1.1.1命题及其关系(学、教案)

合集下载

2020秋高中数学人教版2-1学案:1.1.1命题含解析

2020秋高中数学人教版2-1学案:1.1.1命题含解析

2020秋高中数学人教A版选修2-1学案:1.1.1命题含解析第一章常用逻辑用语德国伟大的诗人歌德,有一次在魏玛公园散步.当他走在一条仅能容一个人通过的小路上时,迎面走来了一位曾经把歌德的所有作品都贬得一文不值的文艺批评家.那位批评家站在歌德的对面,傲慢地说:“对一个傻子,我绝不让路." “我却正好相反."歌德边说边微笑着站到了一边.顿时,那位批评家满脸通红,羞得无地自容.这里反映的就是常用逻辑用语在现实生活中的应用.日常生活中,我们经常涉及一些逻辑上的问题.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维,需要对一些命题进行判断和推理.因此,正确地使用逻辑用语是现代社会公民应该具备的基本素质.本章我们将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用.学习目标1.了解命题的概念,会判断命题的真假.2.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.3.通过数学实例,了解逻辑联结词“且”“或"“非”的含义.4.能够正确地对含有一个量词的命题进行否定.5.理解必要条件、充分条件与充要条件的意义.6.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.本章重点命题及其关系;充分条件、必要条件、充要条件的意义;逻辑联结词“或”“且”“非”的含义;全称量词与存在量词的应用.本章难点必要条件的含义;含有一个量词的全称命题和特称命题的否定.1。

1命题及其关系1。

1。

1命题自主预习·探新知情景引入中国古代伟大的逻辑学家公孙龙提出过一个命题:白马非马.对于一般人来说,“白马是马”就如同说“苹果是水果”一样清楚明白,怎么可能“白马非马”呢?孔子的六世孙孔穿,为了驳倒公孙龙的主张,找上门去辩论,结果公孙龙说:“如果白马是马,那么黑马也是马,因此就有白马是黑马,也就是说白等于黑.像你这样黑白不分,我不值得和你辩论.”孔穿几句话就败下阵来.公孙龙在这里正是运用了逻辑推理才将这个错误的命题“证明”了,它的破绽在哪里呢?新知导学命题及相关的概念(1)定义:用__语言、符号或式子__表达的,可以__判断真假__的陈述句.(2)分类:①真命题:判断为__真__的语句;②假命题:判断为__假__的语句.(3)形式:命题的结构形式是“__若p,则q__”,其中__p__是命题的条件,__q__是命题的结论.预习自测1.下列语句中,命题的个数是(C)①空集是任何集合的真子集;②请起立;③单位向量的模为1;④你是高二的学生吗?A.0B.1C.2D.3[解析]由命题的定义知,语句①③能判断真假,所以是命题,故选C.2.下列语句中是命题的是(D)A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角[解析]两个锐角的和大于直角是一个假命题,A、B、C都不能判断真假.3.下列命题为假命题的是(C)A.log24=2B.直线x=0的倾斜角是错误!C.若|a|=|b|,则a=bD.若直线a⊥平面α,直线a⊥平面β,则α∥β[解析]由|a|=|b|得a与b的模相等,但方向不定,故a与b不一定相等,故选C.4.下列命题为真命题的是(A)A.若错误!=错误!,则x=y B.若x2=1,则x=1C.若x=y,则错误!=错误!D.若x〈y,则x2〈y2[解析]B中,若x2=1,则x=±1;C中,若x=y<0,则x与错误!无意义;D中,若x=-2,y=-1,满足x〈y,但x2〉y2,故选A.5.把命题“函数f(x)=sin x是奇函数”改写成“若p,则q”的形式是__若一个函数是f(x)=sin x,则该函数是奇函数__。

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。

2. 学会判断充分条件和必要条件。

3. 掌握充分条件和必要条件与命题真假之间的关系。

4. 能够运用充分条件和必要条件解决实际问题。

二、教学重点与难点重点:充分条件和必要条件的概念及判断。

难点:充分条件和必要条件与命题真假之间的关系。

三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。

2. 准备一些练习题,用于巩固所学知识。

四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。

”让学生思考这个实例中的条件和结论之间的关系。

2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。

定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。

教师讲解如何判断充分条件和必要条件,并举例说明。

3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。

五、课后作业1. 完成练习册的相关题目。

2. 举出生活中的实例,运用充分条件和必要条件进行分析。

教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

如有需要,可在下一节课进行针对性讲解。

六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。

2. 教师举例解释这些概念,并让学生进行判断。

七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。

2. 学生分享自己在课堂练习中的收获和感悟。

八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

人教版高中数学选修1-1第一章命题及其关系 同步教案

人教版高中数学选修1-1第一章命题及其关系 同步教案

命题及其关系辅导教案学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2课时教学课题人教版选修1-1 第一章命题及其关系同步教案教学目标知识目标: 1. 理解命题的概念,了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2. 理解必要条件、充分条件与充要条件的意义.能力目标:掌握命题之间的相互关系情感态度价值观:通过合作与交流,让学生体会数学的理性与严谨,感受探索的乐趣教学重点与难点重点:四个命题与充分必要条件的理解与判定难点:充要条件的判定教学过程(一)命题知识梳理1. 命题的定义:用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫真命题,判断为假的语句叫假命题。

2. 四种命题:(一)四种命题的形式原命题:“若,则”;逆命题:“若,则”;实质是将原命题的条件和结论互相交换位置;否命题:“若非,则非”,或“若,则”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非,则非”,或“若,则”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定。

(二)四种命题之间的关系(三)四种命题之间的真假关系表原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假例题精讲【题型一、命题的定义】【例1】判断下列语句是否为命题?若是,判断其真假.(1) ;(2) 时, ;(3) 你是男生吗?(4) 求证:是无理数.【方法技巧】对于命题真假的判断应根据已学习过的已有定义、定理、公理及已有结论等进行。

【题型二、命题的四种形式】【例2】写出下列的命题的逆命题,否命题和逆否命题,并判断它们的真假.(1)在中,若,则;(2)直角三角形两直角边的平方和等于斜边的平方;(3)当时,若, 则.【方法技巧】①一般地,先将命题改写成“如果…,那么…”的形式,再写出其他命题形式;某些命题存在大前提,写其它命题时应注意保留.②互为逆否命题的两个命题是等价的,同为真或同为假,因此在判定真假时,只需判定二者中的一个.巩固训练1.下列语句中是命题的是()A.B.{0}∈N C.元素与集合 D.真子集2.判断下列语句是否是命题。

《命题及其关系》教案

《命题及其关系》教案

《命题及其关系》教案第一章:命题的基本概念1.1 命题的定义引导学生理解命题的概念,命题是一个陈述句,它要么是真的,要么是假的。

通过举例说明命题的真假性质,如“今天是星期一”是一个命题,它要么是真的,要么是假的。

1.2 命题的构成要素解释命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

举例说明命题的构成,如“如果下雨,地面会湿”中,“下雨”是题设,“地面会湿”是结论。

第二章:命题的真假判断2.1 判断命题的真假教授学生如何判断命题的真假,只有当命题的所有条件都满足时,命题才为真。

通过举例让学生练习判断命题的真假,如“今天是星期一”这个命题是真的,因为今天是星期一。

2.2 逆命题和反命题解释逆命题和反命题的概念,逆命题是将命题中的题设和结论互换位置得到的新命题,反命题是将命题的题设和结论都取反得到的新命题。

举例说明逆命题和反命题的过程,如“如果下雨,地面会湿”的逆命题是“如果地面会湿,下雨”,反命题是“如果不下雨,地面不会湿”。

第三章:命题的逻辑关系3.1 逻辑连接词介绍逻辑连接词的概念,逻辑连接词是用来连接两个命题的词语,如“且”、“或”、“非”等。

举例说明逻辑连接词的使用,如“今天是星期一且下雨”这个命题只有在今天是星期一且下雨的情况下才为真。

3.2 复合命题解释复合命题的概念,复合命题是由简单命题通过逻辑连接词连接而成的命题。

举例说明复合命题的构成,如“如果下雨,地面会湿”和“如果不下雨,地面不会湿”可以通过逻辑连接词连接成“如果下雨,地面会湿;如果不下雨,地面不会湿”的复合命题。

第四章:命题的等价关系4.1 等价命题的概念解释等价命题的概念,等价命题是指在所有情况下都具有相同真值的命题。

举例说明等价命题的特点,如“今天是星期一”和“今天不是星期日”在所有情况下都具有相同的真值,它们是等价命题。

4.2 等价命题的判断教授学生如何判断两个命题是否为等价命题,可以通过逻辑推理或者真值表来判断。

016:选修2-1 1.1 命题及其关系、命题及其真假、四种命题的关系1

016:选修2-1  1.1 命题及其关系、命题及其真假、四种命题的关系1

选修2-1 第一章 常用逻辑用语§1.1 命题及其关系、命题及其真假、四种命题的关系班级 姓名一、目标导引1.了解命题的概念和分类,能判断命题的真假;2.了解命题的构成形式,能将命题改写为“若p ,则q ”的形式;3.会写出所给命题的逆命题、否命题和逆否命题以及真假性之间的联系; 4.会利用命题的等价性解决问题.二、教学过程 (一)命题1.用 表达的,可以判断真假的 叫做命题.判断为真的语句叫做 命题.判断为假的语句叫做 命题.2.命题定义的 , ,判断的结果可真可假,但真假必居其一。

判断一个语句是不是命题,关键看这语句是否符合“ ”和“ ”这两个条件.3.有些语句中 ,这样的语句叫开语句,不构成是命题. 例1:判断下面的语句是否为命题?若是命题,指出它的真假.(1)空集是任何集合的子集 ( ) (2)若整数a 是素数,则a 是奇数( )(3)指数函数是增函数吗? ( )(4)2(2)2-=- ( ) (5)x +3>15 ( ) (6)求证3是无理数( ) (7)并非所有的人都喜欢苹果( )(二) “若p ,则q ”形式的命题1.在“若p ,则q”这种形式的命题中,p 叫做命题的条件,q 叫做命题的结论.2.“若p ,则q”中的p 和q 可以是命题也可以不是命题.3.“若p ,则q”形式的命题的优点是条件与结论容易辨别,缺点是太格式化且不灵活. 4.“若p ,则q”形式的命题是命题的一种形式而不是唯一的形式. 命题也可写成“如果p ,那么q”,“只要p ,就有q”等形式.5.“若p 则q”形式的命题的书写:对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句,确定条件与结论.如命题:“垂直于同一条直线的两个平面平行” .写成“若p ,则q”的形式为:“若两个平面垂直于同一条直线,则这两个平面平行.”例2:把下列命题改写成“若p ,则q ”的形式,并判定命题的真假. (1)对顶角相等.(2)偶函数的图像关于y 轴对称.(3)垂直于同一条直线的两条直线平行. (4)垂直于同一个平面的两个平面互相平行.(三)四种命题1.互逆命题:如果第一个命题的 是第二个命题的 ,且第一个命题的 是第二个命题的 ,那么这两个命题叫 .如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.2.互否命题:如果第一个命题的 是第二个命题的 ,那么这两个命题叫做互否命题。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,掌握简单命题和复合命题的关系。

2. 理解充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 能够运用充分条件和必要条件解决实际问题。

教学内容:第一章:命题及其关系1.1 命题的概念1.2 简单命题和复合命题第二章:充分条件与必要条件2.1 充分条件的定义2.2 必要条件的定义2.3 充分条件和必要条件的关系第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件3.2 如何判断一个条件是必要条件3.3 实例分析第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例4.2 练习题5.1 本章小结5.2 知识拓展教学过程:第一章:命题及其关系1.1 命题的概念教师提问:什么是命题?学生回答后,教师给出命题的定义,即可以判断真假的陈述句。

1.2 简单命题和复合命题教师通过举例讲解简单命题和复合命题的概念,让学生理解并区分两者。

第二章:充分条件与必要条件2.1 充分条件的定义教师提问:什么是充分条件?学生回答后,教师给出充分条件的定义,即能够导致某个结果的条件。

2.2 必要条件的定义教师提问:什么是必要条件?学生回答后,教师给出必要条件的定义,即某个结果必须满足的条件。

2.3 充分条件和必要条件的关系教师讲解充分条件和必要条件的关系,让学生理解两者之间的区别和联系。

第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件教师讲解如何判断一个条件是充分条件,让学生掌握判断方法。

3.2 如何判断一个条件是必要条件教师讲解如何判断一个条件是必要条件,让学生掌握判断方法。

3.3 实例分析教师通过实例分析,让学生理解充分条件和必要条件的应用。

第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例教师通过实际问题举例,让学生学会运用充分条件和必要条件解决问题。

4.2 练习题教师布置练习题,让学生巩固所学知识。

人教A版高中数学选修2-1:1.1命题及其关系课件

人教A版高中数学选修2-1:1.1命题及其关系课件
若两个平面垂直于同一条直线,则这两个平 面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的情势:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
即 原命题:若p,则q 逆命题:若q,则p
例如,命题“同位角相等,两直线平行”的逆命题是“两 直线平行,同位角相等”。
视察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
1.
3.
若若f(fx(x)不)是是正正弦弦函函数数,p,则则f(fx(x)是)不周是期周函期数函;数q .
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
原结论 反设词 原结论
反设词

不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有n个 至多有(n-1)个
小于 大于或等于 至多有n个 至少有(n+1)个
对所有x, 存在某x, 对任何x,
成立 不成立
不成立
存在某x, 成立
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不都”。(4)“一定是”的否定为“一定
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例如,命题“同位角相等,两直线平行”的否命题是“同 位角不相等,两直线不平行”。
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系:充分条件与必要条件教案一、教学目标1. 让学生理解命题的概念,能够正确书写简单命题。

2. 让学生掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 培养学生运用逻辑推理解决实际问题的能力。

二、教学内容1. 命题的概念:命题是判断某件事情的语句,可以是真的,也可以是假的。

2. 充分条件和必要条件的定义:充分条件:如果一个条件能够保证结论的发生,这个条件就是结论的充分条件。

必要条件:如果一个条件是结论发生的前提,这个条件就是结论的必要条件。

三、教学重点与难点1. 教学重点:充分条件和必要条件的判断。

2. 教学难点:如何区分充分条件和必要条件,以及如何在实际问题中运用。

四、教学方法1. 采用案例分析法,通过具体例子让学生理解命题、充分条件和必要条件的概念。

2. 采用小组讨论法,让学生在小组内讨论如何判断一个条件是充分还是必要。

3. 采用练习法,让学生通过做练习题巩固所学知识。

五、教学过程1. 导入:通过一个生活中的例子,如“如果明天不下雨,我们就去公园玩”,引出命题、充分条件和必要条件的概念。

2. 讲解:讲解命题的定义,让学生明白命题是可以判断真假的语句。

讲解充分条件和必要条件的定义,并通过例子让学生判断一个条件是充分还是必要。

3. 互动:让学生在小组内讨论如何判断一个条件是充分还是必要,并分享彼此的看法。

4. 练习:给学生发放练习题,让学生运用所学知识判断题目中的条件是充分还是必要。

5. 总结:对本节课的内容进行总结,强调如何区分充分条件和必要条件,以及如何在实际问题中运用。

6. 作业:布置一道课后作业,让学生巩固所学知识。

六、教学延伸1. 让学生了解充分条件和必要条件之间的关系:充分条件不一定必要,必要条件不一定充分。

2. 引导学生思考:如何找出一个命题中的充分条件和必要条件?七、案例分析1. 案例一:判断“如果一个人是男性,他一定有力气”这个命题中的条件是充分还是必要。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确判断一个命题是真是假。

2. 掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 能够运用充分条件和必要条件解决实际问题。

教学重点:1. 命题的真假判断2. 充分条件和必要条件的判断教学难点:1. 命题的真假判断2. 充分条件和必要条件的应用教学准备:1. PPT课件2. 教学案例教学过程:第一章:命题的概念1.1 命题的定义教师讲解命题的概念,引导学生理解命题是由题设和结论两部分组成的陈述句。

1.2 命题的真假判断学生通过举例判断命题的真假,教师讲解判断方法。

第二章:充分条件与必要条件的定义2.1 充分条件的定义教师讲解充分条件的概念,引导学生理解充分条件是指能够保证结论成立的条件。

2.2 必要条件的定义教师讲解必要条件的概念,引导学生理解必要条件是指结论成立的必要条件。

第三章:判断充分条件和必要条件3.1 判断充分条件学生通过举例判断充分条件,教师讲解判断方法。

3.2 判断必要条件学生通过举例判断必要条件,教师讲解判断方法。

第四章:充分条件和必要条件的运用4.1 运用充分条件解决问题学生通过案例运用充分条件解决问题,教师讲解解题方法。

4.2 运用必要条件解决问题学生通过案例运用必要条件解决问题,教师讲解解题方法。

第五章:总结与拓展5.1 总结学生总结本节课所学内容,教师进行点评。

5.2 拓展学生思考如何运用充分条件和必要条件解决更复杂的问题,教师进行引导。

教学评价:1. 课后作业:布置有关命题、充分条件和必要条件的练习题,检查学生掌握情况。

2. 课堂问答:提问学生关于命题、充分条件和必要条件的问题,检查学生理解程度。

3. 案例分析:让学生运用充分条件和必要条件解决实际问题,评估学生应用能力。

第六章:实例分析与判断6.1 实例分析教师提供实例,学生分析实例中的充分条件和必要条件,并判断其真假。

6.2 小组讨论学生分组讨论实例,交流判断方法和思路,教师巡回指导。

第1章 常用逻辑用语(22页)(学、教案)

第1章 常用逻辑用语(22页)(学、教案)

1、1命题及其关系学习目标(1)了解命题概念及其构成形式(2)理解命题的真假判断(3)掌握四种命题之间的相互关系自我评价1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的. 1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做原命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,逆否命题(3)系:(1)(2)精典范例例1:下列语句是否为命题?你能判断它们的真假吗?①若平面四边形的边都相等,则它是菱形。

②空集是任何集合的真子集③对顶角相等吗?④对顶角不相等;⑤6>3⑥3>x命题有,真命题有假命题有.变式1:下列语句的是否为命题?能判断它们的真假吗?①若1=xy,则yx,互为倒数;②相似三角形的周长相等;③2+4=5④如果b≤-1,那么方程2220x bx b b-++=有实根;⑤若A B B=,则B A⊆;⑥3不能被2整除;命题有,真命题有假命题有.变式2下列语句哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52=;(6)15x>.命题有,真命题有假命题有.例2:指出下列命题的条件p与结论q,并判断命题的真假(1)若整数a能被2整除,则a是偶数;(2)菱形的对角线相等且互相平分;(3)相等的两个角是对顶角。

S11-1.1命题及其关系(一)学案

S11-1.1命题及其关系(一)学案

S11-1.1命题及其关系(一)学案一、创设情境在初中我们已经学过命题的有关概念,下面我们来复习一下:二、活动尝试问题1:下列语句的表述形式有什么特点?你能判断它们的真假吗?① 若xy =1,则x 、y 互为倒数; ②相似三角形的周长相等;③2+4=5 ④如果b ≤-1,那么方程2220x bx b b -++=有实根;⑤若A B B = ,则B A ⊆; ⑥3不能被2整除;结论:这些语句都是陈述句,且它们都能判断真假。

一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,为真命题;判断为不正确的命题,为假命题;上述命题中①④⑥为真命题,②③⑤为假命题;三、师生探究问题2:判断下列命题的真假,你能发现各命题之间有什么关系?①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相,那么它们全等;③如果两个三角形不全等,那么它们的面积不相等;④如果两个三角形不相等,那么它们不全等;四、数学理论1.原命题与逆命题的知识即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,如果原命题是:⑴同位角相等,两直线平行;它的逆命题就是:⑵两直线平行,同位角相等.2. 否命题与逆否命题的知识即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.例如⑶同位角不相等,两直线不平行;⑷两直线不平行,同位角不相等.3. 原命题与逆否命题的知识即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.概括地说,设命题⑴为原命题,则命题⑵为逆命题;命题⑶为否命题;命题⑷为逆否命题. 关于逆命题、否命题与逆否命题,也可以这样表述:⑴交换原命题的条件和结论,所得的命题是逆命题;⑵同时否定原命题的条件和结论,所得的命题是否命题;⑶交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.4.四种命题的形式一般到,我们用p 和q 分别表示原命题的条件和结论,用┐p 和┐q 分别表示p 和q 的否定,于是四种命题的形式就是:原命题:若p 则q ;逆命题:若q 则p ;否命题:若┐p 则┐q ;逆否命题:若┐q 则┐p.五、巩固运用例1.写出命题“若a=0,则ab=0”的逆命题、否命题、逆否命题,并判断各命题的真假。

1.1 命题及其关系

1.1 命题及其关系

【导学号:46342009】 A.若 y≠kx,则 x 与 y 成正比例关系 B.若 y≠kx,则 x 与 y 成反比例关系 C.若 x 与 y 不成正比例关系,则 y≠kx D.若 y≠kx,则 x 与 y 不成正比例关系
D [条件的否定为 y≠kx,结论的否定为 x 与 y 不成比例关系,故选 D.]
提示:一个命题与其逆否命题等价,我们可研究其逆否命题.
2.在证明“若 m2+n2=2,则 m+n≤2”时,我们也可以证明哪个命题 成立. 提示:根据一个命题与其逆否命题等价,我们也可以证明“若 m+n>2, 则 m2+n2≠2”成立.
[规律方法] 1.若一个命题的条件或结论含有否定词时, 直接判断命题的 真假较为困难,这时可以转化为判断它的逆否命题. 2.当证明一个命题有困难时,可尝试证明其逆否命题成立.

思考 1:(1)“x-1=0”是命题吗? (2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗?
[提示] (1)“x-1=0”不是命题,因为它不能判断真假. (2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判 断真假的才是命题.
2.命题的结构 (1)命题的一般形式为“若 p,则 q”.其中 p 叫做命题的条件 ,q 叫做命 题的 结论. (2)确定命题的条件和结论时,常把命题改写成“若 p,则 q”的形式. 思考 2:命题“实数的平方是非负数”的条件与结论分别是什么?
பைடு நூலகம்
(1)只需判断原命题和逆命题的真假即可. 写出原命题的逆否命题 → 判断其真假
原命题与逆否命题同 判断原命 得到逆否命 → → 真同假即等价关系 题的真假 题的真假
[解析] (1)当 c=0 时,ac2>bc2 不成立,故原命题是假命题,从而其逆否 命题也是假命题;原命题的逆命题为“若 ac2>bc2,则 a>b”是真命题,从而 否命题也是真命题,故选 C.

《命题及其关系》教案

《命题及其关系》教案

《命题及其关系》教案一、教学目标:1. 让学生理解命题的概念,掌握命题的构成要素。

2. 让学生了解命题之间的关系,包括相等关系、蕴含关系和矛盾关系。

3. 培养学生运用命题及其关系解决实际问题的能力。

二、教学内容:1. 命题的概念及其构成要素。

2. 命题之间的关系:相等关系、蕴含关系和矛盾关系。

3. 命题关系的应用。

三、教学重点与难点:1. 教学重点:命题的概念,命题之间的关系。

2. 教学难点:命题关系的判断与应用。

四、教学方法:1. 采用讲授法,讲解命题的概念及关系。

2. 采用案例分析法,分析实际问题中的命题关系。

3. 采用小组讨论法,引导学生探索命题关系的应用。

五、教学过程:1. 导入:通过生活中的实例,引导学生思考命题的概念。

2. 新课讲解:讲解命题的构成要素,阐述命题之间的关系。

3. 案例分析:分析实际问题中的命题关系,让学生理解命题关系的应用。

4. 小组讨论:让学生分组讨论,探索命题关系的其他应用。

教学评价:通过课堂讲解、案例分析和小组讨论,评价学生对命题及其关系的理解程度,以及运用所学知识解决实际问题的能力。

六、教学活动设计:1. 实例分析:提供一些生活中的命题实例,如“今天是星期天”、“2加3等于5”,让学生判断这些命题是否完整、有逻辑关系。

2. 小组讨论:让学生分组讨论,每组选择一个实例,分析其命题关系,如相等关系、蕴含关系和矛盾关系。

3. 游戏设计:设计一个判断命题关系的游戏,学生通过游戏互动,加深对命题关系的理解。

七、教学资源准备:1. 实例素材:收集一些生活中的命题实例,用于教学活动中分析。

2. 游戏材料:准备一个判断命题关系的游戏道具,如卡片、图片等。

3. 教学PPT:制作教学PPT,包含命题的概念、构成要素、关系等内容,以及案例分析和小组讨论的引导。

八、教学进度安排:1. 第一课时:介绍命题的概念及其构成要素,讲解命题的相等关系。

2. 第二课时:讲解命题的蕴含关系和矛盾关系,进行案例分析。

第一章 1.1.1命题及其关系

第一章  1.1.1命题及其关系

(5)是假命题,如: 3· (- 3)是有理数,但 3和- 3都是无理数.
本 讲 栏 目 开 关
(6)不是命题,这种含有未知数的语句,未知数的取值能否使不等 式成立,无法确定.
小结 判断一个语句是否是命题关键看它是否符合两个条件: “是陈述句”和“可以判断真假”,而祈使句、疑问句、感叹句 等都不是命题.
(4)并非所有的人都喜欢苹果. (5)若 xy 是有理数,则 x、y 都是有理数. (6)60x+9>4. 解 (1)是祈使句,不是命题.
(2)因为 x2+4x+4=(x+2)2≥0,所以可以判断其真假,是命题, 且是真命题. (3)是疑问句,不是命题.
研一研·问题探究、课堂更高效
1.1.1
(4)是真命题,有的人喜欢苹果,有的人不喜欢苹果.
本 讲 栏 目 开 关
1.1.1

(1)若一个整数的各位数数字之和能被 9 整除,则这个整数可
以被 9 整除; (2)若两条直线的斜率相等,则这两条直线平行;
(3)若一个数能被 6 整除,则它既能被 3 整除也能被 2 整除; (4)若一个角是钝角,则这个角的余弦值是负数. 小结 找准命题的条件和结论是解决这类题目的关键,对于个别
本 讲 栏 目 开 关
1.1.1
(5)请把门关上! (6)2 是质数吗? (7)若 x=2,则 x2=4; (8)3+2=6. 回答:①以上有几个命题? ②命题必须具备什么特征? 答案 ①5 个.其中(1)(2)(3)(7)(8)都是.
②是陈述句且能判断真假.
研一研·问题探究、课堂更高效
1.1.1
本 讲 栏 目 开 关
1.1.1
(4)当 abc=0 时,a=0 或 b=0 或 c=0; (5)负数的立方是负数. 解 (1)若 ac>bc,则 a>b. (2)已知 x、y 为正整数,若 y=x+1,则 y=3 且 x=2. 1 (3)若 m> ,则 mx2-x+1=0 无实数根. 4 (4)若 abc=0,则 a=0 或 b=0 或 c=0.

命题及其关系教案

命题及其关系教案

命题及其关系教案教案标题:命题及其关系教案教案目标:1. 了解命题的概念及其在数学中的应用。

2. 掌握命题的基本性质和相关概念。

3. 能够分析和解决与命题相关的问题。

4. 培养学生的逻辑思维和推理能力。

教学重点:1. 命题的定义和基本性质。

2. 命题之间的关系,包括合取、析取、否定和蕴含等。

3. 命题的真值表和推理规则。

教学准备:1. 教师准备:PPT、黑板、粉笔、教案、学生练习题。

2. 学生准备:课本、笔记本、铅笔、橡皮。

教学过程:步骤一:导入(5分钟)介绍命题的概念,引导学生思考生活中的命题,并与数学中的命题相联系。

步骤二:命题的定义和基本性质(15分钟)1. 讲解命题的定义和符号表示方法。

2. 介绍命题的真值表和命题的真值。

3. 引导学生讨论命题的基本性质,如互斥、独立、等价等。

步骤三:命题之间的关系(20分钟)1. 介绍命题之间的合取、析取、否定和蕴含等关系。

2. 通过例题和练习题,帮助学生理解和运用这些关系。

步骤四:命题的真值表和推理规则(15分钟)1. 讲解命题的真值表和推理规则。

2. 引导学生通过真值表和推理规则解决与命题相关的问题。

步骤五:小结和拓展(10分钟)总结本节课所学内容,并提供一些拓展的思考题,鼓励学生进一步思考和探索。

步骤六:作业布置(5分钟)布置相关的作业,巩固学生对命题及其关系的理解和应用能力。

教学反思:通过本节课的教学,学生能够全面了解命题的概念和基本性质,掌握命题之间的关系,以及命题的真值表和推理规则。

通过例题和练习题的训练,学生的逻辑思维和推理能力得到了有效的培养和提高。

在教学过程中,教师应注重培养学生的合作精神和独立思考能力,通过举例和引导,激发学生的学习兴趣和主动性。

同时,教师还应及时给予学生反馈和指导,帮助他们克服困难,提高学习效果。

高中数学《命题》导学案

高中数学《命题》导学案

第一章常用逻辑用语命题及其关系1.1.1命题课标要求,学法指导1. 了解命题的概念.2. 会将一些简单的命题改写为“若p,则q”的形式.3. 会判断一些简单命题的真假.,学习本节内容时,首先,要明确学习逻辑知识的重要性;其次,要准确把握命题的概念,掌握命题的结构,在判定命题真假时,要联想其他有关知识,特别是有关定义、性质、公式等.课前自主学习KEQIANZIZHUXUEXI对应学生用书P21.命题一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题的真假判断为真的命题叫做真命题,判断为假的命题叫做假命题.3.命题的形式在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的条件,q叫做命题的结论.1. 给定的命题都可以写成“若p,则q”的形式吗?如何找到命题的条件和结论?提示:一个命题一般都能写成或改写成“若p,则q”的形式.一般地,“若”后面是条件,“则”后面是结论.2. 一个命题写成“若p,则q”的形式后,如何判断该命题的真假呢?提示:当一个命题改写成“若p,则q”的形式后,判断这种命题真假的方法是:若由p经过逻辑推理推出q,则该命题为真;若判定该命题为假,只需举出一个反例即可.3. 下列语句是命题的是________,其中是真命题的是________(只填序号).(1)lg0.01=-2;(2)函数y=2x+1是一次函数;(3)若a+b为偶数,则a,b分别为偶数;(4)好人一生平安!提示:(1)(2)(3)(1)(2),,课堂合作探究KETANGHEZUOTANJIU对应学生用书P2SIWEIJUJIAO思维聚焦, 1.命题的判定(1)要判断句子是否是命题,首先,要看给出的句子的句型,一般地,疑问句、祈使句、感叹句都不是命题.其次,要看能不能判断其真假,也就是判断其是否成立,不能判断真假的语句,就不能叫命题.(2)“在2050年前,中国将拥有自主产权的核动力航空母舰.”这样的猜想目前还不能判断其真假,但是随着时间的推移与科学技术的发展,总能判断它们的真假,因此,人们把这一类猜想仍算为命题.2.命题的构成命题是由条件和结论两部分组成,它的结构形式为“若p,则q”.其中p是命题的条件,q是命题的结论,有些命题中没有明确的条件和结论,不是“若p,则q”的形式,为了找到命题的条件和结论,我们可把命题改写成“若p,则q”的形式.3.命题的真假(1)命题分为真命题和假命题,一个命题要么是真命题,要么是假命题,不可能既是真命题又是假命题.(2)“若p,则q”形式的命题的真假判定方法:若由已知条件p经过正确的逻辑推理,能够推出结论q成立,则可确定命题“若p,则q”是真命题,否则就是假命题.另外,判定一个命题是假命题,举一个反例即可.如“-x2是负数”是假命题,因为当x=0时,-x2=0不是负数.(3)数学中的公理、定理、公式等都是真命题.命题的判断例1下列语句是命题的有________.①“垂直于同一条直线的两条直线必平行吗?”;②“一个数不是正数就是负数”;③“大角所对的边大于小角所对的边”;④“x+y为有理数,则x、y也都是有理数”.[思路分析]分析该语句是否能判断真假.[完美作答]先根据命题的概念,判断是否是命题,若是,再判断真假.①疑问句.没有对垂直于同一直线的两条直线是否平行作出判断,不是命题.②是假命题.数0既不是正数也不是负数.③是假命题.没有考虑“在同一个三角形中”的前提条件.④是假命题.如x=3,y=-3.[答案]②③④判断一个语句是否是命题的方法:(1)首先要看给出的句型.一般地,疑问句、祈使句、感叹句都不是命题,例如:疑问句“π是无理数吗?”;祈使句“求证2是无理数”;感叹句“指数函数的图象真漂亮!”等都不是命题.因为这些语句都不涉及真假或不能区分真假.(2)其次要看能否判断语句的真假,不能判断真假的就不是命题.例如:“很多的人”,“这是一朵美丽的花”,都构不成一个命题.因为这些语句中的词语都没有清晰的界限,不能区别它们的真假,这一点和集合中元素的确定性相类似.[针对训练1]判断下列语句是不是命题:(1)函数f(x)=ax2+bx+c是二次函数吗?(2)偶数的平方仍是偶数;(3)若空间的两条直线垂直,则这两条直线相交;(4)两个向量的夹角可以等于π.[解](1)该语句是疑问句,不能判断其真假,故不是命题;(2)因所有偶数的平方都是偶数,无一例外,故该语句为真,是命题;(3)根据空间立体几何知识知:垂直的两条直线不一定相交,故所给语句为假,是命题;(4)根据两向量夹角定义知:两个向量反向时夹角为π,故所给语句为真,是命题.命题的真假判断例2判断下列语句中哪些是命题?是真命题还是假命题?(1)一个等比数列的公比大于1时,该数列一定为递增数列.(2)函数f(x)=eq \f(1,x在定义域上是减函数吗?(3)一个整数不是质数就是合数;(4)3100不是整数;(5)若sinα=sinβ(α,β∈R),则α=β或α+β=π;(6)空间中与同一条直线平行的两条直线互相平行.[思路分析]首先看句子形式是否是陈述句,若是陈述句再看能否判断真假.[完美作答](1)是陈述句,可判断真假,是假命题,当等比数列的首项a1<0,q>1时,该数列为递减数列,所以是一个假命题.(2)疑问句,不是命题.(3)陈述句,可以判断真假,是命题,因为0不是质数也不是合数,故为假命题.(4)陈述句,可以判断真假,是命题,因为3100是整数,所以为假命题.(5)陈述句,可以判断真假,是命题,因为当α+β=2π时,sinα=sinβ也成立,所以此命题为假命题.(6)陈述句,可判断真假,是命题,真命题.(1)给出一个命题,判断它是真命题,需经过严格的推理;而要说明它是假命题,只需举一反例即可.(2)数学中的定义、定理、公理、公式都是真命题.我们在通过举例子验证命题真假时,优先考虑特殊情形,如研究集合中的空集、数列中的n=1及公比q=1、向量中的零向量、直线中的斜率为零或不存在等情况.[针对训练2]判断下列语句中哪些是命题,是真命题还是假命题:(1)末位是0的整数能被5整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(4)△ABC中,若∠A=∠B,则sin A=sin B;(5)余弦函数是周期函数吗?[解](1)是命题,真命题;(2)是命题,假命题.因为平行四边形的对角线不一定相等;(3)是命题,假命题.因为两直线的斜率可能都不存在;(4)是命题,真命题;(5)不是命题,因为该语句不是陈述句.命题的结构例3把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)当ac>bc时,a>b;(2)已知x,y为正整数,当y=x-5时,y=-3,x=2;(3)当m>eq \f(1,4时,mx2-x+1=0无实根;(4)当abc=0时,a,b,c中至少有一个为0;(5)当x2-2x-3=0时,x=3或x=-1.[思路分析]先写成“若p,则q”的形式,再由推理或举反例判断它们的真假.[完美作答](1)若ac>bc,则a>b,假命题.(2)已知x,y为正整数,若y=x-5,则y=-3且x=2,假命题.(3)若m>eq \f(1,4,则mx2-x+1=0无实根,真命题.(4)若abc=0,则a,b,c中至少有一个为0,真命题.(5)若x2-2x-3=0,则x=3或x=-1,真命题.找准命题的条件和结论,是解决这类题目的关键,对于个别问题还要注意大前提的写法.如第(2)小题中,“已知x,y为正整数”是大前提,不能把它写在条件中,应当写在“若”前面,仍然作为命题的大前提.[针对训练3]把下列命题写成“若p,则q”的形式,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)能被6整除的数既能被3整除也能被2整除;(4)弦的垂直平分线经过圆心,且平分弦所对的弧.[解](1)原命题可以写成:若一个数是实数,则它的平方是非负数.这个命题是真命题.(2)原命题可以写成:若两个三角形等底等高,则这两个三角形是全等三角形.这个命题是假命题.(3)原命题可以写成:若一个数能被6整除,则它既能被3整除也能被2整除.这个命题是真命题.(4)原命题可以写成:若一条直线是弦的垂直平分线,则这条直线经过圆心,且平分弦所对的弧.这个命题是真命题.,易错误区由于概念不清发生理解错误[典例]判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)矩形难道不是平行四边形吗?(2)一条直线l,不是与平面α平行就是相交;(3)若x∈R,则x2+4x+7>0;(4)一个数的算术平方根一定是非负数;(5)求证x∈R,方程x2+x+1=0无实根.因为(1)是反问句,故不是命题;(2)是真命题;(3)不是命题;(4)是真命题;(5)是真命题.判断一个语句是不是命题,关键在于能否判断其真假.一般地,陈述句“π是无理数”,反问句“矩形难道不是平行四边形吗?”都能判定真假.(1)通讨反问句,对矩形是平行四边形作出判断,是真命题;(2)假命题,直线l还有可能在平面α内;(3)是真命题,x2+4x+7=(x+2)2+3>0恒成立;(4)是命题,是假命题,因为负数没有平方根;(5)祈使句,不是命题.一般地,疑问句、祈使句、感叹句等不是命题,而反意疑问句应是命题,含有未知数(或变量)的语句一般不是命题,因它不能判断真假;但类似于“x∈R,x2-2x+1≥0”等语句都是命题,关键原因是它能判断真假.[跟踪训练]给出以下语句:①空集是任何集合的真子集;②三角函数是周期函数吗?③老师写的粉笔字真漂亮!④若x∈R,则x2+4x+5>0;⑤作△ABC≌△A1B1C1.其中为命题的是________,真命题的序号为________.解析:①是假命题,因为空集是任何非空集合的真子集;②是疑问句,不是命题;③该语句是感叹句,不符合命题定义,所以不是命题.④是命题,因为Δ=16-20=-4<0,所以是真命题.⑤该语句是祈使句,不是命题.答案:①④④课堂效果落实KETANGXIAOGUOLUOSHI,对应学生用书P41.下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x-1>0D.梯形是平面图形吗解析:A、D是疑问句,不是命题,C不能判断真假,故B为正确答案.答案:B2.若M、N是两个集合,则下列命题中真命题是()A.如果M⊆N,那么M∩N=MB.如果M∩N=N, 那么M⊆NC.如果M⊆N,那么M∪N=MD.如果M∪N=N,那么N⊆M解析:用集合的定义理解.答案:A3.在下列4个命题中,是真命题的序号为()①3≥3;②100或50是10的倍数;③有两个角是锐角的三角形是锐角三角形;④等腰三角形至少有两个内角相等.A.①B.①②C.①②③D.①②④解析:对于③,举一反例,若A=15°,B=15°,则C为150°,三角形为钝角三角形.答案:D4.下列命题:①若xy=1,则x、y互为倒数;②对角线垂直的平行四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.解析:①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.答案:①④5.判断下列语句是不是命题,如果是命题,指出是真命题还是假命题.(1)任何负数都大于零;(2)△ABC与△A1B1C1是全等三角形;(3)x2+x>0;(4)∅A;(5)6是方程(x-5)(x-6)=0的解;(6)方程x2-2x+5=0无解.解:(1)负数都是小于零的,因此“任何负数都大于零”是不正确的;它能构成命题,而且这个命题是个假命题.(2)两个三角形为全等三角形是有条件的,本题无法判定△ABC与△A1B1C1是否为全等三角形,所以它不是命题.(3)因为x是未知数,无法判断x2+x是否大于零,所以“x2+x>0”这一语句不是命题.(4)空集是任何非空集合的真子集,集合A是不是非空集合我们无法判断,所以无法判断“∅A”是否成立,因此,它不是命题.(5)6确实是所给方程的解,所以它是命题,且是真命题.(6)由于给定方程x2-2x+5=0,我们就可以用其判别式来判断它是否有解.由Δ=4-4×5=-16<0知,方程x2-2x+5=0无解,是命题,且是真命题.,,课后课时精练KEHOUKESHIJINGLIAN,对应学生用书P93时间:30分钟满分:75分一、选择题(每小题5分,共30分)1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,可作为命题的是()A. 红豆生南国B. 春来发几枝C. 愿君多采撷D. 此物最相思解析:“红豆生南国”是陈述句,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.答案:A2.在下列命题中,不是..公理的是()A. 平行于同一个平面的两个平面相互平行B. 过不在同一条直线上的三点,有且只有一个平面C. 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析:本题考查了立体几何中的公理与定理,意在要考生注意回归课本,明白最基本的公理与定理.注意公理是不用证明的,定理是要求证明的.选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.答案:A3.下列命题中()①a·b=a·c且a≠0时,必有b=c②如a∥b时,必存在唯一实数λ使a=λb③a,b,c互不共线时,a-b必与c不共线④a与b共线且c与b也共线时,则a与c必共线其中真命题的个数有()A. 0个B. 1个C. 2个D. 3个解析:对于①,由a·b=a·c且a≠0,得a·(b-c)=0,未必有b=c;对于②,若b=0时,不成立;对于③,如图△ABC中,E,F分别为AB,AC的中点,eq \o(AB,\s\up6(→))=a,eq \o(AC,\s\up6(→))=b,则eq \o(CB,\s\up6(→))=eq \o(AB,\s\up6(→))-eq \o(AC,\s\up6(→)).又因为eq \o(EF,\s\up6(→))=eq \f(1,2eq \o(BC,\s\up6(→)).即c=-eq \f(1,2(a-b),故③不正确.④若b=0时,a与c不一定共线,故选A.答案:A4.已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A. 若m∥α,n∥α,则m∥nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n∥αD. 若m∥α,m⊥n,则n⊥α解析:本题主要考查空间线面位置关系的判断,意在考查考生的逻辑推理能力.对于选项A,若m∥α,n∥α,则m与n可能相交、平行或异面,A错误;显然选项B正确;对于选项C,若m⊥α,m⊥n,则n⊂α或n∥α,C错误;对于选项D,若m∥α,m⊥n,则n∥α或n⊂α或n与α相交,D错误.故选B.答案:B5.设U为全集,下列命题是真命题的有()①若A∩B=∅,则(∁UA)∪(∁UB)=U;②若A∪B=U,则(∁UA)∩(∁UB)=∅;③若A∪B=∅,则A=B=∅.A.0个B.1个C.2个D.3个解析:由Venn图容易判断,①②③均为真命题.答案:D6.设l1、l2表示两条直线,α表示平面.若有:①l1⊥l2;②l1⊥α;③l2⊂α,则以其中两个为条件,另一个为结论,可以构造的所有命题中,正确命题的个数为()A.0 B.1C.2 D.3解析:由题意得三个命题,即②③⇒①、①③⇒②和①②⇒③.由②③⇒①正确,①③⇒②错误,①②⇒③错误,故选B.答案:B二、填空题(每小题5分,共15分)7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗?③x,y都是无理数,则x+y是无理数;④若直线l不在平面α内,则直线l与平面α平行;⑤60x+9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句,所以②不是命题;因为⑤中自变量x的值不确定,所以无法判断其真假;因为⑥是祈使句,所以不是命题.故填①③④.答案:①③④8.命题“一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根”,条件p:________________,结论q:________________,是________________(填“真”或“假”)命题.解析:根据命题的结构形式填空.答案:方程ax2+bx+c=0(a≠0)是一元二次方程此方程有两个不相等的实数根假9.把下列不完整的命题补充完整,并使之成为真命题:若函数f(x)=log3x的图象与g(x)的图象关于原点对称,则g(x)=________.解析:设g(x)上任意一点坐标为P(x,y),则点P关于原点的对称点坐标为P1(-x,-y),点P1在函数f(x)=log3x的图象上,将对称点P1坐标直接代入f(x),即得:g(x)=-log3(-x).答案:-log3(-x)三、解答题(每小题10分,共30分)10.判断下列语句是否为命题.(1)若a⊥b,则a·b=0;(2)2是无限循环小数;(3)三角形的三条中线交于一点;(4)x2-4x+4≥0(x∈R);(5)非典型肺炎是怎样传染的?(6)2016年北京的高考题真难!答案:(1)是(2)是(3)是(4)是(5)不是(6)不是11.把下列命题写成“若p,则q”的形式,并判断其真假:(1)等腰三角形的两个底角相等;(2)当x=2或x=4时,x2-6x+8=0;(3)正方形是矩形又是菱形;(4)方程x2-x+1=0有两个实数根.解:(1)若一个三角形是等腰三角形,则两个底角相等,真命题.(2)若x=2或x=4,则x2-6x+8=0,真命题.(3)若一个四边形是正方形,则它既是矩形,又是菱形,为真命题.(4)若一个方程为x2-x+1=0,则这个方程有两个实数根,为假命题.12.已知命题p:|x2-x|≥6,q:x∈Z,若p假q真,求x的值.解:因为p假q真,所以可得eq \b\lc\{\rc\ (\a\vs4\ac\hs10\co1(|x2-x|<6,,x∈Z,))所以eq \b\lc\{\rc\ (eq \a\vs4\ac\hs10\co1(x2-x<6,,x2-x>-6,,x∈Z,))即eq \b\lc\{\rc\ (eq \a\vs4\ac\hs10\co1(-2<x<3,,x∈R,,x∈Z,))故x 的值为-1,0,1,2.。

第一章 常用逻辑用语全章教案

第一章 常用逻辑用语全章教案

第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;>;(2)312>吗?(3)312(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?x<;(5)215(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.三、巩固练习:1. 练习:教材P41、2、32. 作业:教材P9第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分; (2)函数232y x x =-+有两个零点. 二、讲授新课:1.(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练→个别回答→教师点评) 2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系. ②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系. ⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评) 3. 小结:四种命题的概念及相互关系. 三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+; (3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形; (5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题1.1.3 四种命题间的相互关系 教学目标:1.了解命题的逆命题、否命题和逆否命题.2.明白四种命题之间的关系.3.会利用两个命题互为逆否命题的关系判别命题的真假. 授课类型:新授课 教学重点:四种命题的关系. 教学难点:判断两个命题关系及真假. 教学方法: 读、议、讲、练结合教学. 教学过程: 一、引入请判断下列语句的真假,能否看出这些语句的表达形式有什么特点?(1)如果直线a∥b,那么直线a和直线b无公共点;(2)2 + 4 = 7;(3)平行于同一条直线的两条直线平行;(4)若x2 = 1 , 则x= 1 ;(5)两个全等三角形的面积相等;(6)3能被2整除.分析得到命题的概念:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.强调判断命题的两个基本条件:①必须是一个陈述句;②可以判断真假.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;=-(32(4)在同一平面内,如果两条直线不相交,那么这两条直线平行;(5)指数函数是增函数吗?;(6)x > 15 .二、讲授新课1、命题的题设和结论:例1中的命题(2)(4)容易看出其具有“若p,则q” 或“如果p,那么q”的形式.通常,我们把这种形式的命题中的p叫做命题的题设(条件),q叫做命题的结论.(本章中我们只讨论这种“若p,则q”形式的命题),(3)(6)不能判定其真假,故不是命题. 条件成立结论一定成立的命题是真命题, 条件成立结论不一定成立的命题是假命题.2、四种命题的关系:思考下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?(1)如果两个三角形全等,那么它们的面积相等;(2)如果两个三角形的面积相等,那么它们全等;(3)如果两个三角形不全等,那么它们的面积不相等;(4)如果两个三角形的面积不相等,那么它们不全等;一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的的否命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的的逆否命题.归纳总结: 三、例题例题3.写出命题“若0a =,则0ab =”的逆命题,否命题与逆否命题从上面的例子可以看出:原命题是真命题,逆命题是假命题,否命题是假命题,逆否命题是真命题.例题4.把下列命题改写成“若p ,则q”的形式,并写出它们的逆命题,否命题与逆否命题,同时指出它们的真假: (1)两个全等三角形的三边对应相等; (2)四条边相等的四边形是正方形.一般地,互为逆否命题地两个命题,要么都是真命题,要么都是假命题.即互为逆否命题的两个命题的真假相同. 四、练习1.把下列命题改写成“若p ,则q”的形式,并写出它们的逆命题,否命题与逆否命题,同时指出它们的真假:(1)能被2整除的整数是偶数; (2)菱形的对角线互相垂直且平分.,q p若非则非,p q若非则非(3)垂直于同一个平面的两条直线平行;(4)对顶角相等.2.课本第6页练习.五、课堂小结1.四种命题的准确表达及其相互关系;2.等价转化的思想方法:互为逆否的两个命题同真同假的应用.六、作业: 课本P8 习题1.1 1、21.2.2充要条件(一)教学目标1.知识与技能目标:(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.3. 情感、态度与价值观:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:1、正确区分充要条件;2、正确运用“条件”的定义解题难点:正确区分充要条件.教具准备:与教材内容相关的资料。

高二数学 第一章(常用逻辑用语)教材分析 教案

高二数学 第一章(常用逻辑用语)教材分析 教案

第一章《常用逻辑用语》教材分析与教学建议(一)本章的重点和难点(1)本章内容的重点是命题及其关系,充分条件、必要条件、充要条件的意义,逻辑联结词“或”“且”“非”的含义,全称量词与存在量词。

(2)本章的主要难点是理解必要条件的意义,能正确的对含有一个量词的全称命题或特称命题进行否定。

(二)内容安排及说明1.本章有四节内容,共8课时,具体分配如下(供参考):1.1命题及其关系约2课时1.2充分条件与必要条件约2课时1.3简单的逻辑联接词约2课时1.4全称量词与存在量词约2课时2.本章知识框图(三)通过大量数学实例的介绍,加强对基本概念意义的理解在大量的数学实例的基础上,思考、探究、分析、发现,最后总结概括出相关概念和知识,是本章内容的突出特色。

本章内容,重在让学生通过对常用逻辑用语的学习,体会运用逻辑用语在表述和论证中的作用,能用这些逻辑用语准确地表达数学内容,更好地进行交流。

1.给学生提供充分的思考、探究的空间这样的编写意图贯穿本章内容始终,本章突出了对数学实例进行“思考、探究、发现、总结规律、得出结论、实际运用”的特点。

2.强调数学知识间的前后联系本章知识内容的学习注重了几个方面的联系:(1)新内容的学习建立在大量的学生已经学过或熟悉的数学实例的基础上,也即联系已学过的数学实例学习新内容;(2)联系物理中的串联、并联电路及其开通情况,更加形象地理解和学习逻辑联结词“且”“或”的含义及判断由它们联结的命题的真假,体会新知识内容的含义;(3)联系并类比集合“交”“并”“补”运算,进一步体会逻辑联结词“且”“或”“非”的含义,以及由它们联结得到一个新命题的过程。

通过前后知识内容的关联,使学生更好的理解新知识,体会新知与旧知间的联系及新知识的运用。

3.注重数学符号语言的运用大量的借助符号语言表述数学内容,也是本章的特色之一。

符号语言作为数学的基本语言,具有表述的简洁、准确的特点。

本章借助大量的符号语言,使我们进一步体会了运用常用逻辑用语表达和交流的简洁与准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 命题及其关系
课前预习学案
一、预习目标
理解命题的概念,会判断语句是否为命题,能够判断命题的真假,会将一个命题改写成“若p,则q”的形式.
二、预习内容
1.命题、真命题、假命题的概念。

2.将一个命题改写成“若p,则q”的形式。

三、提出疑惑
课内探究学案
一、【学习目标】
理解命题的概念,会判断语句是否为命题,能够判断命题的真假,会将一个命题改写成“若p,则q”的形式.
二、【复习引入】
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
>;
(2)312
>吗?
(3)312
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子.
三、【新知探究】.
1.命题的概念:
①命题:
②真命题:
假命题:
上面的语句中是命题的是__________;真命题的是__________.
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;
(3)2小于或等于2;(4)对数函数是增函数吗?
x<;(6)平面内不相交的两条直线一定平行;
(5)215
(7)明天下雨.
④探究:学生自我举出一些命题,并判断它们的真假.
2.将一个命题改写成“若p,则q”的形式:
①命题的条件
命题的结论
②试将例1中的命题改写成“若p,则q”的形式.
③例2:指出下列命题中的条件p和结论q.
(1)若整数a 能被2整除,则a 是偶数;
(2)若四边形是菱形,则它的对角线互相垂直且平分. ④例3:将下列命题改写成“若p ,则q ”的形式. (1)两条直线相交有且只有一个交点;(2)负数的立方是负数; (3)对顶角相等;(4)垂直于同一条直线的两条直线平行; (5)全等的两个三角形面积也相等。

四、【随堂练习】
1.练习: P4 1、2、3 2.作业: P8 第1题
课后练习与提高
第1题. 已知下列三个方程2
4430x ax a +-+=,()2210x a x a +-+=,
2
220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.
第2题. 若a b c ∈R ,,,写出命题“2
00ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.
第3题. 在命题22
a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数
为 .
第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是 . 第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是 . 第6题. 命题“若a b ,
则55a b --”的逆否命题是( )
(A)若a b ,则55a b -- (B)若55a b --,
则a b (C) 若a b ,
则55a b --
(D)若5
5a b --,则a b
1,答案:3
12
a a
a ⎧⎫--⎨⎬⎩

或,. 2.答案:逆命题 :()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假; 否命题:200ac
ax bx c ++=若则,(a b c ∈R ,,)没有实数根,假;
逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,,真.
3. 答案:3.
4. 答案:假设三角形的内角中没有钝角.
5. 答案:若0x ≠且0y ≠,则0xy ≠.
6. 答案:D
课题 1.1.1命题及其关系(一) 课型新授课
教学目标1)知识方法目标
了解命题的概念,
2)能力目标
会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.
教学重点难点1)重点:命题的改写
2)难点:命题概念的理解,命题的条件与结论区分
教法与学法教法:
教学过程备注
3.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;
(2)312
>;
(3)312
>吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;(6)他是个高个子.
2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition).
上述6个语句中,(1)(2)(4)(5)(6)是命题.
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition).
上述5个命题中,(2)是假命题,其它4个都是真
命题.
③例1:判断下列语句中哪些是命题?是真命题还
是假命题?
(1)空集是任何集合的子集;
(2)若整数a是素数,则a是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5)215
x<;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨.
(学生自练→个别回答→教师点评)
④探究:学生自我举出一些命题,并判断它们的真
假.
2. 将一个命题改写成“若p,则q”的形式:
①例1中的(2)就是一个“若p,则q”的命题
形式,我们把其中的p叫做命题的条件,q叫做命
题的结论.
②试将例1中的命题(6)改写成“若p,则q”
引导学生归纳
出命题的概
念,强调判断
一个语句是不
是命题的两个
关键点:是否
符合“是陈述
句”和“可以判
断真假”。

通过例子引导
学生辨别命题
,区分命题的
条件和结论。

改写为“若p,
则q”的形式,
为后续的学习
打好基础。

的形式.
③例2:将下列命题改写成“若p,则q”的形式. (1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等.
(学生自练→个别回答→教师点评)
3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.
3.练习提高1. 练习:教材P41、2、3
师生互动
4.作业设计作业:
1、教材P8第1题
2、作业本1-10
5.课后反思本节课是一堂概念课,比较枯燥,在教学时应充分调动学生的积极性,比如引例中的“他是个高个子.”例1中的“(7)明天下雨.”等比较有趣的生活问题,和学生有充分的语言交流,在一问一答中,引导学生完成本节课的学习。

相关文档
最新文档