2020—2021年北师大版初中数学九年级下册中考数学模拟试题及答案解析.doc
备考2021年中考数学全真模拟题(含详解)
2021年初中数学中考全真模拟题考试时间:120分钟 满分:120分一、选择题:(本大题共10个小题,每小题3分,共30分) 1.如果收入10元记作+10元,那么支出10元记作( ) A .+20 元B .+10元C .﹣10元D .﹣20元2.2019新型冠状病毒的直径是0.00012mm ,将0.00012用科学记数法表示是( ) A .610120-⨯B .4102.1-⨯C .31012-⨯D .5102.1-⨯3.下列图形是中心对称图形的是( )A .B .C .D .4.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A .调查B .实验C .直接观察D .测量 5.下列计算正确的是( ) A .8a ﹣a =7B .a 2+a 2=2a 4C .a 6÷a 2=a 3D .2a •3a =6a 26.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .327.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6B .7C .8D .98.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西55°方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形第8题图 第9题图9.如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .30B .25C .20D .1510.已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( ) A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或4二、填空题:本大题共6个小题,每小题4分,共24分,把答案直接填在答题卷的横线上. 11.分解因式:a 3﹣a = .12.如图,在数轴上表示的x 的取值范围是 .13.方程21121-=+x x 的解是x = . 14.如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.第14题图 第15题图 第16题图15.如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,此时边AD ′与对角线AC 重叠,则图中阴影部分的面积是 .16.如图,在边长为32的菱形ABCD 中,∠C =60°,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为 . 三、解答题:本大题共8个小题,共66分,解答题应写出文字说明、证明过程或演算步骤. 17.(本题6分)计算:()0o22021+8sin 45----.18.(本题6分)先化简,再计算:221211a a a a a -+-+-,其中a =2.19.(本题6分)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . (1)求证:△ABC ≌△DEF ;(2)连接AD ,求证:四边形ABED 是平行四边形.20.(本题8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?21.(本题8分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?22.(本题8分)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是弧BD的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.23.(本题10分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB 的面积.24.(本题12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案一、选择题(每题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CBDADBDACB二、填空题(每题4分)11.()()11-+a a a ; 12.x <1; 13.-3; 14.35; 15.3π; 16.43π;三、解答题(共46分)17.(本题满分6分) 18.(本题满分6分)原式=1225- 原式=11-+a a ,当a =2时,原式=319.(本题满分6分) 证明:(1)∵BE =CF ∴BE +EC =CF +EC ∴BC =EF在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF (SSS ) (2)由(1)中△ABC ≌△DEF ∴∠B =∠DEF ∴AB ∥DE又∵AB =DE ∴四边形ABED 是平行四边形 20.(本题满分8分)解:(1)300×(1﹣35%﹣20%﹣20%)=300×25%=75(棵) 故答案为:75(2)300×20%×90%=54(棵)补全统计图如图所示: (3)A 品种的果树苗成活率:%3530084⨯×100%=80%品种的果树苗成活率:7560×100%=80% ;C 品种的果树苗成活率:90% D 品种的果树苗成活率:%2030051⨯×100%=85%,所以,C 品种的果树苗成活率最高.解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100﹣x )支根据题意,得:6x +10(100﹣x )=1300﹣378 解得x =19.5因为钢笔的数量不可能是小数,所以学习委员搞错了(2)设笔记本的单价为a 元,根据题意,得:6x +10(100﹣x )+a =1300﹣378 整理,得:x =23941+a 因为0<a <10,x 随a 的增大而增大,所以19.5<x <22 ∵x 取整数∴x =20,21。
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。
在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。
解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。
2020—2021年北师大版九年级数学下册期中试卷(参考答案)
2020—2021年北师大版九年级数学下册期中试卷(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-. 3.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.分解因式:222m -=____________.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.已知二次函数y=﹣316x 2+bx+c 的图象经过A (0,3),B (﹣4,﹣92)两点.(1)求b ,c 的值.(2)二次函数y=﹣316x 2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次 3次 4次及以上 人数 7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a =______,b =______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、A6、A7、A8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、32、2(1)(1)m m +-.3、22()1y x =-+ 4、85、x <1或x >36、245三、解答题(本大题共6小题,共72分)1、3x =-2、(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0)3、(1)略;(2)S 平行四边形ABCD =244、(1)52°,45°;(2)26°5、()117、20;()22次、2次;()372;()4120人.。
2021年~2021年北师大版山东济南“九年级中考”数学解答题“二次函数压轴题”练习试题以及答案
九年级中考数学压轴题二次函数练习题一、解答题。
1、(2011年济南中考)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的x2+bx+c经过A、C两点,与AB边交于点D。
坐标为(6,0),抛物线y=﹣49(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S。
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形,②当S最大时,在抛物线y=﹣49请直接写出所有符合条件的F的坐标;若不存在,请说明理由.备用图2、(2012年济南中考)如图1,抛物线y=ax2+bx+3与x轴相交于点A(﹣3,0),B(﹣1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D。
(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.3、(2013年济南中考)如图,在平面直角坐标系中,有一个直角△AOB,O是坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△D0C,抛物线y=ax2+bx+c经过点A、B、C。
(1)求抛物线的表达式;(2)若点P是第二象限内抛物线上的动点,其坐标为t;①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大,若存在,求出△PCD的面积的最大值;若不存在,说明理由;4、(2014年济南中考)如图1,抛物线y=﹣3x2平移后过点A(8,0)和原点,顶点为B,16对称轴与x轴相交于点C,与原抛物线相交于点D.;(1)、求平移后抛物线的解析式并直接写出阴影部分的面积S阴影(2)、如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①、t为何值时,△MAN为等腰三角形;②、t为何值时,线段PN的长度最小,最小长度是多少;5、(2015年济南中考)抛物线y=ax2+bx+4经过A(1,﹣1)、B(5,﹣1)与y轴交于点C。
【北师大版】2021年中考数学模拟专题《 一元一次方程、二元一次方程(组)及应用》(含解析)
专题01一元一次方程、二元一次方程(组)及应用学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【成都四月模拟】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60-x)=87 C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60-x)=87 【答案】B.【解析】【考点定位】一元一次方程的应用.2.【巴中】若单项式22a bx y+与413a bx y--是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 【答案】A.【解析】试题分析:∵单项式22a bx y+与413a bx y--是同类项,∴24a ba b-=⎧⎨+=⎩,解得:a=3,b=1,故选A.【考点定位】1.解二元一次方程组;2.同类项.3.【绵阳】若5210a b a b+++-+=,则()2015b a-=()A.﹣1 B.1 C.20155 D.20155-【答案】A.【解析】试题分析:∵5210a b a b+++-+=,∴⎩⎨⎧=+-=++125baba,解得:⎩⎨⎧-=-=32ba,则()20152015321b a-=-+=-().故选A.【考点定位】1.解二元一次方程组;2.非负数的性质.4.【乐山】电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.33000300x yx y+=⎧⎨<<<⎩B.33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数C.330003300x yx yx y+=⎧⎪<=<⎨⎪⎩、为奇数D.3300 0300 0300 x yxyx y+=⎧⎪<<⎪⎨<<⎪⎪⎩、为奇数【答案】B.【解析】试题分析:设“一少”的狗有x条,“三多”的狗有y条,可得:33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数,故选B.【考点定位】由实际问题抽象出二元一次方程.二、填空题:(共4个小题)5.【甘孜州】已知关于x的方程332xa x-=+的解为2,则代数式221a a-+的值是.【答案】1.【解析】【考点定位】一元一次方程的解.6.【南充】已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 . 【答案】﹣1. 【解析】试题分析:解方程组⎩⎨⎧-=+=+12,32y x k y x 得:232x k y k =+⎧⎨=--⎩,因为关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,可得:2330k k +--=,解得:1k =-.故答案为:﹣1.【考点定位】二元一次方程组的解.7.【崇左】4个数a 、b 、c 、d 排列成a bc d ,我们称之为二阶行列式,规定它的运算法则为:a b ad bcc d=-.若3 3123 3x x x x +-=-+,则x=____.【答案】1. 【解析】试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.【考点定位】1.解一元一次方程;2.新定义.8.【龙东】某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省 元. 【答案】18或46.8. 【解析】【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.三、解答题:(共2个小题)9.【珠海】阅读材料:善于思考的小军在解方程组2534115x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组325 9419x yx y-=⎧⎨-=⎩①②;(2)已知x,y满足方程组2222321247 2836x xy yx xy y⎧-+=⎪⎨++=⎪⎩①②.(i)求224x y+的值;(ii)求112x y+的值.【答案】(1)32xy=⎧⎨=⎩;(2)(i)17;(ii)54±.【解析】【考点定位】1.解二元一次方程组;2.阅读型;3.整体思想;4.综合题.10.【百色】某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.【答案】(1)甲队答对18道题,则甲队答错或不答的有2道题;(2)举例见试题解析.【解析】③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.试题解析:(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,由题意,得:10x﹣5(20﹣x)=170,解得:x=18.∴甲队答错或不答的有2道题.答:甲队答对18道题,则甲队答错或不答的有2道题;(2)甲队现在得分:170+20=190分,乙队得分:19×10-5=185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;②若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.专题02一元二次方程及应用学校:___________姓名:___________班级:___________ 一、选择题:(共4个小题)1.【达州】方程21(2)304m x mx---+=有两个实数根,则m的取值范围()A.52m>B.52m≤且2m≠C.3m≥D.3m≤且2m≠【答案】B.【解析】试题分析:根据题意得:220301(3)4(2)04mmm m⎧⎪-≠⎪-≥⎨⎪⎪∆=----⨯≥⎩,解得52m≤且2m≠.故选B.【考点定位】1.根的判别式;2.一元二次方程的定义.2.【攀枝花】关于x的一元二次方程2(2)(21)20m x m x m-+++-=有两个不相等的正实数根,则m的取值范围是()A.34m>B.34m>且2m≠C.122m-<<D.324m<<【答案】D.【解析】【考点定位】1.根的判别式;2.一元二次方程的定义.3.【广安】一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或9 【答案】A. 【解析】【考点定位】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4.【雅安中学中考模拟】关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,则方程2(3)0m x h k +-+=,的解是 ( ) A . 16x =-,21x =- B.10x =,25x = C .13x =-,25x = D.16x =-,22x =【答案】B. 【解析】试题分析:解方程2()0m x h k ++=(m,h,k均为常数,m≠0)得kx h m =-±-,而关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,所以3k h m ---=-,2k h m -+-=,方程2(3)0m x h k +-+=的解为3k x h m =-±-,所以1330x =-=,2325x =+=.故选B.【考点定位】1.解一元二次方程-直接开平方法;2.综合题. 二、填空题:(共4个小题)5.【泸州】设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为. 【答案】27. 【解析】 试题分析:∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴125x x +=,121x x =-,∴2212x x +=21212()2x x x x +-=25+2=27,故答案为:27.【考点定位】根与系数的关系.6.【达州】新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为 . 【答案】(40﹣x)(20+2x)=1200. 【解析】【考点定位】1.由实际问题抽象出一元二次方程;2.销售问题.7.【广元】从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x =-和关于x的一元二次方程2(1)10m x mx +++=中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________. 【答案】2-. 【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根. 故m=2-.故答案为:2-.【考点定位】1.根的判别式;2.一次函数图象与系数的关系;3.综合题.8.【凉山州】已知实数m,n满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n += .【答案】225-.【解析】试题分析:∵m n ≠时,则m,n是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.【考点定位】1.根与系数的关系;2.条件求值;3.压轴题. 三、解答题:(共2个小题)9.【崇左】为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房? 【答案】(1)50%;(2)18. 【解析】【考点定位】1.一元二次方程的应用;2.增长率问题.10.【广元】李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.【解析】(2)两正方形面积之和为48时,10058482+-=xx,0416402=+-x x ,∵06441614)40(2<-=⨯⨯--, ∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.【考点定位】1.一元二次方程的应用;2.几何图形问题.。
北京市2021年中考数学一模试卷含答案解析
中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.54.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.127.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).11.(2分)计算:=.12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.18.(5分)解不等式组,并写出它的所有整数解.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为.b可以推断出学校学生的数学水平较高,理由为.(至少从两个不同的角度说明推断的合理性)24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x 秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.【解答】解:A、正确.∠AOB=40°;B、错误.点O,边OA的位置错误;C、错误.缺少字母A;D、错误.点O的位置错误;故选:A.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【解答】解:∵如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,∴线段AB的中点为原点,即A、B对应的数分别为﹣2、2,则点C表示的数可能是3,故选:C.4.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥【解答】解:两个三角形和三个矩形可围成一个三棱柱.故选:A.5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.【解答】解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12【解答】解:由题意,得外角+相邻的内角=180°且外角=相邻的内角,∴外角=90°,360÷90=4,正多边形是正方形,故选:B.7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟【解答】解:由图象可得,赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,乌龟比兔子先到达60﹣50=10分钟,故选项C错误,乌龟追上兔子用了20分钟,故选项D正确,故选:D.8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④【解答】解:①10岁之前,同龄的女生的平均身高与男生的平均身高基本相同,故该说法错误;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生,故该说法正确;③7~15岁期间,男生的平均身高不一定高于女生的平均身高,如11岁的男生的平均身高低于女生的平均身高,故该说法错误;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大,故该说法正确.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为0.88(结果精确到0.01).【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.11.(2分)计算:=2m+3n.【解答】解:=2m+3n.故答案为:2m+3n12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.【解答】解:∵DE∥AB∴△CDE∽△CAB∴CD:CA=DE:AB∴20:60=DE:10∴DE=毫米∴小管口径DE的长是毫米.故答案为:13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是8.【解答】解:原式=2a2+a﹣(a2﹣4)=2a2+a﹣a2+4=a2+a+4,当a2+a=4时,原式=4+4=8,故答案为:8.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=2.【解答】解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.故答案为2.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD..【解答】解:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是等腰三角形三线合一.【解答】解:利用作图可得到OA=OB,PA=PB,利用等腰三角形的性质可判定OP平分∠AOB.故答案为:等腰三角形的三线合一.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.【解答】解:原式=3﹣1+﹣1﹣2×=1.18.(5分)解不等式组,并写出它的所有整数解.【解答】解:,解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为﹣1<x≤2,∴适合原不等式组的整数解为0,1,2.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.【解答】证明:∵AB=AC,∴∠B=∠C.∵EF垂直平分CD,∴ED=EC.∴∠EDC=∠C.∴∠EDC=∠B.∴DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△>0,即22﹣4(k﹣1)>0,∴k<2;(2)∵k为正整数,∴k=1,此时方程为x2+2x=0,解得x1=0,x2=﹣2.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).【解答】解:(1)∵直线y=x+1经过点A(1,a),∴a=1+1=2,∴A(1,2).∵函数y=的图象经过点A(1,2),∴k=1×2=2;(2)设点P的坐标为(x,),∵OP=OA,∴x2+()2=12+22,化简整理,得x4﹣5x2+4=0,解得x1=1,x2=﹣1,x3=2,x4=﹣2,经检验,x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,∵点P与点A不重合,∴点P的坐标为(﹣1,﹣2),(2,1),(﹣2,﹣1).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.【解答】(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠BAO=∠FAE∵∠FAE=∠BEO∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.(2)解:∵AD=BC,AF=BE,∴DF=CE.∵AF=2DF∴BE=2CE.∵AB=BE=4,∴CE=2.过点A作AG⊥BC于点G.∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=.∴CF=.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是88.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300.b可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.(至少从两个不同的角度说明推断的合理性)【解答】解:整理、描述数据:分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285故答案为:0,0,1,4,2,8,5;分析数据:经统计,乙校的数据中88出现的次数最多,故表格中m的值是88.故答案为:88;得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为400×=300(人).故答案为:300;b (答案不唯一)可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.【解答】(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是 3.0(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.【解答】解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2,∴﹣=2,即﹣=2∴b=2.(2)①∴抛物线的表达式为y=﹣x2+4x﹣3.∵A(x1,y),B(x2,y),∴直线AB平行x轴.∵x2﹣x1=3,∴AB=3.∵对称轴为x=2,∴A(,m).∴当时,m=﹣()2+4×﹣3=﹣.②当y=m=﹣4时,0≤x≤5时,﹣4≤y≤1;当y=m=﹣2时,0≤x≤5时,﹣2≤y≤4;∴m的取值范围为﹣4≤m≤﹣2.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.【解答】解:(1)补全图如图1;(2)①延长AE,交BC于点H.∵AB=AC,AE平分∠BAC,∴AH⊥BC,BH=HC.∵CD⊥BC于,∴EH∥CD.∴BE=DE;②延长FE,交AB于点M.∵AB=AC,∴∠ABC=∠ACB.∵EF∥BC,∴∠AMF=∠AFM.∴AM=AF.∴ME=EF.∵∠MBE=∠FED,在△BEM和△DEF中,,∴△BEM≌△DEF.∴∠ABE=∠FDE.∴DF∥AB;(3).证明:∵DF∥AB,∴∠EDF=∠ABD,∵EF∥BC,∴∠DEF=∠DBC,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠EDF=∠DEF,∴DF=EF,∵tan=,∴.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为60°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【解答】解:(1)∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB==4,∴∠ABO=30°,∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°,故答案为:60°;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E.∴D(4,5)或(﹣2,5).∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴P'D=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴BD=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或﹣5≤m≤﹣1.精品Word 可修改欢迎下载。
2021年中考一模考试《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年中考数学模拟(五)(解析版)
绝密★启用前2021年中考数学模拟星耀卷(五)考试范围:初中数学;考试时间:120分钟;共120分第I卷(选择题)一、单选题(每题3分,共30分)1.老师在“六城同创”活动中设计了以下几幅log o,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可求解.【详解】解:A、是中心对称图形,但不是轴对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项错误;故选:B【点睛】本题主要考查轴对称图形和中心对称图形的概念和特点,解题的关键是熟练掌握轴对称图形和中心对称图形的概念和特征进行判断.2.目前我国疫苗研发工作处于全球领先地位,其中灭活疫苗和腺病毒载体疫苗,两种技术路线共4个疫苗进入了三期临床.预计到今年年底,中国新冠疫苗的年产能可达到610000000剂.数据610000000用科学计数法表示正确的是()A .76110⨯B .86.110⨯C .96.110⨯D .86110⨯【答案】B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:610000000=86.110⨯. 故选:B .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是( ) A .抽到男同学名字的可能性是50%B .抽到女同学名字的可能性是50%C .抽到男同学名字的可能性小于抽到女同学名字的可能性D .抽到男同学名字的可能性大于抽到女同学名字的可能性 【答案】D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C 、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D 、正确,由AB 可知抽到男同学名字的可能性大于抽到女同学名字的可能性. 故选:D .【点睛】本题考查概率的有关知识,需注意可能性的求法.4.在平面直角坐标系xoy 中,将抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度,所得到的抛物线的表达式为( ) A .22(3)4y x =--B .22(3)4y x =++C .22(3)4y x =-+D .22(3)4y x =+-【答案】D 【分析】根据图象平移变换规则:左加右减,上加下减,据此解答即可. 【详解】解:∵抛物线22y x = 先向左平移3个单位长度,再向下平移4个单位长度,∴所得到的抛物线的表达式为22(3)4y x =+-, 故选:D . 【点睛】本题考查二次函数的图象与几何变换-平移,熟练掌握图象平移变换规则:左加右减,上加下减是解答的关键.5.等腰三角形的一个外角是80︒,则其底角是( )A .100︒B .10040︒︒或C .40︒D .不能确定【答案】C【分析】分两种情况讨论:顶角的外角是80°时,底角的外角是80°时,求出其三角形的内角即可得到结论;【详解】解:当顶角的外角是80°时,则顶角100°,底角为(180°-100°)÷2=40°,当底角的外角是80°时,底角为100°,不符合三角形的内角和, 故选:C .【点睛】本题考查等腰三角形性质、三角形外角性质、三角形内角和等知识点,画出图形熟练运用相关性质解题是关键.6.若关于x 的一元一次不等式组12x x m <≤⎧⎨>⎩有解,则m 的取值范围为( )A .2m <B .2m ≤C .1m <D .12m ≤<【答案】B 【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可. 【详解】解:∵不等式组12x x m <≤⎧⎨>⎩有解,∴m <2, 故选B . 【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.一次函数y kx b =+与y kbx =(k ,b 为常数,且kb≠0),它们在同一坐标系内的图象可能为( )A.B.C.D.【答案】C【分析】根据一次函数和正比例函数图象的性质逐项分析即可.【详解】A、一次函数:k>0,b<0,则kb<0,正比例函数应经过二、四象限,故错误;B、一次函数:k<0,b>0,则kb<0,正比例函数应经过二、四象限,故错误;C、一次函数:k<0,b>0,则kb<0,正比例函数应经过二、四象限,故正确;D、一次函数:k>0,b>0,则kb>0,正比例函数应经过一、三象限,故错误;故选:C.【点睛】本题考查一次函数与正比例函数的图象与性质,熟记函数图象的基本性质是解题关键.8.现在定义两种新运算,“▲”、“★”,对于任意两个整数,a▲b=a+b﹣1,a★b=a×b﹣1,则7★(﹣3▲5)的结果是()A.﹣6B.48C.6D.﹣48【答案】C【分析】根据新定义的两种运算按运算顺序进行计算即可.【详解】解:7★(﹣3▲5) =7★(-3+5-1) =7★1 =7×1-1 =6. 故答案为C .【点睛】本题主要考查了新定义运算和有理数的四则运算,理解并应用有理数的四则混合运算法则是解答本题的关键.9.广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产x 台新能源汽车,依题意得( )A .40005000300x x =+ B .40005000300x x =- C .40005000300x x =- D .40005000300x x=+ 【答案】A【分析】设更新技术前每月生产x 台新能源汽车,更新技术后每月生产()300x +台新能源汽车,根据工作时间=工作总量÷工作效率结合现在生产5000台新能源汽车所需时间与更新技术前生产4000台新能源汽车所需时间相同,即可得出关于x 的分式方程,此题得解. 【详解】解:更新技术前每月生产x 台新能源汽车,更新技术后每月生产()300x +台新能源汽车, 依题意,得:40005000300x x =+. 故选:A .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若4AB =,则图中阴影部分的面积是( )A .πB .22π+C .2D .2π+【答案】A【分析】根据AB 是O 的直径,C 为弧AB 的中点,得到AOC BOC ≅,即可得解;【详解】★AB 是O 的直径,C 为弧AB 的中点,∴CO AB ⊥,114222AO BO AB ===⨯=, ∴90AOC BOC ∠=∠=︒, ∴AOC BOC ≅,∴阴影部分的面积2902360ππ=⨯⨯=; 故答案选A .【点睛】本题主要考查了扇形面积的计算,结合垂径定理和三角形全等计算是解题的关键.第II 卷(非选择题)二、填空题(每题3分,共18分)11.计算:11(1)3-⎛⎫-+= ⎪⎝⎭______;【答案】4【分析】先算乘方,再把结果相加.【详解】解:原式=1+3=4,故答案为4.【点睛】本题考查整数指数幂的运算,熟练掌握零指数幂和负整数指数幂的计算方法是解题关键.12.若21202a b⎛⎫-++=⎪⎝⎭,则()2019ab=_____.【答案】1-【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【详解】解:∵|a﹣2|+(b+12)2=0,∴a-2=0,b+12=0,∴a=2,b=-12,∴(ab)2019=[2×(﹣12)]2019=﹣1.故答案为:-1.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP=2,则CD =_____.【答案】【分析】先根据AB=12求出OP的长,连接OC,在Rt△OPC中,利用勾股定理即可求出PC的长,进而可得出CD的长.【详解】解:连接OC,∵AB=12∴OB=16 2AB=又BP=2∴OP=OB-PB=6-2=4在Rt△OPC中,PC===∵OB过圆心,OB⊥CD∴CD=2PC=2×故选:C【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.如图,在Rt ABC中,∠ACB=90°,CD⊥AB于D,若AD=2,BD=8,则CD =______,AC=_____【答案】4【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB于D,易证得△ACD∽△CBD,然后由相似三角形的对应边成比例,求得CD的长,然后利用勾股定理,求得AC的长.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴AD:CD=CD:BD,∴CD4,在Rt△ACD中,AC故填:4,【点睛】此题考查了相似三角形的判定与性质以及勾股定理,难度适中,注意掌握数形结合思想的应用.15.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?【答案】这个苗圃园垂直于墙的一边长为12米.【分析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =, ★30218x -≤, ★6x ≥, ★12x =.答:这个苗圃园垂直于墙的一边长为12米.【点睛】本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键,注意实际应用中的取值范围.16.如图,已知B A 、分别在反比例函数9,ky y x x=-=上,当AO BO ⊥时,:3:4BO AO =,则k =_____.【答案】16【分析】过点A、B分别作AC⊥x轴,BD⊥x轴,设点B9,aa⎛-⎫⎪⎝⎭,则有,9aOD a BD=-=-,然后由题意易得△BOD∽△OAC,进而根据相似三角形的性质可得OC、AC的值,最后问题可求解.【详解】解:过点A、B分别作AC⊥x轴,BD⊥x轴,如图所示:∴∠BDO=∠OCA=90°,∴∠DBO+∠DOB=90°,∵BO⊥AO,∴∠BOD+∠AOC=90°,∴∠DBO=∠COA,∴△BOD∽△OAC,∵:3:4BO AO=,∴34 BD OD BOOC AC AO===,设点B 9,a a ⎛-⎫ ⎪⎝⎭, ∴,9aOD a BD =-=-, ∴312,4OC AC a a =-=-, ∴点A 124,3a a⎛⎫-- ⎪⎝⎭,∴124163a k a ⎛⎫=-⨯-= ⎪⎝⎭; 故答案为16.【点睛】本题主要考查反比例函数的图像与性质及相似三角形的性质与判定,熟练掌握反比例函数的图像与性质及相似三角形的性质与判定是解题的关键. 三、解答题(72分) 计算:(每题4分,共8分)(12-(2)先化简,再求值:22169211x x x x x -++⎛⎫-÷ ⎪+-⎝⎭,其中x =2; 【答案】(1)2(2)13x x -+,15. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】(1)原式()()()()2211111(3)x x x x x x +--+-=⋅++,()21221(3)x x x x -=+-+⋅+,()213(3)x x x -=+⋅+,13x x -=+, 当x =2时,原式211235-==+.(2)解:原式42=+--2=.【点睛】本题考查了二次根式混合运算,熟练掌握二次根式的运算法则是解决本题的关键. 18.解方程组和不等式(组):(每题4分,共8分)(1)解方程组453212x y x y -=⎧⎨+=⎩(2)解不等式组:()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩【答案】(1)23x y =⎧⎨=⎩;(2)4x <-【分析】(1)利用加减消元法解方程组即可;(2)首先分别解出两个不等式组,然后取共同部分即可得出答案.【详解】(1)453212x y x y ①②-=⎧⎨+=⎩①×2+②得1122x =,解得2x =,将2x =代回①中得45y ⨯-=,解得3y =,∴方程组的解为23x y =⎧⎨=⎩;(2)()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩①②解①得,4x <-, 解②得,15x ≤,∴不等式组的解集为4x <-.【点睛】本题主要考查解方程组及不等式组,掌握解方程组及不等式组的方法是解题的关键. 19.(7分)自我校深化课程改革以来,初中数学校本课程开设了:A .利用影长求物体高度;B ,制作视力表;C .设计遮阳棚;D .池塘里有多少条鱼.四类数学实践活动选修课,供学生们选择,其中九年级11班和12班的两个班的同学将选择结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共______名学生选修了数学实践活动课,扇形统计图中B 所对应的扇形的圆心角为______度;(2)补全条形统计图;(3)选修C 类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人来帮助学校设计遮阳棚,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.答案】(1)60名,144°;(2)15人,图见解析;(3)23. 【分析】(1)用C 类别人数除以其所占百分比可得总人数,用360°乘以C 类别人数占总人数的比例即可得;(2)总人数乘以A 类别的百分比求得其人数,用总人数减去A ,B ,C 的人数求得D 类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生人数为1220%60÷=(名), 则扇形统计图中B 所对应的扇形的圆心角为2436014460︒⨯=︒. (2)A 类别人数为6015%9⨯=(人),则D 类别人数为()609241215-++=(人),(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为82123=. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.20.(7分)已知:如图,等腰三角形ABC 中,AC BC =,90ACB ∠=︒,直线l 经过点C (点A 、B 都在直线l 的同侧),AD l ⊥,BE l ⊥,垂足分别为D 、E .(1)求证:ADC CEB △≌△;(2)请判断DE 、BE 、AD 三条线段之间有怎样的数量关系,并证明. 【答案】(1)见解析;(2)DE AD BE =+,证明见解析 【分析】(1)根据题意找出三角形全等条件证明即可; (2)由(1)中结论等量代换即可得出结果DE AD BE =+. 【详解】(1)证明:∵AD l ⊥,BE l ⊥,90ACB ∠=︒, ∴90ADC ACB CEB ∠=∠=∠=︒,1809090DCA ECB ∠+∠=︒-︒=︒,∴DAC ECB ∠=∠, 在ADC 和CEB △中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()≌ADC CEB AAS . (2)DE AD BE =+ 证明:ADC CEB △≌△ ∴AD CE = DC EB = ∵DE CE DC =+ ∴DE AD BE =+【点睛】此题考查三角形全等的证明,涉及到角角边及全等三角形的性质,熟练掌握“一线三垂直”模型,是解题的关键.21.(8分)如图,点F 在平行四边形ABCD 的对角线AC 上,过点F 、B 分别作AB 、AC 的平行线相交于点E ,连接BF ,已知ABF FBC DAC ∠=∠+∠.(1)求证:四边形ABEF 是菱形; (2)若6BE =,10AD =,1tan 2CBE ∠=,求AC 的长.【答案】(1)证明见解析;(2)4AC =【分析】(1)根据三角形外角的性质可得∠AFB=∠FBC+∠FCB ,再根据ABF FBC DAC ∠=∠+∠可证AB=AF ,由一组临边相等的平行四边形是菱形可得结论;(2)作DH ⊥AC 于点H ,根据平行四边形的性质可得1tan 2tan 1tan 2CBE ∠=∠=∠=,在Rt★ADH 和Rt★DCH 中依次解直角三角形即可求得AH 和HC ,从而求得AC . 【详解】(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形. ∵四边形ABCD 为平行四边形, ★AD//BC★ ★★DAC=★FCB★ ★★ABF=★FBC+★DAC ★ ★★ABF=★FBC+★FCB★ ∵∠AFB=∠FBC+∠FCB , ∴∠ABF=∠AFB , ∴AB=AF , ∴▱ABEF 是菱形;(2)解:作DH ⊥AC 于点H ,S∵BE ∥AC , ∴∠1=∠CBE ,∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB=CD , ★★2=★1,∴1tan 2tan 1tan 2CBE ∠=∠=∠=, Rt★ADH 中,设DH=x ,则tan 2AH DH CBD x =÷∠=,根据勾股定理22(2)100x x +=,解得2x x ==(舍掉负值),即AH DH == ★四边形ABEF 为菱形, ★CD=AB=BE=6,在Rt★DCH 中,根据勾股定理222DH HC CD +=,即 2226HC +=,解得4HC =(舍掉负值),∴4AC AH HC =+=.【点睛】本题主要考查了菱形的性质及判定定理,锐角三角函数、勾股定理等.(1)中掌握菱形的判定定理,并能结合题意灵活运用是解题关键;(2)能正确构造辅助线,构造直角三角形是解题关键. 22.(10分)如图,AB 为O 的直径,弦CD 平分ACB ∠交AB 于E ,P 为AB 延长线上一点且PC PE =. (1)求证:PC 为O 的切线;(2)若10AE =,DE =O 的半径及PC 的长.【答案】(1)证明见解析;(2)8R =,PC 的长为15.【分析】(1)连接OC ,OD ,先由已知可证⊥OD AB ,从而证得90D DEO ∠+∠=︒,再等量代换即可得到90OCD PCE D DEO ∠+∠=∠+∠=︒,从而证得OC PC ⊥,结论得证;(2)设O 的半径为R ,根据勾股定理列出方程求出2R =或8R =,又因OE OB <,故8R =,设PC PE x ==,则2OP PE OE x =+=+.根据勾股定理列出方程解得15x =,即PC 的长为15.【详解】解:(1)证明:连接OC 、OD★CD 平分ACB ∠,★AD BD =即半径OD 平分弧ADB ,★⊥OD AB ,(垂径定理的推论)所以90D DEO ∠+∠=︒而OC OD =,PC PE =,★D OCD ∠=∠,PEC PCE ∠=∠,又★DEO PEC ∠=∠,★DEO PCE ∠=∠.90OCD PCE D DEO ∠+∠=∠+∠=︒,即OC PC ⊥,而OC 为O 的半径, ★PC 为O 的切线(2)解:设O 的半径为R ,则10OE AE OA R =-=-在Rt DEO △中:222OD OE DE +=即:()(22210R R +-= 解得:2R =或8R =而OE OB <即10R R -<解得5R >,★8R =,即O 的半径为8,★102OE R =-=,设PC PE x ==,2OP PE OE x =+=+.在Rt POC △中:222PC OC OP +=即:()22282x x +=+解得:15x =即PC 的长为15.【点睛】本题考查了切线的判断和勾股定理的应用等知识,掌握相关知识是解题的关键. 23.(10分)疫情期间,口罩成为人们一种自我保护的必备品.某药房购进并销售甲、乙、丙三种口罩,已知购进的批发价和售出的零售价如下表:(1)药房第一次仅购进甲,乙口罩,费用共991元,且乙的数量比甲的数量少3盒,求购进的甲,乙口罩盒数.(2)第一次购进的口罩售完后,药房把销售收入(销售收入=零售价x 销售数量)全部用于购进甲、乙、丙三种口罩,购进的甲、乙口罩盒数相等,甲口罩的批发价比原来提高了20%,乙口罩的批发价比原来降低%a .①如果药房第二次购进的甲、乙口罩分别花费为216元,243元,求a 的值.②在a 值不变的前提下,如果药房购进的甲、乙、丙口罩总盒数为m 盒,甲种口罩数量为n盒,甲种口罩供货商仅能提供100到150盒,求满足条件的购进方案有哪几种?哪种方案所获利润最大,并求出最大值?【答案】(1)第一次购入乙口罩197盒,甲口罩200盒;(2)①10;②购进方案有甲口罩购买100盒和150盒,方案1获利最大,最大值为2010元.【分析】(1)设第一次购入乙口罩x 盒,甲口罩(x+3)盒,根据购进甲、乙口罩费用共991元列方程求解即可;(2)根据题意可求出第二次购进甲口罩的数量,即可得乙口罩的数量以及批发价,从而可得a 的值;②确定丙口罩的购买数量可得2种购买方案,计算出利润进行比较即可.【详解】解:设第一次购入乙口罩x 盒,甲口罩(x+3)盒,根据题意得,2(3)3991x x ++=解得,x=197,197+3=200(盒)所以,第一次购入乙口罩197盒,甲口罩200盒;(2)销售收入为:2003+1975=1585⨯⨯(元)设所获利润为W ,①购进甲口罩的数量为:2162(120%)90÷⨯+=(盒)所以,乙口罩购进90盒,乙口罩的批发价为:24390 2.7÷=(元)则3(1%) 2.7a ⨯-=解得,a=10②在a 值不变的前提下,即甲口罩批发价为2.4元,乙口罩为每盒2.7元,则出售一盒甲口罩获利0.6元,出售一盒乙口罩获利2.3元,出售一盒丙口罩获利8元, 第一次销售收入全部用来购进口罩,丙口罩批发价为每盒5元,则购买丙口罩用的钱为整数,设购买甲口罩和乙口罩共用y 元,甲口罩和乙口罩盒数相等,即:(2.4 2.7) 5.ln(y n n =+=为整数),100150n ≤≤,则n 的取值可能为100,110,120,130,140,150,当n 取110,120,130,140时,丙口罩的购买数量为15855y -不为整数, 所以,共有2种购买方案:方案1,甲口罩和乙口罩各购进100盒,则购入丙口罩的数量为:1585 5.11002155-⨯=(盒) 利润10.6100 2.310082152010W =⨯+⨯+⨯=(元 )方案2,甲口罩和乙口罩各购进150盒,则购入丙口罩的数量为:1585 5.11501645-⨯=(盒) 利润20.6150 2.315081641747W =⨯+⨯+⨯=(元 )∴12W W >综上所述,购进方案有甲口罩购买100盒和150盒,方案1获利最大,最大值为2010元.【点睛】本题考查一元一次方程的应用以及方案的选择,解题的关键是理解题意、搞清楚进价、销售量、利润之间的关系.24.(12分)如图,在直角坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(注意:本题中的结果如果有根号均保留根号)【答案】(1)(1);(2)2y x x=+;(3)存在,(-1【分析】(1)根据A点坐标,可得到OA、OB的长,过B作BD⊥x轴于D,由于∠BOD=60°,通过解直角三角形,即可求得B点的坐标;(2)根据A、O、B三点坐标,即可利用待定系数法求出该抛物线的解析式;(3)由于A、O关于抛物线的对称轴对称,若连接BA,那么直线BA与抛物线对称轴的交点即为所求的C点,可先求出直线AB的解析式,联立抛物线的对称轴方程即可求出C点的坐标.【详解】解:(1)过B作BD⊥x轴于D∵A (-2,0),∴OA=OB=2Rt △OBD 中,∠BOD=60°,OB=2,∴∠OBD=30°,∴OD=1,BD=3故B (1,3);(2)∵A (-2,0),O (0,0),且抛物线过点A ,点C ,∴设抛物线的解析式为y=a (x -0)(x+2),代入点B (1)()()1012a =-⨯+得, 因此2x ; (3)如图,抛物线的对称轴是直线x=-1,∵A 、O 两点关于直线x=-1对称,∴当点C 位于对称轴与线段AB 的交点时,OC+CB 的值最小也就是AB 的长,此时OC+BC+OB 即△BOC 的周长最小;设直线AB 为y=kx+b ,所以20k b k b ⎧+⎪⎨-+⎪⎩=,解得3k b ⎧⎪⎪⎨⎪⎪⎩,因此直线AB 为, 当x=-1时,y=3, 因此点C 的坐标为(-1,3).。
2020-2021年北师大版数学九年级中考模拟题及答案解析.docx
北师大版数学九年级中考模拟题及答案解析一.选择题(共12小题)1.抛物线y= - 1 (x+1) 2+3的顶点坐标(A. (1, 3)B. (1, - 3)C. ( - 1, - 3)D. ( - 1, 3)2.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )3. 已知二次函数y=kx2 - 7x - 7的图象与x轴有两个交点,则k的取值范围为 ( )A. k> - LB. k>-上且kHOC. - LD. k$ -上且kHO4 4 4 44. 已知二次函数y=ax2+bx+c的图象如图,下列结论中,正确的结论的个数有( )①a+b+c>0②a - b+c>0 ③abc<0 ④b+2a=O ⑤△>().A. 5个B. 4个C. 3个D. 2个5. 某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面型米,则水流下落点B离墙距离OB是( )A. 2米B. 3米C. 4米D. 5米6.如图,点A 为Zct 边上任意一点,作AC 丄BC 于点C, CD 丄AB 于点D,下列 用线段比表示sina 的值,错误的是( )7.在z^ABC 中,若tanA=l, sinB=、Z,你认为最确切的判断是( )2 A. AABC 是等腰三角形 B. AABC 是等腰直角三角形C. AABC 是直角三角形D. AABC 是一般锐角三角形&如图,过点C ( - 2, 5)的直线AB 分别交坐标轴于A (0, 2), B 两点,则 5 3 2 29.如图,为了测量河岸A, B 两点的距离,在与AB 垂直的方向上取点C,测得 AC=a, ZABC=a,那么 AB 等于( )A. a»sinaB. a»cosaC. a*tana10.下列函数中,是二次函数的有( )①y=l - ②y=_L_(§)y=x (1 - x) <©y= (1 - 2x) (l+2x)xA. 1个B. 2个C. 3个D. 4个11.抛物线y=2 (x - 3) 2+4顶点坐标是() A. (3, 4) B. ( - 3, 4) C. (3, - 4) 12.已知二次函数y=x 2 - 2mx (m 为常数),当-1W X W2时,函数值y 的最小 值为-2,则m 的值是( ) D. —2— tana D. (2, 4)A. 型B. 坐C. 坐D. 空BC AB AC ACtanZOAB=( )A. 4B. V2 c.色或逅 D.仝或迈2 213. 若V3=tan (a+10°),则锐角a= ____ .14. 如图,在(DO中,弦AB=3cm,圆周角ZACB=30。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2020—2021年北师大版九年级数学下册期中考试卷及答案【2020—2021年北师大版】
2020—2021年北师大版九年级数学下册期中考试卷及答案【2020—2021年北师大版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .55.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2<D .x 3<8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:2()4()a a b a b ---=_______.3.函数2y x =-x 的取值范围是__________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC =__________度.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 名学生,两幅统计图中的m = ,n = .(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A ”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、D6、C7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、()()()22a b a a -+-3、2x ≥4、455、16、3三、解答题(本大题共6小题,共72分)1、3x =2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)略;(24、5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23.。
2020—2021年北师大版九年级数学下册期中测试卷及答案【完整版】
2020—2021年北师大版九年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 6.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122x x x =++的解是___________. 2.分解因式:33a b ab -=___________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B 1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为__________.6.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:△ADF∽△ACG;(2)若12ADAC=,求AFFG的值.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、C6、A7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、322、ab (a+b )(a ﹣b ).3、0或14、5、2n ﹣1,06、2三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)12,32-;(2)证明见解析. 3、(1)略;(2)略;(3)10.4、(1)略;(2)1.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.。
2020—2021年北师大版初中数学九年级下册期中检测题及答案.docx
期中检测题【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共30分)1.在直角三角形ABC中,如果各边长度都扩大到原来的2倍,则锐角A的正弦值和正切值()A.都缩小到原来的12B.都扩大到原来的2倍C.都没有变化D.不能确定2.如图,菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是()A.sinα=45 B.cosα=35 C.tanα=43D.tanα=34第2题图3.如图,河堤横断面迎水坡AB的坡比是1∶3,堤高BC=10 m,则坡面AB的长度是()A.15 mB.203mC.20 mD.103m4.如图,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到BC 的距离是()A.10-53B.5+53C.15-53D.15-1035.(2015·贵州铜仁中考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 mB.10 mC.20 mD.-10 m6.用配方法将函数y=12x2-2x+1写成y=a(x-h)2+k的形式是()A.y=12(x-2)2-1B.y=12(x-1)2-1C.y=12(x-2)2-3D.y=12(x-1)2-37.如图所示,二次函数y=x2-4x+3的图象与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为()A.1B. 2C.3D.4第7题图8.上午9时,一船从A处出发,以每小时40海里的速度向正东方向航行,9时30 分到达B处,如图所示,从A, B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么B处与小岛M的距离为()A.20海里B.202海里C.153海里D.203海里9.函数y=−x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=−1,在下列结论中,错误的是()A.顶点坐标为(-1,4)B.函数的表达式为y=−x2−2x+3C.当x<0时,y随x的增大而增大D.抛物线与x轴的另一个交点是(-3,0)第8题图10. (2015·山东潍坊中考)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是( )A.1B.2C. 3D.4 第10题图二、填空题(每小题3分,共24分)11.在离旗杆20m的地方用测角仪测得旗杆杆顶的仰角为α,如果测角仪高1.5m,那么旗杆的高为________m.12.如果sinα=3,则锐角α的余角是__________.13.(湖北襄阳中考)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5 m,则大树的高度为m.(结果保留根号)14.如图,在离地面高度为5m的C处引拉线固定电线杆,拉线与地面成α角,则拉线AC的长为__________m(用α的三角函数值表示).15.图中阴影部分的面积相等的是.第15题图16.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,你所确定的b的值是.第18题图17.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是___________.18.(2015·山东潍坊中考)观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.三、解答题(共66分)19.(7分)计算:6tan230°-cos30°·tan60°-2sin45°+cos60°.20.(7分)如图,李庄计划在山坡上的A处修建一个抽水泵站,抽取山坡下水池中的水用于灌溉,已知A到水池C处的距离AC 是50米,山坡的坡角∠ACB=15°,由于受大气压的影响,此种抽水泵的实际吸水扬程AB不能超过10米,否则无法抽取水池中的水,试问抽水泵站能否建在A处?第20题图第21题图21.(8分)如图,有一座抛物线形拱桥,桥下面正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图所示的平面直角坐标系中求抛物线的表达式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.(8分)某电视塔AB和楼CD的水平距离为100m,从楼顶C处及楼底D 处测得塔顶A的仰角分别为45°和60°,试求楼高和电视塔高(精确到0.1m).第23题图第22题图23.(8分)如图所示,一个运动员推铅球,铅球在点A处出手,m.铅球落地点在B处,铅球运行中在运出手时球离地面约53动员前4m处(即OC=4 m)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?24.(8分)(2015·广东珠海中考)已知抛物线y=a x2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程a x2+bx-8=0的一个根为4,求方程的另一个根.25.(10分)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1 100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是60°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D 处测得正前方另一海岛顶端B的俯角是45°,求两海岛间的距离AB.(杭州中考)复习课中,教师给出关于x的函数y=2kx2-26.(10分)(4k+1)x-k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论,教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.期中检测题参考答案一、选择题1.C 解析:根据锐角三角函数的概念知:如果各边的长度都扩大到原来的2倍,那么锐角A的各三角函数没有变化.故选C.2.D 解析:菱形ABCD 的对角线AC =6,BD =8,则AC ⊥BD ,且OA =3,OB =4.在Rt △ABO 中,根据勾股定理得AB =5,则sin α=35,cos α=45,tan α=34,故选D . 3. C 解析:在Rt △ABC 中,BC=10 m ,tanA=1∶.∴ AC=BC ÷tanA=10(m ), ∴ AB=22AC BC =20(m ).4.C 解析:如图,过点A 作AD ⊥BC 于点D.在Rt △ABD 中,∠B =60°,∴ BD =AD .在Rt △ADC 中,∠C =45°,∴ CD =AD . 第4题答图∵ BC=BD+CD,BC=10,∴ 10=AD +AD ,解得AD =15﹣5.故选C .5. C 解析:已知OD=4m ,故点B 的纵坐标为-4.设点B 的坐标为(x,-4).把y=-4代入y=-2251x ,得x=10(负值舍去).即水面宽度AB 为20m .6.A 解析:y =x 2﹣2x +1=(x 2﹣4x +4)﹣2+1=(x ﹣2)2﹣1.故选A .7.C 解析:由表达式y =x 2-4x +3=(x -1)(x -3),则与x 轴交点坐标为A (1,0),B (3,0).令x =0,得y =3,即C (0,3).∴ △ABC 的面积为12×(3−1)×3=3. 8.B 解析:如图,过点B 作BN ⊥AM 于点N .第8题答图 根据题意,得AB =40×=20(海里),∠ABM =105°. 在Rt △ABN 中,BN =AB •sin 45°=10(海里).在Rt △BNM 中,∠MBN =60°,则∠M =30°,所以BM =2BN =20(海里).故选B .9. C 解析:将A (1,0),B (0,3)分别代入表达式,得{−1+b +c =0,c =3,解得{b =−2,c =3,则函数表达式为y =−x 2−2x +3. 将x =-1代入表达式可得其顶点坐标为(-1,4).当y =0时可得−x 2−2x +3=0,解得x 1=−3,x 2=1.可见,抛物线与x 轴的另一个交点是(-3,0).当x <-1时,y 随x 的增大而增大.可见,C 答案错误.故选C .10.B 解析:∵函数图象开口向上,∴a >0.又∵顶点为(-1,0),∴-b2a =-1,∴b=2a >0. 由抛物线与y 轴的交点坐标可知:c+2>2,∴c >0,∴abc >0,故①错误.∵抛物线顶点在x 轴上,∴b 2-4a (c+2)=0,故②错误. ∵顶点为(-1,0),∴a-b+c+2=0.∵b=2a, ∴a=c+2. ∵c >0, ∴a >2,故③正确.由抛物线的对称性可知x=-2与x=0时函数值相等,∴4a-2b+c+2>2,∴4a-2b+c >0,故④正确.二、填空题11.(1.5+20tan α) 解析:根据题意可得:旗杆比测角仪高20tan α m ,测角仪高1.5 m ,故旗杆的高为(1.5+20tan α)m .12.30° 解析:∵ sin α=,α是锐角,∴α=60°. ∴锐角α的余角是90°﹣60°=30°.13.(5+53) 解析:过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,BE=CD=5 m ,CE=tan 30BE︒=53m.在Rt △ACE 中,AE=CE ·tan 45°=53m ,AB=BE+AE=(5+53)m. 点拨:本题考查了仰角、俯角问题的应用,要求能借助仰角或俯角构造直角三角形,并通过解直角三角形求解.14.5sin α 解析:∵ CD ⊥AB 且CD =5 m ,∠CAD=a ,∴ AC =CDsin α=5sin α(m).15.②③ 解析:①图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;②图中直线y=-x+2与坐标轴的交点坐标为(2,0),(0,2),故S阴影=12×2×2=2;③图中的函数是反比例函数,阴影部分的面积为S=12xy=12×4=2;②③的面积相等.④图中,抛物线与坐标轴交于(-1,0),(1,0),(0,-1),故阴影部分的三角形是等腰直角三角形,其面积S=12×2×1=1.点拨:解答本题首先根据各图形的函数表达式求出函数与坐标轴交点的坐标,求得各个阴影部分的面积,进而可比较出各阴影部分面积的大小关系,熟练掌握各函数的图象特点是解决问题的关键.16. −12(答案不唯一)解析:由题意可知c=−3,要想抛物线与x轴的一个交点在(1,0)和(3,0)之间,只需y1=1+b−3= b−2和y2=9+3b−3=3b+6异号即可,所以−2<b<2.17. y=154x2解析:设函数表达式为y=ax2(a≠0),点A坐标应该是(﹣0.8,﹣2.4),则有﹣2.4=(﹣0.8)2a,即a=﹣,即y=﹣x2.18. 135 解析:在Rt△ABD中,∠BAD=90°,tan∠ADB=ABAD,∵∠ADB=30°,AB=45m,∴tan30°=45AD,∴AD=45√3m.在Rt△ADC中,∠ADC=90°,tan∠CAD=DCAD,∵∠CAD=60°,AD=45√3m, ∴tan60°=45√3,∴DC=135 m.三、解答题19.解:原式=21316221222⨯=-=-⎝⎭.20.解:∵ AC=50米,∠ACB=15°,又sin∠ACB=AB AC,∴AB=AC·sin∠ACB= 50sin15°≈13(米)>10米,故抽水泵站不能建在A处.21.解:设其函数表达式为y=ax2(a≠0),设拱桥顶到警戒线的距离为m m,则C点坐标为(-5, -m),A点坐标为(-10,-m-3),故有22(5),3(10).⎧-=•-⎪⎨--=•-⎪⎩m am a解得1,251.⎧=-⎪⎨⎪=⎩am所以, (1)抛物线的表达式为y=125-x2.(2)1÷0.2=5(h).22.解:设CD=x m,∵CE=BD=100 m,∠ACE=45°,∴AE=CE·tan45°=100 m.∴AB=(100+x)m.在Rt△ADB中,∵∠ADB=60°,∠ABD=90°,∴tan60°=AB BD,∴AB=BD,即xx≈73.2(m),即楼高约为73.2m,电视塔高约为173.2m. 23.解:能.∵OC=4 m,CD=3 m,∴顶点D坐标为(4,3).设y=a(x−4)2+3(a≠0),把A(0,53)代入上式,得53=a(0−4)2+3,∴a=−112,∴y=−112(x−4)2+3,即y=−112x2+23x+53.令y=0,得−112x2+23x+53=0,∴ x1=10,x2=−2(舍去),故该运动员的成绩为10 m.24.(1)证明:由抛物线y=a x2+bx+3的对称轴为x=1得,−b2a=1.∴ 2a+b=0.(2)解:因为抛物线y=a x2+bx-8与y=a x2+bx+3有相同对称轴x=1,且方程a x2+bx-8=0的一个根为4.设a x2+bx-8=0的另一个根x2,则满足:4+x2=−ba.∵ 2a+b=0,即b=-2a,∴ 4+x2=2,∴x2=-2.25.分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,连接AB,易得四边形ABFE为矩形.根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1 100-200=900(米),CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD 中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离.解:如图,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD ,交CD 的延长线于点F ,连接AB.∵ AB ∥CD,∴ ∠AEF=∠EFB=∠ABF=90°,∴ 四边形ABFE 为矩形,∴ AB=EF ,AE=BF.由题意可知:AE=BF=1 100-200=900(米),CD=1.99×104米=19 900米.∴ 在Rt △AEC 中,∠C=60°,AE=900米,∴ CE=tan 60AE︒.在Rt △BFD 中,∠BDF=45°,BF=900米,∴ DF=tan 45BF ︒=9001=900(米).∴ AB=EF=CD+DF-CE=19(米).答:两海岛之间的距离AB 是)米. 点拨:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是求解此题的关键,注意数形结合思想的应用.26.分析:①把x=1,y=0代入函数表达式,存在k 值即可.②需要考虑函数是一次函数的情况.③分k=0,k<0,k>0三种情况进行讨论.④由题意知k ≠0,分k<0,k>0两种情况进行讨论. 解:①真命题,当k=0时,y=2kx 2-(4k+1)x-k+1=-x+1,此时图象经过点(1,0).②假命题,如①当k=0时,y=-x+1,y 为关于x 的一次函数,此时图象与坐标轴有两个交点.③假命题,分情况讨论:当k=0时,y=-x+1,在x>1时,y随x的增大而减小;当k<0时,二次函数的图象开口向下,对称轴为x=1+14k<1,由图象可知,在x>1时,y随x的增大而减小;当k>0时,二次函数的图象开口向上,对称轴为x=1+14k>1,所以在1<x≤1+14k时,y随x的增大而减小,在x>1+14k时,y随x的增大而增大.综上,当k>0时,结论不成立.④真命题,若函数有最值,则必然是二次函数,此时k≠0,Δ=24k2+1>0,二次函数的图象与x轴有两个交点.当取得最大值时,二次函数的图象开口向下,最大值必为正数;当取得最小值时,二次函数的图象开口向上,最小值必为负数.所用到的数学方法:数形结合思想、方程思想等.点拨:本题是关于二次函数图象与性质的辨别是非题,掌握二次函数的图象与性质并分类讨论是解题的关键.。
2020—2021年北师大版初中数学九年级下册期中检测题及答案3.docx
九年级第二学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的) 1.-41的倒数是( )A .4B .-41 C .41D .-42.用科学记数法表示0.0000210,结果是( )A .2.10×10-4B .2.10×10-5C .2.1×10-4D .2.1×10-53. 函数xx y 1+=的自变量x 的取值范围是( ) A .0≠x B .1-≥x C .1-≥x 且0≠x D .0>x 且1-≠x4.如图,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为 A .6 B .9 C .12D .155.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是( )A .10mB .103mC .15mD .53m6.为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是( ) A .众数是5元 B .平均数是2.5元 C .方差是4元 D .中位数是3元7. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .当﹣1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大每天使用零花钱(单位:元) 0 1 3 4 5 人数135428.如图,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于( ) A .20° B .30° C .40° D.50°9.如图,是反比例函数1k y x=和2k y x=(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) 8题图A .1B .2C .4D .810.如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是( ) A .S △AFD =2S △EFB B .BF=21DFC . AE = CD D .∠AEB=∠ADC二.填空题(6小题,每小题4分,共24分) 11.不等式2x+1>0的解集是. 12.计算: 0)8(-+3⋅tan 30°13--= .13.如图,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠l=58°,则∠2= ___________ . 14. 如图,在四边形ABCD 中,A ∠=45°,直线l 与 边AB 、AD 分别相交于点M 、N .则=∠+∠21.15.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 cm .16.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为____________.三.解答题(共3小题,每小题6分,共18分)17..解方程:,022=--x x18.化简,求值: 111(11222+---÷-+-m m m m m m ),其中m=3.A O图7yx( 6, 0 )P19.如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.四.解答题(共3小题,每小题7分,共21分)20.如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC是所作⊙O的切线.21. 如图,在ABCD中,点E、F是对角线AC上两点,且CFAE=.求证:FDEEBF∠=∠.FE DCB A22.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m)五.解答题(共3小题,每小题9分,共27分)23. 在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4=的图象上的概率;yx(3)求小明、小华各取一次小球所确定的数x、y满足4<的概率yx24. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.25.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ 存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由.数学答卷题 号 一 二 三 四 五 总 分 得 分一、选择题二.填空题(6小题,每小题4分,共24分)11.;12.;13.;14.;15.;16. .三.解答题(共3小题,每小题6分,共18分) 17.题号 1 2 3 4 5 6 7 8 9 10 答案18.19.四.解答题(共3小题,每小题7分,共21分)20.21.22FE DCB A五.解答题(共3小题,每小题9分,共27分)23.24.25.数学参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)题号 1 2 3 4 5 6 7 8 9 10答案D B C C A D B C C A二.填空题(6小题,每小题4分,共24分)11. x >21-; 12.35; 13. 32°; 14.225°; 15. 4; 16、(3,2) 三.解答题(共3小题,每小题6分,共18分) 17. x 1 = -1, x 2 = 2 .18. 解:原式=1)1()1)(1(11222+--+-÷-+-m m m m m m m =111)1)(1()1(22+--+•+--m m m m m m =mm m m m -+•+-2111=mm m --21 =)1(1--m m m =m 1.∴当m=3时,原式=3331=.19. 证明 ∵在△ABC 中,AD 是中线,∴BD=CD ,∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90°,在△BED 与△CFD 中,∵∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED ≌△CFD ,∴BE=CF .四.解答题(共3小题,每小题7分,共21分)20. (1)解:如图所示: (2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∠ABC=90° ∴OE=OB ,∴AC 是所作⊙O 的切线.21.:证明连接BD 交AC 于O 点.∵ 四边形ABCD 是平行四边形,∴OA=OC ,OB=OD. 又∵ AE=CF , ∴OE=OF , ∴ 四边形BEDF 是平行四边形 ∴∠EBF=∠EDF.22.解:设CE =xm ,则由题意可知BE =xm ,AE =(x +100)m .在Rt △AEC 中,tan ∠CAE =AE CE ,即tan30°=100+x x ∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6∴CD =CE +ED =(136.6+1.5)=138.1≈138(m) 答:该建筑物的高度约为138m .五.解答题(共3小题,每小题9分,共27分)23. 解:(1)用列表法表示出(x,y)的所有可能出现的结果如下:x1 2 3 4y1 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)24. 解:(1)因为购买大型客车x辆,所以购买中型客车(20)x-辆.()62402022800=+-=+.y x x x(2)依题意得x-20<x. 解得x >10.∵在函数22800=+中,y值随着x值的增大而增大,且x为整数,y x∴当x=11时,购车费用最省,最省费用为22×11+800=1 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元25. 解:(1)设AC=4ycm,BC=3ycm,在Rt△ABC中,AC2+BC2=AB2,即:(4y)2+(3y)2=102,解得:y=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=xcm,∴BP=(10-x)cm,BQ=2xcm,∵△QHB∽△ACB,∴,∴QH=xcm,y=BP•QH=(10-x)•x=-x2+8x(0<x≤3),(3)由(2)得AP=xcm,AQ=(14-2x)cm,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:=,解得:x=,PQ=,∴PB=10-x=cm,∴=≠,∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;(1)解:如图所示:(2)证明:过点O作OE⊥AC于点E,∵FC平分∠ACB,∠ABC=90°∴OE=OB,∴AC是所作⊙O的切线;(3)解:∵sinA=,∠ABC=90°,∴∠A=30°,∴∠ACB=∠OCB=ACB=30°,∵BC=,∴AC=2,BO=tan30°BC=×=1,∴△AOC的面积为:×AC×OE=×2×1=.理由:∵AQ=14-2x=14-10=4cm,AP=x=5cm,∵AC=8cm,AB=10cm,∴PQ是△ABC的中位线,∴PQ∥BC,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5cm,∵AP=CP,∴AP+BP=AB,∴AM+BM=AB,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm.∴△BCM的周长最小值为16cm.(4)存在.理由:∵AQ=14-2x=14-10=4cm,AP=x=5cm,∵AC=8cm,AB=10cm,∴PQ是△ABC的中位线,∴PQ∥BC,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5cm,∵AP=CP,∴AP+BP=AB,∴AM+BM=AB,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm.∴△BCM的周长最小值为16cm.。
2020—2021年北师大版初中数学九年级下册期末模拟试题及答案.docx
九年级期末考试数 学 试 题温馨提示:1.本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页. 考试时间120分钟,满分120分.2.答题前,考生务必认真阅读答题卡中的注意事项,并按要求进行填、涂和答题.第Ⅰ卷 (选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知 ∠A 为锐角,且sinA 21,那么∠A 的度数是A. 15B. 30C. 45D. 602.有一种圆柱体茶叶筒如图所示,则它的主视图是A .B .C .D .3.在△ABC 中,D 、E 为边AB 、AC 的中点,已知△ADE 的面积为4,那么△ABC 的面积是 A. 8 B. 12C. 16D. 204.下列一元二次方程没有实数根的是 A.290x -=B. 210x x --=C. 29304x x -+-= D.210x x ++=5.已知关于x 的一元二次方程()013122=-++-k x x k 有一根为0,则k 的值是 A. -1B. 1C. 1±D. 06.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n 的值是A .4B .6C .8D .107.反比例函数xy 3=的图象上有两点M ,N,那么图中阴影部分面积最大的是第3题图A. B. C.D.8.抛物线2=--的顶点坐标是-(2)1y xA.(-2,1)B.(-2,-1) C.(2,-1)D.(2,1)9.抛物线y=-2x2不具有的性质是A. 开口向下B. 对称轴是y轴C. 当x>0时,y随x的增大而减小D. 函数有最小值10.函数y=-x2-3的图象向上平移2个单位,再向左平移2个单位后,得到的函数是A.y=-(x+2)2-1 B.y=-(x-2)2-1C.y=-(x-2)2+1 D.y=-(x+2)2+1 11.如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是A B C D12.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为A.10个单位B.12个单位C.1个单位D.15个单位13.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是A.23cmB.32cmC.42cm第13题图D.43cm14.小明、小亮、小梅、小花四人共同探讨代数式x2-6x+10的值的情况. 他们作了如下分工:小明负责找其值为1时的x的值,小亮负责找其值为0时的x的值,小梅负责找最小值,小花负责找最大值,几分钟后,各自通报探究的结论,其中错误的...是A. 小明认为只有当x=3时,x2-6x+10的值为1;B. 小亮认为找不到实数x,使x2-6x+10的值为0;C. 小梅发现x2-6x+10的值随x的变化而变化,因此认为没有最小值;D. 小花发现当x取大于3的实数时,x2-6x+10的值随x的增大而增大,因此认为没有最大值.15.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是第15题图第Ⅱ卷 (非选择题 共75分)二、填空题(本大题共6个小题.每小题3分,共18分). 16.若两个相似三角形的周长比为2:3,则它们的面积比是. 17.若43=xy ,则xyx +的值为_____. 18.2sin60°+tan45°=_______. 19.如图,1∠的正切值等于.20.如图,点A 、B 、C 在⊙O 上,∠C =115°,则∠AOB =. 21.如图,是二次函数2(0)y ax bx c a =++≠的图象的一部分, 给出下列命题 :①abc <0;② 2a <b ;③ a+b+c=0;④20ax bx c ++=的两根分别为-3和1;⑤8a+c >0. 其中正确的命题是.三、解答题(本题共7小题,共57分,解答应写出文字说明或演算步骤)22.(1)(本小题满分3分)解方程:322=-x x(2) (本小题满分4分)求二次函数3422++-=x x y 的对称轴及顶点坐标.第19题图23.(7分)已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC24.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.25.(8分)父亲节,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性是否会增大?请说明理由.26.(9分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.27.(本题满分9分)进入冬季,济南市雾霾天气频发,商场根据市民健康需要,代理销售一种防尘口罩,进价为20元/包。
2020—2021年北师大版初中数学九年级下册阶段复习测试题及答案解析.docx
九年级(下)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟) 注意事项:1.试题的答案书写在答题卡...上不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回。
参考公式:()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴公式为2bx a=-。
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1.实数4的倒数是( ) A .4B .14C .4-D .14-2.计算32(2)x 的结果是( ) A .64xB .62xC .54xD .52x3.下列商标是轴对称图形的是( )A.B.C.D.中,x的取值范围是()4.在代数式2x+1A.0x≠x≠- D.0x≤C.1x>B.05.下列调查中,适合采用普查方式的是()A.调查市场上粽子的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查我市市民收看重庆新闻的情况6.△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为()A.3:2B.3:4C.4:5D.9:167.如图,//a b,将一块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46°B.48°C.56°D.72°8.如图,A、B、C是Oe上的三点,∠ACB=40°,则∠AOB的度数为()A.20°B.40°C.60°D.80°9.不等式组220 1213xxx-≤⎧⎪+⎨>-⎪⎩的解集是()A.1x≥B.41x-<≤C.4x<D.1x≤10.五一假期,刘老师开车自驾前往荣昌,他开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于形势在畅通无阻的告诉公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城。
2020—2021年北师大版初中数学九年级下册全册期末检测题及答案.docx
全册检测题时间:120分钟 满分:120分一、精心选一选(每小题3分,共30分)1.若关于x 的方程x 2+3x +a =0有一个根为-1,则另一个根为( A )A .-2B .2C .4D .-32.(2015·沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是( B )A .平行四边形B .菱形C .矩形D .正方形3.如图,将一个长方体内部挖去一个圆柱,它的主视图是( A )4.学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是( A )A.23B.56C.16D.125.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-1 x 图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( D ) A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1 6.如图,在平行四边形ABCD中,点E在边DC上,DE∶CE=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( B )A.3∶4 B.9∶16 C.9∶1 D.3∶1,第6题图) ,第8题图),第10题图)7.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是( C )A.(-3,-6) B.(1,-4) C.(1,-6) D.(-3,-4) 8.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A,B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°,木瓜B的仰角为30°,则C处到树干DO的距离CO的长度大约是( C )(结果精确到1米;参考数据:3≈1.73,2≈1.41)A.3米B.4米C.5米D.6米9.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( D )A.80°B.100°C.110°D.130°10.(2015·广东)如图,已知正△ABC的边长为2,E,F,G 分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( D )二、细心填一填(每小题3分,共24分)11.计算:(-1)201+sin230°+cos245°-(π-3.14)0+tan45°=__-14__.12.若关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是__m≤1__.13.(2015·温州)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同,现随机从袋中摸出两个球,颜色是一红一蓝的概率是__23__.14.为了测量校园内旗杆的高度CD,小彬在早上和下午两个时刻各测量了这个旗杆的影长,如图,已知早上测得的影长AD为4 m,下午测得的影长BD为25 m,且早上与下午的阳光光线夹角为∠ACB=90°,则旗杆的高度CD为__10__m.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.(2015·兰州)如图,点P,Q是反比例函数y=kx图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB,QM,△ABP的面积记为S1,△QMN 的面积记为S2,则S1__=__S2.(填“>”或“<”或“=”)16.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm41 49 49 46 25科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为__-1__℃.17.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__54__米.18.一般地,如果在一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=MD.如图,如果在等边△ABC内射入一个点,则该点落在△ABC内切圆中的概率是__39π__.三、耐心做一做(共66分)19.(8分)利用一面墙(墙的长度不限),另三边用58米长的篱笆围成一个面积为200平方米的矩形场地,求矩形的长和宽.解:设垂直于墙的一边为x米,由题意得x(58-2x)=200,解得x1=25,x2=4,∴另-边为8米或50米,则矩形长为25米、宽为8米或矩形长为50米、宽为4米20.(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两个人打第一场,游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的.请用画树状图的方法求小莹和小芳打第一场的概率.解:(1)从三个人中随机选一个打第一场,每个人被选中的可能性都是相同的,所以恰好选中大刚的概率是13(2)画树状图如下:由树状图可知:两人伸手的情况有4种,每种情况出现的可能性都是相同的,其中两人伸手的手势相同的情况有2种,所以P(小莹和小芳打第一场)=24=1221.(9分)(2015·河南)如图,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在Rt△DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=33,则CN=3,BN=h-3.在Rt△BDN中,DN=3BN=3(h-3).在Rt△ABC中,AC=htan48°.∵AM+AC=DN,∴33+htan48°=3(h-3),解得h≈13,则为大树的高度为13米22.(9分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=mx(m为常数,且m≠0)的图象交于点A(-2,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.解:(1)反比例函数解析式为y2=-2x,一次函数解析式为y1=-x-1(2)设线段AB交y轴于C,可求C(-1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC=12×1×2+12×1×1=32(3)当y1<y2<0时,x>123.(10分)(2015·江西)(1)如图①,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为( C )A.平行四边形B.菱形C.矩形D.正方形(2)如图②,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D的两条对角线的长.解:(1)C (2)①∵AF綊DF′,∴四边形AFF′D是平行四边形.∵AE=3,EF=4,∠E=90°,∴AF=5.∵S▱ABCD=AD·AE=15,∴AD=5 ,∴AD=AF,∴四边形AFF′D是菱形②连接AF′,DF.在Rt△AEF′中,AE=3,EF′=9,∴AF′=310.在Rt△DFE′中,FE′=1,DE′=AE=3,∴DF=1024.(10分)如图,抛物线y =ax 2+bx +52与直线AB 交于点A(-1,0),B(4,52),点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD. (1)求抛物线的表达式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标.解:(1)y =-12x 2+2x +52 (2)先求出直线AB 的解析式为y =12x +12,则D(m ,-12m 2+2m +52),C(m ,12m +12),∴CD =(-12m 2+2m +52)-(12m +12)=-12m 2+32m +2,∴S =12(m +1)·CD +12(4-m)·CD =12×5·CD =12×5×(-12m 2+32m +2)=-54m 2+154m +5.∵-54<0,∴当m =32时,S 有最大值,当m =32时,12m +12=12×32+12=54,∴点C 的坐标为(32,54)25.(12分)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与 AC ,BC 及 AB 的延长线相交于点 D ,E ,F ,且BF =BC ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接 BD ,FH.(1)求证:△ABC ≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB =1,求HG ·HB 的值.解:(1)在Rt △ABC 和Rt △EBF 中,∵∠C =∠EFB ,BC =BF ,∠ABC =∠EBF ,∴△ABC ≌△EBF(ASA) (2)BD 为⊙O 的切线.理由:连接OB ,则∠DBC =∠DCB =∠OFB =∠OBF ,∴∠DBO =∠DBC +∠EBO =∠OBF +∠EBO =90°,∴DB ⊥OB ,BD 与⊙O 相切 (3)连接EA ,EH ,∵DF 为AC 的垂直平分线,∴CE =EA =2AB =2,BF =BC =1+2,∴EF 2=BE 2+BF 2=1+(1+2)2=4+2 2.又∵BH 为角平分线,∴∠EBH =∠EFH =∠HBF =45°,又∠GHF =∠FHB ,∴△GHF ∽△FHB ,∴HF HG =HB HF,即HG ·HB =HF 2.∵在等腰Rt △HEF 中,EF 2=2HF 2,∴HG ·HB =HF 2=12EF 2=2+ 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试题全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间l20分钟。
A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中,有且仅有一项是符合题目要求的.) 1.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是( )A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×1062.下列计算错误的是( )A .-(-2)=2 B=.22x +32x =52xD .235()a a =3.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )4.下列说法正确的是( )A .抛一枚硬币,正面一定朝上;(第3题)A .B .C.D.B .掷一颗骰子,点数一定不大于6;C .为了解一种灯泡的使用寿命,宜采用普查的方法;D .“明天的降水概率为80%”,表示明天会有80%的地方下雨. 5.函数y =5-x 中,自变量x 的取值范围 ( )A .x >5B .x <5C .x ≤5D .x ≥5 6.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .1∶4B .1∶2C .2∶1D .1∶27. 如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠C=50o ,那么 sin ∠AEB 的值为( )A. 21B. 33C.22 D.238.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠9.如图,在平面直角坐标系中,点A 在第一象限,⊙A 与轴相切于B ,与轴交于C (0,1),D (0,4)两点,则点A 的坐标是 ( )A.35(,)22B.3(,2)2C.5(2,)2D.53(,)2210.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( )A .20、20B .30、20C .30、30D .20、30二、填空题(本大题共4个小题,每小题4分,共16分.把答案直接填在题目中的横线上.)11.分解因式33222ax y axy ax y +-= . 12.若x =1是一元二次方程x 2+x +c =0的一个解,则=2c .13.在ABC △中,5AB AC ==,3cos 5B =.如果圆O 的半径且经过点B C ,,那么线段AO 的长等于 . 14.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是.三、(第15题每小题6分,第16题6分,共18分)15.解答下列各题:(1)计算:()ο60sin623183101+-+-⎪⎭⎫⎝⎛--(2)先化简,再求值:32444)1225(222+=++-÷+++-aaaaaaa,其中16.解不等式组20 5121123xx x->⎧⎪+-⎨+⎪⎩,≥,并把解集在数轴上表示出来,并写出该不等式组的最大整数解。
四、(每小题8分,共16分) 17.如图,反比例函数x y 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。
(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOB 的面积。
18.一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一17题图座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)A BC北东五、(每小题10分,共20分)19.将正面分别标有数字1、2、3、4、6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张。
⑴用树状图或表格写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;⑵记抽得的两张卡片的数字为(a ,)b ,求点P (a ,)b 在直线2y x =-上的概率;20. 如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E .(1)求证:ABF COE △∽△; (2)当O 为AC 边中点,2ACAB =时,如图2,求OFOE 的值;(3)当O 为AC 边中点,AC n AB =时,请直接写出OFOE 的值.BBAACOEDDECO F图1图2F.B 卷(共50分)一、填空题:(每小题4分,共20分) 21.若2320a a --=,则2526a a +-= .22.关于x的方程211x ax+=-的解是正数,则a的取值范围是.23.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p=,q=.24. 如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2n≥,且n为整数),则A′N= (用含有n的式子表示)25. 如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过ΔABC的内切圆圆心O,且点E 在半圆弧上。
①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________。
二、解答题 26. (共8分)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该清无息贷款?42140 60 80x (元)(万件) y O27. (共10分) 如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.CEBAOFD28.(共12分) 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
A卷:一. 一、选择题(本大题共10个小题,每小题3分,共30分)1.C2.D3.C4.B5.D6.B7.D8.B9.C 10.C二、填空题(本大题共4个小题,每小题4分,共16分)11.axy(x-y)2 12.4 13.5或3 14.(9,0)三、解答题(本题共6个小题,每小题6分,满分36分) 15.(1)33232+-- (2)a-2, 316.21<≤-x ,数轴略,1.17.(1)y=x+1 (2)C(0,1) (3)S=1.518. 解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD .设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CDBD , ∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CDAD , ∴CD =( 60+x ) ·tan21.3°. ∴x ·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近19.解:(1)任取两张卡片共有10种取法,它们是:(1、2),(1、3),(1、4),(1、6),(2、3),(2、4),(2、6),(3、4),(3、6),(4、6);和为偶数的共有四种情况.……(2分)故所求概率为142105P ==;……(4分)(2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线y =x -2上的只有(3、1),(4、2),(6、4)三种情况,故所求概率1320P =…(7分)BC DA20.解:(1)AD BC Q ⊥,90DAC C ∴∠+∠=°.90BAC BAF C ∠=∴∠=∠Q °,. 90OE OB BOA COE ∴∠+∠=Q ⊥,°, 90BOA ABF ∠+∠=Q °,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交AD 的延长线于G .2AC AB =Q ,O 是AC 边的中点,AB OC OA ∴==.由(1)有ABF COE △∽△,ABF COE ∴△≌△,BF OE ∴=.90BAD DAC ∠+∠=Q °,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,,又90BAC AOG ∠=∠=°,AB OA =.ABC OAG ∴△≌△,2OG AC AB ∴==.OG OA Q ⊥,AB OG ∴∥,ABF GOF ∴△∽△, OF OG BF AB ∴=,2OF OF OGOE BF AB ===.解法二:902BAC AC AB AD BC ∠==Q °,,⊥于D ,Rt Rt BAD BCA ∴△∽△.2AD ACBD AB ∴==. 设1AB =,则2AC BC BO ===,,12AD BD AD ∴===90BDF BOE BDF BOE ∠=∠=∴Q °,△∽△, BD BO DF OE ∴=.BADE COF GBADE COF由(1)知BF OE =,设OE BF x ==,5DFx ∴=,x ∴=. 在DFB △中2211510x x =+,x ∴=OF OB BF ∴=-==322OF OE ∴==.(3)OFn OE =.B 卷:21.-1 22.1-<a 且a 2≠ 23.25 ,45-24.23,n n 12-25.①5∶2 ;②2126. 25.解:(1)当4060x <≤时,令y kx b =+,则404602k b k b +=⎧⎨+=⎩,解得1108.k b ⎧=-⎪⎨⎪=⎩,∴1810y x =-+.同理,当60100x <<时,1520y x =-+.18(4060)1015(60100)20x x y x x ⎧-+<⎪⎪∴=⎨⎪-+<<⎪⎩,≤(2)设公司安排a 人,定价50元时5=)850101(+⨯-)4050(-a 25.015-- a=40 (3) 当4060x <≤时 利润w 1=5)60(1018025.015)40)(8101(2+--=⨯---+-x x x x=60时,w 1=5万元;当60100x <<时, 利润W 2=10)70(2018025.015)40)(8201(2+--=⨯---+-x x x x=70时,w 1=10万元;Θ要尽早还请贷款,只有当定价为70元时,获得最大利润10万元。