中学某班学生进行“创建全国文明城市”知晓率的调查,调查范围小,适合普查;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,要求精确的调查,必须普查;D. 对一批LED节能灯使用寿命的调查,适合抽样调查;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查;普查的意义或价值不大,应选择抽样调查;对于精确度要求高的调查、事关重大的调查,往往选用普查,6. 如图,由5个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A. 主视图不变,左视图改变B. 主视图不变,左视图不变C. 主视图改变,左视图不变D. 主视图改变,左视图改变【答案】C【解析】【分析】分别得到将正方体①移走前后的左视图和主视图,依此即可作出判断. 【详解】所以主视图改变,左视图不变故选C【点睛】本题考查简单组合体的三视图,熟练掌握简单组合体三视图以及立体思维是解答本题的关键. 7. 小亮在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为:527x x -=+■,他翻看答案,解为5x =-,请你帮他补出这个常数是( ) A. 32 B. 8 C. 72 D. 12【答案】B【解析】【分析】将5x =-代入被污染的方程,即可求出污染处的常数.【详解】将5x =-代入被污染的方程,得:5(5)27(5)⨯--=⨯-+■25235--=-+■2735-+=■解得:■=8故选B【点睛】本题考查了解一元一次方程,熟练掌握一元一次方程求解是解答本题关键.8. 下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线②角的两边越长,角的度数越大③多项式5ab -是一次二项式 ④232a b π的系数是32 A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】根据线段的性质、角的性质、多项式的次数以及单项式的系数等知识点分析即可.【详解】①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线,正确; ②角的大小与角的两边长度没关系,所以②错误;③多项式5ab -是二次二项式,所以③错误; ④232a b π的系数是32π,所以④错误; 不正确的是②③④,共3个故选C【点睛】本题考点涉及线段的性质、角的性质、多项式的次数以及单项式的系数等知识点,属于多章节综合题,难度系数较低,熟练掌握相关知识点是解答本题的关键.9. 某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A. ()130%90%85x x +⋅=-B. ()130%90%85x x +⋅=+C. ()130%90%85x x +⋅=-D. ()130%90%85x x +⋅=+【答案】B【解析】分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键. 10. 如图,将两块三角尺AOB 与COD 的直角顶点O 重合在一起,若∠AOD=4∠BOC ,OE 为∠BOC 的平分线,则∠DOE 的度数为( )A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】 先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC ,求出∠BOC 的度数,再根据角平分线求出∠COE 的度数,利用∠DOE=∠COD-∠COE 即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC ,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°, ∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC ,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为 ∠BOC 的平分线,∴∠COE=12∠BOC=18°, ∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A .【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.二、填空题(本题共10道小题,每小题2分,共20分)11. 单项式2313xy z π-的次数是______.【答案】6【解析】【分析】根据“单项式的次数等于单项式各个字母的指数和”分析即可.【详解】单项式的次数:单项式各个字母的指数和,所以单项式2313xy z π-的次数是1+2+3=6注意x 的次数是1,π是系数;故答案为6【点睛】本题考查了单项式的次数,注意π不是字母,是系数;字母没有指数,代表指数是1,不要漏掉. 12. 如图是一个正方体的展开图,则“数”字的对面的字是______.【答案】养【解析】【分析】利用正方体展开图的特点解答即可.【详解】由正方体的展开图可知:正方体中,“数”字与“养”字相对;“学”字与“核”字相对;“心”字与“素”字相对;故答案养【点睛】本题考查正方体展开图,相对的面之间规律:“相隔”或“Z”,熟练掌握该规律,即可轻松解答此类问题.13. 单项式1325m n x y ---与24yx 的和仍是单项式,则n m =______. 【答案】9【解析】【分析】根据题意,1325m n x y ---与24yx 是同类项,根据同类项特征,求出m 、n 的值,进而求出n m 的值即可.【详解】∵单项式1325m n x y ---与24yx 的和仍是单项式 ∴1325m n x y ---与24yx 是同类项, 12,31m n ∴-=-=解得:3,2m n ==239n m ∴==故答案为9【点睛】本题考查了整式中同类项的变式题型,熟练掌握同类项的特征是解答本题的关键.14. 若()220.50a b -++=,则()2019ab =______.【答案】﹣1【解析】【分析】首先利用偶次方的性质和绝对值的性质得出a b 、的值,再利用有理数的乘方运算法则计算得出答案.【详解】∵()220.50a b -++= 2|2|0,(0.5)0a b -≥+≥∴20,0.50a b -=+=解得:2,0.5a b ==-()[]2019201920192(0.5)(1)1ab =⨯-=-=-故答案为-1【点睛】本题考查了偶次方和绝对值的非负性以及有理数的乘方运算,为典型题.15. 如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.【答案】﹣2【解析】【分析】根据图示,点A 和点C 之间的距离是6,据此求出点C 表示的数,即可求得点B 表示的数.【详解】∵点A 和点C 所表示的两个数互为相反数,点A 和点C 之间的距离是6∴点C 表示的数是﹣3,∵点B 与点C 之间的距离是1,且点B 在点C 右侧,∴点B 表示的数是﹣2故答案为﹣2【点睛】本题为考查数轴和相反数的综合题,稍有难度,根据题意认真分析,熟练掌握数轴和相反数的相关知识点是解答本题的关键.16. 如图,C 、D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,10AD cm =,则线段DE =______cm .【答案】1cm【解析】【分析】根据C 、D 两点将线段AB 分成2:3:4三部分,设2,3,4AC x CD x DB x ===,然后表示出5AD x =,再根据10AD cm =,求得x 的值,进而求出AB 的长;再计算出AE 的长,然后利用AD ﹣AE 可得DE 长.【详解】解:设2,3,4AC x CD x DB x ===∵10AD cm =∴2310x x +=解得:2x =∴4,6,8,18AC cm CD cm BD cm AB cm ====∵E 为线段AB 的中点 ∴192AE AB cm == 1091DE AD AE cm =-=-=故答案为1cm【点睛】本题考点为两点之间的距离,熟练掌握线段的性质是解答本题的关键.17. 定义一种新的运算:2*a b a b a +=,如:42134*142+⨯==,则()()2*3*1-=______. 【答案】12【解析】【分析】利用题中的新定义计算即可得到结果.【详解】利用题中的新定义:()()()2232*3*1*12+⨯-=- ()42(1)4(2)14*1442+⨯-+-=-=== 故答案为12【点睛】本题为考查有理数的运算的变式题型,正确理解新定义计算以及熟练掌握有理数运算法则是解答本题的关键.18. 已知从六边形的一个顶点出发,可以引m 条对角线,这些对角线可以把这个六边形分成n 个三角形,则m n -=______.【答案】﹣1【解析】【分析】多边形的任意一点连其他各点得到的对角线条数为(n ﹣3);组成的三角形的个数为(n ﹣2),分别求出m 、n 的值即可得出m n -.【详解】根据题意,画出图形:总结规律“多边形的任意一点连其他各点得到的对角线条数为(n ﹣3);组成的三角形的个数为(n ﹣2)”可知,对角线共有6﹣3=3条,分成6﹣2=4个三角形,则3,4m n ==所以341m n -=-=-故答案为﹣1【点睛】本题主要考查了多边形的任意一点连其他各点得到的对角线条数为(n ﹣3)及组成的三角形的个数为(n ﹣2),掌握规律能轻松快速解答本题.19. 一副三角板按如图方式摆放,若2327'α∠=,则β∠的度数为______.【答案】6633'︒【解析】【分析】根据平角定义可得90αβ∠+∠=︒,再利用2327'α∠=,可得β∠的度数.【详解】解:由题意可知:∴1809090αβ∠+∠=︒-︒=︒∵2327'α∠=∴909023276633βα''∠=︒-∠=︒-︒=︒故答案为6633'︒【点睛】本题考点涉及平角定义以及两锐角互余等知识点,属于基础题,熟练掌握相关定义是解答本题的关键.20. 有一数值转换器,原理如图所示,如果开始输入x 的值是4,则第一次输出的结果是5,第二次输出的结果是8,……,那么第2019次输出的结果是______.【答案】7【解析】【分析】理解图表,代入4经过几次输出找到规律,利用规律求解即可.【详解】当输入4时,第一次输出14352⨯+= 当输入5时,第二次输出538+=当输入8时,第三次输出18372⨯+= 当输入7时,第四次输出7310+=当输入10时,第五次输出110382⨯+= 当输入8时,第六次输出18372⨯+=…… 通过观察不难发现从第二次开始,输入三次一个循环,循环数字为8,7,10∵(20191)36722-÷=⋅⋅⋅⋅⋅⋅∴第2019次输出结果为7故答案为7【点睛】本题为考查代数求值的变式题型,理解图表,找出规律是解答本题的关键.三、解答题(共50分)21. 计算:(1)()()617 3.25⎛⎫-+---- ⎪⎝⎭ (2)()()3220191213---+--【答案】(1)﹣6;(2)15【解析】【分析】(1)运用有理数加减法法则运算即可.(2)先运用有理数的乘方法则,再利用有理数加减法法则运算即可.【详解】(1)解:原式=6(1)()(7) 3.25-+-+-+(9.2) 3.2=-+ 6=-(2)解:原式= 1(8)|19|---+-18|19|=-++-188=-++15=【点睛】本题考查了有理数加减法、有理数的乘方以及绝对值等知识点,熟练运用有理数运算法则是解答本题的关键.22. 解方程:219136x x --+=- 【答案】1x =【解析】【分析】按照解一元一次方程步骤“去分母,去括号,合并同类项,移项,系数化为1”解答即可. 【详解】219136x x --+=- 解:去分母,得:2(21)9(1)6x x -+-=-⨯去括号得:4296x x -+-=-合并同类项,得:5116x -=-移项,得:55=x解得:1x =【点睛】本题为考查解一元一次方程基础计算题,比较简单,去分母时注意不要漏乘,等号两边每一项都要乘以分母的最小公倍数.23. 先化简,再求值:()()2223241x xy xy xx ---+++,其中12x =-,3y =. 【答案】104xy -+;19【解析】【分析】 先将代数式化简,再将12x =-,3y =代入化简后的代数式,求值即可. 【详解】解:原式=22236(444)x xy xy x x ---+++ 22236444x xy xy x x =-+--+104xy =-+当12x =-,3y =时,原式104xy =-+ 1(10)()342=-⨯-⨯+ 154=+19=【点睛】本题为代数式求值问题,考点涉及去括号、合并同类项以及有理数乘法,熟练掌握相关知识点及运算法则是解答本题的关键.24. 我市某校的数学学科实践活动课上,老师布置的任务是对本校七年级学生零花钱使用情况进行随机抽样调查,调查结果分为“A .买零食”、“B .买学习用品”、“C .玩网络游戏”、“D .捐款”四项进行统计,学生将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的学生为______人,图2中,m =______,n =______.(2)补全图1中的条形统计图.(3)在图2的扇形统计图中,表示“C .玩网络游戏”所在扇形的圆心角度数为______度.(4)据统计,辽阳市七年级约有学生12000人,那么根据抽样调查的结果,可估计零花钱用于“D .捐款”的学生约有______人.【答案】(1) 1000;28;35 (2)见解析(3)72°(4)2040【解析】【分析】(1)根据C 组有200人,所占的百分比是20%即可求出总人数,然后根据百分比的意义求解;(2)根据(1)中所求信息,补全直方图即可.(3)利用360°乘以对应的比例即可求解;(4)利用总人数12000乘以对应的比例即可求解;【详解】解:(1)由表格可知,C 组由200人,所占的百分比是20%,∴调查总人数为20020%1000÷= (人),则%280100028%m =÷=B 组人数为:1000280200170350---=(人)%350100035%n =÷=故答案是:1000;28;35(2)补全图1中的条形统计图如下:(3)扇形统计图中“C 组”所对应的圆心角的度数是:2036072100︒⨯=︒ 故答案是:72°(4)零花钱用于“D .捐款”的人数有:170(人) 1701200020401000⨯=(人) 故可估计零花钱用于“D .捐款”的学生约有2040人.【点睛】本题为概率综合题,考查了频数(率)分布表、用样本估计总体、频数(率)分布直方图以及扇形统计图等知识点.25. 如图,15AOC ∠=,45BOC ∠=,OD 平分AOB ∠,求COD ∠的度数.(补全下面的解题过程)解:∵15AOC ∠=,45BOC ∠=∴____________AOB ∠=∠+∠=∵OD 平分AOB ∠ ∴1________2BOD ∠=∠=∴____________COD ∠=∠-∠=答:COD ∠的度数是______.【答案】AOC ;BOC ;60;AOB ;30;BOC ;BOD ;15;15【解析】【分析】先求出AOB ∠,再根据角平分线的定义求出BOD ∠,然后根据COD BOC BOD ∠=∠-∠,即可得解.【详解】解:∵15AOC ∠=,45BOC ∠=∴_____60___AOB AOC BOC ∠=∠+∠=∵OD 平分AOB ∠ ∴1______30__2BOD AOB ∠=∠=(角平分线定义) ∴__________15__COD BOC BOD ∠=∠-∠=答:COD ∠的度数是___15___.【点睛】本题考查了角平分线的定义,熟练掌握角平分线定义是解答本题的关键.学生在本阶段需要掌握基本的几何证明过程.26. 列一元一次方程,解应用题:为迎接春节到来,每年的元旦过后,我市城建局都要开始进行“亮化”工程,装扮美丽辽阳.今年购买了大、小两种树挂彩灯共1000条,所花费用为69800元,其中大彩灯每条80元,小彩灯每条60元.问大彩灯购买了多少条?【答案】大彩灯购买了490条.【解析】【分析】设大彩灯购买了x 条,则小彩灯买了(1000)x -条,根据题意,得到等量关系:买大彩灯费用+买小彩灯费用=69800,列出方程,求解即可.【详解】解:设大彩灯购买了x 条,则小彩灯买了(1000)x -条买大彩灯费用为:80x ;买小彩灯费用为:60(1000)x -根据题意列方程:8060(1000)69800x x +-=解得:490x =答:大彩灯购买了490条.【点睛】本题考查了一元一次方程的应用,分析题干,找到等量关系是解答本题的关键.。
山东省济南市商河县七年级上期末考试数学试题含答案【精品】
七年级数学期末试题一、选择题(每小题4分,共48分) 1.-5的绝对值等于( ) A .-5B.5C .15D .15-2.中国倡导的“一带一路”.建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯B. 94.410⨯C. 84.410⨯D. 104.410⨯3.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对全国中学生心理健康现状的调查 B .对黄河水质情况的调查C .对我市市民实施低碳生活情况的调查D .对我国首架大型客机C919各零部件的检查4.在1,-1,-2这三个数中,任意两个数之和的最大值是( ) A .-3B .-1C .0D .25.植树时,为了使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是( )A .两点之间线段最短B .两点之间直线最短C.两点确定一条射线 D .两点确定一条直线6.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。
如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是( ) A .五棱柱B .六棱柱C .七棱柱D .八棱桂7.下列运算中,正确的是( ) A. 3a -2a=1B. 2y -2y 2=-y 2C. 3a 2+5a 2=8a 4D. 3a -2a=a8.已知=2是方程2+a=1的解,则a 的值是( ) A.-3B.4C .-5D.39.能用∠α、∠AOB 、∠O 三种方式表示同一个角的图形是( )A.B.C .D.10.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,若设铅笔卖出支,则依题意可列得的一元一次方程为( ) A. 1.2×0.8+2×0.9(60+)=87 B. 1.2×0.8+2×0.9(60-)=87 C. 2×0.9+1.2×0.8(60+)=87 D. 2×0.9+1.2×0.8(60-)=8711.对于实数a 、b ,规定a ○+b=a2b ,若4○+(-3)=2,则的值为( ) A .-2B .12-C .52D. 412.有这样的一列数,第一个数为1=-1,第二个数为2=-3,从第三个数开始,每个数都等于它相邻两个数之和的一半(如:1322x x x +=),则2017x 等于( ). A. -2017B. -2019C. -4033D. -4035二、填空题(每小题4分,共24分)13.在数轴上的点A 、B 位置如图所示,则线段AB 的长度为__________;14. 护士若要统计一病人一昼夜体温情况,应选用___________统计图(填条形、扇形或折线).15. 现代人常常受到颈椎不适的困扰,其症状包括:酸胀、隐痛、发紧、僵硬等,而将两臂向上抬,举到10点10分处,每天连续走200米,能有效缓解此症状;这里的10点10分处指的是时钟在10点10分时时针和分针的夹角,请你求出这个夹角的度数是__________°;16. 若多项式2233x y ++的值为8,则多项式2698x y ++的值为__________; 17. 已知A 、B 、C 三点在同一条直线,M 、N 分别为线段AB 、BC 的中点,且AB=60,BC=40,则MN 的长为__________;18. 全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有__________个同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册期末测试题一、选择题(每小题4分,共48分)1.-5的绝对值等于( )A .-5B.5C .D .1515-2.中国倡导的“一带一路”.建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A. B. C. D.84410⨯94.410⨯84.410⨯104.410⨯3.下列调查中,适宜采用全面调查(普查)方式的是( )A .对全国中学生心理健康现状的调查B .对黄河水质情况的调查C .对我市市民实施低碳生活情况的调查D .对我国首架大型客机C919各零部件的检查4.在1,-1,-2这三个数中,任意两个数之和的最大值是( )A .-3B .-1C .0D .25.植树时,为了使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是( )A .两点之间线段最短B .两点之间直线最短C.两点确定一条射线D .两点确定一条直线6.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。
如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是( )A .五棱柱B .六棱柱C .七棱柱D .八棱桂7.下列运算中,正确的是( )A.3a -2a=1B.x 2y -2xy 2=-xy 2C.3a 2+5a 2=8a 4D.3ax -2xa=ax8.已知x=2是方程2x+a=1的解,则a 的值是( )A.-3B.4C .-5D.39.能用∠α、∠AOB 、∠O 三种方式表示同一个角的图形是( )A. B.C . D.10.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=8711.对于实数a 、b ,规定a b=a2b ,若4(x -3)=2,则x 的值为( )○+○+A .-2B .C .D.412-5212.有这样的一列数,第一个数为x 1=-1,第二个数为x 2=-3,从第三个数开始,每个数都等于它相邻两个数之和的一半(如:),则等于( ).1322x x x +=2017x A. -2017B. -2019C. -4033D. -4035二、填空题(每小题4分,共24分)13.在数轴上的点A 、B 位置如图所示,则线段AB 的长度为__________;14.护士若要统计一病人一昼夜体温情况,应选用___________统计图(填条形、扇形或折线).15.现代人常常受到颈椎不适的困扰,其症状包括:酸胀、隐痛、发紧、僵硬等,而将两臂向上抬,举到10点10分处,每天连续走200米,能有效缓解此症状;这里的10点10分处指的是时钟在10点10分时时针和分针的夹角,请你求出这个夹角的度数是__________°;16.若多项式的值为8,则多项式的值为__________;2233x y ++2698x y ++17.已知A 、B 、C 三点在同一条直线,M 、N 分别为线段AB 、BC 的中点,且AB=60,BC=40,则MN 的长为__________;18.全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有__________个同学。
三、解答题19.(每小题4分,共8分)计算:(1)-2+1-(-3)(2)4311[4(2)]3-⨯⨯--20.(9分)计算:(1)(2)化简求值:,222(3)(5)ab a ab a --+-2214()(23)2x x x x +--其中x=-221.(每小题4分,共8分)解方程:(1)(2)3(4)2(34)15x x --+=-758143x x -+=+22.(本题8分)最近几年,某市持续大面积雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A .非常了解;B .比较了解;C .基本了解;D .不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾天气了解程度的条形统计图对雾霾天气了解程度的扇形统计图对雾霾天气了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解m C.基本了解45%图1图2D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A .非常了解”的人数为__________人,m=__________,n=__________;(2)请在图1中补全条形统计图;(3)请计算在图2所示的扇形统计图中,D 部分扇形所对应的圆心角是多少度?23.(本题12分)(1)如图,点C ,D都在线段AB 上,AC=2BC ,点D 是线段BC 的中点,CD=2,求线段AB 的长度.(2)如图所示.已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;24.(本题12分)列方程解应用题:(1)小明每天早上要在7:50之前赶到距学校1000m的学校上学.一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180m/min的速度去追小明,并且在中途追上了他①爸爸追上小明用了多长时间?②追上小明时,距离学校还有多远?(2)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?25.(本题12分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.(1)某游客中一年进入该公园共有n次,如果不购买年票,则一年的费用为__________元;如果购买A类年票,则一年的费用为__________元;如果购买B类年票,则一年的费用为__________元;(用含n的代数式表示)(2)假如某游客一年中进入该公园共有12次,选择哪种购买方式比较优惠?请通过计算说明理由.(3)某游客一年中进入该公园n次,他选择购买哪一类年票合算?请你帮助他决策,并说明你的理由.26.(本题9分)观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行-24-8a-3264…第2行06-618-3066…第3行-12-48-16B…(1)第1行的第四个数a是__________;第3行的第六个数b是__________;(2)第1行的某一列的数为c,则第2行与它同一列的数为__________;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.七年级数学试题答案一、选择题(每小题4分,共48分)题号123456789101112答案B B D C D B D A B B D C二、填空题(每小题4分,共24分)13.7 14.折线 15.115 16.23 17.50或10 18.36三、解答题19.(每小题4分,共8分)计算:(1)2 (2)-520.(第(1)题4分,第(2)题5分,共9分)计算:(1)3ab +5a 2 (2)2x 2+5x 值为-221.(每小题4分,共8分)解方程:(1)x = (2)x =35-1765-22.(本题8分)(1)20;15%;35%; ……………………3分(2)∵D 等级的人数为:400×35%=140,∴补全条形统计图如图所示:对雾霾天气了解程度的条形统计图……………………5分(3)D 部分扇形所对应的圆心角:360°×35%=126°.……………………8分23.(本题12分)解:(1)∵点D 是线段BC 的中点,CD=2,∴BC=2CD=4,又∵AC=2BC ,∴AC=2×4=8,∴AB=AC +BC=4+8=12故线段AB 的长度为12;……………………6分(2)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,1212∴∠MON=∠MOC ﹣∠CON=60°﹣15°=45°;……………………12分24.(本题12分)列方程解应用题:(1)解:①设爸爸追上小明用了xmin.根据题意,得 180x=80x +80×5化简,得 100x=400x=4答:爸爸追上小明用了4min.……………………4分② 180×4=720(m )1000-720=280(m )答:追上小明时,距离学校还有280m.……………………6分(2)解:设这种商品的成本价为x 元,依题意得:x (1+20%)×90%=270,解得:x=250.……………………11分答:这种商品的成本价是250元.……………………12分25.(本题12分)解:(1)10n ,100,50+2n ;……………………6分(2)假如某游客一年进入公园共有12次,则不购买年票的费用为10×12=120(元),购买A 类年票的费用为100元,购买B 类年票的费用为50+2×12=74(元);则购买B 类年票比较优惠;……………………9分(3)50+2n-100=2n-50,当n=25时,选择A 、B 类年票的费用相同;当n <25时,购买B 类年票比较合算;当n >25时,购买A 类年票比较合算.……………………12分26.(本题9分)解:(1)16;32 ……………………4分(2)c+2 ……………………6分(3)根据题意,这三个数依次为,得:122x x x +,,()1225622x x x +++=解得:……………………9分1024x =。