直线与圆定点定值问题 (1)
微专题12 与圆有关的定点、定值、最值、范围问题
12-
32
2
∴ 82+|8a(--3|6)2=12,
又∵M(a,0)在l的下方,∴8a-3>0,∴8a-3=5,a=1. 故圆M的方程为(x-1)2+y2=1.
10
(2)由已知可设AC的斜率为k1,BC的斜率为k2(k1>k2),则直线AC的方程为y=k1x +t,直线BC的方程为y=k2x+t+6. 由方程组yy==kk12xx++tt,+6, 得 C 点的横坐标为 x0=k1-6 k2. ∵AB=t+6-t=6, ∴S=12k1-6 k2×6=k11-8k2.
的弦长为 3,且圆心 M 在直线 l 的下方. (1)求圆 M 的方程; (2)设 A(0,t),B(0,t+6)(-5≤t≤-2),若圆 M 是△ABC 的内切圆,求△ABC 的面积 S 的最大值和最小值.
9
解 (1)设圆心 M(a,0),由已知得圆心 M 到 l:8x-6y-3=0 的距离为 =12,
23
解 (1)连接OP,OA,OB,因为PA,PB为过点P的圆O的切线,切点为A,B, 所以OA⊥PA,OB⊥PB. 因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2. 设点 P 的坐标为(t,t+2 2),则 t2+(t+2 2)2=4,t2+2 2t+2=0,即(t+ 2)2=0, 解得 t=- 2, 所以点 P 的坐标为(- 2, 2).
24
(2)假设存在符合条件的定点R. 设点 M(x,y),R(x0,y0),MMPR22=λ,则 x2+y2=1, 即(x-x0)2+(y-y0)2=λ[(x+ 2)2+(y- 2)2], 整理得-2x0x-2y0y+x20+y20+1=λ(2 2x-2 2y+5), 上式对任意x,y∈R,且x2+y2=1恒成立,
微专题12 与圆有关的定点、定值、最值、范围问题
微专题12与圆有关的定点、定值、最值、范围问题真题感悟(2019·全国Ⅰ卷)已知点A,B关于坐标原点O对称,AB=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,MA-MP为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得AO=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得MA-MP为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,AO=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2, 化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以MP=x+1.因为MA-MP=r-MP=x+2-(x+1)=1,所以存在满足条件的定点P.考点整合1.最值与范围问题(1)研究与圆有关的最值问题时,可借助圆的性质,利用数形结合求解.(2)常见的最值问题有以下几种类型:①形如μ=y-bx-a的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by的最值问题,可转化为动直线截距的最值问题;③形如μ=(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的平方的最值问题.(3)对于圆的方程也可以利用三角代换,转化为三角函数问题:对于圆(x -a )2+(y -b )2=r 2,可设x =a +r cos θ,y =b +r sin θ.2.定点问题的求解步骤(1)选参变量:需要证明过定点的动直线(曲线)往往随着某一个量的变化而变化,可以选择这个量为参变量.(2)求动直线(曲线)方程:求出含上述参变量的动直线(曲线)方程,通过消元或整体思想,使得方程只含有一个参量(当根据几何条件建立的等式中含有多个参量时,要注意区别对待,与动点、动直线、动圆有关的参量是主要参量,其他参量可看作系数).(3)定点:求出定点坐标.利用方程ax +b =0恒成立来处理定点问题.在处理时也可以用从特殊到一般的思想,先求出一个特殊点,再代入进行验证.3.定值问题的处理(1)可以直接求出相关等式,再论证该等式与参数无关,类似于三角化简求值.(2)也可以用从特殊到一般的思想,先让参数取特殊值来论证性质,再将性质推广至一般情形.热点一 最值与范围问题【例1】 已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 所截的弦长为3,且圆心M 在直线l 的下方.(1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解 (1)设圆心M (a ,0),由已知得圆心M 到l :8x -6y -3=0的距离为12-⎝ ⎛⎭⎪⎫322=12,∴|8a -3|82+(-6)2=12,又∵M (a ,0)在l 的下方,∴8a -3>0,∴8a -3=5,a =1.故圆M 的方程为(x -1)2+y 2=1.(2)由已知可设AC 的斜率为k 1,BC 的斜率为k 2(k 1>k 2),则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎨⎧y =k 1x +t ,y =k 2x +t +6, 得C 点的横坐标为x 0=6k 1-k 2. ∵AB =t +6-t =6,∴S =12⎪⎪⎪⎪⎪⎪6k 1-k 2×6=18k 1-k 2. ∵圆M 与AC 相切,∴1=|k 1+t |1+k 21,∴k 1=1-t 22t , 同理,k 2=1-(t +6)22(t +6),∴k 1-k 2=3(t 2+6t +1)t 2+6t, ∴S =6(t 2+6t )t 2+6t +1=6⎝ ⎛⎭⎪⎫1-1t 2+6t +1. ∵-5≤t ≤-2,∴-2≤t +3≤1,∴-8≤t 2+6t +1≤-4,∴S max =6×⎝ ⎛⎭⎪⎫1+14=152,S min =6×⎝ ⎛⎭⎪⎫1+18=274, ∴△ABC 的面积S 的最大值为152,最小值为274.探究提高 直线与圆中的最值问题主要包含两个方面(1)参量的取值范围:由直线和圆的位置关系或几何特征,引起的参量如k ,b ,r 的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.(2)长度和面积的最值:由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于与参数如k 或(x ,y )的函数,运用函数或基本不等式求最值.【训练1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y -x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.解 由x 2+y 2-4x +1=0得(x -2)2+y 2=3,它表示以(2,0)为圆心,3为半径长的圆.(1)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6. 所以y -x 的最大值为-2+6,最小值为-2- 6.(2)x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知,过原点和圆心的直线与圆有两个交点,在这两个交点处x 2+y 2取得最值.因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.热点二 与圆有关的定点问题【例2】 (2019·北京卷)已知抛物线C :x 2=-2py (p >0)经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)证明 抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎨⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则解方程得 x 1,2=-2k ±2k 2+1,从而x 1x 2=-4.直线OM 的方程为y =y 1x 1x . 令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2.所以A ⎝ ⎛⎭⎪⎫-x 1y 1,-1,B ⎝ ⎛⎭⎪⎫-x 2y 2,-1. 设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2. 令DA →·DB→=0,即-4+(n +1)2=0,得n =1或n =-3. 故以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).探究提高 圆锥曲线中的定值与定点问题是高考的常考题型,运算量较大,题目逻辑性较强.解决这类问题一般有两种方法:一是根据题意求出相关的表达式,再根据已知条件列出方程组,消去参数,求出定值或定点坐标;二是先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.【训练2】 已知圆x 2+y 2=9的圆心为P ,点Q (a ,b )在圆P 外,以PQ 为直径作圆M 与圆P 相交于A ,B 两点.(1)试判断直线QA 与圆P 的位置关系;(2)若QA =QB =4,试问点Q 在什么曲线上运动?(3)若点Q 在直线x +y -9=0上运动,问:直线AB 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.解 (1)因为以PQ 为直径的圆M 与圆P 相交于A ,B ,所以P A ⊥QA ,又AP 为圆P 的半径,所以AQ 为圆P 的切线,从而直线QA 与圆P 相切.(2)因为P A ⊥QA ,AP =3,AQ =4,所以PQ =32+42=5,故点Q 在以P 为圆心,5为半径的圆上运动.(3)因为点Q (a ,b )在直线x +y -9=0上,所以点Q (a ,9-a ),所以,以PQ 为直径的圆M 的方程为x 2+y 2-ax -(9-a )y =0,又AB 为圆P 与圆M 的公共弦,所以直线AB 的方程为ax +(9-a )y -9=0,即a(x-y)-9y-9=0,从而此直线过x-y=0与9y-9=0的交点,即过定点(1,1).热点三与圆有关的定值问题【例3】(2018·高邮调研)如图,已知圆O的方程为x2+y2=1,直线l的方程为x-y+22=0,点P是直线l上的动点,过点P作圆O的切线P A,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)在(1)的条件下,对于圆O上任意一点M,平面内是否存在一定点R,使MR MP为定值?如果存在,求出点R的坐标;如果不存在,请说明理由.解(1)连接OP,OA,OB,因为P A,PB为过点P的圆O的切线,切点为A,B,所以OA⊥P A,OB⊥PB.因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2.设点P的坐标为(t,t+22),则t2+(t+22)2=4,t2+22t+2=0,即(t+2)2=0,解得t=-2,所以点P的坐标为(-2,2).(2)假设存在符合条件的定点R.设点M(x,y),R(x0,y0),MR2MP2=λ,则x2+y2=1,即(x-x0)2+(y-y0)2=λ[(x+2)2+(y-2)2],整理得-2x0x-2y0y+x20+y20+1=λ(22x-22y+5),上式对任意x,y∈R,且x2+y2=1恒成立,则⎩⎨⎧-2x 0=22λ,-2y 0=-22λ,x 20+y 20+1=5λ,解得⎩⎪⎨⎪⎧λ=14,x 0=-24,y 0=24或⎩⎨⎧λ=1,x 0=-2,(舍去)y 0=2.所以R 的坐标为⎝ ⎛⎭⎪⎫-24,24, 经检验,符合条件MR MP =12,所以对于圆O 上任意一点M ,平面内存在一定点R ,使MR MP 为定值,且R 的坐标为⎝ ⎛⎭⎪⎫-24,24. 探究提高 本题考查直线与圆相切问题以及定值问题.相切问题的基本处理方法是将切点与圆心连接,从而它与切线相互垂直,利用这一直角来进行转化研究问题;第(2)问是探索性问题,在研究探索性问题时,先假设存在是一般性的处理方法,其次将所要研究的问题转化为关于点M 的坐标为元的方程问题,利用该方程的解与点M 的坐标无关来研究问题.【训练3】 (2019·泰州中学检测)已知圆O :x 2+y 2=4与坐标轴交于点A 1,A 2,B 1,B 2(如图).(1)点Q 是圆O 上除A 1,A 2外的任意点(如图1),A 2Q ,A 1Q 与直线y +3=0交于不同的两点M ,N ,求MN 的最小值;(2)点P 是圆O 上除A 1,A 2,B 1,B 2外的任意点(如图2),直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.(1)解 由题意可设直线A 2Q 的方程为y =k ′(x -2),直线A 1Q 的方程为y =-1k ′(x+2),k ′≠0.由⎩⎨⎧y =k ′(x -2),y +3=0,解得⎩⎪⎨⎪⎧x =2-3k ′,y =-3,由⎩⎪⎨⎪⎧y =-1k ′(x +2),y +3=0,解得⎩⎨⎧x =3k ′-2,y =-3. 所以直线A 2Q 与直线y +3=0的交点为M ⎝ ⎛⎭⎪⎫2-3k ′,-3, 直线A 1Q 与直线y +3=0的交点为N (3k ′-2,-3),所以MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4. 当k ′>0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥6-4=2,当且仅当k ′=1时等号成立; 当k ′<0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥|4-(-6)|=10,当且仅当k ′=-1时等号成立. 故线段MN 长度的最小值是2.(2)证明 由题意可知点A 1(-2,0),A 2(2,0),B 1(0,-2),B 2(0,2),A 2P 的斜率为k ,所以直线A 2P 的方程为y =k (x -2),由⎩⎨⎧y =k (x -2),x 2+y 2=4,得P ⎝ ⎛⎭⎪⎫2k 2-2k 2+1,-4k k 2+1, 则直线B 2P 的方程为y =-k +1k -1x +2, 令y =0,则x =2(k -1)k +1,即F ⎝ ⎛⎭⎪⎫2(k -1)k +1,0. 因为直线A 1B 2的方程为x -y +2=0,由⎩⎨⎧x -y +2=0,y =k (x -2),解得⎩⎪⎨⎪⎧x =2k +2k -1,y =4k k -1,所以E ⎝ ⎛⎭⎪⎫2k +2k -1,4k k -1, 所以EF 的斜率m =4kk -12k +2k -1-2(k -1)k +1=k +12, 所以2m -k =2·k +12-k =1(定值).【新题感悟】 (2019·苏北七市高三一模)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x -4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是________.解析 直线l 的斜率k 不存在或为0时均不成立,设直线l 的方程为kx -y -km =0,则圆心O (0,0)到直线l 的距离d 1=|km |k 2+1,圆心C (4,0)到直线l 的距离d 2=|4k -km |k 2+1.因为l 被两圆截得的弦长相等,所以21-d 21=24-d 22,即d 22-d 21=3,所以16k 2+k 2m 2-8k 2m -k 2m 2k 2+1=3,化为:16k 2-8k 2m =3k 2+3,k 2=313-8m>0,得:m <138.又d 21=k 2m 2k 2+1=m 21+1k 2=m 21+13-8m 3=3m 216-8m <1,即3m 2+8m -16<0,解得:-4<m <43.综上,-4<m <43.答案 ⎝ ⎛⎭⎪⎫-4,43一、填空题1.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r=(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=22.(2019·靖江调研)已知圆C:x2+y2-2x-2y+1=0,直线l:3x+4y-17=0.若在直线l上任取一点M作圆C的切线MA,MB,切点分别为A,B,则AB的长度取最小值时直线AB的方程为________.解析圆C的标准方程为(x-1)2+(y-1)2=1,当AB的长度最小时,圆心角∠ACB最小,设为2θ,则由cos θ=ACCM=1CM,知当θ最小时,cos θ最大,即CM最小,那么CM⊥l,所以k AB=k l=-34.设直线AB的方程为3x+4y=m.又由CM=|3+4-17|5=2,此时cos θ=12,则点C到直线AB的距离为AC cos θ=12,即1 2=|3+4-m|5,解得m=192或m=92,经检验m=192,则直线AB的方程为6x+8y-19=0.答案6x+8y-19=03.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.解析由题意可知以线段AB为直径的圆C过原点O,要使圆C的面积最小(D 为切点),只需圆C的半径或直径最小,又圆C与直线2x+y-4=0相切,所以由平面几何知识,当OC所在直线与直线2x+y-4=0垂直时,OD最小(D为切点),即圆C的直径最小,此时OD=|2×0+0-4|5=45,所以圆的半径为25,圆C的面积的最小值为S=πr2=4 5π.答案4 5π4.(2018·全国Ⅲ卷改编)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则△ABP面积的取值范围是________.解析由题意知圆心的坐标为(2,0),半径r=2,圆心到直线x+y+2=0的距离d=|2+2|1+1=22,所以圆上的点到直线的最大距离是d+r=32,最小距离是d-r= 2.易知A(-2,0),B(0,-2),所以AB=22,所以2≤S△ABP≤6. 答案[2,6]5.(2019·常州调研)在平面直角坐标系xOy中,若圆(x-2)2+(y-2)2=1上存在点M,使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为________.解析圆(x-2)2+(y-2)2=1关于x轴的对称圆的方程为(x-2)2+(y+2)2=1,由题意得圆心(2,-2)到直线kx+y+3=0的距离d=|2k-2+3|k2+1≤1,解得-43≤k≤0,所以实数k的最小值为-4 3.答案-4 36.(2019·南京、盐城模拟)在平面直角坐标系xOy中,已知点P为函数y=2ln x的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为________.解析设P(x0,2ln x0),x0>0,则函数y=2ln x在点P处的切线斜率为2x0,则2x0·2ln x0x0-3=-1,即4ln x0=-x0·(x0-3)①.由二次函数y=f(x)的图象经过点O和M可设f (x )=ax (x -3),代入点P (x 0,2ln x 0),x 0>0,得2ln x 0=ax 0(x 0-3) ②.由①②比较可得a =-12,则f (x )=-12x (x -3),则f (x )max =f ⎝ ⎛⎭⎪⎫32=-12×32×⎝ ⎛⎭⎪⎫-32=98.答案 987.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2, ∴OC =12AB =22.∴圆心(0,0)到直线2ax +by =1的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间的距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数图象为对称轴为b =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∴f (b )min =f (2)=12(2-2)2, ∴d 的最小值为12(2-2)2=(2-1)2=2-1.答案2-18.(2019·南京师大附中模拟)已知直线x -y +b =0与圆x 2+y 2=9交于不同的两点A ,B .若O 是坐标原点,且|OA →+OB →|≥22|AB →|,则实数b 的取值范围是________. 解析 设AB 的中点为D ,则OA→+OB →=2OD →,故|OD →|≥24|AB →|,即|OD →|2≥18|AB →|2.再由直线与圆的弦长公式可得,AB =2r 2-d 2(d 为圆心到直线的距离),又直线与圆相交,故d <r ,得|b |2<3,所以-32<b <32,根据|OD→|2≥18|AB →|2,|AB →|2=4(9-OD →2),得|OD →|2≥3.由点到直线的距离公式可得|OD →|2=b 22,即b 22≥3,所以b ≥6或b ≤- 6.综上可得,b 的取值范围是(-32,-6]∪[6,32). 答案 (-32,-6]∪[6,32) 二、解答题9.如果实数x ,y 满足(x +2)2+y 2=3. (1)求yx 的最大值; (2)求2x -y 的最小值.解 (1)问题可转化为求圆(x +2)2+y 2=3上任意一点到原点连线的斜率k =yx 的最大值,由图形性质可知,由原点向圆(x +2)2+y 2=3作切线,其中切线斜率的最大值即为yx 的最大值.设切线方程为y =kx ,即kx -y =0,由|-2k -0|k 2+1=3,解得k =3或k =-3,所以yx 的最大值为 3.(2)将2x -y 看作直线y =2x +b 在y 轴上的纵截距的相反数,当直线y =2x +b 与圆(x +2)2+y 2=3相切时,纵截距b 取得最大值或最小值.此时|-4+b |22+1=3,所以b =4±15,所以2x -y 的最小值为-4-15. 10.(2019·扬州模拟)已知圆O :x 2+y 2=4.(1)直线l 1:3x +y -23=0与圆O 相交于A ,B 两点,求弦AB 的长度; (2)如图,设M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,点M关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,如果直线PM 1,PM 2与y 轴分别交于(0,m )和(0,n ),问mn 是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由于圆心(0,0)到直线l 1:3x +y -23=0的距离d =|-23|2= 3.圆的半径r =2,所以AB =2r 2-d 2=2.(2)由于M (x 1,y 1),点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,可得M 1(-x 1,-y 1),M 2(x 1,-y 1), 由M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,可得x 21+y 21=4,x 22+y 22=4.直线PM 1的方程为y +y 1y 2+y 1=x +x 1x 2+x 1,令x =0,求得y =m =x 1y 2-x 2y 1x 2+x 1.直线PM 2的方程为y +y 1y 2+y 1=x -x 1x 2-x 1,令x =0,求得y =n =-x 1y 2-x 2y 1x 2-x 1.所以mn =x 22y 21-x 21y 22x 22-x 21=x 22(4-x 21)-x 21(4-x 22)x 22-x 21=4. 故mn 为定值.11.如图所示,已知圆A 的圆心在直线y =-2x 上,且该圆上存在两点关于直线x +y -1=0对称,又圆A 与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程;(3)(BM →+BN →)·BP→是否为定值?如果是,求出此定值;如果不是,请说明理由.解 (1)由圆上存在两点关于直线x +y -1=0对称知圆心A 在直线x +y -1=0上.由⎩⎨⎧y =-2x ,x +y -1=0,得A (-1,2). 设圆A 的半径为R ,∵圆A 与直线l 1:x +2y +7=0相切,∴R =|-1+4+7|5=25, ∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时, 设直线l 的方程为y =k (x +2),即kx -y +2k =0,连接AQ ,则AQ ⊥MN , ∵MN =219,∴AQ =20-19=1. 由AQ =|k -2|k 2+1=1,得k =34, ∴直线l 的方程为y =34(x +2),即3x -4y +6=0, ∴所求直线l 的方程为x =-2或3x -4y +6=0. (3)∵AQ ⊥BP ,∴AQ →·BP→=0,∴(BM →+BN →)·BP →=2BQ →·BP →=2(BA →+AQ →)·BP →=2BA →·BP →; 当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-52,则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2), ∴(BM →+BN →)·BP →=2BA →·BP→=-10;当直线l 的斜率存在时,设直线l 的方程为y =k (x +2), 由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k , ∴BP →=⎝⎛⎭⎪⎫-51+2k ,-5k 1+2k , ∴(BM →+BN →)·BP →=2BA →·BP→=2⎝ ⎛⎭⎪⎫-51+2k -10k 1+2k =-10. 综上所述,(BM →+BN →)·BP→为定值-10.。
与圆有关的定点、定值、最值与范围问题
抓住2个考点
突破3个考向
揭秘3年高考
5.(2013·连云港模拟)一束光线从点A(-1,1)出发经x轴反射,到 达圆C:(x-2)2+(y-3)2=1上一点的最短路程是________. 解析 因为点 A(-1,1)关于 x 轴的对称点为 B(-1,-1),圆心 为(2,3),所以从点 A(-1,1)出发经 x 轴反射,到达圆 C 上一点 的最短路程为 -1-22+-1-32-1=4.
BN,得A→M·B→N=0,即(3,t1)·(1,t2)=0,所以 3+t1t2=0,即 t1t2
=-3.
所以 MN=t1-t2=t1+(-t2)≥2 -t1t2=2
当且仅当 t1= 3,t2=- 3时等号成立.
故 MN 的最小值为 2 3.
抓住2个考点
3.
突破3个考向
揭秘3年高考
(2)证明 由(1)得 t1t2=-3.以 MN 为直径的圆的方程为(x-2)2 +(y-t1)(y-t2)=0, 即(x-2)2+y2-(t1+t2)y+t1t2=0, 也即(x-2)2+y2-(t1+t2)y-3=0.
第6讲 与圆有关的定点、定值、最值与 范围问题
抓住2个考点
突破3个考向
揭秘3年高考
考点梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
相离
相切
相交
图形
量化
方程观点 几何观点
Δ_<__0 d_>__r
Δ_=__0 d_=__r
Δ_>__0 d_<__r
抓住2个考点
突破3个考向
揭秘3年高考
答案 4
抓住2个考点
突破3个考向
揭秘3年高考
与圆有关的定点定值最值与范围问题
抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·徐州市调研(一))在平面直角坐标系 xOy 中, 直线 x-y+1=0 截以原点 O 为圆心的圆所得弦长为 6. (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于点 D、E, 当 DE 长最小时,求直线 l 的方程; (3)设 M、P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP、NP 分别交 x 轴于点(m,0)和(n,0),问 mn 是否为定值?若是,请求出该定值;若不是,请说明理由.
所
以PPAB22=
xx++95522++yy22=xx22+ +11580xx++92-5+x29+-82x152=
12285··55xx++1177=
9 25
.
从而PB=3为常数. PA 5
抓住2个考点
突破3个考向
揭秘3年高考
法二 假设存在这样的点 B(t,0),使得PPAB为常数 λ,则 PB2= λ2PA2,所以(x-t)2+y2=λ2[(x+5)2+y2],将 y2=9-x2 代入,得 x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2), 即 2·(5λ2+t)x+34λ2-t2-9=0 对 x∈[-3,3]恒成立,
抓住2个考点
突破3个考向
揭秘3年高考
解 (1)设所求直线方程为 y=-2x+b,即 2x+y-b=0. 因为直线与圆相切, 所以 |2-2+b|12=3,得 b=±3 5. 所以所求直线方程为 y=-2x±3 5. (2)法一 假设存在这样的点 B(t,0). 当点 P 为圆 C 与 x 轴的左交点(-3,0)时,PPAB=|t+2 3|;
故 mn=2 为定值.
高二数学上册常考题专练(人教A版2019选修一)专题09 与圆有关的定值问题(解析版)
专题09与圆有关的定值问题1.已知圆C 的圆心在直线2y x =-上,并且经过点(2,1)A -,与直线1x y +=相切.(1)试求圆C 的方程;(2)若圆C 与直线:2l y kx =-相交于1(A x ,1)y ,2(B x ,2)y 两点.求证:1211x x +为定值.【解答】解:(1)由题意知:过(2,1)A -且与直线1x y +=垂直的直线方程为:3y x =-, 圆心在直线:2y x =-上,∴由23y x y x =-⎧⎨=-⎩⇒12x y =⎧⎨=-⎩即(1,2)M -,且半径1||r AO ==,∴所求圆的方程为:22(1)(2)2x y -++=.(2)将l 的方程与圆C 的方程联立得22(1)210k x x +--=,由韦达定理得12122221,11x x x x k k -+==++ ,故121212112x x x x x x ++==-.【点睛】本题主要考查了圆的方程的求解及直线与圆的位置关系的简单应用,方程的根与系数关系的应用是证明(2)的关键.2.动圆C 与x 轴交于1(A x ,0),2(B x ,0)两点,且1x ,2x 是方程2240x mx +-=的两根.(1)若线段AB 是动圆C 的直径,求动圆C 的方程;(2)证明:当动圆C 过点(0,1)M 时,动圆C 在y 轴上截得弦长为定值.【解答】解:(1)1x ,2x 是方程2240x mx +-=的两根,122x x m ∴+=-,124x x =-. 动圆C 与x 轴交于1(A x ,0),2(B x ,0)两点,且线段AB 是动圆C 的直径,∴动圆C 的圆心C 的坐标为(,0)m -,半径为21||||22x x AB -==.∴动圆C 的方程为222()4x m y m ++=+;(2)证明:设动圆C 的方程为220x y Dx Ey F ++++=, 动圆C 与y 轴交于(0,1)M ,1(0,)N y ,令0y =则20x Dx F ++=,由题意可知2D m =,4F =-,又动圆C 过点(0,1)M ,140E ∴+-=,解得3E =.令0x =,则2340y y +-=,解得1y =或4y =-,14y ∴=-.∴动圆C 在y 轴上截得弦长为1|1|5y -=.故动圆C 在y 轴上截得弦长为定值.【点睛】本题主要考查圆的方程及被坐标轴截得的弦长的问题,属于定值问题中的基础题.3.如图,在直角坐标系xOy 中,圆22:4O x y +=与x 轴负半轴交于点A ,过点A 的直线AM 、AN 分别与圆O 交于M 、N 两点.(1)若2AM k =,12AN k =-,求AMN ∆的面积;(2)若直线MN 过点(1,0),证明:AM AN k k为定值,并求此定值.【解答】解:(1)根据题意,圆22:4O x y +=的圆心为(0,0),半径为2,(2,0)A -,若2AM k =,则直线AM 的方程为02(2)y x -=+,即24y x =+,12AN k =-,直线AN 的方程为10(2)2y x -=-+,即112y x =--,由题知1AM AN k k =- ,所以AN AM ⊥,MN 为圆O 的直径,所以圆心到直线AM的距离455d ==,则2AM =,又由中位线定理知,2AN d =,即855AN =,则AMN ∆的面积1116225S AM AN =⨯⨯=⨯;(2)证明:设1(M x ,1)y 、2(N x ,2)y ,①当直线MN 斜率存在时,设直线MN 的方程为(1)(0)y k x k =-≠,代入圆的方程中有:222(1)40x k x +--=,整理得:2222(1)240k x k x k +-+-=,则有212221k x x k +=+,212241k x x k -=+,此时2212121212121212121212(1)(1)()1122(2)(2)(2)(2)2()43AM AN y y y y k x x x x x x k k k x x x x x x x x x x ---++=⨯===⨯=-+++++++++ ,②当直线MN 斜率不存在时,直线MN 的方程为1x =,代入圆的方程可得M,(1,N ;此时13AM AN k k =- ,综合可得:AM AN k k 为定值,且此定值为13-.【点睛】本题考查直线与圆方程的应用,涉及直线与圆的位置关系,以及弦长公式的运用,属于定值问题中的基础题.4.已知过点M (0,2)且斜率为k 的直线l 与圆22:(1)1C x y -+=交于A ,B 两点.(1)求斜率k 的取值范围;(2)以点M 为圆心,r 为半径的圆与圆C 总存在公共点,求r 的取值范围;(3)O 为坐标原点,求证:直线OA 与OB 斜率之和为定值.【解答】解:(1)根据题意可得,直线l 的方程为:2(0)y k x -=-,即20kx y -+=,圆C 的方程为22(1)1x y -+=,则其圆心(1,0)C ,半径1r =,若直线与圆相交,必有d r <,即1<,解得34k <-,所以斜率k 的取值范围为34k <-.(2)若以点M 为圆心,r 为半径的圆与圆C 总存在公共点,则|1|||1r MC r -+,即|1|1r r -+,11r-+.(3)证明:联立直线与圆的方程:222(1)1y kx x y =+⎧⎨-+=⎩,消去y 整理得22(1)(42)40k x k x ++-+=,设1(A x ,1)y ,2(B x ,2)y ,根据韦达定理得12212242141k x x k x x k +⎧+=-⎪⎪+⎨⎪=⎪+⎩,则121212121222222OA OB y y kx kx k k k x x x x x x +++=+=+=++212122842()122221141k x x k k k k k x x k --++=+=+=-+=+,故直线OA 与直线OB 的斜率之和为定值1.【点睛】本题考查直线与圆的位置关系,圆与圆的位置关系,斜率,属于中档题.5.在平面直角坐标系xOy 中,已知圆心在x 轴上的圆C 经过点(3,0)A ,且被y 轴截得的弦长为,经过坐标原点O 的直线l 与圆C 交于M ,N 两点.(1)求当满足20OM ON += 时对应的直线l 的方程;(2)若点(3,0)P -,直线PM 与圆C 的另一个交点为R ,直线PN 与圆C 的另一个交点为T ,分别记直线l 、直线RT 的斜率为1k 、2k ,求证:12k k +为定值.【解答】解:因为圆C 被y轴截得的弦长为,所以OC =,又圆心在x 轴上的圆C 经过点(3,0)A ,所以3OC r +=,即3r +=,解得2r =,所以圆心(1,0)C ,所以圆C 方程为22(1)4x y -+=.设直线l 方程为:1y k x =,1(M x ,1)y ,2(N x ,2)y 联立圆的方程得,221(1)230k x x +--=,122121x x k +=+③,122131x x k -=+④,(1)因为20OM ON += ,所以1(x ,12)(2y x +,22)(0y =,0)即121220,20,x x y y +=⎧⎨+=⎩①②①-③得22121x k =-+,代入③得12141x k =+,代入④得,222111243()()111k k k --=+++解得1k =,所以直线l 的方程为:153y =±.(2)直线PT l 方程为:2200(3)3y y x x --=++,联立圆的方程得:2222222222[1(][26()]9()30333y y y x x x x x ++-++-=+++,所以22222222222222222222226()26()332(3)6(3)1()1()33T y y x x x y x x y y x y x x -+-+++-+=-==++++++,所以2222222222222222222(3)62(3)6[4(1)](3)(3)[4(1)]T x y x x x x x x y x x +-+---=-=-++++--,22222222222222121824612669426x x x x x x x x x ++-+-+=-+++-+-,22228812x x x =-+,2222228812812x x x x --=+22323x x -=+,12212212222223393(3)32332323T k x x k x x k x y x x x x x -+=+==+++++ ,所以223(23x T x -+,122323k x x +,同理可得113(23x R x -+,1113)23k x x +,所以1211211211122212112213323233(23)3(23)333(23)3(23)2323k x k x x x k x x k x x k x x x x x x x x -+++-+==--++++++11212112111269699()k x x k x k x x k x x x +--=-1211219()9()k x x k x x -=-=--,所以120k k +=,所以120k k +=为定值.【点睛】本题考查圆的方程,向量,直线与圆相交问题,还考查运算能力,属于中档题.6.已知圆心C 在第一象限,半径为54的圆与y 轴相切,且与x 轴正半轴交于A ,B 两点(A 在B 左侧),||||1(OA OB O ⋅=为坐标原点).(1)求圆C 的标准方程;(2)过点A 任作一条直线与圆22:1O x y +=相交于P ,Q 两点.①证明:||||||||PA QB PB QA +为定值;②求||2||PB PC +的最小值.【解答】(1)解:因为圆心C 在第一象限,半径为54的圆与y 轴相切,故设圆心5(,)4C b ,则225||216AB b =-,所以51||||42OA AB =-,51||||42OB AB =+,所以22251||||||1164OA OB AB b ⋅=-==,解得1b =,所以圆C 的方程为22525((1)416x y -+-=;(2)①证明:由(1)可得,1(,0),(2,0)2A B ,设0(P x ,0)y ,则22001x y +=,所以222200000222200000115()()1||1224||542(2)(2)1x y x x x PA PB x x y x y -+-+--====--+-+-,同理可得||2||QB QA =,所以||||||||PA QB PB QA +为定值52;②解:因为||2||PB PA =,所以5||2||2(||||)2||2PB PC PA PC AC +=+==,故||2||PB PC +的最小值为52.【点睛】本题考查了圆的标准方程的求解与应用,直线与圆位置关系的应用,圆中弦长公式的应用以及圆中最值问题的求解,考查了逻辑推理能力与化简运算能力,属于中档题.7.已知圆C 经过坐标原点O ,圆心在x 轴正半轴上,且与直线3480x y +-=相切.(1)求圆C 的标准方程.(2)直线:2l y kx =+与圆C 交于A ,B 两点.(ⅰ)求k 的取值范围;(ⅱ)证明:直线OA 与直线OB 的斜率之和为定值.【解答】解:(1)设圆C 的圆心坐标为(,0)C a ,其中0a >,半径为r ,圆C 经过坐标原点O ,圆心在x 轴正半轴上,r a ∴=,又 圆C 与直线3480x y +-=相切,∴r a ==,解得1a =或4a =-(舍去),∴圆心(1,0)C ,1r =,故圆C 的标准方程为22(1)1x y -+=.(2)()i 联立直线与圆的方程222(1)1y kx x y =+⎧⎨-+=⎩,可得22(1)(42)40k x k x ++-+=, 直线l 交圆C 与A ,B 两点,∴△2224(42)16(1)0b ac k k =-=--+>,解得34k <-,故k 的取值范围为3(,4-∞-.()ii 证明:设1(A x ,1)y ,2(B x ,2)y ,由韦达定理,可得122421k x x k -+=+,12241x x k =+,又 2121212121212284222()122221141OA OB k y y kx kx x x k k k k k k k x x x x x x k --+++++=+=+=+=+=-+=+,∴直线OA 与直线OB 的斜率之和为定值,即得证.【点睛】本题考查了直线与圆的综合应用,并考查了点到直线的距离公式和韦达定理,需要学生较强的综合能力,属于中档题.8.在平面直角坐标系xOy 中,设圆22(2)4x y -+=的圆心为M ,(0,4)P -.(1)若PA ,PB 是圆M 的两条切线,A ,B 是切点,M 为圆心,求四边形PAMB 的面积;(2)若过点P 且斜率为k 的直线与圆M 相交于不同的两点A ,B .设直线OA 、OB 的斜率分别为1k ,2k ,问12k k +是否为定值?若是,求出这个定值,若不是,请说明理由.【解答】解:(1)圆心M 的坐标为(2,0),半径2r = 圆心(2,0)M 到直线0x =的距离2d =,∴直线0x =是圆的一条切线,无妨设切点为A ,则||2MA d ==,||PM ==||4PA ∴==,∴四边形PAMB 的面积为1||||282PA MA ⨯⨯⨯=.(2)过点P 的直线方程为4y kx =-,设1(A x ,1)y ,2(B x ,2)y ,联立得224(2)4y kx x y =-⎧⎨-+=⎩,整理得22(1)(84)160k x k x +-++=,直线与圆相交,∴△2216(21)64(1)0k k =+-+>,34k ∴>,则122841k x x k ++=+,122161x x k ⋅=+,于是121221122112121212(4)(4)y y y x y x kx x kx x k k x x x x x x +++++=+==12124()84224()116x x k k k x x ++=-=-⨯=-,12k k ∴+为定值1-.【点睛】本题考查直线与圆的方程的综合应用,用联立法求解是解决问题的关键,属于中档题.9.已知圆22:(3)(4)4C x y +++=,直线l 过定点(1,0)A -.(1)若l 与圆相切,求l 的方程;(2)若l 与圆相交于P 、Q 两点,PQ 线段中点为M ,又l 与0:220l x y +-=交点为N ,求证:||||AM AN ⋅为定值.【解答】(1)解:由题意知直线的斜率不为0,设直线l 的方程为1x ty =-,10x ty -+=,则由l与圆相切得:2d ==,解得:0t =或43,故l 的方程为1x =-或3430x y -+=.(2)证明:l 与圆相交于PQ 两点,故l 斜率存在且不为0.设直线l 的方程为1x ty =-,联立122x ty x y =-⎧⎨+=⎩得31232t x t y t ⎧=-⎪⎪+⎨⎪=⎪+⎩,故33(1,)22t N t t -++;PQ 线段中点为M ,CM PQ ∴⊥,设直线CM 的方程为4(3)y t x +=-+,联立14(3)x ty y t x =-⎧⎨+=-+⎩,得2222411241t t x t t y t ⎧--=-⎪⎪+⎨--⎪=⎪+⎩,故2222424(1,)11t t t M t t -----++;∴2222424(,11t t t AM t t ----=++ ,33(,22t AN t t =++ ,∴6AM AN ⋅=- ,又由于A ,M ,N 三点共线,||||6AM AN ∴⋅=得证,||||AM AN ⋅为定值.【点睛】本题考查直线与圆的位置关系的应用,考查向量的数量积的应用,考查转化思想以及计算能力.10.已知O 为坐标原点,圆C 的方程为:22(1)1x y -+=,直线l 过点(0,3)M .(1)若直线l 与圆C 有且只有一个公共点,求直线l 的方程;(2)若直线l 与圆C 交于不同的两点A ,B ,试问:直线OA 与OB 的斜率之和是否为定值,若是,求出该定值:若不是,说明理由.【解答】解:(1)①当直线l 斜率不存在时,l 的方程为0x =,符合题意.②当直线l 斜率存在时,设l 的方程为3y kx =+,由22(1)1x y -+=,得圆心(1,0)C ,半径1r =.直线与圆有一个公共点,∴1d ==,解得43k =-.l ∴的方程为433y x =-+,即4390x y +-=.综上所述,直线l 的方程为0x =或4390x y +-=;(2)直线OA 与OB 的斜率之和为定值.证明:由(1)知直线l 斜率存在,设l 的方程为3y kx =+,设1(A x ,1)y ,2(B x ,2)y ,联立直线与圆的方程:223(1)1y kx x y =+⎧⎨-+=⎩,消去y 得22(1)(62)90k x k x ++-+=.根据韦达定理得12212262191k x x k x x k -⎧+=-⎪⎪+⎨⎪=⎪+⎩.则1212121233OA OB y y kx kx k k x x x x +++=+=+212121221863()33221222229331k x x k k k k k k x x x x k --++=++=+=+=-+=+ .∴直线OA 与OB 的斜率之和为定值23.【点睛】本题考查直线与圆位置关系的应用,考查运算求解能力,体现了“设而不求”的解题思想方法,是中档题.11.若圆221:C x y m +=与圆222:68160C x y x y +--+=相外切.(1)求m 的值;(2)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,P 为第三象限内一点且在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【解答】解:(1)圆1C 的圆心坐标(0,0)圆2C 的圆心坐标(3,4),半径为3,35+=,4m ∴=.(2)证明:点A 坐标为(2,0),点B 坐标为(0,2),设P 点坐标为0(x ,0)y ,由题意得点M 的坐标为002(0,)2y x -;点N 的坐标为002(2x y -,0),四边形ABNM 的面积20000000022(422)11(2)(2)2222(2)(2)x y y x S y x y x --=--=---- ,由P 点在圆1C 上,有22004x y +=,∴四边形ABNM 的面积4S =,即四边形ABNM 的面积为定值4.【点睛】本题考查圆的标准方程,考查了圆与圆的位置关系,考查计算能力与推理论证能力,是中档题.12.已知圆C 和y 轴相切于点(0,2)T ,与x 轴的正半轴交于M 、N 两点(M 在N 的左侧),且3MN =;(1)求圆C 的方程;(2)过点M 任作一条直线与圆22:4O x y +=相交于点A 、B ,连接AN 和BN ,记AN 和BN 的斜率为1k ,2k ,求证:12k k +为定值.【解答】解:(1) 圆C 与y 轴相切于点(0,2)T ,可设圆心的坐标为(m ,2)(0)m >,则圆C 的半径为m ,又||3MN =,∴223254()24m =+=,解得52m =,∴圆C 的方程为22525((2)24x y -+-=;证明:(2)由(1)知(1,0)M ,(4,0)N ,当直线AB 的斜率为0时,知0AN BN k k ==,即120k k +=为定值.当直线AB 的斜率不为0时,设直线:1AB x ty =+,将1x ty =+代入224x y +=,整理得,22(1)230t y ty ++-=.设1(A x ,1)y ,2(B x ,2)y ,∴12221t y y t +=-+,12231y y t -=+,则12121212124433y y y y k k x x ty ty +=+=+----22121212126623()110(3)(3)(3)(3)t tty y y y t t ty ty ty ty -+-+++===----.综上可知,120k k +=为定值.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查运算求解能力,体现了分类讨论的数学思想方法,是中档题.13.平面直角坐标系xOy 中,已知点(2,4)P ,圆22:4O x y +=与x 轴的正半轴交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设直线QA ,QB 的斜率分别是1k ,2k ,问12k k +是否为定值,若是,求出此定值,若不是,请说明理由;②设线段AB 的中点为M ,点(1,0)N ,若14MN OM =,求直线AB的方程.【解答】解:(1)当1l 的斜率不存在时,易得1l 的方程为2x =适合题意;当1l 的斜率存在时,设1:4(2)l y k x -=-,即420kx y k -+-=,由题设知:圆心O 到直线1l的距离324d r k ===⇒=,此时1:34100l x y -+=,∴直线1l 的方程为2x =或34100x y -+=;(2)①2:4(2)l y k x -=-,联立224(2)4y k x x y -=-⎧⎨+=⎩,可得222(1)4(2)(24)40k x k k x k +--+--=.设1(A x ,1)y ,2(B x ,2)y ,则1224(2)1k k x x k -+=+,2122(24)41k x x k--=+,∴121212121212(2)4(2)4442222222y y k x k x k k k x x x x x x -+-++=+=+=++------21221212224(2)4(4)4(4)4(84)12221(24)44(2)2()4162411k k x x k k k k k k k k x x x x k k --+-++=+=+=-=-----++-+++;②设0(M x ,0)y ,由①知,12022(2)21x x k k x k +-==+,代入直线方程,可得022(2)1k y k --=+,由14MN OM =,得222200001(1)()16x y x y -+=+,化简为22000151532160x y x +-+=,把0x ,0y 代入,可得222222(2)2(2)2(2)15()15(32160111k k k k k k k k ----+-+=+++,解得4k =或163k =.∴直线AB 的方程为44(2)y x -=-或164(4)3y x -=-,即440x y --=或163520x y --=.【点睛】本题考查直线与圆位置关系的应用,考查运算求解能力,体现了“设而不求”的解题思想,考查计算能力,是中档题.14.平面直角坐标系中,以原点O为圆心的圆被直线20x --=截得弦长为.(1)求圆O 的方程;(2)过点(0,1)P 的直线与圆O 交于A ,B 两点,与x 轴交于点Q ,设QA PA λ= ,QB PB μ=,求证:λμ+为定值.【解答】解:(1)设圆O 的半径为r,圆心到直线20x --=的距离为d ,则1d ==,则2r =.∴圆O 的方程为224x y +=;证明:(2)当AB 与x 轴垂直时(不妨设A 在x 轴上方),此时Q 与O 重合,从而2λ=,23μ=,83λμ+=;当点Q 与点O 不重合时,直线AB 的斜率存在,设:1AB y kx =+,1(A x ,1)y ,2(B x ,2)y ,则1(Q k -,0),由QA PA λ= ,QB PB μ= ,得:111x x k λ+=,221x x kμ+=,即12121211112x x kx kx kx x λμ++=+++=+.联立2214y kx x y =+⎧⎨+=⎩,得22(1)230k x kx ++-=.则△222412(1)16120k k k =++=+>.12221k x x k -+=+,12231x x k -=+,1212282233x x k kx x k λμ+-∴+=+=+=-.综上,λμ+为定值83.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查运算求解能力,是中档题.15.已知圆C 的圆心在y 轴上,半径5r <,过点(0,4)且与直线32y x =-相切.(1)求圆C 的方程;(2)若过点(,0)P t 的直线l 与圆C 交于不同的两点A ,B ,且与直线240x y --=交于点M ,若A ,B 中点为N ,问是否存在实数t ,使PM PN为定值,若存在,求出t 的值;若不存在,请说明理由.【解答】解:(1)设圆心(0,)m ,圆心到直线32y x =-的距离等于半径,∴|4|31m =-+,解得2m =或10m =,又半径5r <,2m ∴=,则圆C 的方程为22(2)4x y +-=;(2)()PM PN PM PC CN PM PC PM CN PM PC =+=+= .①当直线l 的斜率k 存在时,设:()l y k x t =-,联立()240y k x t x y =-⎧⎨--=⎩,解得4212412kt x kk kt y k -⎧=⎪⎪-⎨-⎪=⎪-⎩,424(,1212kt k kt M k k --∴--,∴4244(4)(,)(,12121212kt k kt t k t PM t k k k k----=-=---- ,(,2)PC t =-,∴4(4)(4)2(4)(4)(2)(,)(,2)1212121212t k t t t k t t t k PM PC t k k k k k-------+=-=+=----- ,要使PM PN 为定值,则1t =,此时3PM PN =-;②当l 的斜率不存在时,4(,)2t M t -,(,0)P t ,(,2)N t ,∴4(0,)(0,2)42t PM PN t -==- ,1t =时满足3PM PN =- ;又当M 与P 重合时,0PM PN =也为的值.综上,当1t =或4时,PM PN为定值.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查运算求解能力,是中档题.16.在平面直角坐标系xOy 中,已知圆C 的方程为2230x y x y +-+=,点(1,1)P 是圆C 上一点.(1)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(2)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.【解答】解:(1)由圆C 的方程为2230x y x y +-+=,可知31(,)22C -,半径r =则C 到MN 距离31|1|||22m m d -++==所以MN ==12m =-时取等号,由d r <,解得1521522222m --<<-+;由O ,P 在MN 两侧,(12)0m m ++<,30m -<<,所以30m -<<.O 到MN距离1d ==,P 到MN距离2d =,所以四边形MONP的面积12132()22MNO MNP S S S MN d d ∆∆=+=+=,所以12m =-时,四边形MONP 面积最大为322;(2)由题意可设1:(1)1PA y k x =-+,由122(1)130y k x x y x y =-+⎧⎨+-+=⎩,可得22221111(1)(233)320k x k k x k k +--++-+=,设1(A x ,1)y ,则2111213211k k x k -+⨯=+,所以211121321k k x k -+=+,2111112121(1)11k k y k x k -++=-+=+,所以22111122113221(,)11k k k k A k k -+-++++,同理22222222223221(,)11k k k k B k k -+-++++,因为120k k +=,所以22111122113221(,)11k k k k B k k ++--+++,所以22111122111221111122112121112132326311ABk k k k k k k k k k k k k k k -++--+-++===--+++--++为定值.【点睛】本题考查圆的方程,直线与圆位置关系的应用,考查计算能力,是中档题.17.已知圆22:1O x y +=与x 轴的正半轴交于点P ,直线:30l kx y k --+=与圆O 交于不同的两点A ,B .(1)求实数k 的取值范围;(2)设直线PA ,PB 的斜率分别是1k ,2k ,试问12k k +是否为定值?若是定值,求出该定值;若不是定值,请说明理由;(3)设AB 的中点为N ,求点N 到直线3100x y +-=的距离的最大值.【解答】解: 圆22:1O x y +=与x 轴的正半轴交于点P ,∴圆心(0,0)O ,半径1r =,(1,0)P .(1) 直线:30l kx y k --+=与圆O 交于不同的两点A 、B ,∴圆心O 到直线l的距离1d =<,即|3|k -<43k >;(2)设1(A x ,1)y ,2(B x ,2)y ,联立22301kx y k x y --+=⎧⎨+=⎩,可得2222(1)(26)680k x k k x k k +--+-+=,∴2122261k k x x k -+=+,2122681k k x x k-+=+,∴121212121212(1)3(1)3332111111y y k x k x k k k x x x x x x -+-++=+=+=++------221222212123(2)3[262(1)]22()168(26)1x x k k k k k x x x x k k k k k +---+=+=+-++-+--++1862293k k --=+=-为定值.12k k ∴+是定值,定值为23-;(3)(方法一)AB 的中点为N ,∴2122321N x x k k x k +-==+,23(1)31N Nky k x k -=-+=+,∴22233(,)11k k kN k k--++.记点N 到直线3100x y +-=的距离为d ,则22222393|10|2(34)11]1k k k k k k d k --+--=++,令34m k =-,则0m >,∴22181818))]255825818m d m m m m =+=+=+++++-+18)18+=(当且仅当5m =,即3k =时取等号).∴点N 到直线3100x y +-=(方法二)直线l 的方程为30kx y k --+=,即(1)3y k x =-+,∴直线恒过定点(1,3)M .AB 的中点为N ,ON AB ∴⊥,∴点N 在以OM 为直径的圆上(在圆O 内的部分).∴以OM 为直径的圆的方程为2221310()()()222x y -+-=.∴点N 到直线3100x y +-=的距离的最大值为13|310|10222+⨯-=(此时N 为(0,0)).【点睛】本题考查直线与圆的位置关系的应用,考查逻辑思维能力与推理运算能力,考查化归与转化思想方法,训练了利用基本不等式求最值,是中档题.18.平面直角坐标系xOy 中,已知点(2,4)P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【解答】解:(1)当直线1l 的斜率不存在时,则直线1l 的方程为:2x =,圆心O 到直线1l 的距离2d r ==,显然2x =符合条件,当直线1l 的斜率存在时,由题意设直线1l 的方程为4(2)y k x -=-即240kx y k --+=,圆心O 到直线1l 的距离为2|24|21d k ==+,解得34k =,所以切线方程为3324044x y --+= ,即34100x y -+=,综上所述:过P 点的切线方程为2x =或34100x y -+=;(2)①设点(,)M x y ,因为M 是弦AB 的中点,所以MO MP ⊥,又因为(,)OM x y = ,(2,4)PM x y =--,所以(2)(4)0x x y y -+-=,即22240x y x y +--=,联立22224240x y x y x y ⎧+=⎨+--=⎩解得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,又因为M 在圆O 的内部,所以点M 的轨迹是一段圆22240x y x y +--=以6(5-,8)5和(2,0)为端点的一段劣弧(不包括端点),在圆22240x y x y +--=方程中,令1x =,得25y =±根据点(1,25)在圆O 内部,所以点M 的纵坐标的最小值为25;②联立224(2)4y k x x y -=-⎧⎨+=⎩,整理可得222(1)4(2)(24)40k x k k x k +--+--=,设1(A x ,1)y ,2(B x ,2)y 则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪>⎪⎪⎩,所以21212121221212121212224(2)4[4](2)4(2)44(4)444(84)122221(24)44(2)2222222()4162411k k y y k x k x x x k k k k k k k k k k k x x x x x x x x x x k k ---+-++-+++=+=+=++=+=+=-=-----------++-+++ ,所以12k k +为定值1-.【点睛】本题考查求过某点的切线方程的方法,及直线与圆的位置关系的应用,属于中档题.19.如图,在平面直角坐标系xOy 中,已知圆2225x y +=,圆222:(1)(03)C x y r r +-=<<,点(3,4)P -,M ,N 为圆O 上的不同于点P 的两点.(1)已知M 坐标为(5,0),若直线PM 截圆C所得的弦长为5,求圆C 的方程;(2)若直线MN 过(0,4),求CMN ∆面积的最大值;(3)若直线PM ,PN 与圆C 都相切,求证:当r 变化时,直线MN的斜率为定值.【解答】解:(1)(3,4)P - ,(5,0)M 可得401352PM k -==---,故直线PM 的方程为:250x y +-=,∴点C 到直线PM的距离为=直线PM 截圆C,∴2224r =+=,∴圆C 的方程为:22(1)4x y +-=;(2)由题意可知直线MN 的斜率存在,故可设直线MN 的方程为40kx y -+=,所以点C 到直线MN的距离d =,可得MN =12CMN S MN d ∆∴=⋅=,令2t =,(0t ∈,16],CMN S ∆=252t =时,即k =时,CMN ∆面积的最大值为758;(3)03r << ,所以过P 与圆相切的直线的斜率存在设为430kx y k -++=.由直线430kx y k -++=与圆222:(1)(03)C x y r r +-=<<相切,∴r =.整理可得222(9)1890r k k r -++-=,∴1221201891k k r k k >⎧⎪⎪+=⎨-⎪=⎪⎩ ,联立43kx y k -++,2225x y +=,可得211213831M k k x k --=+,222223831N k k x k --=+,∴22121212212221(3)4[(3)4]3()8()46()3M N M N MNM N M N k x k x k x k x k k k k k x x x x k k ++-++-+--====---,所以,当r 变化时,直线MN 的斜率为定值.【点睛】本题考查了直线与圆的位置关系,考查了转化思想、计算能力,属于中档题.20.在平面直角坐标系xOy 中,已知圆C 的圆心在y 轴右侧,原点O 和点(1,1)P 都在圆C 上,且圆C 在x 轴上截得的线段长度为3.(1)求圆C 的方程;(2)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(3)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.【解答】解:(1)由题意,圆C 过点(0,0),(1,1),(3,0),设圆C 的方程为220x y Dx Ey F ++++=.则0110930F D E F D F =⎧⎪++++=⎨⎪++=⎩,解得310D E F =-⎧⎪=⎨⎪=⎩.∴圆C 的方程为2230x y x y +-+=,即22315()()222x y -++=;(2)由(1)可知,3(2C ,12-,半径2r =,C 到MN 的距离31|1|||22m m d -++==.MN∴==,当且仅当12m=-时取等号.由d r<,解得1122m-<-+.由O,P在MN的两侧,得(12)0m m++<,即30m-<<.O到MN的距离1d==,P到MN的距离2d=∴四边形MONP的面积121()22MNO MNPS S S MN d d∆∆=+=+=.12m∴=-时,四边形MONP 的面积有最大值为322;(3)由题意可设1:(1)1PA y k x=-+.联立122(1)130y k xx y x y=-+⎧⎨+-+=⎩,得222211111(1)(233)320k x k k x k k+--++-+=.设1(A x,1)y,则2111213211k kxk-+⨯=+,∴211121321k kxk-+=+,2111112122(1)11k ky k xk-++=-+=+.2112132(1k kAk-+∴+,2112121)1k kk-+++,结合12k k+=,同理2112132(1k kBk+++,21121211k kk--++.22111122111221111122112121112132326311ABk k k kk k kkk k k k kk k-++--+-++∴===--+++--++.【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.21.在直角坐标系xOy中,曲线22y x mx=+-与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC BC⊥的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线22y x mx=+-与x轴交于A、B两点,可设1(A x,0),2(B x,0),由韦达定理可得122x x=-,若AC BC ⊥,则1AC BC k k =- ,即有121010100x x --=--- ,即为121x x =-这与122x x =-矛盾,故不出现AC BC ⊥的情况;(2)证明:设过A 、B 、C 三点的圆的方程为22220(40)x y Dx Ey F D E F ++++=+->,由题意可得0y =时,20x Dx F ++=与220x mx +-=等价,可得D m =,2F =-,圆的方程即为2220x y mx Ey +++-=,由圆过(0,1)C ,可得01020E +++-=,可得1E =,则圆的方程即为2220x y mx y +++-=,另解:设过A 、B 、C 三点的圆在y 轴上的交点为(0,)H d ,则由相交弦定理可得||||||||OA OB OC OH = ,即有2||OH =,再令0x =,可得220y y +-=,解得1y =或2-.即有圆与y 轴的交点为(0,1),(0,2)-,则过A 、B 、C 三点的圆在y 轴上截得的弦长为定值3.【点睛】本题考查直线与圆的方程的求法,注意运用韦达定理和直线的斜率公式,以及待定系数法,考查方程思想和化简整理的运算能力,属于中档题.22.如图,已知圆C 与y 轴相切于点(0,2)T ,与x 轴的正半轴交于M ,N 两点(点M 在点N 的左侧),且||3MN =.(Ⅰ)求圆C 的方程;(Ⅱ)过点M 任作一条直线与圆22:4O x y +=相交于A ,B 两点,连接AN ,BN ,求证:AN BN k k +为定值.【解答】解:(Ⅰ)因为圆C 与y 轴相切于点(0,2)T ,可设圆心的坐标为(m ,2)(0)m >,则圆C 的半径为m ;又||3MN =,所以223254(24m =+=,解得52m =;所以圆C 的方程为22525()(2)24x y -+-=;(Ⅱ)证明:由(1)知,(1,0)M ,(4,0)N ,当直线AB 的斜率为0时,易知0AN BN k k ==,即0AN BN k k +=;当直线AB 的斜率不为0时,设直线:1AB x ty =+,将1x ty =+代入2240x y +-=,整理得22(1)230t y ty ++-=;设1(A x ,1)y ,2(B x ,2)y ,所以1221222131t y y t y y t ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,则121244AN BN y y k k x x +=+--121233y y ty ty =+--12121223()(3)(3)ty y y y ty ty -+=--22126611(3)(3)t t t t ty ty -+++=--0=;综上,可得0AN BN k k +=.【点睛】本题考查了直线与圆的方程应用问题,也考查了直线斜率的计算问题,是综合题.23.已知圆22:(3)(4)4C x y -+-=,直线1l 过定点(1,0)A (1)若直线1l 与圆相切,切点为B ,求线段AB 的长度;(2)若1l 与圆相交于P ,Q 两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=的交点为N ,判断AM AN 是否为定值,若是,求出定值;若不是,请说明理由.【解答】解:(1)圆22:(3)(4)4C x y -+-=,圆心为(3,4),半径为2,直线1l 过定点(1,0)A ;直线1l 与圆C 相切,切点为B ,连接AB ,BC 与AC ,则BC AB ⊥,且2BC =,所以AC =4AB =,即线段AB 的长度为4;(2)易知,若斜率不存在,则1l 与圆相切,若斜率为0,则1l 与圆相离,故直线的斜率存在,可设1l 的方程:(1)y k x =-,由220(1)x y y k x ++=⎧⎨=-⎩,解得223(,)2121k k N k k --++,再由1CM l ⊥,解得22224342(,)11k k k k M k k +++++,又直线1CM l ⊥,所以14(3)(1)y x k y k x ⎧-=--⎪⎨⎪=-⎩,解得22224342(,11k k k k M k k +++++,所以6|21|AM AN k ==+ 为定值.⋯(12分)【点睛】本题考查了直线与圆的综合应用问题,考查了数形结合思想与方程的应用问题,是综合性题目.。
圆中的定点、定值问题
第 1 页 共 2 页圆中的定点问题1.直线2y -3-m (2x +y -2)=0必过一定点,定点的坐标为 .(14,32)2.圆方程为:x 2+y 2-2y -m (2x +y -2)=0,其必过定点,定点的坐标为 .(0,2)和(45,25)例1.已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线P A ,PB ,切点为A ,B .求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标.解:设P (2m ,m ),MP 的中点Q (m ,m2+1),因为P A 是圆M 的切线所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为:(x -m )2+(y -m 2-1)2=m 2+(m2-1)2,化简得:x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式,故⎩⎪⎨⎪⎧x 2+y 2-2y =0,x +y -2=0,解得⎩⎪⎨⎪⎧x =0,y =2,或⎩⎨⎧x =45,y =25.所以经过A ,P ,M 三点的圆必过定点(0,2)或(1,1).变式:直线AB 是否过定点?如果存在定点,求出所有定点;如果不存在,说明理由.解:直线AB 即为圆Q 与圆M 的公共弦所在直线,两圆方程相减得AB :mx +my -2y -2m +3=0,整理为:m (2x +y -2)-2y +3=0,此式是关于m 的恒等式,故⎩⎪⎨⎪⎧2x +y -2=0,-2y +3=0,解得⎩⎨⎧x =14,y =32.例2.已知圆M 的方程为x 2+(y -2)2=1和y 轴相交于A ,B 两点,点P 为圆M 上不同于A ,B 的任意一点,直线P A ,PB 交x 轴于E ,F 两点.当点P 变化时,以EF 为直径的圆H 是否经过圆M 内一定点?请证明你的结论.证明:设P (m ,n ),则m 2+(n -2)2=1,∵A (0,3),B (0,1),∴l AP :y -3=n -3m x ,l BP :y -1=n -1m x ,∴E (3m3-n,0), F (m 1-n ,0),故以EF 为直径的圆方程:(x -3m 3-n )( x -m 1-n)+y 2=0, 把m 2+(n -2)2=1代入整理得:x 2+y 2+6-4nmx -3=0, 令x =0得y =±3,∵在圆内,∴过定点(0,3).法二:可设AP 斜率为k ,则PB 斜率为-1k ,分别求出直线方程和交点,计算更简单.例3.已知圆M 的方程为x 2+(y -2)2=1,点A (0,-3),若在直线OA 上(O 为坐标原点)存在定点B(不同于点A ),满足:对于圆M 上任意一点P ,都有PBP A 为一常数,求所有满足条件的点B 的坐标.解:设B (0,t )(t ≠-3),使得PBP A 为常数λ,则PB 2=λ2P A 2,∴x 2+(y -t )2=λ2[x 2+(y +3)2],将x 2=1-(y -2)2代入得, (4-2t -10λ2)y +t 2-3-6λ2=0对y ∈[1,3]恒成立,xy. B AP OMy xB A P OM EFyx第 2 页 共 2 页∴⎩⎪⎨⎪⎧4-2t -10λ2=0,t 2-3-6λ2=0,解得⎩⎨⎧λ=15,t =95或⎩⎪⎨⎪⎧λ=1,t =-3(舍去), 所以存在点B ⎝⎛⎭⎫0,95对于圆M 上任一点P ,都有PB P A 为常数15. 练习:1.过直线l :x =-1上的动点Q 向⊙M :(x -2)2+y 2=4作切线,切点分别为S ,T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:由题意,点Q ,M ,S ,T 四点共圆,且QM 为该圆直径,则线段ST 即为该圆与⊙M 的公共弦,设点Q (-1,t ),所以此圆方程为(x +1)(x -2)+(y -t )y =0,两圆作差,从而直线ST 的方程为3x -ty -2=0,令y =0,x =23,所以直线ST 恒过一个定点,且该定点坐标为⎝⎛⎭⎫23,0. 2.已知F 1(-1,0),F 2(1,0),M ,N 是直线x =4上的两个动点,且F 1M →·F 2N →=0,以MN 为直径的圆C 是否过定点?请证明你的结论.解:由题可设点M (4,y 1),N (4,y 2),则以MN 为直径的圆的圆心C 的坐标为⎝⎛⎭⎫4,y 1+y 22,半径r =|y 2-y 1|2,从而圆C 的方程为(x -4)2+⎝⎛⎭⎫y -y 1+y 222=(y 2-y 1)24,整理得x 2+y 2-8x -(y 1+y 2)y +16+y 1y 2=0,由F 1M →·F 2N →=0得y 1y 2=-15, 所以x 2+y 2-8x -(y 1+y 2)y +1=0,令y =0得x 2-8x +1=0,所以x =4±15, 所以圆C 过定点(4±15,0).3.已知圆C :x 2+y 2=9,点A (-5,0),在直线OA 上(O 为坐标原点),存在定点B (不同于点A ),满足:对于圆C 上任一点P ,都有PBP A为一常数,试求所有满足条件的点B 的坐标.解:法一:假设存在这样的点B (t ,0),当P 为圆C 与x 轴左交点(-3,0)时,PB P A =|t +3|2;当P 为圆C 与x 轴右交点(3,0)时,PB P A =|t -3|8,依题意,|t +3|2=|t -3|8,解得t =-5(舍去),或t =-95.下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBP A为一常数.设P (x ,y ), 则y 2=9-x 2,∴PB 2P A 2=⎝⎛⎭⎫x +952+y 2x +52+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925,∴PB P A =35为常数. 法二:假设存在这样的点B (t ,0),使得PBP A为常数λ,则PB 2=λ2P A 2,∴(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得, x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,∴⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去), 所以存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数35.。
圆中的定点、定值问题
圆中的定点定值问题问题1.直线2y -3-m (2x +y -2)=0必过一定点,定点的坐标为 .(14,32)2.圆方程为:x 2+y 2-2y -m (2x +y -2)=0,其必过定点,定点的坐标为 .(0,2)和(45,25)例1.已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线P A ,PB ,切点为A ,B .求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标.解:设P (2m ,m ),MP 的中点Q (m ,m2+1),因为P A 是圆M 的切线所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为:(x -m )2+(y -m 2-1)2=m 2+(m2-1)2,化简得:x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式, 故2220,220.x y y x y ⎧+-=⎨+-=⎩解得02x y =⎧⎨=⎩,或4525x y ⎧=⎪⎪⎨⎪=⎪⎩.所以经过A ,P ,M 三点的圆必过定点(0,2)或(45,25).变式:直线AB 是否过定点?如果存在定点,求出所有定点;如果不存在,说明理由.解:直线AB 即为圆Q 与圆M 的公共弦所在直线,两圆方程相减得AB :mx +my -2y -2m +3=0,整理为:m (2x +y -2)-2y +3=0,此式是关于m 的恒等式,故220,230.x y y +-=⎧⎨-+=⎩解得1432x y ⎧=⎪⎪⎨⎪=⎪⎩.例2.已知圆M 的方程为x 2+(y -2)2=1和y 轴相交于A ,B 两点,点P 为圆M 上不同于A ,B 的任意一点,直线P A ,PB 交x 轴于E ,F 两点.当点P 变化时,以EF 为直径的圆H 是否经过圆M 内一定点?请证明你的结论.证明:设P (m ,n ),则m 2+(n -2)2=1,∵A (0,3),B (0,1),∴l AP :y -3=n -3m x ,l BP :y -1=n -1m x ,∴E (3m3-n,0), F (m 1-n ,0),故以EF 为直径的圆方程:(x -3m 3-n )( x -m1-n)+y 2=0, 把m 2+(n -2)2=1代入整理得:x 2+y 2+6-4nmx -3=0, 令x =0得y =±3,∵在圆内,∴过定点(0,3).法二:可设AP 斜率为k ,则PB 斜率为-1k ,分别求出直线方程和交点,计算更简单.例3.已知圆M 的方程为x 2+(y -2)2=1,点A (0,-3),若在直线OA 上(O 为坐标原点)存在定点B (不同于点A ),满足:对于圆M 上任意一点P ,都有PBP A为一常数,求所有满足条件的点B 的坐标. 解:设B (0,t )(t ≠-3),使得PBP A为常数λ,则PB 2=λ2P A 2,∴x 2+(y -t )2=λ2[x 2+(y +3)2],将x 2=1-(y -2)2代入得, (4-2t -10λ2)y +t 2-3-6λ2=0对y ∈[1,3]恒成立,xy. BAP OM yxB A P OM EFyx∴22242100,360.t t λλ⎧--=⎪⎨--=⎪⎩解得1,59.5t λ⎧=⎪⎪⎨⎪=⎪⎩或1,3.t λ=⎧⎨=-⎩(舍去), 所以存在点B (0,95)对于圆M 上任一点P ,都有PB P A 为常数15.例4. 已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A 、B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A=1=k OP ,所以,直线AB 和OP 一定平行.例5.已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A (1,0).(1)若l 1与圆相切,求l 1的方程;(2)若l 1与圆相交于P 、Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值?若是,则求出定值;若不是,请说明理由. 解:(1)①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k (x -1),即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即||3k -4-k k 2+1=2,解得k =34. ∴所求直线方程是x =1或3x -4y -3=0.(2)(解法1)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1.又直线CM 与l 1垂直,由⎩⎪⎨⎪⎧y =kx -k ,y -4=-1k (x -3), 得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2.∴AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22·⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝⎛⎭⎫-3k 2k +12=2|2k +1|1+k 21+k 2·31+k 2|2k +1|=6为定值.故AM ·AN 是定值,且为6.(解法2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0. 由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1.再由⎩⎪⎨⎪⎧y =kx -k ,(x -3)2+(y -4)2=4,得(1+k 2)x 2-(2k 2+8k +6)x +k 2+8k +21=0.∴x 1+x 2=2k 2+8k +61+k 2,得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2.以下同解法1.。
直线与圆定值定点最值经典题训练
直线与圆定值定点最值经典题训练1.已知过点A(0,1),且斜率为k 的直线与圆相交于M,N 两点.(1)求实数k 的取值范围; (2)求证:AM ⃑⃑⃑⃑⃑⃑ ⋅AN⃑⃑⃑⃑⃑⃑ 为定值; 2.已知圆C::x:a:2+:y:b:2=1:a:0)关于直线3x:2y=0对称,且与直线3x:4y+1=0相切.:1)求圆C 的方程;:2)若直线l:y=kx+2与圆C 交于M:N 两点,是否存在直线l ,使得OM →⋅ON →=6:O 为坐标原点)若存在,求出k 的值;若不存在,请说明理由. 3.已知圆O:x 2+y 2=1,直线l 过点A(3,0)且与圆O 相切 . (I )求直线l 的方程;(II )如图,圆O 与x 轴交于P,Q 两点,点M 是圆O 上异于P�Q 的任意一点,过点A 且与x 轴垂直的直线为l 1,直线PM 交直线l 1于点E ,直线QM 交直线l 1于点F ,求证:以EF 为直径的圆C 与x 轴交于定点B ,并求出点B 的坐标 .4.已知圆C:(x −4)2+(y −1)2=4,直线l:2mx −(3m +1)y +2=0 (1)若直线l 与圆C 相交于两点A,B ,弦长AB 等于2√3,求m 的值;(2)已知点M(4,5),点C 为圆心,若在直线MC 上存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有|PM||PN|为一常数,试求所有满足条件的点N 的坐标及改常数.5.如图在平面直角坐标系xOy 中,圆C 的方程为x 2+(y −2)2=1,且圆C 与y 轴交于M,N 两点(点N 在点M 的上方),直线l:y =kx(k >0)与圆C 交于A ,B 两点。
(1)若AB =2√55,求实数k 的值。
(2)设直线AM ,直线BN 的斜率分别为k 1,k 2,若存在常数a 使得k 1=ak 2恒成立?若存在,求出a 的值.若不存在请说明理由。
(3)若直线AM 与直线BN 相较于点P ,求证点P 在一条定直线上。
直线与圆的方程综合题、典型题[1]
直线与圆的方程综合题、典型题、高考题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA ==2)3(92222+--=-=a b CMCB MB ,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2= m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2= m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m 即 13m 13m >-<或. ∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2= m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
微专题17 与圆相关的定点、定值问题
上一页
下一页
2 2 2 2 解析:设Ct, t (t∈R,t≠0),由题意知,圆C的方程为(x-t) +y- t
4 4 2 2 =t + t2 ,化简得x -2tx+y - t y=0,当y=0时,x=0或2t,则
2 4 4 1 1 A(2t,0);当x=0时,y=0或 t ,则B0, t ,所以S△AOB= 2 OA· OB=2 4 |2t|· =4. t
QR∥AF1,得 R(4-t,0),则线段 F1R
1 t 的中垂线方程为 x=-2,线段 PF1 的中垂线方程为 y=-2x+ 5t-16 , 8
上一页
下一页
1 5t-16 y=-2x+ 8 , 由 t x=-2,
t 7t - , - 2 得△PRF1的外接圆的圆心坐标为 2 8 ,
,经验证,该圆心在定直线7x+4y+
上一页
下一页
(2)由(1)可得圆C的方程为x2+y2+tx+
7 4 - t 4
y+4t-16=0,该方
7 x - y + 4 程可整理为(x2+y2+2y-16)+t =0, 4
x2+y2+4y-16=0, 则由 7 x- y+4=0, 4
经验证,该圆心在定直线7x+4y+8=0上.
上一页
下一页
t - 8 解法2:易得直线AF1:y=2x+8;AF2:y=-2x+8,所以P , t , 2
Q
8 - t ,t 2
,再由QR∥AF1,得R(4-t,0),设△PRF1的外接圆C的
方程为x2+y2+Dx+Ey+F=0,
上一页
下一页
4 32 答案:(1)略;(2)圆C恒过异于点F1的一定点,该点坐标为13,13 .
圆上到直线的距离为定值的点的个数问题
圆上到直线的距离为定值的点的个数问题
1.圆上到直线的距离为的点的个数是4 _.
解析:圆方程化为标准式为,其圆心坐标,
半径,由点到直线的距离公式得圆心到直线的距离
,由右图
所示,圆上到直线的距离为的点有4个.
1.已知直线l:,圆上恰有3个点到直线l的距离都等于1,则b=(C )。
3.已知圆,直线.设圆上到直线的距离等于的点的个数为,则___4_____.
解析:设直线与直线的距离为,则
,解得或,直线与圆相交,则直线与圆的两个公共点到直线的距离为,直线与圆相交,则直线与圆的两个交点到直线的距离也为,因此.。
2021版新高考数学:直线与圆、圆与圆的位置关系含答案
42+12=17. ∵3-2<d <3+2、 ∴两圆相交.]3.圆Q :x 2+y 2-4x =0在点P (1、3)处的切线方程为______. x -3y +2=0 [因为点P (1、3)是圆Q :x 2+y 2-4x =0上的一点、 故在点P 处的切线方程为x -3y +2=0.]4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.22 [由⎩⎨⎧x2+y2-4=0,x2+y2-4x +4y -12=0,得x -y +2=0.由于x 2+y 2-4=0的圆心为(0、0)、半径r =2、且圆心(0、0)到直线x -y +2=0的距离d =|0-0+2|2=2、所以公共弦长为2r2-d2=24-2=22.](对应学生用书第148页)考点1 直线与圆的位置关系A .(-∞、+∞)B .(-∞、0)C .(0、+∞)D .(-∞、0)∪(0、+∞)(3)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点的个数为( )A .1B .2C .3D .4(1)A (2)D (3)C [(1)法一:(代数法)由⎩⎨⎧mx -y +1-m =0,x2+(y -1)2=5,消去y 、整理得(1+m 2)x 2-2m 2x +m 2-5=0、 因为Δ=16m 2+20>0、所以直线l 与圆相交. 法二:(几何法)∵圆心(0、1)到直线l 的距离d =|m|m2+1<1<5.故直线l 与圆相交.法三:(点与圆的位置关系法)直线l :mx -y +1-m =0过定点(1、1)、∵点(1、1)在圆C :x 2+(y -1)2=5的内部、∴直线l 与圆C 相交.(2)圆的标准方程为(x -1)2+(y -1)2=1、圆心C (1、1)、半径r =1.因为直线与圆相交、所以d =|1+m -2-m|1+m2<r =1.解得m >0或m <0.故选D.(3)如图所示、因为圆心到直线的距离为|9+12-11|5=2、又因为圆的半径为3、所以直线与圆相交、故圆上到直线的距离为1的点有3个.](1)已知直线与圆的位置关系求参数值或取值范围、就是利用d=r、d>r或d<r建立关于参数的等式或不等式求解;(2)圆上的点到直线距离为定值的动点个数问题多借助数形结合、转化为点到直线的距离求解.1.已知点M(a、b)在圆O:x2+y2=1外、则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定B[因为M(a、b)在圆O:x2+y2=1外、所以a2+b2>1、而圆心O到直线ax+by=1的距离d=1a2+b2<1.所以直线与圆相交.]2.若直线l:x+y=m与曲线C:y=1-x2有且只有两个公共点、则m的取值范围是________.[1、2)[画出图象如图、当直线l经过点A、B时、m=1、此时直线l与曲线y=1-x2有两个公共点;当直线l与曲线相切时、m=2、因此当1≤m<2时、直线l:x+y=m与曲线y=1-x2有且只有两个公共点.]考点2圆与圆的位置关系C .外切D .相离B [由⎩⎨⎧x2+y2-2ay =0,x +y =0,得两交点为(0、0)、(-a 、a ). ∵圆M 截直线所得线段长度为22、∴a2+(-a )2=22.又a >0、∴a =2.∴圆M 的方程为x 2+y 2-4y =0、即x 2+(y -2)2=4、圆心M (0、2)、半径r 1=2.又圆N :(x -1)2+(y -1)2=1、圆心N (1、1)、半径r 2=1、∴|MN |=(0-1)2+(2-1)2=2.∵r 1-r 2=1、r 1+r 2=3、1<|MN |<3、∴两圆相交.]2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切、则m =( )A .21B .19C .9D .-11C [圆C 1的圆心为C 1(0、0)、半径r 1=1、因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m 、所以圆C 2的圆心为C 2(3、4)、半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2、即1+25-m =5、解得m =9、故选C.]考点3 直线、圆的综合问题切线问题(1)圆的切线问题的处理要抓住圆心到直线的距离等于半径、从而建立关系解决问题;(2)过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条、若仅求得一条、除了考虑运算过程是否正确外、还要考虑斜率不存在的情况、以防漏解.由直线y=x+1上的动点P向圆C:(x-3)2+y2=1引切线、则切线长的最小值为()A.1 B.22C.7D.3C[如图、切线长|PM|=|PC|2-1、显然当|PC|为C到直线y=x+1的距离即3+12=22时|PM|最小为7、故选C.]D [将圆的方程化为标准方程得(x -2)2+(y +1)2=5、圆心坐标为F (2、-1)、半径r =5、如图、显然过点E 的最长弦为过点E 的直径、即|AC |=25、而过点E 的最短弦为垂直于EF的弦、|EF |=(2-1)2+(-1-0)2=2、|BD |=2r2-|EF|2=23、∴S 四边形ABCD =12|AC |×|BD |=215.]直线与圆的综合问题直线与圆的综合问题的求解策略(1)利用解析几何的基本思想方法(即几何问题代数化)、把它转化为代数问题、通过代数的计算、使问题得到解决.所以当点N 为(4、0)时、能使得∠ANM =∠BNM 总成立.本例是探索性问题、求解的关键是把几何问题代数化、即先把条件“x 轴平分∠ANB ”等价转化为“直线斜率的关系:k AN =-k BN ”、然后借助方程思想求解.[教师备选例题]如图、在平面直角坐标系xOy 中、已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2、4).(1)设圆N 与x 轴相切、与圆M 外切、且圆心N 在直线x =6上、求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点、且BC =OA 、求直线l 的方程.[解] (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25、圆心M (6、7)、半径r =5、由题意、设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0).且(6-6)2+(b -7)2=b +5.解得b =1、∴圆N 的标准方程为(x -6)2+(y -1)2=1.,(2)∵k OA =2、∴可设l 的方程为y =2x +m 、即2x -y +m =0.又BC =OA =22+42=25.由题意、圆M 的圆心M (6、7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫BC 22=25-5=25.。
高考数学专题 直线与圆的定点、定值问题
专题二十三 │ 要点热点探究
► 探究点二 定直线与动圆相切问题
定直线与动圆相切问题,从代数角度出发即证明 d=r 恒成立,从几何角度出发可研究动圆的几何特征,再进行论 证.
例 2 在平面直角坐标系 xOy 中,已知定点 A(-4,0),B(4,0), C(0,-2),半径为 r 的圆 M 的圆心 M 在线段 AC 的垂直平分线上, 且在 y 轴右侧,圆 M 被 y 轴截得弦长为 3r. (1)求圆 M 的方程; (2)当 r 变化时, 是否存在定直线 l 与动圆 M 均相切?如果存在, 求出定直线 l 的方程;如果不存在,说明理由.
专题二十三 │ 要点热点探究
要点热点探究 ► 探究点一 圆过定点问题
圆的方程需要三个独立条件才能确定,当条件不足时,这 时候的圆就是动圆. 动圆过定点即定点(x0, y0)必定是动圆 f(x, y)=0 方程的解.
专题二十三 │ 要点热点探究
x2 y2 例 1 如图 23-1,椭圆 + =1,其左、右焦点分别为 4 3 → → F1,F2,M,N 是椭圆右准线上的两个动点,且F F 1 M· 2N=0, 以 MN 为直径的圆 C 是否过定点?请证明你的结论.
图 23-1
专题二十三 │ 要点热点探究
【解答】 由题可设点 M(4,y1),N(4,y2),则以 MN 为直径的 |y2-y1| y1+y2 ,半径 r= 圆的圆心 C 的坐标为4, , 2 2 2 y - y y + y 2 1 1 2 2 = 从而圆 C 的方程为(x-4)2+y- , 4 2 整理得 x2+y2-8x-(y1+y2)y+16+y1y2=0, → → 由F M· F N=0 得 y y =-15, 所以 x2+y2-8x-(y1+y2)y+1=0, 令 y=0 得 x2-8x+1=0,所以 x=4± 15, 所以圆 C 过定点(4± 15,0).
专题07 直线与圆的位置关系(知识梳理+专题过关)(解析版)
专题07直线与圆的位置关系【知识梳理】1、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2、直线与圆的位置关系的判定:(1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点.有两组实数解时,直线l 与圆C 相交;有一组实数解时,直线l 与圆C 相切;无实数解时,直线l 与圆C 相离.(2)几何法:由圆C 的圆心到直线l 的距离d 与圆的半径r 的关系判断:当d r <时,直线l 与圆C 相交;当d r =时,直线l 与圆C 相切;当d r >时,直线l 与圆C 相离.3、圆的切线方程的求法(1)点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1OM l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .(2)点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.4、求直线被圆截得的弦长的方法(1)应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.(2)利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.(3)利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12||l x x =-.【专题过关】【考点目录】考点1:直线与圆的位置关系考点2:直线与圆相交的性质——韦达定理及应用考点3:切线问题考点4:切点弦问题考点5:弦长问题考点6:面积问题考点7:直线与圆中的定点定值问题【典型例题】考点1:直线与圆的位置关系1.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B2.(2020·四川·泸州老窖天府中学高二期中(理))已知点(,)P a b 在圆221x y +=上,则直线10ax by +-=与圆的位置关系是()A .相交B .相切C .相离D .无法判断【答案】B【解析】由题意得221a b +=,又1d r ===,即直线与圆相切故选:B3.(2021·黑龙江·牡丹江一中高二期中)直线:(1)(1)20()l a x a y a a R ++-+=∈与圆222270C x y x y +-+-=:的位置关系是()A .相切B .相交C .相离D .相交或相切【答案】B【解析】圆222270x y x y +-+-=,即22(1)(1)9x y -++=,表示以(1,1)-为圆心、半径等于3的圆.圆心到直线的距离d =再根据2222248474799221a a a a d a a ++-+-=-=++,而27470a a -+=的判别式∆161961800=-=-<,故有29d >,即3d <,故直线和圆相交,故选:B .4.(2022·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =恰有两个不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y 为以(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B5.(2021·浙江台州·高二期中)直线0x m +=与圆221x y +=有两个不同的交点,则实数m 的取值范围是()A .22m -≤≤B .22m -<<C .2m <-或2m >D .2m ≤-或2m ≥【答案】B【解析】因为直线0x m +=与圆221x y +=有两个不同的交点所以圆心到直线的距离小于圆的半径圆心为()0,0,半径1r =1<,整理得:2m <解得:22m -<<故选:B .6.(多选题)(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A .直线l 与圆C 相离B .直线l 与圆C 相交C .圆C 上到直线l 的距离为1的点共有2个D .圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d ==,所以可知选项B ,D 正确,选项A ,C 错误.故选:BD7.(2021·四川眉山·高二期中)圆222440x y x y +-+-=与直线2140()tx y t t R ---=∈的位置关系为__________.【答案】相交【解析】由2140()tx y t t R ---=∈得(24)10()x t y t R ---=∈,令240,10,2, 1.x y x y -=--=∴==-所以直线过定点(2,1)P -.把(2,1)P -的坐标代入圆的方程的左边得到414440+---<,所以点(2,1)P -在圆内,所以直线和圆相交.故答案为:相交8.(2021·辽宁实验中学高二期中)已知圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,则实数b 的取值范围是___________.【答案】(-【解析】根据题意得圆C 的圆心为()0,0,半径为2r =,因为圆22:4C x y +=上至少存在两点......到直线0x y b +-=的距离为1,1r <+3<,解得b -<<所以实数b 的取值范围是(-故答案为:(-9.(2022·全国·高二课时练习)已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是______.【答案】()13,13-【解析】由圆的方程知其圆心为()0,0,半径2r =,设圆心到直线1250x y c -+=的距离为d ,则13c d =;圆上有且仅有四个点到直线1250x y c -+=的距离为1,则1cd =<,解得:1313c -<<,所以实数c 的取值范围是()13,13-.故答案为:()13,13-.考点2:直线与圆相交的性质——韦达定理及应用10.(2021·安徽·马鞍山二中高二期中)已知一个动点P 在圆220432x y y -+=+上移动,它与定点(6,0)Q 所连线段的中点为M .(1)求点M 的轨迹方程;(2)是否存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=,若存在,求直线l 的方程;若不存在,说明理由.【解析】(1)设(,)M x y ,因M 是线段PQ 的中点,而点(6,0)Q ,则有点(26,2)P x y -,因P 在圆:22(2)36x y ++=上,于是得:22(26)(22)36x y -++=,化简得:22(3)(1)9x y -++=,所以点M 的轨迹方程是:22(3)(1)9x y -++=.(2)假定存在符合条件的直线l ,当l 斜率不存在时,直线:0l x =与圆M 相切,不符合题意,当直线l 斜率存在时,设直线l 方程为:3y kx =-,由223(3)(1)9y kx x y =-⎧⎨-++=⎩消去y 并整理得:22(1(64))40k x k x +-++=,则()22(64)1610k k ∆=+-+>,解得512k >-,122641kx x k ++=+,12241x x k =+,由2121212212()4x x x x x x x x +=⇔+=,得2226416()11k k k +=++,解得512k =-,与512k >-矛盾,所以不存在过定点(0,3)-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足12212x x x x +=.11.(2021·云南大理·高二期中)已知圆C 的圆心C 在直线40x y +-=上,且圆C 经过()2,0M ,()0,2N 两点.(1)求圆C 的方程;(2)已知点()0,P m ,过原点的直线l 与圆C 交于A ,B 两点,且PA PB ⊥.若13m <<,求直线l 的斜率k 的取值范围.【解析】(1)设(),C a b ,则222240(2)(2)a b a b a b +-=⎧⎨-+=+-⎩,解得2a =,2b =.从而圆C 的半径2r ==,故圆C 的方程为22(2)(2)4x y -+-=(或224440x y x y +--+=).(2)设直线l :y kx =,()11,A x y ,()22,B x y .联立224440y kx x y x y =⎧⎨+--+=⎩,整理得()2214(1)40k x k x +-++=,则1224(1)1k x x k ++=+,12241x x k =+.因为A ,B 两点在直线l 上,所以11y kx =,22y kx =,所以212241ky y k =+,1224(1)1k k y y k ++=+.因为PA PB ⊥,所以1PA PB k k ⋅=-,所以12121y m y mx x --⋅=-,即()21212120x x y y m y y m +-++=,则22222444(1)0111k mk k m k k k ++-+=+++,即24(1)41k k m k m+=++.因为()1,3m ∈,所以[)44,5m m+∈,所以24(1)451k k k +≤<+,解得1k ³.12.(2021·浙江省象山县第二中学高二期中)已知圆G 过点()1,3M -,()6,4N 且圆心G 在x 轴.(1)求圆G 的标准方程;(2)圆G 与x 轴的负半轴的交点为A ,过点A 作两条直线分别交圆于B ,C 两点,且5AB AC k k ⋅=-,求证:直线BC 恒过定点.【解析】(1)由题意设圆心为(,0)G a=3a =,5r ==,所以圆G 方程为22(3)25x y -+=;(2)在圆方程中令0y =得2x =-或8x =,所以(2,0)A -,BC 斜率存在时,设BC 方程为y kx m =+,设1122(,),(,)B x y C x y ,由()22x 325y kx m y =+⎧⎪⎨-+=⎪⎩得222(1)2(3)160k x km x m ++-+-=,2224(3)4(1)(16)0km k m ∆=--+->,即22166250k m lm --+>(*),1222(3)1km x x k -+=-+,2122161m x x k -=+,12121212()()22(2)(2)AB ACy y kx m kx m k k x x x x ++=⨯=++++2212121212()52()4k x x km x x m x x x x +++==-+++,22222222(16)2(3)5(16)20(3)201111k m km km m km m k k k k ------+=+-++++,化简得223720m km k -+=,(2)(3)0m k m k --=,所以2m k =或3k m =,都满足(*)式.2m k =时,方程为2y kx k =+,过定点(2,0)-,舍去,3k m =时,方程为3y mx m =+,过定点1(,0)3-,BC 斜率不存在时,1111(,),(,)B x y C x y -,21152AB ACy k k x ⎛⎫=-=- ⎪+⎝⎭,22115(2)y x =+,又2211(3)25x y -+=,12x ≠-,解得113x =-,因此BC 也过点1(,0)3-.综上,直线过定点1(,0)3-.13.(2021·广东外语外贸大学实验中学高二期中)已知过点(0,2)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于M ,N 两点.(1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求||MN .【解析】(1)圆22:(2)(3)1C x y -+-=,圆心(2,3),半径1r =设直线l 的方程为2y kx =+,即20kx y -+=因为直线l 与圆C 1<,解得403k <<.所以k 的取值范围为40,3⎛⎫ ⎪⎝⎭.(2)设()11,M x y ,()22,N x y .联立()()222231y kx x y =+⎧⎪⎨-+-=⎪⎩,整理得()()2212440k x k x +-++=,所以122241k x x k ++=+,12241x x k =+,所以()()()21212121224212481k k OM ON x x y y k x x k x x k +⋅=+=++++=++uuu r uuu r .由题设得()2428121k k k ++=+,解得12k =,所以直线l 的方程为122y x =+,所以圆心(2,3)C 在直线l 上,所以2MN =.14.(2021·广东·广州市第七十五中学高二期中)已知圆C 经过两点A (2,2),B (3,3),且圆心C 在直线x -y +1=0上.(1)求圆C 的标准方程;(2)设直线l :y =kx +1与圆C 相交于M ,N 两点,O 为坐标原点,若645OM ON ⋅=,求|MN |的值.【解析】(1)设所求圆C 的标准方程为()222()()0x a y b r r -+->=,由题意,有222222(2)(2)(3)(3)10a b r a b r a b ⎧-+-=⎪-+-=⎨⎪-+=⎩,解得231a b r =⎧⎪=⎨⎪=⎩,所以圆C 的标准方程为22(2)(3)1x y -+-=;(2)设1(M x ,1)y ,2(N x ,2)y ,将1y kx =+代入22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=,所以1224(1)1k x x k ++=+,12271x x k =+,0∆>,所以21212121224(1)64(1)()1851k k OM ON x x y y k x x k x x k+⋅=+=++++=+=+,解得2k =或3k =,检验3k =时,∆<0不合题意,所以2k =,所以12125x x +=,1275x x =,所以||MN 考点3:切线问题15.(2021·安徽·合肥市第六中学高二期中(理))圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上(1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.【解析】(1)因圆心C 在直线:20l x y --=上,则设(,2)C a a -,由||||CA CB =得:,解得0a =,因此,圆心(0,2)C -,半径||5r CA ==,所以圆C 的方程为:22(2)25x y ++=.(2)设过点(5,8)P 的圆C 的切线方程为:(5)(8)0m x n y -+-=,220m n +≠,5=,整理得:2430mn n +=,解得0n =或34m n =-,当0n =时,切线方程为:50x -=,当34m n =-时,切线方程为:34170x y -+=,所以过点(5,8)P 的圆C 的切线方程为50x -=或34170x y -+=.16.(多选题)(2021·湖北·高二期中)设有一组圆()()()22:4k C x k y k k R -+-=∈,下列命题正确的是()A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点()3,0C .存在定直线与圆k C 都相切D .经过点()2,2的圆k C 有且只有一个【答案】AC【解析】根据题意,圆22:()()4()k C x k y k k R -+-=∈,其圆心为(,)k k ,半径为2;依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确;对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=,化简得22650k k -+=,364040=-=-<,方程无解,B 错误;对于C ,存在直线y x =±0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =,这两条直线始终与圆k C 相切,C 正确,对于D ,将(2,2)代入圆的方程可得22(2)()42k k -+=-,解得2k =D 错误;故选:AC .17.(2021·安徽滁州·高二期中)过圆22:4O x y +=上一点(P -作圆O 的切线l ,则直线l 的方程是()A .40x -=B .20x +-=C .20x +=D .40x +=【答案】D【解析】由题意点(P -为切点,所以1OP l k k ⋅=-,又OP k =l k =因此直线l 的方程为40x +=.故选:D18.(2021·天津市咸水沽第二中学高二期中)过点(3,1)M 作圆222620x y x y +--+=的切线l ,则l 的方程为()A .40x y +-=B .40x y +-=或3x =C .20x y --=D .20x y +-=或3x =【答案】C【解析】根据题意,设圆x 2+y 2﹣2x ﹣6y +2=0的圆心为C ,圆x 2+y 2﹣2x ﹣6y +2=0,即()()22138-+-=x y ,其圆心为(1,3),又由点M 的坐标为(3,1),有()()2231138-+-=,即点M 在圆上,则13131-==--MC k ,则切线的斜率k =1,则切线的方程为y ﹣1=(x ﹣3),即x ﹣y ﹣2=0;故选:C .19.(2021·山东济宁·高二期中)过点()2,3P -的直线l 与圆222230x y x y ++--=相切,则直线l 的方程是()A .2x =-或280x y -+=B .280x y -+=C .2x =-或210x y ++=D .210x y ++=【答案】B【解析】把圆222230x y x y ++--=化为标准方程得:()()22115x y ++-=.因为()2,3P -在圆上,所以过P 的切线有且只有一条.显然过点()2,3P -且斜率不存在的直线:2x =-与圆相交,所以过P 的切线的斜率为k .因为切线与过切点的半径垂直,所以()13112k -=----,解得:12k =,所以切线方程为:()1322y x -=+,即280x y -+=.故选:B20.(2022·四川·泸县五中高二期中(文))已知直线()10ax y a R -+=∈是圆()()22:124C x y -+-=的一条对称轴,过点()2,A a --向圆C 作切线,切点为B ,则AB =()AB C D .【答案】C【解析】由圆()()22:124C x y -+-=,可知该圆的圆心坐标为()1,2C ,半径为2,因为直线10ax y -+=是圆()()22:124C x y -+-=的一条对称轴,所以圆心()1,2在直线10ax y -+=上,所以有2101a a -+=⇒=,因为过点()2,1A --向圆C 作切线,切点为B ,所以AC ==所以AB ==故选:C21.(2022·甘肃·临泽县第一中学高二期中(理))直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【解析】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ ==,故选:B .22.(2022·上海·华东师范大学附属东昌中学高二期中)经过圆22:25C x y +=上一点()4,3A -且与圆相切的直线的一般式方程为__________.【答案】43250x y --=【解析】由题意,圆22:25C x y +=,可得圆心坐标为(0,0)C ,因为()4,3A -,则303404CA k --==--,则过点()4,3A -且与圆相切的直线的斜率为43k =,根据直线的点斜式方程,可得直线的方程为4(3)(4)3y x --=-,即43250x y --=,即点()4,3A -且与圆相切的直线的一般式方程为43250x y --=.故答案为:43250x y --=23.(2021·湖南·常德市第二中学高二期中)已知圆C :x 2+y 2=20,则过点P (4,2)的圆的切线方程是________.【答案】2100x y +-=【解析】由224220+=知P 在圆C 上,而(0,0)C ,2142PC k ==,所以所求切线斜率为2k =-,方程为22(4)y x -=--,即2100x y +-=.故答案为:2100x y +-=.24.(2022·上海理工大学附属中学高二期中)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ===,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=25.(2021·四川省叙永第一中学校高二期中(文))过直线34140x y ++=上的动点P 作圆22(1)(2)4x y -+-=的切线,切点为A ,则切线长PA 的最小值为____________.【解析】根据题意,圆的方程为22(1)(2)4x y -+-=,其圆心(1,2),半径2r =;设圆心为C ,即(1,2)C ;则有2222||||||||4PA PC AC PC =-=-,当||PC 取得最小值时,切线长||PA 最小,因为||PC 5=,则||PA=26.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)已知圆224470x y x y +-++=与直线20x ay --=相切,则=a ___________.【答案】33【解析】()()22224470221x y x y x y +-++=⇒-++=,圆的圆心为(2,-2),半径r =1,()()2222311a a a -⋅--=⇒=+-故答案为:33±.考点4:切点弦问题27.(2021·福建宁德·高二期中)过圆221x y +=外一点(2,1)P -引圆的两条切线,则经过两切点的直线方程是________.【答案】210x y --=【解析】设切点分别为()()1122,,,A x y B x y ,因为点,A B 在圆221x y +=上,所以以,A B 为切点的切线方程分别为:11221,1x x y y x x y y +=+=,而点()2,1P -在两条切线上,所以112221,21x y x y -=-=,即点P 满足直线21210x y x y -=⇒--=.故答案为:210x y --=.28.(2021·广东·广州市第六十五中学高二期中)过点()5,3P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则直线AB 的方程为_________.【答案】5390x y +-=【解析】根据题意,过点(5,3)P 作圆229x y +=的两条切线,设两切点分别为A 、B ,则2||||95PA PO =-,则以P 为圆心,PA 为半径为圆为22(5)(3)25x y -+-=,即圆2210690x y x y +--+=,AB 为两圆的公共弦所在的直线,则有2222910690x y x y x y ⎧+=⎨+--+=⎩,变形可得:5390x y +-=;即直线AB 的方程为5390x y +-=,故答案为:5390x y +-=29.(2021·安徽·合肥一中高二期中)已知圆22:4O x y +=,过动点(),4P a a +分别做直线PM 、PN 与圆O 相切,切点为M 、N ,设经过M 、N 两点的直线为l ,则动直线l 恒过的定点坐标为__________.【答案】()1,1-【解析】设点()00,Q x y 为圆O 上一点,当OQ 的斜率存在且不为零时,直线OQ 的斜率为0y x ,此时,圆O 在点()00,Q x y 处的切线方程为()0000x y y x x y -=--,即2200004x x y y x y +=+=,当OQ 与x 轴重合时,00y =,204x =,此时切线方程为0x x =,满足004x x y y +=,当OQ 与y 轴重合时,00x =,204y =,此时切线方程为0y y =,满足004x x y y +=.综上所述,圆O 在其上一点()00,Q x y 处的切线方程为004x x y y +=.设点()11,M x y 、()22,N x y ,则直线PM 的方程为114x x y y +=,直线PN 的方程为224x x y y +=,由题意可得()()11224444ax a y ax a y ⎧++=⎪⎨++=⎪⎩,所以,点M 、N 的坐标满足方程()440ax a y ++-=,故直线MN 的方程为()440ax a y ++-=,即()()440a x y y ++-=,由0440x y y +=⎧⎨-=⎩,解得11x y =-⎧⎨=⎩,因此,直线l 恒过的定点坐标为()1,1-.故答案为:()1,1-.30.(2021·安徽·屯溪一中高二期中)已知直线:10()l x ay a +-=∈R 是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的两条切线,切点分别为B 、D ,则直线BD 的方程为()A .350x y +-=B .250x y +-=C .350x y -+=D .250x y +-=【答案】A【解析】根据题意,圆C 的标准方程为()()22214x y -+-=,即圆心为C (2,1),半径为2.∴点(2,1)在直线10x ay +-=上,即2101a a +-=∴=-∴点A 的坐标为(-4,-1)AC ∴==∴过点A 作圆C 的切线所得切线长为6=∴以点A 为圆心,6为半径的圆A 的方程为()()224136x y +++=圆A 与圆C 的方程作差得350x y +-=,即直线BD 的方程为350x y +-=故选:A .31.(2021·四川省绵阳第一中学高二期中)过点()1,1P 作圆C :224470x y x y +--+=的两条切线,切点分别为A ,B ,则直线AB 的方程为()A .30x y +-=B .10x y --=C .10x y -+=D .10x y +-=【答案】A【解析】224470x y x y +--+=,即()()22221x y -+-=,圆心为()2,2,半径1r =.当斜率不存在时,直线1x =与圆相切,切点为()1,2;当斜率为0时,直线1y =与圆相切,切点为()2,1.故直线方程为斜率21112k -==--,直线方程为()12y x =--+,即30x y +-=.故选:A .32.(2020·安徽·六安市城南中学高二期中(理))过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为P 、 Q ,则线段PQ 的长为()A .3B .4C .5D .6【答案】B【解析】由题意,2268200x y x y +--+=可化为22(3)(4)5x y -+-=,∴圆心(3,4)C ,半径r =,则有5OC =,故切线段长l ==若线段PQ 的长为x ,则2xOC l r ⋅=⋅,得4x =.故选:B .考点5:弦长问题33.(2021·广东·化州市第三中学高二期中)过点M (2,2)的直线l 与圆x 2+y 2﹣2x ﹣8=0相交于A ,B 两点,则|AB |的最小值为_____;此时直线l 的方程为_______.【答案】4260x y +-=【解析】∵圆x 2+y 2﹣2x ﹣8=0,即(x ﹣1)2+y 2=9,圆心C (1,0),半径为3,点M (2,2)在圆内,20221MC k -==-,要使|AB |的值最小,则MC ⊥AB ,此时|MC |=|AB |=4=;直线l 的斜率为12-,则直线l 的方程为y ﹣2=12-(x ﹣2),即x +2y ﹣6=0.故答案为:4;260x y +-=.34.(2021·湖北黄冈·高二期中)已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则t 的取值范围为______,所有的弦中,最长的弦的长度为______.【答案】403t <≤【解析】由于直线x y t +=与圆()2222x y t t t R +=-∈有公共点,所以220403t t t ⎧->⇒<≤≤;又弦长==23t =时,有最大值,其最大值为故答案为:403t <≤35.(2021·广东·潮州市湘桥区南春中学高二期中)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=,(1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F DEF D E F ++=⎧⎪+++=⎨⎪+++=⎩,消去F 得:362D E D E -=⎧⎨-+=-⎩,解得:02D E =⎧⎨=-⎩,∴F =-4,∴圆C 的方程为:22240x y y +--=.(2)由(1)知:圆C 的标准方程为:22(1)5x y +-=,圆心(0,1)C,半径r =;点(0,1)C 到直线l的距离2d r ==<,故直线l 与圆C 相交,故直线l 被圆C截得的弦长为=36.(2021·广东·新会陈经纶中学高二期中)已知圆22:240C x y y +--=,直线()10l mx y m m -+-∈R :=.(1)写出圆C 的圆心坐标和半径,并判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A 、B 两点,若直线l 的倾斜角为120°,求弦AB 的长.【解析】(1)由题设知圆C :()2215x y +-=,∴圆C 的圆心坐标为C ()0,1,半径为r 又直线l 可变形为:()11y m x -=-,则直线恒过定点()1,1M ,∵()2211115+-=<,∴点M 在圆C 内,故直线l 必定与圆相交.(2)由题意知0m ≠,∴直线l 的斜率k m =tan120=︒=,∴圆心C ()0,1到直线l 10y +=的距离d ==,∴||AB ===.37.(2022·山东·济南外国语学校高二期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求线段AB 的垂直平分线方程;(2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =,求直线l 的方程.【解析】(1)设AB 的中点为D ,则(0,1)D .由圆的性质,得CD AB ⊥,所以1CD AB k k ⨯=-,得1CD k =-.所以线段AB 的垂直平分线的方程是1y x =-+.(2)设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为()0r r >,由(1)得直线CD 的方程为1y x =-+,由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =,所以圆心()1,0C ,||2r CA ==,所以圆C 的标准方程为22(1)4x y -+=.(3)由(1)设F 为MN 中点,则CF l ⊥,得||||FM FN ==圆心C 到直线l的距离||1d CF ==,当直线l 的斜率不存在时,l 的方程0x =,此时||1CF =,符合题意;当直线l 的斜率存在时,设l 的方程2y kx =+,即20kx y -+=,由题意得d =34k =-;故直线l 的方程为324y x =-+,即3480x y +-=;综上直线l 的方程为0x =或3480x y +-=.38.(2021·湖北宜昌·高二期中)已知圆M 过点(1,2),(1,4),(3,2)A B C -.(1)求圆M 的方程;(2)若直线:340l x y b +-=与圆M相交所得的弦长为b 的值.【解析】(1)设圆M 的方程为220x y Dx Ey F ++++=,因为圆M 过(1,2),(1,4),(3,2)A B C -三点,则1420,11640,94320,D E F D E F D E F +-++=⎧⎪++++=⎨⎪++++=⎩解得2,4,1D E F =-=-=,所以圆M 的方程为222410x y x y +--+=,即22(1)(2)4x y -+-=;(2)由题意,得圆心(1,2)到直线l的距离1d =,1=,即|11|5b -=,解得6b =或16.故所求b 的值为6或16.39.(2022·上海·华东师范大学附属东昌中学高二期中)直线10x y +-=被圆()()229114x y -+-=所截得的弦长为__________【解析】圆()()229114x y -+-=的圆心为()1,1,半径为32圆心()1,1到直线10x y +-=2=则直线10x y +-=被圆()()229112x y -+-=所截得的弦长为40.(2021·福建·晋江市第一中学高二期中)已知()3,0M 是圆228280x y x y +--+=内一点,则过点M 最短的弦长为()A .B C .6D .8【答案】A【解析】圆228280x y x y +--+=,即()()22419x y -+-=,则该圆的半径为3,圆心为()4,1,M∴过点M 最短的弦长为.故选:A41.(2022·全国·高二期中)若直线20x y --=与圆()224x a y -+=所截得的弦长为则实数a 为().A .1-B .1或3C .3或6D .0或4【答案】D【解析】圆()224x a y -+=的圆心坐标为(,0)a ,半径为2,圆心(,0)a 到直线20x y --=的距离为d =,又直线20x y --=被圆()224x a y -+=所截的弦长为故,即2(2)4a -=,解得0a =或4a =.故选:D .42.(2022·江苏·淮阴中学高二期中)已知直线0x y m -+=与圆22:40C x y y ++=相交于A 、B 两点,若CA CB ⊥,则实数m 的值为()A .4-或0B .4-或4C .0或4D .4-或2【答案】A【解析】圆C 的标准方程为()2224x y ++=,圆心为()0,2C -,半径为2r =,因为CA CB ⊥且2CA CB ==,故ABC 为等腰直角三角形,且AB ==则圆心C 到直线AB 的距离为12d AB ==由点到直线的距离公式可为d ==4m =-或0.故选:A .43.(2022·广东·仲元中学高二期中)已知直线l :y kx =与圆22:20C x y y +--=相交于M ,N两点,若MN =k 的值为()AB .2CD .3【答案】C【解析】圆22:20C x y y +--=,可化为(()2214x y -+-=,∴圆心C的坐标),半径为21=,又圆心到直线的距离d =1=,解得0k =(舍去)或k 故选:C考点6:面积问题44.(2021·广东·汕头市潮阳区棉城中学高二期中)过直线:2l y x =-上任意点P 作圆22:1C x y +=的两条切线,切点分别为,A B ,当切线长最小时,切线长为_________;同时PAB △的面积为_______.【答案】112【解析】依据题意,作出图形,如下图:因为直线l 过点P 且与圆221x y +=相切于点A ,所以PA OA ⊥,所以PA ==要使得PA 最小,则OP 要最小,由题可得:OP 的最小值就是点O 到直线:2l y x =-的距离d ==此时,min 1PA =,所以4OPA π∠=由切线的对称性可得:,12BPA PB π∠==所以PAB △的面积为111122PABS =⨯⨯=,故答案为:1;12.45.(2021·广西·防城港市防城中学高二期中)已知点()3,2A ,点()3,6B ,直线l 过定点()1,0.(1)求以线段AB 为直径的圆的标准方程;(2)记(1)中求得的圆的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,PQ 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【解析】(1)依题可知线段AB 的中点为()3,4是圆心,半径122r AB ===.∴所求圆的标准方程为:()()22344x y -+-=;(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离2d =,解得:34k =,∴l :3430x y --=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于P ,Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离d ==,∵()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦△(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.46.(2020·四川省成都高新实验中学高二期中)已知直线:250l x y --=与圆22:50C x y +=相交于A ,B 两点,求:(1)交点A ,B 的坐标(2)AOB 的面积.【解析】(1)直线:250l x y --=与圆22:50C x y +=的交点,由2225050x y x y --=⎧⎨+=⎩,可得55x y =-⎧⎨=-⎩,71x y =⎧⎨=⎩所以交点A ,B 的坐标为()5,5--,()7,1(2)设直线:250l x y --=与x 轴的交点为E ,则()5,0E 所以AOBAOEEOBSSS=+11||22A B y OE y OE =+‖()1||2A B y y OE =+1652=⨯⨯15=47.(2020·湖北·高二期中)直线:1l y x =+与圆22:430C x y y +-+=交于A 、B 两点,则ABC 的面积是_________.【答案】12【解析】圆()22:21C x y +-=,()0,2C 到直线l 的距离021222d -+=,∴22122AB ⎛⎫=-= ⎪ ⎪⎝⎭∴111222ABC S AB d =⋅==△故答案为:1248.(2021·广东·佛山一中高二期中)已知圆的方程为222440x y x y +---=,设该圆过点()2,3M 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 面积为()A .6B .C .D .【答案】C【解析】圆的标准方程为()()22129x y -+-=,圆心为()1,2E ,半径为3r =,()()2221329-+-<,故点M 在圆()()22129x y -+-=内,如下图所示:则ME 过点M 的弦过圆心时,弦长取最大值,即26AC r ==,当过M 的弦与ME 垂直时,弦长取最小值,即BD =此时AC BD ⊥,此时,四边形ABCD 的面积为11622S AC BD =⋅=⨯⨯=故选:C .49.(2021·福建龙岩·高二期中)设直线20ax y ++=与圆()22:24C x y +-=相交于A 、B 两点,且ABC 的面积为2,则=a ()A .B .C .D .【答案】D【解析】由三角形的面积公式可得212sin 22ABC S ACB =⨯⨯∠=△,可得sin 1ACB ∠=,0ACB π<∠<,故2ACB π∠=,则ABC 为等腰直角三角形,所以,圆心C 到直线20ax y ++=的距离为2sin4d π==由点到直线的距离公式可得d=,解得a=故选:D.50.(2021·江西南昌·高二期中(理))已知圆的方程为222440x y x y+---=,设该圆过点()1,3M的最长弦和最短弦分别为AC和BD,则四边形ABCD面积为()AB.C.8D.13【答案】B【解析】圆的方程为222440x y x y+---=,化为标准方程:()()22129x y-+-=,圆心为()1,2N,半径为3r=,当过点()1,3M的直线与NM垂直时,弦长最短,且AC==当过点()1,3M的直线且过圆心时,弦长最长,且26BD r==,此时,AC BD⊥,所以四边形ABCD面积为11622S AC BD=⋅=⨯=故选:B考点7:直线与圆中的定点定值问题51.(2021·山东潍坊·高二期中)已知圆M的圆心与点()1,4N-关于直线10x y-+=对称,且圆M与y轴相切于原点O.(1)求圆M的方程;(2)过原点O的两条直线与圆M分别交于,A B两点,直线,OA OB的斜率之积为12-,,OD AB D⊥为垂足,是否存在定点P,使得DP为定值,若存在,求出P点坐标;若不存在,说明理由.【解析】(1)(1)设M(a,b).则411141022baa b-⎧=-⎪⎪+⎨-+⎪-+=⎪⎩.解得3ab=⎧⎨=⎩.所以该圆的半径为3,.所以圆M的方程为()2239x y-+=;(2)设OA所在直线方程为()0y kx k=≠,联立()2239x y y kx ⎧-+=⎪⎨=⎪⎩得226611A Ak x y k k =⋅=++,同理把k 换做-12k ,可得222412,1414B Bk kx y k k-==++所以AB 所在直线方程为222636(1121k k y x k k k -=-+-+).当0y =时,可得4x =,故直线AB 过定点C (4,0).由于OC 为定值,且△ODC 为直角三角形,OC 为斜边,所以OC 中点P 满足22OC DP ==为定值,由于O (0,0),C (4,0),故由中点坐标公式可得P (2,0),故存在点P (2,0),使得|DP |为定值.52.(2021·全国·高二期中)已知圆C经过点(0,,(及()3,0.经过坐标原点O 的斜率为k 的直线l 与圆C 交于M ,N 两点.(1)求圆C 的标准方程;(2)若点()3,0P -,分别记直线PM 、直线PN 的斜率为1k 、2k ,求12k k +的值.【解析】(1)设圆C 的方程为:220x y Dx Ey F ++++=,由圆C过(0,,(及()3,0.∴23030330F F D F ⎧+=⎪⎪++=⎨⎪++=⎪⎩可得203D E F =-⎧⎪=⎨⎪=-⎩,∴圆C 的方程为:22230x y x +--=,其标准方程为()2214x y -+=;(2)设()11,M x y ,()22,N x y ,直线l 为y kx =,与圆C :()2214x y -+=联立得:()221230k x x +--=,∴()22443112160k k ∆=+⨯⨯+=+>,则12221x x k +=+,12231x x k =-+,∴12121212123333y y kx kx k k x x x x +=+=+++++()()()1212122333k x x x x x x ++⎡⎤⎣⎦=++()()22126611033k k k x x -⎛⎫+ ⎪++⎝⎭==++.53.(2020·浙江温州·高二期中)已知圆C :2280x x y ++=,直线l :20mx y m ++=.(1)当直线l 与圆C 相交于A ,B两点,且AB =l 的方程.(2)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得12PM PN=?若存在,求出点M ,N 的坐标;若不存在,说明理由.【解析】(1)由已知可得圆心()4,0C -,4r =.圆心C 到直线l的距离d =因此AB ===.22421m m =+,解得1m =±,直线l 的方程为2y x =+或2y x =--.(2)设(),P x y ,()1,0M x ,()2,0N x 由已知可得228x y x +=-12=,化简得211222821824x x x x x x x x -+-=-+-.即()()221221241240x x x x x -++-=恒成立所以122221412040x x x x -+=⎧⎨-=⎩,解得12612x x =-⎧⎨=-⎩,或1224x x =-⎧⎨=⎩所以满足题意的定点M ,N 存在,其坐标为()6,0M -,()12,0N -或()2,0M -,()4,0N .54.(2020·辽宁·大连八中高二期中)已知圆22:1O x y +=与x 轴的正半轴交于点P ,直线:30l kx y k --+=与圆O 交于不同的两点A ,B .(1)求实数k 的取值范围;(2)设直线PA ,PB 的斜率分别是12,k k ,试问12k k +是否为定值?若是定值,求出该定值;若不是定值,请说明理由;【解析】∵圆221O x y +=:与x 轴的正半轴交于点P ,∴圆心00O (,),半径1r =,()10,P .(1)∵直线30l kx y k --+=:与圆O 交于不同的两点,A B ,∴圆心O 到直线l 的距离1d =<,即3k -43k >.(2)设11(,)A x y ,22(,)B x y 联立22301kx y k x y --+=⎧⎨+=⎩,可得2222(1)(26)680k x k k x k k +--+-+=,∴2122261k k x x k -+=+,2122681k k x x k-+=+,∴121212121212(1)3(1)3332111111y y k x k x k k k x x x x x x -+-++=+=+=++------221222212123(2)3[262(1)]22()168(26)1x x k k k k k x x x x k k k k k +---+=+=+-++-+--++1862293k k --=+=-为定值.∴12k k +是定值,定值为23-.55.(2021·吉林·长春外国语学校高二期中)已知圆1O过点P ,且与圆2222:(2)(2)(0)O x y r r ++-=>关于直线20x y -+=对称.(1)求圆1O 、圆2O 的方程;(2)过点Q 向圆1O 和圆2O 各引一条切线,切点分别为C ,D ,且2QD QC =,则是否存在一定点M ,使得Q 到M 的距离为定值λ?若存在,求出M 的坐标,并求出λ的值;若不存在,请说明理由.【解析】(1)设圆1O 的圆心1(,)O a b ,因为圆1O 与圆2222:(2)(2)O x y r ++-=关于直线20x y -+=对称,可得2112222022b a a b -⎧⋅=-⎪⎪+⎨-+⎪-+=⎪⎩,解得0,0a b ==,设圆1O 的方程为222x y r +=,将点P ,代入可得2r =,所以圆1O 的方程为224x y +=,圆2O 的方程为22(2)(2)4x y ++-=.(2)由2QD QC ==设()00,Q x y ,则()()()2222000022444x y x y ++--=+-,化简得22002268339x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,所以存在定点22,33M ⎛⎫- ⎪⎝⎭使得Q 到M.56.(2021·湖南·怀化五中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)直线n 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.(3)直线m 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之和为0,求证:直线m 的斜率是定值,并求出该定值.【解析】(1)依题意,圆C 的半径22||345CA =+,所以圆C 的标准方程是:()22325x y -+=.(2)当直线n 的斜率不存在时,设(,),(,)M a b N a b -,由直线AM ,AN 的斜率之积为2,得442b b a a ---⋅=,即22162b a =-,又由点M ,N 在圆C 上得()22325a b -+=,消去b 得:260a a +=,而0a ≠,则6a =-,此时20b <,因此,无解,当直线n 的斜率存在时,设其方程为y kx t =+,由22(3)25y kx t x y =+⎧⎨-+=⎩消去y 并整理得:222(1)2(3)160k x kt x t ++-+-=,设1122(,),(,)M x y N x y ,则1222(3)1kt x x k --+=+,2122161t x x k -=+,直线AM 斜率114AM y k x -=,直线AN 斜率224AN y k x -=,则()()221212121212444·4AM ANt kx t kx t x xk k k k t x x x x x x -+-+-+==+-⋅+2222222226(1)(4)(4)26(1)(4)(4)16164kt k t k t k t k k t k k t t t t -++-+-+++-=+-⋅+=--+6424k t t +-==+,整理得612t k =-,此时直线n :(6)12y k x =+-过定点()6,12--,所以直线n 过一个定点,该定点坐标是()6,12--.(3)设直线AM 方程为:4y rx =+,由224(3)25y rx x y =+⎧⎨-+=⎩消去y 并整理得:22(1)2(43)0 r x r x++-=,则有点22268464(,)11r r rMr r--++++,而直线AN:4y rx=-+,同理22268464(,)11r r rNr r+--+++,于是得直线MN的斜率2222224644643116868411MNr r r rr rk r rr r-++--+-++==--+-++,所以直线m的斜率是定值,该定值为3 4-.。
解析几何中定值和定点问题
解析几何中的定值定点问题(一)与直线x -y 2=0相切. ⑴求椭圆C 的方程;⑵设P(4, 0) , M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结 PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线 ME 与x 轴相交于定点. 解:⑴由题意知e =£3,所以e 2 =与=a ;b=3,即玄2 =4b 2,又因为b ! 1,所以a 2a a 4J l +1222X2a =4,b =1,故椭圆C 的方程为C : - y =1 .4⑵由题意知直线 PN 的斜率存在,设直线 PN 的方程为y =k(x _4)①+y 二k(x 一4)联立 X 2 2 消去 y 得:(4k 2 -1)x 2 -32k 2x 4(16k 2-1) =0 ,4 y T由,;=(32k 2)2 _4(4k 2 1)(64k 2 —4) 0 得 12k 2 -1 :::0,又k =0不合题意,所以直线PN 的斜率的取值范围是3::: k :::0或0 ::: k 3 .6 6⑶设点 N(N ,yj E(X 2, y 2),则 M (为,-yj ,直线 ME 的方程为 y-y ?二 一(x-x ?),X 2 —X 1令 y=0,得 x=X 2——X^) , 将 射=k(X 1 - 4), y 2 = k(X 2 - 4)代入整理,得 x = _4(XX 2). ②y 2 +y 1X 1 +血 一82 2由得①X 1 X 2二卫!J, X 1X 2二竺 4代入②整理,得X=1 ,4k -+1 4k +1 所以直线ME 与x 轴相交于定点(1, 0).【针对性练习1]在直角坐标系xOy 中,点M 到点F 1 i 、3,0 , F 2 .3,0的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点 A ,不过点A 的直线l : ^ kx b 与轨迹C 交于不同的两点 P 和Q . ⑴求轨迹C 的方程;⑵当AP AQ =0时,求k 与b 的关系,并证明直线l 过定点.解:⑴•••点M 到.[73,0 , . 3 ,0的距离之和是4 , ••• M 的轨迹C 是长轴为4 ,焦点在x 轴上焦中为2 32的椭圆,其方程为-y 2 =1 .、定点问题【例1 ].已知椭圆C : 2 2孚 Z =1(a b 0)的离心率为a b仝,以原点为圆心,椭圆的短半轴长为半径的圆 2AO J7—⑵将y=kx・b,代入曲线C的方程,整理得(1 4k2)x28 2kx ^0,因为直线|与曲线C交于不同的两点P 和Q,所以厶=64kb -4(1 4k )(4b — 4) =16(4k -b 1) 0 ①设P X i , y i ,Q| x2 , y2 ,则X i :' X? 2 ,X i X? 2 ②f' 1+4k 1+4k且y i y^(kX i b)(kX? ■ b^(k2X i X?) kb(X i X?)b2,显然,曲线C与X轴的负半轴交于点 A -2 , 0,所AP = X 2 , y ,AQ = X? 2 , y?.由AP AQ = 0,得(x「2)(x? 2) y y? = 0 .将②、③代入上式,整理得12k? -16kb • 5b? =0.所以(2k -b) (6k -5b) = 0 ,即b = 2k或b .经检验,5都符合条件①,当b=2k时,直线I的方程为y =kx・2k •显然,此时直线I经过定点-2 , 0点•即直线|b =6k时,直线I的方程为y = kx ■ 6k =k经过点A,与题意不符.当5 5b = @ k,且直线I经过定点5【针对性练习2】在平面直角坐标系xoy中,如图,已知椭圆? ?—-匚=1的左、右顶点为A、B,右焦点9 5为F。
高考数学复习第16讲 与圆相关的定点、定值问题
微专题17 与圆相关的定点、定值问题圆的综合问题还可能会考查与圆有关的定点、定值问题,这类问题的解决往往先从特例题:已知圆O :x 2+y 2=9.点A (-5,0),在x 轴上存在定点B (不同于点A ),满足:对于圆O 上任一点P ,都有PBP A为一常数,试求所有满足条件的点B 的坐标.变式1已知圆O 的方程为x 2+y 2=1,直线l 1过点A(3,0),且与圆O 相切.(1)求直线l 1的方程;(2)设圆O 与x 轴交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P′,直线QM 交直线l 2于点Q′.求证:以P′Q′为直径的圆C 总过定点,并求出定点坐标.变式2已知过点A(0,1),且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.求证:AM →·AN →为定值7.串讲1如图,已知以点A(-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B(-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P.BQ →·BP →是否为定值?如果是,求出其定值;如果不是,请说明理由.串讲2设O 为坐标原点,F(1,0),M 是l :x =2上的点,过点F 作OM 的垂线与以OM 为直径的圆D 交于P ,Q 两点.(1)若PQ =6,求圆D 的方程;(2)若M 是l 上的动点,求证点P 在定圆上,并求该定圆的方程.(2018·江苏模拟卷)如图,在平面直角坐标系xOy 中,A ,B 是圆O :x 2+y 2=1与x 轴的两个交点(点B 在点A 右侧),点Q(-2,0),x 轴上方的动点P 使直线PA ,PQ ,PB 的斜率存在且依次成等差数列.(1)求证:动点P 的横坐标为定值;(2)设直线PA ,PB 与圆O 的另一个交点分别为S ,T ,求证:点Q ,S ,T 三点共线.(2017·江苏模拟卷)在平面直角坐标系xOy 中,已知定点A(-4,0),B(0,-2),半径为r 的圆M 的圆心M 在线段AB 的垂直平分线上,且在y 轴右侧,圆M 被y 轴截得的弦长为3r.(1)若r =2,求圆M 的方程; (2)当r 变化时,是否存在定直线与圆相切?如果存在,求出定直线的方程;如果不存在,请说明理由.答案:(1)(x -1)2+(y -5)2=4;(2)存在两条直线y =3和4x +3y -9=0与圆相切.解析:(1)设圆心M(m ,n),由题意可知⎩⎪⎨⎪⎧⎝⎛⎭⎫32r 2+m 2=r 2,m >0,(m +4)2+n 2=m 2+(n +2)2,解得⎩⎪⎨⎪⎧m =12r ,n =r +3,4分∴圆M 的方程为(x -1)2+(y -5)2=4.5分(2)设直线l :y =kx +b ,则⎪⎪⎪⎪k·r 2-r -3+b 1+k 2=r 对任意r >0恒成立,7分由⎪⎪⎪⎪⎝⎛⎭⎫k 2-1r +b -3=r 1+k 2,得⎝⎛⎭⎫k 2-12r 2+(k -2)(b -3)r +(b -3)2 =r 2(1+k 2),9分∴⎩⎪⎨⎪⎧⎝⎛⎭⎫k 2-12=1+k 2,(k -2)(b -3)=0,(b -3)2=0,计算得出⎩⎪⎨⎪⎧k =0,b =3或⎩⎪⎨⎪⎧k =-43,b =3,13分 ∴存在两条直线y =3和4x +3y -9=0与圆相切.14分微专题17 与圆相关的定点、定值问题巩固练习1.圆C :x 2+y 2-2tx -2t 2y +4t -4=0,则圆过定点________.2.已知以曲线y =2x 上任意点C 为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点,则△AOB 的面积为________.3.已知直线l :mx -y +m =0,圆C :(x -a)2+y 2=4.若对任意a ∈[1,+∞),存在l 被C 截得弦长为2,则实数m 的取值范围是________.4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则2P A +PB 的最大值是________.5.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)x -4my +5m 2-6m =0,直线l 经过点(-1,1).若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为________.6.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60°,则圆M 的方程为________.7.已知圆C 的方程为(x +4)2+y 2=16,直线l 过圆心且垂直于x 轴,其中G 点在圆上,F 点坐标为(-6,0).(1)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长;(2)在平面上是否存在定点P ,使得对圆C 上任意的点G 有GF GP =12?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,已知F 1(-4,0),F 2(4,0),A(0,8),直线y =t(0<t <8)与线段AF 1,AF 2分别交于点P ,Q ,过点Q 作直线QR ∥AF 1交F 1F 2于点R ,记△PRF 1的外接圆为圆C.(1)求证:圆心C 在定直线7x +4y +8=0上;(2)圆C 是否恒过异于点F 1的一个定点?若过,求出该点的坐标;若不过,请说明理由.微专题17参考答案例题答案:B ⎝⎛⎭⎫-95,0. 解法1如图,假设存在这样的点B(t ,0),当P 为圆O 与x 轴左交点(-3,0)时,PB PA =|t +3|2;当P 为圆O 与x 轴右交点(3,0)时,PB PA =|t -3|8,依题意,|t +3|2=|t -3|8,解得,t =-5(舍去),或t =-95.下面证明:点B ⎝⎛⎭⎫-95,0对于圆O 上任一点P ,都有PBPA为一常数. 设P(x ,y),则y 2=9-x 2,所以PB 2PA 2=⎝⎛⎭⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925,从而PB PA =35为常数.解法2假设存在这样的点B(t ,0),使得PBPA 为常数λ,则PB 2=λ2PA 2,所以(x -t)2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t)x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎨⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎨⎧λ=35,t =-95,或⎩⎨⎧λ=1,t =-5,(舍去),所以存在点B ⎝⎛⎭⎫-95,0对于圆O 上任一点P ,都有PB PA 为常数35. 变式联想变式1 答案:(1)y =±24(x -3);(2)(3±22,0). 解析:(1)因为直线l 1过点A(3,0),且与圆O :x 2+y 2=1相切,设直线l 1的方程为y =k(x -3),即kx -y -3k =0,则圆心O(0,0)到直线l 1的距离为d =|3k|k 2+1=1,解得k =±24,所以直线l 1的方程为y=±24(x -3). (2)对于圆方程x 2+y 2=1,令y =0,得x =±1,即P(-1,0),Q(1,0), 又直线l 2过点A 且与x 轴垂直,所以直线l 2方程为x =3,设M(s ,t),则直线PM 的方程为y =ts +1(x +1).解方程组⎩⎪⎨⎪⎧x =3,y =t s +1(x +1), 得P′⎝⎛⎭⎫3,4t s +1同理可得,Q ′⎝⎛⎭⎫3,2t s -1.所以以P′Q′为直径的圆C 的方程为(x -3)(x -3)+⎝⎛⎭⎫y -4t s +1⎝⎛⎭⎫y -2ts -1=0,又s 2+t 2=1,所以整理得x 2+y 2-6x +1+6x -2t y =0,若圆C 经过定点,只需令y =0,从而有x 2-6x +1=0,解得x =3±22,所以,圆C 总经过定点坐标为(3±22,0).变式2证法1设M(x 1,y 1),N(x 2,y 2),联立⎩⎨⎧y =kx +1,(x -2)2+(y -3)2=1,得(k 2+1)x 2-4(k +1)x +7=0,所以⎩⎪⎨⎪⎧x 1+x 2=4(k +1)k 2+1,x 1x 2=7k 2+1.因为AM →=(x 1,y 1-1),AN →=(x 2,y 2-1),所以AM →·AN →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+k 2x 1x 2=(1+k 2)x 1x 2=(1+k 2)x 1x 2=(1+k 2)71+k 2=7.所以AM →·AN →为定值7.证法2由于M ,N 共线,所以AM →·AN →=AM·AN =(AC -1)(AC +1)=AC 2-1=7.串讲激活串讲1答案:BQ →·BP →=-5.解析:因为AQ ⊥BP ,所以AQ →·BP →=0,所以BQ →·BP →=(BA →+AQ →)·BP →=BA →·BP →+AQ →·BP →=BA →·BP →.当直线l 与x 轴垂直时,得P ⎝⎛⎭⎫-2,-52.则BP →=⎝⎛⎭⎫0,-52, 又BA →=(1,2),所以BQ →·BP →=BA →·BP →=-5.当直线l 的斜率存在时,设直线l 的方程为y =k(x +2).由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k .所以BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k .所以BQ →·BP →=-51+2k -10k 1+2k =-5.综上所述,BQ →·BP →是定值,且BQ →·BP →=-5.串讲2答案:(1)圆D 的方程:(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2; (2)点P 在定圆x 2+y 2=2上. 解析:(1)设M(2,t),则圆D的方程:(x -1)2+⎝⎛⎭⎫y -t 22=1+t 24, 直线PQ 的方程:2x +ty -2=0,由PQ =6, 2⎝⎛⎭⎫1+t 24-⎝⎛⎭⎪⎪⎫⎪⎪⎪⎪2+t 22-24+t 22=6,解得t =±2. 所以圆D 的方程为(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2.(2)解法1设P(x 0,y 0),由(1)知⎩⎪⎨⎪⎧(x 0-1)2+⎝⎛⎭⎫y 0-t 22=1+t 24,2x 0+ty 0-2=0,即⎩⎨⎧x 02+y 02-2x 0-ty 0=0,2x 0+ty 0-2=0,消去t 得x 02+y 02=2.所以点P 在定圆x 2+y 2=2上.解法2设P(x 0,y 0),则直线FP 的斜率为k FP =y 0x 0-1,因为FP ⊥OM ,所以直线OM 的斜率为k OM =-x 0-1y 0,所以直线OM 的方程为y =-x 0-1y 0x.点M 坐标为⎝⎛⎭⎫2,-2(x 0-1)y 0.因为MP ⊥OP ,所以OP →·MP →=0,所以x 0(x 0-2)+y 0⎣⎡⎦⎤y 0+2(x 0-1)y 0=0,所以x 02+y 02=2,所以点P在定圆x 2+y 2=2上.解法3设直线PQ 与OM 交于点H ,A(2,0),由射影定理知OP 2=OH·OM ,由此知,OH ·OM =OF·OA =2,所以OP 2=2,所以点P 在定圆x 2+y 2=2上.新题在线证明:(1)由题设知A(-1,0),B(1,0). 设P(x 0,y 0)(y 0>0),则k PQ =y 0x 0+2,k PA =y 0x 0+1,k PB =y 0x 0-1. 因为直线PA ,PQ ,PB 的斜率存在且依次成等差数列,所以2k PQ =k PA +k PB ,即2y 0x 0+2=y 0x 0+1+y 0x 0-1,解得x 0=-12,即动点P 的横坐标为定值.(2)由(1)知P ⎝⎛⎭⎫-12,y 0,k PA =2y 0,k PB =-23y 0,直线PA 的方程为y =2y 0(x +1),代入x 2+y 2=1得(x +1)[(1+4y 02)x -(1-4y 02)]=0,所以点S 的横坐标x S =1-4y 021+4y 02,从而y S =4y 01+4y 02. 同理:x T =-9+4y 029+4y 02,y T=12y 09+4y 02, 所以k QS =4y 01+4y 021-4y 021+4y 02+2=4y 03+4y 02,k QT =12y 09+4y 02-9+4y 029+4y 02+2=4y 03+4y 02,所以k QS=k QT,所以点Q,S,T三点共线.微专题17巩固练习参考答案1.答案:(2,0). 解析:圆C 的方程可以改写为(x -2)(x +2-2t )+y (y -2t 2)=0,表示以(2,0),(2t -2,2t 2)为直径的圆. 2.答案:4.解析:设C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0),由题意知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t ,0);当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t ,所以S △AOB =12OA ·OB =12|2t |·⎪⎪⎪⎪4t =4. 3.答案:[-3,0)∪(0,3]. 解法1由题意可得,圆心C 到l 的距离d =22-⎝⎛⎭⎫222=3,即|am +m |m 2+1=3,所以m 2=3(a +1)2-3,又因为a ≥1,所以0<m 2≤3,-3≤m <0或0<m ≤ 3.解法2由题意可得,圆心C 到l 的距离d =22-⎝⎛⎭⎫222=3,又l :mx -y +m =0恒过定点A (-1,0),a ≥1,所以AC ≥2,另设直线l 的倾斜角为θ,所以sin θ=3AC ∈⎝⎛⎦⎤0,32,所以l 的斜率m =tan θ∈[-3,0)∪(0,3].4.答案:5 2.解析:由条件知定点A (0,0),B (1,3),且P A ⊥PB ,所以P A 2+PB 2=10(定值),所以(2P A +PB )2≤(P A 2+PB 2)(22+12)=50,即2P A +PB ≤5 2.5.答案:2x +y +1=0.解析:由条件知圆心C (3-m ,2m )在直线2x +y -6=0上,若对任意的实数m ,定直线l 被圆C 截得的弦长都是定值,则直线l 与圆心所在直线平行,再代入点(-1,1)得直线l 的方程为2x +y +1=0.6.答案:(x -1)2+y 2=1.解析:设定圆圆心M (a ,b ),半径为r ,动点P (x ,y ),由题意知MP =2r ,即(x -a )2+(y -b )2=4r 2,由于点P 在圆C :(x -1)2+y 2=4上,所以(2-2a )x -2by +a 2+b 2-4r 2+3=0,对任意x ,y 都成立,所以a =1,b =0,r 2=1,所求圆方程为(x -1)2+y 2=1.7.答案:(1)直线FG 被圆C 截得的弦长为7;(2)平面上存在定点P (-12,0),使得结论成立. 解析:(1)由题意,设G (-5,y G ),代入(x +4)2+y 2=16,得y G =±15,所以FG 的斜率为k =±15,FG 的方程为y =±15(x +6).设圆心C (-4,0)到FG 的距离为d ,由点到直线的距离公式得d =|±215|15+1=152.则直线FG 被圆C 截得的弦长为26-⎝⎛⎭⎫1522=7.故直线FG 被圆C 截得的弦长为7. (2)设P (s ,t ),G (x 0,y 0),则由GF GP =12,得(x 0+6)2+y 02(x 0-s )2+(y 0-t )2=12,整理得3(x 02+y 02)+(48+2s )x 0+2ty 0+144-s 2-t 2=0.① 又G (x 0,y 0)在圆C :(x +4)2+y 2=16上,所以x 02+y 02+8x 0=0.②将②代入①,得(2s +24)x 0+2ty 0+144-s 2-t 2=0.又由G (x 0,y 0)为圆C 上任意一点可知,11 / 11 ⎩⎪⎨⎪⎧2s +24=0,2t =0,144-s 2-t 2=0.解得s =-12,t =0.所以在平面上存在定点P (-12,0),使得结论成立. 8.答案:(1)略;(2)圆C 恒过异于点F 1的一定点,该点坐标为⎝⎛⎭⎫413,3213.解析:(1)解法1:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以P ⎝⎛⎭⎫t -82,t ,Q ⎝⎛⎭⎫8-t 2,t ,再由QR ∥AF 1,得R (4-t ,0),则线段F 1R 的中垂线方程为x =-t 2,线段PF 1的中垂线方程为y =-12x +5t -168,由⎩⎨⎧y =-12x +5t -168,x =-t 2,得△PRF 1的外接圆的圆心坐标为⎝⎛⎭⎫-t 2,7t 8-2, 经验证,该圆心在定直线7x +4y +8=0上.解法2:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以P ⎝⎛⎭⎫t -82,t ,Q ⎝⎛⎭⎫8-t 2,t ,再由QR ∥AF 1,得R (4-t ,0),设△PRF 1的外接圆C 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧(4-t )2+(4-t )D +F =0,(-4)2-4D +F =0,⎝⎛⎭⎫t -822+t 2+t -82D +tE +F =0, 解得⎩⎪⎨⎪⎧D =t ,E =4-74t ,F =4t -16,所以圆心坐标为⎝⎛⎭⎫-t 2,7t 8-2,经验证,该圆心在定直线7x +4y +8=0上. (2)由(1)可得圆C 的方程为x 2+y 2+tx +⎝⎛⎭⎫4-74t y +4t -16=0,该方程可整理为(x 2+y 2+2y -16)+t ⎝⎛⎭⎫x -74y +4=0,则由⎩⎪⎨⎪⎧x 2+y 2+4y -16=0,x -74y +4=0,解得⎩⎨⎧x =413,y =3213,或⎩⎨⎧x =-4,y =0,所以圆恒过异于点F 1的一个定点,该点坐标为⎝⎛⎭⎫413,3213.。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆定点,定值范围问题习题
1.直线(21)(1)740()m x m y m m R +++--=∈,则直线过定点____________.
2.若圆222
(3)(5)x y r -++=上有且仅有两个点到直线4320x y --=的距离等于1,则半径r 的取值范围为____________.
3.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ________.
4.圆222
:22440C x y tx t y t +--+-=,则圆过定点________________.
5.若直线
y=x+b 与曲线y =b 的取值范围______________. 6.平面内动点M 到定点(2,0),(2,0)A B -的距离之比为1
2
,则动点M 的轨迹方程是______________________.
7已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是
________.
8.一束光线从点A (-1,1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路
程是________
9.设有一组圆C k :(x -k +1)2
+(y -3k )2
=2k 4
(k ∈N *
)下列四个命题正确的序号有:
①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.
10.已知过点A (0,1),且斜率为k 的直线l 与圆C :1)3()2(22
=-+-y x ,相交于M 、
N 两点.
(1)求实数k 的取值范围; (2)AM •AN 是否为定值,若是,求出定值;若不是,请说明理
由。
11.已知⊙C,22
(1)5,x y +-=直线mx-y+1-m=0
(1)证明:对于m R ∈,直线与圆总有两个不同的交点A,B, (2)求弦AB 中点的轨迹方程,并说明轨迹是什么曲线。
(3)若定点P(1,1)分弦满足PB=2PA,求AB 直线方程
12.已知⊙O 2
2
4x y +=过点
P (作倾斜角互补的直线交圆A,B ,证明直线AB 的斜率为定值。
13.点A(0,2)是圆2
2
16x y +=内的一定点,B,C 是这个圆上的两动点,若AB CA ⊥,求BC
中点M 的轨迹方程,并说明轨迹的形状。
A
Q
M
O
14.已知:点P 是圆2
2
16x y +=上的一个动点,点A 是x 轴上的定点,坐标为(12,0),当P 点在圆上运动时,求线段PA 的中点M 的轨迹方程
15.圆2
2(5)(4)6x y -+-=内一定点A (4,3),在圆上作弦MN ,使90MAN ∠=,求弦MN 中点P 的轨迹方程
16.如图,已知定点A (2,0),点Q 是圆2
2
1x y +=上的动点,AOQ ∠的
平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程
17.由点P 分别向两定圆221:(2)1C x y ++=及圆22
2:(2)4C x y -+=所引切线段长度之比为
1:2,求点P 的轨迹方程
18.平面上有两点A (-1,0),B (1,0),P 为圆x y x y 2
2
68210+--+=上的一点,试求
S AP BP =+||||22的最大值与最小值,并求相应的P 点坐标。
()()()0,0,4,0,0,3,,ABC A B C P PA PB PC ∆19.已知三个顶点坐标,点是它的内切圆上一点,求以为直径的三个圆面积之和的最大值和最小值。
20.已知与
22:2210C x y x y +--+=相切的直线l 交x 轴、y 轴于A 、B 两点,O 为坐标原点,
(),2,2OA a OB b a b ==>>.
(1)求证:()()222a b --=;(2)求线段AB 中点P 的轨迹;(3)求AOB 面积的最小值
21.已知圆M 的方程为2
2
(2)1x y +-=,直线l l 的方程为20x y -=,点P 在直线l 上,过P 点作圆M 的切线,PA PB PA 、PB ,切点为,A B .
(1) 若0
60APB ∠=,试求点P 的坐标;
(2) 若P 点的坐标为(2,1),过P 作直线与圆M 交于,C D
两点,当CD =
CD 的方程;
(3) 求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.
22.已知⊙M:22
(2)1x y +-=,Q 是X 轴上的动点,QA,QB 分别切⊙M 于A,B 两点,
(1)
若,3
AB =
求MQ ,Q,点的坐标以及MQ 的直线方程; (2) 求证AB 过一定点;
23.已知圆C :2
2
9x y +=,点A (-5,0),直线l :x -2y =0.
(1)求与圆C 相切,且与直线l 垂直的直线方程;
(2)在直线OA 上,存在点B (不同于A ),满足:对于圆上任一点P ,都有
PB
PA
为常数,并求满足条件的B 的坐标。
,
24.若动点P 在直线:x-y-2=0上,点Q 在直线x-y-6=0上,设线段PQ 的中点为M(00,x y )且
2200(2)(2)8x y -+-≤则2200x y +的取值范围( )
25.已知
22:1O x y +=和点(4,2)M .
(1) 过点M M 向
O 引切线l ,求直线l 的方程;
(2) 求以点M 为圆心,且被直线21y x =-截得的弦长为4的M 的方程;
(3) 设P 为(2)中
M 上任一点,过点P 向O 引切线,切点为Q .试探究:平面内是否
存在一定点R ,使得PQ
PR
为定值若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
26.已知圆22
:(3)(4)4C x y -+-=,直线1l 过定点(1,0)A (1) 若1l 与圆相切,求1l 的方程;
(2) 若1l 与圆相交于,P Q 两点,线段PQ 的中点为M ,又1l 与直线2:220l x y ++=的交点
为N ,求证:AM AN 为定值.
27.已知方程2
2
240x y x y m +--+=
(1) 若此方程表示圆,求实数m 的取值范围;
(2) 若(1)中的圆与直线240x y +-=相交于,M N 两点,若以MN 为直径的圆过坐标原
点,求实数m 的值.。