STM32_4x4矩阵键盘
stm32矩阵键盘原理

STM32矩阵键盘原理详解引言矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。
在STM32微控制器中,利用GPIO引脚实现矩阵键盘控制相对简单,本文将详细介绍STM32矩阵键盘的基本原理。
基本原理矩阵键盘由多个按键组成,通常采用行列式排列。
每个按键都由一个触点和一个按键外壳组成,触点一般为弹簧式结构,按下按键时触点接通,释放按键时触点断开。
矩阵键盘的连接方式矩阵键盘的每个按键都被分配一个行号和列号,通过行线和列线来连接按键和控制芯片。
STM32通过GPIO来控制行线和列线的电平,实现按键的扫描和检测。
在STM32中,行线和列线可以连接到不同的GPIO引脚上。
行线连接到输出引脚,列线连接到输入引脚。
这样,通过对行线的输出和对列线的输入,可以实现对矩阵键盘的扫描和检测。
矩阵键盘的扫描原理矩阵键盘的扫描原理可以简单描述为以下几个步骤:1.将所有行线设置为高电平,所有列线设置为输入模式。
2.逐个将行线设置为低电平,并同时检测列线引脚的电平状态。
3.如果某一列的输入引脚检测到低电平,表示该列对应的按键被按下。
4.通过行线和列线的对应关系,确定被按下的按键的行号和列号。
矩阵键盘的按键映射通过扫描后,可以得到被按下的按键的行号和列号,STM32可以根据行列号的映射关系将按键信息转化为相应的按键值。
通常,矩阵键盘的按键映射是通过二维数组来实现的。
数组的行号对应行线,列号对应列线。
数组中的元素对应按键的键值。
例如,要实现一个4x4的矩阵键盘,可以通过以下数组表示按键的映射关系:uint8_t keyMap[4][4] = {{ '1', '2', '3', 'A' },{ '4', '5', '6', 'B' },{ '7', '8', '9', 'C' },{ '*', '0', '#', 'D' }};通过行列号可以确定数组中的元素,从而得到按键的键值。
基于STM32控制的矩阵键盘的仿真设计

成绩课程论文题目:基于STM32控制的矩阵键盘的仿真设计课程名称: ARM 嵌入式系统学生姓名:张宇学生学号: 1314030140 系别:电子工程学院专业:通信工程年级: 2013级指导教师:权循忠电子工程学院制2015年10月目录1摘要 (1)2关键字 (1)3引言 (1)4 STM32控制的矩阵键盘系统方案计制定 (1)4.1 系统总体设计方案 (1)4.2总体设计框图 (1)4.3矩阵键盘简介 (2)5 矩阵键盘设计原理分析 (2)5.1 STM32复位和时钟电路设计 (2)5.2 矩阵键盘电路的设计 (2)5.3按键去抖动 (3)5.4 按键显示电路 (3)6程序流程图 (4)7 总体电路图 (5)8 软件仿真 (5)9 总结 (6)10 参考文献: (6)11 附录 (7)基于STM32控制的矩阵键盘的仿真设计学生:张宇指导老师:权循忠电子工程学院通信工程1摘要矩阵键盘又称行列键盘,它是用四条I/O线作为行线,四条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为4*4个。
这种行列式键盘结构能有效地提高ARM嵌入式系统中I/O口的利用率。
2关键字矩阵键盘行列键盘 ARM嵌入式系统3引言随着人们生活水平的不断提升,ARM嵌入式无疑是人们追求的目标之一,它给人带来的方便也是不可否认的,要为现代人工作、科研、生活、提供更好更方便的设备就需要从ARM嵌入式技术入手,一切向若数字化控制,智能化控制方向发展。
用ARM嵌入式来控制的数码管显示按键也在广泛应用,其控制系统具有极大意义。
展望未来,急速的响应速度将成为个性的ARM嵌入式发展的趋势,越来越多的ARM嵌入式正如雨后春笋般涌现。
4 STM32控制的矩阵键盘系统方案计制定4.1 系统总体设计方案该智能键盘电路由ARM最小系统,矩阵键盘电路和显示电路组成,在常规的4*4矩阵键盘的基础上,通过改进实现了用4个IO口完成4*4矩阵键盘。
4乘4矩阵式键盘使用

4乘4矩阵式键盘在单片机中的应用--C语言下图为4*4键盘的结果图,用单片机的P1口接4×4矩阵键盘,接法如图所示,用数码管显示按键的值,按下键S1,数码管显示0,按下S2,数码管显示1,按下S16,显示F。
先看程序代码:#include<reg51.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charuchar code table[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//八段数码管对应0—F值。
void Delay_1ms(uint i)//1ms延时{uchar x, j;for(j=0;j<i;j++)for(x=0;x<=148;x++);}void delay()//消除按键抖动延时{int i,j;for(i=0; i<=10; i++)for(j=0; j<=2; j++);}uchar Keyscan(void){uchar i,j, temp, Buffer[4] = {0xfe, 0xfd, 0xfb, 0xf7};for(j=0; j<4; j++){P1 = Buffer[j];delay();temp = 0x10;for(i=0; i<4; i++){if(!(P1 & temp)){return (i+j*4);}temp <<= 1;}}}void Main(void){uchar Key_V alue; //读出的键值while(1){P1 = 0xf0;if(P1 != 0xf0){Delay_1ms(15); //按键消抖if(P1 != 0xf0){Key_Value = Keyscan();}}P0 = table[Key_V alue];//P0口输出数据到数码管}}代码分析:程序从Main开始执行,Key_V alue用来存放Keyscan();的返回值,Key_V alue为1,则数码管会显示1。
单片机44矩阵键盘-ChangingsBlog

单片机4*4矩阵键盘-ChangingsBlog单片机4*4矩阵键盘作者:Changing发表时间:10-12 22:08分类:电子相关2 Comments前一篇:Stm32 SWD 下载调试配置后一篇:stm32 PVD 可编程电压监测器晚上帮同学写了段代码用单片机P1口扩展成4*4的键盘按下按键点亮P0口的LED矩阵键盘的扩展不算复杂主要是检测代码部分比较复杂IO扩展原理矩阵键盘又称行列键盘,它是用四条I/O线作为行线,四条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为4*4个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
检测原理当无按键闭合时,行线与列线之间开路。
当有键闭合时,与闭合键相连的两条I/O口线之间短路。
判断有无按键按下的方法:1.粗扫描。
行线输出低电平,列线输出高电平。
读取Px口,若数据不等于 0x0F则有按键按下。
2.细扫描。
行线逐行输出低电平,其他IO口输出高电平。
读取Px 口,若数据不等于输出的数值则有按键按下。
并可以确定行数。
同理列线逐行输出低电平,可以检测出列数。
3.根据行数和列数转换按键码代码如下:#include <reg51.h>#define uchar unsigned char#define LED_ON(X) P0 = ~(1<<(X)) //LED低电平点亮uchar KeyScan(void);void main(void){uchar key;while(1){key = KeyScan();if(key > 0){key = key -1;LED_ON(key);}}}uchar KeyScan(void){uchar i,val,row,col,key;P1 = 0xF0; //行线置0,列线置1if( P1 != 0x0F0 ) //按键按下{for(i=0;i<4;i++) //行扫描{val = 0xFF&(~(1<<i)); //每行轮流置1 P1 = val;if(P1 != val){row = i; //确定行数break; //终止循环}}for(i=0;i<4;i++) //列扫描{val = 0xFF&(~(0x10<<i));P1 = val;if(P1 != val){col = i+1; //确定列数break; //终止循环}}key = row*4+col;return key;}else{return 0;}}。
STM32_实用矩阵键盘

实用矩阵键盘程序// PA0~PA3行控制线// PA4~PA7列控制线#include <stm32f10x_lib.h>#include "Delay.h"#include "key_4x4.h"#define KEY_X (0X0F << 0)#define KEY_Y (0XF0 << 0)unsigned char const Key_Tab[4][4]=//键盘编码表{{'D','C','B','A'},{'#','9','6','3'},{'0','8','5','2'},{'*','7','4','1'}};//没有得到键值返回0,否则返回相应的键值unsigned char Get_KeyValue(void){//使用线反转法u8 i=5,j=5;u16 temp1,temp2;RCC->APB2ENR|=1<<2; //使能PORTA时钟RCC->APB2ENR|=1<<0; //开启辅助时钟AFIO->MAPR&=0XF8FFFFFF; //清除MAPR的[26:24]AFIO->MAPR|=0X04000000; //关闭JTAGGPIOA->CRL&=0XFFFF0000;GPIOA->CRL|=0X00003333; //PA0~PA3 推挽输出GPIOA->CRL&=0X0000FFFF; //PA4~PA7 输入GPIOA->CRL|=0X44440000; //PA4~PA7默认上拉GPIOA->ODR&=~KEY_X ; //PA0~PA3置0if(((GPIOA->IDR >> 4) & 0X0F)<0x0f) // 读取PA12~PA15的值{delay_ms(70); //按键消抖if((GPIOA->IDR >>4 & 0x0f)<0x0f)temp1=(GPIOA->IDR >>4 & 0x0f);switch(temp1){case 0x0e:j=0;break;case 0x0d:j=1;break;case 0x0b:j=2;break;case 0x07:j=3;break;default:break;}}GPIOA->CRL&=0X0000FFFF;GPIOA->CRL|=0X33330000; //PA4~PA7 推挽输出GPIOA->CRL&=0XFFFF0000; //PA0~PA3 输入GPIOA->CRL|=0X00004444; //PA0~PA4 默认下拉GPIOA->ODR&=~KEY_Y; //PA4~PA7置0if((GPIOA->IDR & 0x0f)<0x0f){temp2=(GPIOA->IDR & 0x0f);switch(temp2){case 0x0e:i=0;break;case 0x0d:i=1;break;case 0x0b:i=2;break;case 0x07:i=3;break;default:break;}}if((i==5)||(j==5))return 0;elsereturn (Key_Tab[i][j]);}。
单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BH. RETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3,#0FFHCLR P3.4. MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3MOV COUNT,#8LJMP DKK3: CJNE A,#07H,K4MOV COUNT,#12K4: NOPLJMP DK. SW1: MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MSJZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5MOV COUNT,#1LJMP DKK5: CJNE A,#0DH,K6MOV COUNT,#5LJMP DKK6: CJNE A,#0BH,K7MOV COUNT,#9LJMP DKK7: CJNE A,#07H,K8MOV COUNT,#13. K8: NOPLJMP DKSW2: MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MSJZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9MOV COUNT,#2LJMP DKK9: CJNE A,#0DH,KAMOV COUNT,#6LJMP DKKA: CJNE A,#0BH,KBMOV COUNT,#10LJMP DK. KB: CJNE A,#07H,KCMOV COUNT,#14KC: NOPLJMP DKSW3: MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KEMOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF. MOV COUNT,#11LJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;;XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20.D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;{ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12; break;case 0x0d:key=13; break;case 0x0b:key=14; break;case 0x07:key=15; break;}.P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.24×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNTEQU30H;;;;;;;;;;入口地址;;;;;;;;;;ORG0000HLJMPSTARTORG0003HRETIORG000BHRETIORG0013HRETIORG001BHRETIORG0023HRETIORG002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG0100HSTART:LCALLCHUSHIHUALCALLPANDUANLCALLXIANSHILJMPSTART;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA:MOVCOUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN:MOVP3,#0FFHCLRP3.4MOVA,P3ANLA,#0FHXRLA,#0FHJZSW1LCALLDELAY10MSJZSW1MOVA,P3ANLA,#0FHCJNEA,#0EH,K1MOVCOUNT,#0LJMPDKK1:CJNEA,#0DH,K2MOVCOUNT,#4 LJMPDKK2:CJNEA,#0BH,K3 MOVCOUNT,#8 LJMPDKK3:CJNEA,#07H,K4 MOVCOUNT,#12K4:NOPLJMPDKSW1:MOVP3,#0FFH CLRP3.5MOVA,P3ANLA,#0FH XRLA,#0FHJZSW2 LCALLDELAY10MS JZSW2MOVA,P3ANLA,#0FH CJNEA,#0EH,K5 MOVCOUNT,#1LJMPDKK5:CJNEA,#0DH,K6 MOVCOUNT,#5 LJMPDKK6:CJNEA,#0BH,K7 MOVCOUNT,#9 LJMPDKK7:CJNEA,#07H,K8 MOVCOUNT,#13K8:NOPLJMPDKSW2:MOVP3,#0FFH CLRP3.6MOVA,P3ANLA,#0FH XRLA,#0FHJZSW3 LCALLDELAY10MS JZSW3MOVA,P3ANLA,#0FHCJNEA,#0EH,K9 MOVCOUNT,#2 LJMPDKK9:CJNEA,#0DH,KA MOVCOUNT,#6 LJMPDKKA:CJNEA,#0BH,KB MOVCOUNT,#10 LJMPDKKB:CJNEA,#07H,KC MOVCOUNT,#14 KC:NOPLJMPDKSW3:MOVP3,#0FFH CLRP3.7MOVA,P3ANLA,#0FH XRLA,#0FHJZSW4 LCALLDELAY10MS JZSW4ANLA,#0FHCJNEA,#0EH,KD MOVCOUNT,#3LJMPDKKD:CJNEA,#0DH,KE MOVCOUNT,#7LJMPDKKE:CJNEA,#0BH,KF MOVCOUNT,#11LJMPDKKF:CJNEA,#07H,KG MOVCOUNT,#15KG:NOPLJMPDKSW4:LJMPPANDUANDK:RET;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI:MOVA,COUNT MOVDPTR,#TABLEMOVCA,@A+DPTRLCALLDELAYSK:MOVA,P3ANLA,#0FHXRLA,#0FHJNZSKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS:MOVR6,#20D1:MOVR7,#248DJNZR7,$DJNZR6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;; DELAY:MOVR5,#20LOOP:LCALLDELAY10MSDJNZR5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE:DB3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB7FH,6FH,77H,7CH,39H,5EH,79H,71H7、C语言源程序#includeunsignedcharcodetable[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};voidmain(void){unsignedchari,j,k,key;while(1){P3=0xff;//给P3口置1//P3_4=0;//给P3.4这条线送入0//i=P3;i=i&0x0f;//屏蔽低四位//if(i!=0x0f)//看是否有按键按下//{for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);if(i!=0x0f)//再次判断按键是否按下//{switch(i)//看是和P3.4相连的四个按键中的哪个// {case0x0e:key=0;break;case0x0d:key=1;break;case0x0b:key=2;break;case0x07:key=3;break;}P0=table[key];//送数到P0口显示//}}P3=0xff;P3_5=0;//读P3.5这条线//i=P3;i=i&0x0f;//屏蔽P3口的低四位//if(i!=0x0f)//读P3.5这条线上看是否有按键按下// {for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);i=P3;//再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){switch(i)//如果有,显示相应的按键// {case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=7;break;}P0=table[key];//送入P0口显示//}}P3=0xff;P3_6=0;//读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=8;break;case0x0d:key=9;break;case0x0b:key=10;break;case0x07:key=11;}P0=table[key];}}P3=0xff;P3_7=0;//读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=12;break;case0x0d:key=13;case0x0b:key=14;break;case0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
4乘4矩阵键盘总结

156 // 扫描方法二: 4X4 矩阵键盘线翻转识别法函数
157 // 函数假设硬件接在 P1 口,及"说明"中 X=1
158 // 返回的是识别码,调用函数根据识别码动作
159 // 说明 :算法简单易懂,初级使用
160
161 unsigned char uc_Line_Turn(void)
162 {
45 // 硬件连接 :
46 //
|
|||
47 //
/| /| /| /|
48 // P X.7 -------/--|---/--|--/--|--/--|
每个按键对应的识别码是:0x77,0x7b,0x7d,0x7e
49 //
|
|||
50 //
/| /| /| /|
51 // P X.6 -------/--|---/--|--/--|--/--|
9 // 扫描方法一: 06.8.15 添加 4X4 矩阵按键逐行扫描(一次)识别法函数
1Hale Waihona Puke //11 // 硬件连接 :
12 //
______________________VCC
13 //
|
|||
14 //
|
|||
15 //
|
|||
16 //
R
RRR
17 //
|
|||
18 //
|
|||
19 //
4乘4矩阵键盘总结矩阵键盘stm32矩阵键盘程序矩阵键盘扫描程序单片机矩阵键盘程序矩阵式键盘矩阵键盘原理图矩阵键盘扫描proteus矩阵键盘stm32矩阵键盘
代码有错,正确的可见单片机上机作业
单片机-数码管显示4X4矩阵键盘按键号

单片机-数码管显示4X4矩阵键盘按键号#include<>#define uchar unsigned char#define uint unsigned int//段码uchar code DSY_CODE[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x9 0,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x00};sbit BEEP=P3^7;//上次按键和当前按键的序号,该矩阵中序号范围0~15,16表示无按键uchar Pre_KeyNo=16,KeyNo=16;//延时void DelayMS(uint x){uchar i;while(x--) for(i=0;i<120;i++);}//矩阵键盘扫描void Keys_Scan(){uchar Tmp;P1=0x0f; //高4 位置0,放入 4 行DelayMS(1);Tmp=P1^0x0f;//按键后0f变成0000XXXX,X中一个为0,3 个仍为 1,通过异或把 3 个1 变为0,唯一的0变为1;switch(Tmp) //判断按键发生于 0~3 列的哪一列{case 1: KeyNo=0;break;case 2: KeyNo=1;break;case 4: KeyNo=2;break;case 8: KeyNo=3;break;default:KeyNo=16; //无键按下}P1=0xf0; //低 4 位置0,放入 4 列DelayMS(1);Tmp=P1>>4^0x0f;//按键后 f0 变成 XXXX0000,X中有 1 个为0,三个仍为 1;高4 位转移到低 4位并异或得到改变的值switch(Tmp) //对0~3 行分别附加起始值 0,4,8,12{case 1: KeyNo+=0;break;case 2: KeyNo+=4;break;case 4: KeyNo+=8;break;case 8: KeyNo+=12;}}//蜂鸣器void Beep(){uchar i;for(i=0;i<100;i++){DelayMS(1);BEEP=~BEEP;}BEEP=0;}//主程序void main(){P0=0x00;BEEP=0;while(1){P1=0xf0;if(P1!=0xf0) Keys_Scan(); //获取键序号 if(Pre_KeyNo!=KeyNo) {P0=~DSY_CODE[KeyNo];Beep();Pre_KeyNo=KeyNo;}DelayMS(100);}}。
4x4矩阵键盘扫描原理

4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理是一种常用的键盘扫描方法,也称为矩阵键盘扫描。
它可以将多个按键连接在一起并使用较少的引脚来检测按键的状态。
4x4矩阵键盘由4行和4列组成,共有16个按键。
通常使用单片机或电路来进行扫描,以下是简要的原理:
1. 行扫描:首先,将行引脚设置为输出,同时将列引脚设置为输入,并将其上拉或下拉。
所有行引脚中只有一个为低电平,其余为高电平。
然后逐行检测按键状态。
2. 列检测:对于每一行,将对应的行引脚置为低电平后,检测列引脚的电平状态。
如果有按键按下,则相应的列引脚会变为低电平。
通过读取列引脚的状态,可以确定按键的位置。
3. 组合键:由于只能一次检测一行,因此当同时按下多个按键时,可能会导致误检。
为了解决这个问题,可以在检测到按键按下时,延迟一段时间,并再次检测按键的状态。
如果在第二次检测时仍然检测到按键按下,则确认按键有效。
4. 反向扫描:为了检测按键的释放状态,可以将行引脚设置为输入,列引脚设置为输出,并将其置为低电平。
然后逐列检测行引脚的电平状态,如果有按键释放,则相应的行引脚会变为高电平。
通过不断地循环扫描所有的行和列,可以实时检测按键的状态,并根据需要进行相应的处理。
STM32_矩阵键盘

STM32 4*4矩阵键盘程序main.c#include "led.h"#include "delay.h"#include "sys.h"#include "key.h"#include "usart.h"#include "stdio.h"int main(void){int x;SystemInit();delay_init(72); //延时初始化NVIC_Configuration();uart_init(9600);LED_Init();KEY_Init(); //初始化与按键连接的硬件接口while(1){x=KEY_Scan(); //得到键值switch(x){case 0:// LED0=0;printf("D\n");break;case 1:printf("C\n");break;case 2:printf("B\n");break;case 3:printf("A\n");break;case 4:printf("#\n");break;case 5:printf("9\n");break;case 6:printf("6\n");break;case 7:printf("3\n");break;case 8:printf("0\n");break;case 9:printf("8\n");break;case 10:printf("5\n");break;case 11:printf("2\n");break;case 12:printf("*\n");break;case 13:printf("7\n");break;case 14:printf("4\n");break;case 15:printf("1\n");break;}}}/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////key.c //按键扫描#include "stm32f10x.h"#include "delay.h"#include "key.h"/*本文件的函数,主要实现矩阵键盘的功能。
《STM32单片机仿真开发实例》教学课件 3.5 矩阵式键盘

⑵ 字节操作法
与位操作法编程思路完全不同,字节操作法将矩阵式键盘控制行列的8个GPIO引脚 PB0~PB7作为一个字节,通过与流水灯类似的移位算法来实现行线的循环置高电平, 通过“位与”运算符来判定按键是否按下。这里GPIO驱动库选择LL库,与HAL相反, LL库只有对GPIO端口读写的API函数,而没有对某一个GPIO引脚读写的API函数。
3.5 矩阵式键盘
能力目标: 理解矩阵式键盘的电路组成及工作原理,掌握矩阵式键盘程序的编制
方法。 任务要求:
如下图所示是一个4×4的矩阵式键盘仿真电路,要求编程实现当按下 任意一个按钮时,数码管立即显示当前按下按钮对应的键值。
3.5.1 矩阵式键盘的电路组成
● “独立式按钮”,适合于按钮较少的应用场合;
3.5.3 任务程序的编写
即便是行扫描法这一种算法,实际程序的编制方法也不止一种,这里为读者介绍两 种具体的程序实现方法
⑴ 位操作法
位操作法来源于早期MCS-51单片机基于汇编语言的矩阵式键盘程序的实现方法,这 里GPIO的驱动库选择HAL库。由于HAL库中只有对某一个GPIO引脚进行读写的API函数 ,而没有对整个GPIO端口进行读写的API函数,因此在编制矩阵式键盘行扫描程序的 时候很容易,但是在编制数码管驱动程序的时候就很不方便了,下面程序中人为定义 了一个端口输出函数,结合查表法用于驱动数码管。
Y1
BTN E
Y2
BTN F
Y3
3.5.2 矩阵式键盘的行扫描法
行扫描法检测步骤如下: ① 初始化,所有行线均输出高电平; ② 仅行线X0输出低电平,检测按键0~按键3,若其中某个按键被按下,则相应的列 线将检测到低电平; ③ 仅行线X1输出低电平,检测按键4~按键7,若其中某个按键被按下,则相应的列 线将检测到低电平; ④ 仅行线X2输出低电平,检测按键8~按键B,若其中某个按键被按下,则相应的 列线将检测到低电平; ⑤ 仅行线X3输出低电平,检测按键C~按键F,若其中某个按键被按下,则相应的 列线将检测到低电平; ⑥ 回到步骤②,继续循环检测。
stm32矩阵键盘原理图及程序介绍

stm32矩阵键盘原理图及程序介绍STM32F0 系列产品基于超低功耗的ARM Cortex-M0 处理器内核,整合增强的技术和功能,瞄准超低成本预算的应用。
该系列微控制器缩短了采用8 位和16 位微控制器的设备与采用32 位微控制器的设备之间的性能差距,能够在经济型用户终端产品上实现先进且复杂的功能。
本文为大家介绍stm32矩阵键盘原理图及程序stm32矩阵键盘原理图主要实现:扫描矩阵键盘,将检测到的数据通过spi 通信发送到数码管显示。
主要步骤:1:初始化时钟void RCC_Configuration(void){//----------使用外部RC晶振-----------RCC_DeInit(); //初始化为缺省值RCC_HSEConfig(RCC_HSE_ON); //使能外部的高速时钟while(RCC_GetFlagStatus(RCC_FLAG_HSERDY)== RESET); //等待外部高速时钟使能就绪FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer FLASH_SetLatency(FLASH_Latency_2); //Flash 2 wait stateRCC_HCLKConfig(RCC_SYSCLK_Div1); //HCLK = SYSCLKRCC_PCLK2Config(RCC_HCLK_Div1); //PCLK2 = HCLKRCC_PCLK1Config(RCC_HCLK_Div2); //PCLK1 = HCLK/2RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9); //PLLCLK = 8MHZ * 9 =72MHZRCC_PLLCmd(ENABLE); //Enable PLLCLKwhile(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)== RESET); //Wait till PLLCLK is ready RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*输入:无
*返回:有键按下返回该键值
*无键按下时则返回0
--------------------------------------------------------------------------------------*/
u8Read_KeyValue(void){Βιβλιοθήκη u8KeyValue=0;
/*--------------------------------------------------------------------------------------*矩阵键盘驱动
*文件:keyboard.c
*编写人:LiuHui
*描述:扫描4x4矩阵键盘输入,并返回键值
*适用范围:驱动采用ST3.5库编写,适用于STM32F10x系列单片机
GPIO_InitStructure.GPIO_Speed= GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPD;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_SetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3);
if((GPIO_ReadInputData(GPIOA)&0xff)!=0x0f)
{
Delay_ms(10);
if((GPIO_ReadInputData(GPIOA)&0xff)!=0x0f)
{
GPIO_SetBits(GPIOA, GPIO_Pin_0);
GPIO_ResetBits(GPIOA, GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3);
GPIO_ResetBits(GPIOA, GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7);
}
/*------------------------------矩阵键盘扫描--------------------------------------------*功能:扫描矩阵键盘,并返回键值
switch(GPIO_ReadInputData(GPIOA)&0xff)
{
case 0x14:KeyValue= 3; break;
case 0x24:KeyValue= 7; break;
case 0x44:KeyValue= 11;break;
case 0x84:KeyValue= 15;break;
GPIO_ResetBits(GPIOA, GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 |
GPIO_Pin_7);
while((GPIO_ReadInputData(GPIOA)&0xff)!=0x0f);
returnKeyValue;
}
}
return 0;
}
/*--------------------------------THE END--------------------------------------------*/
#include "dealy.h"
/*--------------------------------矩阵键盘初始化----------------------------------------*功能:初始化stm32单片机GPIO //PA0-PA7
*参数传递:
*输入:无
*返回值:无
--------------------------------------------------------------------------------------*/
case 0x22:KeyValue= 6; break;
case 0x42:KeyValue= 10;break;
case 0x82:KeyValue= 14;break;
}
GPIO_SetBits(GPIOA, GPIO_Pin_2);
GPIO_ResetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_3);
}
GPIO_SetBits(GPIOA, GPIO_Pin_1);
GPIO_ResetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_2 | GPIO_Pin_3);
switch(GPIO_ReadInputData(GPIOA)&0xff)
{
case 0x12:KeyValue= 2; break;
/*--------------------------------------------------------------------------------------*矩阵键盘驱动
*文件:keyboard.h
*编写人:LiuHui
*描述:扫描4x4矩阵键盘输入,并返回键值
*适用范围:驱动为ST3.5库编写,适用于STM32F10x系列单片机
}
GPIO_SetBits(GPIOA, GPIO_Pin_3);
GPIO_ResetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2);
switch(GPIO_ReadInputData(GPIOA)&0xff)
{
case 0x18:KeyValue= 4; break;
voidKeyBoard_Init(void);
u8Read_KeyValue(void);
#endif
/*----------------------------------THE END------------------------------------------*
voidKeyBoard_Init(void)
{
GPIO_InitTypeDefGPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin= GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed= GPIO_Speed_10MHz;
*所用引脚:PA0-PA7
*编写时间:2013年11月22日
*版本:1.0
--------------------------------------------------------------------------------------*/
#include "stm32f10x.h"
#include "keyboard.h"
switch(GPIO_ReadInputData(GPIOA)&0xff)
{
case 0x11:KeyValue= 1; break;
case 0x21:KeyValue= 5; break;
case 0x41:KeyValue= 9; break;
case 0x81:KeyValue= 13;break;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin= GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
*所用引脚:PA0-PA7
*编写时间:2013年11月22日
*版本:1.0
--------------------------------------------------------------------------------------*/
#ifndef__KEYBOARD_H
#define __KEYBOARD_H
case 0x28:KeyValue= 8; break;
case 0x48:KeyValue= 12;break;
case 0x88:KeyValue= 16;break;
}
GPIO_SetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3);