用放缩法证明数列(微专题)

合集下载

全国高考数学复习微专题:放缩法证明数列不等式

全国高考数学复习微专题:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧 1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和: 若()()()121,2,,n a f a f a f n >>>,则:()()()1212n a a a f f f n +++>+++(3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。

该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。

本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。

假设我们有一个数列${a_n}$,其中$n \geq 1$。

我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。

我们将使用数学归纳法来证明这个结论。

首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。

因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。

接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。

然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。

由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。

根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。

综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。

高中数学解题技巧数列放缩

高中数学解题技巧数列放缩

n n n ,所以 ∑n4 ⎛ 1 1 ⎫ = 2 - ⎪ k 2 < 1 + 2 - +Λ + - ⎪ < 1 + (7) 2( n + 1 - n ) < 1 < 2( n - n - 1) (8) ⎛ 22n + 3 ⎭ 2n = n(9)1 ⎛ ⎫ - n 1 1n(n - 1)(n + 1) n(n - 1) n(n + 1) ⎭ n + 1 - n - 1⎛ ⎫= i 2 - j 2(i - j)( i 2 + 1 +j + 1)2数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例 1.(1)求 ∑k =12 4k 2 - 1 的值; (2)求证: ∑ 1 < 5 .k 2 3k =1解析:(1)因为2 4n 2 - 1 = 2 1 1 = - (2n - 1)(2n + 1) 2n - 1 2n + 1 ,所以 ∑ k =12 1 2n= 1 - = 4k 2 - 1 2n + 1 2n + 1(2)因为 1n 2<1n 2 -= 1 4n 2 - 1 ⎝ 2n - 1 2n + 1⎭ k =141 ⎛ 1 1 1 1 ⎫ 25⎝ 3 5 2n - 1 2n + 1 ⎭ 3 3=奇巧积累:(1) 14 4 ⎛1 1 ⎫ n2 4n 2 4n 2 - 1 ⎝ 2n - 1 2n + 1⎭= < = 2 - ⎪(2) 1 2 1 1= = -C 1 C 2 (n + 1)n(n - 1) n(n - 1) n(n + 1)n +1 n(3)T r +1= C r ⋅ n1 n! 1 1 1 1 1= ⋅ < < = - (r ≥ 2)n r r!(n - r)! n r r! r(r - 1) r - 1 r(4) (1 + 1 ) n < 1 + 1 + 1 + 1 + Λ +n2 ⨯ 13 ⨯ 21 5<n (n - 1) 2(5)1 11=-2 n (2 n - 1)2 n - 1 2 n(6)1n + 2< n + 2 - n1 ⎫ 1 ⎪⋅ ⎝ 2n + 1= + ⎪ , = - ⎪k (n + 1 - k ) ⎝ n + 1 - k k ⎭ n + 1 n (n + 1 + k ) k + 1 ⎝ n n + 1 + k ⎭1 1 - (2n + 1) ⋅ 2n -1 (2n + 3) ⋅ 2n(10) (11)= -(n + 1) ! n ! (n + 1) !1 n < 2( 2n + 1 - 2n - 1) =2 2 2n + 1 + 2n - 1 =n +21 1 + n -2 2(11) 2n 2n 2n 2n -1 1 1= < = = -(2n - 1)2 (2n - 1)(2n - 1) (2n - 1)(2n - 2) (2n - 1)(2n -1 - 1) 2n -1 - 1 2n - 1(n ≥ 2)(12)1n 3 = 1n ⋅ n 2 < 1 1 1 1 = - ⎪⋅ ⎝⎪⎛ 1 = - ⎝ n - 1 1 ⎫ n + 1 + n - 1 ⎪⋅n + 1 ⎭ 2 n< 1 1 - n - 1 n + 1(13)2n +1 = 2 ⋅ 2n = (3 - 1) ⋅ 2n > 3 ⇒ 3(2n - 1) > 2n ⇒ 2n - 1 > 2n 1 2n ⇒ <3 2n - 1 3(14) k + 2 1 1= -k!+(k + 1)! + (k + 2)! (k + 1) ! (k + 2) !(15) 1n (n + 1)< n - n - 1(n ≥ 2)(15)i 2 + 1 -j 2 + 1 i - j=i + ji 2 + 1 + j 2 + 1 < 1例 2.(1)求证:1 + 1 + 1 + Λ +32521 7 1> - (n ≥ 2) (2n - 1) 2 6 2(2n - 1)1 / 24(2n -1)2 (2n - 1)(2n + 1) n 2 + 2 + 例 3.求证:6n1 1 1 5 n2 - 1 < 1 + 2 - +Λ + - ⎪ < 1 + = n n 6n,当 n = 1 时, 6n1 1 1 ,所以综上有1< 1 . a.设 b ∈ (a , ,整数解析:由数学归纳法可以证明{a }是递增数列,故存在正整数 m ≤ k ,使 a ≥b ,则(2)求证: 1 + 1 + 1 + Λ + 1 < 1 - 14 16 36 4n 2 2 4n(3)求证: 1 + 1⋅ 3 + 1⋅ 3 ⋅ 5 + Λ + 1⋅ 3 ⋅ 5 ⋅Λ ⋅ (2n - 1) <2n + 1 - 12 2 ⋅ 4 2 ⋅ 4 ⋅ 6 2 ⋅ 4 ⋅ 6 ⋅Λ ⋅ 2n(4) 求证: 2( n + 1 - 1) < 1 + 1 + 12 3 +Λ + 1< 2( 2n + 1 - 1)n解析:(1)因为1 1 1 ⎛ 1 1 ⎫,所以> = - ⎪2 ⎝ 2n - 1 2n + 1⎭∑ 1 (2i -1) i =12 1 1 1 1 1 1 > 1 + ( - ) > 1 + ( - )2 3 2n + 1 2 3 2n -1(2) 1 + 1 + 1 + Λ + 1 = 1 (1 + 1 + Λ + 1 ) < 1 (1 + 1 - 1 )4 16 364n 24 2 2 n 2 4 n(3)先运用分式放缩法证明出 1⋅ 3 ⋅ 5 ⋅Λ ⋅ (2n - 1)2 ⋅ 4 ⋅ 6 ⋅Λ ⋅ 2n< 1 2n + 1 ,再结合 1n + 2 < n + 2 - n进行裂项 ,最后就可以得到答案(4)首先 1n > 2( n + 1 - n ) =2n + 1 + n,所以容易经过裂项得到2( n + 1 - 1) < 1 + 1 1 3 +Λ +1n再证而由均值不等式知道这是显然成立的,所以1 n < 2( 2n + 1 - 2n -1) =2 2 2n + 1 + 2n -1 = n + 21 1+ n -2 21 + 1 1 3 +Λ + 1 n < 2( 2n + 1 - 1)≤ 1 + + +Λ + <(n + 1)(2n + 1) 4 9 n 2 3解析:一方面:因为 ,所以1 1 4 ⎛ 11 ⎫ < = =2 - ⎪ n 2 4n 2 - 1 ⎝ 2n - 1 2n + 1⎭4∑ 1k 2 k =1⎛ 1 1 1 1 ⎫ 2 5⎝ 3 5 2n - 1 2n + 1 ⎭ 3 3另一方面:1 + 1 + 1+ Λ + 1 > 1 + 1 + 1 + Λ +4 9n 22 ⨯3 3 ⨯ 41 1 n= 1 - =n (n + 1) n + 1 n + 1当 n ≥ 3 时, >n + 1 (n + 1)(2n + 1)6n 1 1 1 = 1 + + +Λ + (n + 1)(2n + 1) 4 9 n 2 ,当 n = 2 时,< 1 + + +Λ +(n + 1)(2n + 1) 4 9 n 26n 1 1 1 5≤ 1 + + +Λ + <(n + 1)(2n + 1) 4 9 n 2 3例 4.(2008 年全国一卷 ) 设函数 f ( x) = x - x ln x .数列 {a }满足 0 < a nk ≥ a 1 - b .证明: a> b .k +1a lnb 1n +1 = f (a ) n1nmak +1> a ≥ b ,否则若 a < b (m ≤ k ) ,则由 0 < a ≤ a < b < 1 知k m 1 m2 / 24= a - a ln a = a - ∑ a ln a k ∑[k∑[k- (k - 1)m +1] < (m + 1)∑ k m < (n + 1)m +1 - 1 = (n + 1)m +1 - n m +1 + n m +1 - (n - 1)m +1 + Λ + 2m +1 -1m +1 = ∑[(k + 1) [km +1- (k - 1)m +1] < (m + 1)∑ k m< ∑[(k + 1)n2 1 - 4 1 - 2 34 (4n - 1) + 2(1 - 2n ) - + 2 - 2n +1 + - 2n +1 = 3 - T + T + T +Λ + T = 3 ⎛ 2 ⎝ 3 3 7 2n - 1 例 7.已知 x = 1,n ⎩n - 1(n = 2k, k ∈ Z ) +Λ + ln 3n 1 1 2 3n + 1 +Λ + 1⎛ 1 1 ⎫ ⎛ 1 1 > + + ⎪+ + ⎪ + Λ +  ⎪⎪ = 6 ⎝ 6 9 ⎭ ⎝ 18 27 ⎭ ⎝ 2 ⋅ 3n -1 3n ⎭⎛ 3n -1a m ln a m ≤ a 1 ln a m < a 1 lnb < 0 , a k +1k k k 1 m k m ,因为 ∑ a ln a < k (a ln b ) , m m 1m =1m =1于是 ak +1> a + k | a ln b |≥ a + (b - a ) = b1 1 1 1例 5.已知 n , m ∈ N , x > -1, S = 1m + 2m + 3m + Λ + n m ,求证: n m +1 < (m + 1)S < (n + 1)m +1 - 1 .+mn解析:首先可以证明: (1 + x)n ≥ 1 + nxnm +1= nm +1- (n - 1)m +1+ (n - 1)m +1- (n - 2)m +1+ Λ + 1m +1- 0 =nm +1- (k - 1)m +1]所以要证k =1n m +1 < (m + 1)S < (n + 1)m +1 - 1 只要证:nnk =1m +1n n k =1k =1m +1- k m +1]故只要证 ∑n nm +1 - k m +1],即等价于k =1k =1k =1k m +1 - (k - 1)m +1 < (m + 1)k m < (k + 1)m +1 - k m ,即等价于1 + m + 1 < (1 + 1 )m +1,1 - m + 1 < (1 - 1 )m +1k k k k而正是成立的,所以原命题成立.例 6.已知 a = 4n - 2n ,nT =n2na + a +Λ + a1 2n,求证:T + T + T + Λ + T < 3 . 1 2 3 n解析:T = 41 + 42 + 43 + Λ + 4n - (21 + 22 + Λ + 2n ) = 4(1 - 4n ) - 2(1 - 2n ) = 4 (4n - 1) + 2(1 - 2n )n所以T = n 2n 2n 2n 3 ⋅ 2n 3 2n= = = = ⋅ 4n +1 4 4n +1 2 4n +1 - 3 ⋅ 2n +1 + 2 2 2 ⋅ (2n )2 - 3 ⋅ 2n + 13 3 3 3 32n 3 ⎛ 1 1 ⎫ ⋅ = ⎪ 2 (2 ⋅ 2n - 1)(2n - 1) 2 ⎝ 2n - 1 2n +1 - 1⎭从而 1 2 3 n 1 1 1 1 1 - + - +Λ + - 1 ⎫ 3 ⎪< 2n +1 - 1 ⎭ 21⎧n(n = 2k - 1, k ∈ Z ) ,求证: x = ⎨ 4 1 x ⋅ x 2 3+ 4 1x ⋅ x 4 5+Λ + 1 4 x x2n 2n +1> 2( n + 1 - 1)(n ∈ N *)证明:4 1 x x 2n2n +1= 4 1 (2n - 1)(2n + 1) = 1 4 4n 2 - 1 > 1 4 4n 2= 1 2 ⋅ n=2 2 n ,因为 2 n < n + n + 1 ,所以4 1 x x 2n 2n +1> 2 2 n > 2 n + n + 1 = 2( n + 1 - n ) 所以4 二、函数放缩1 x ⋅ x23 + 14 x ⋅ x 45 +Λ + 14 x x 2n 2n +1 > 2( n + 1 - 1)(n ∈ N *)例 8.求证: ln 2 + ln 3 + ln 4 + Λ + ln 3n < 3n - 5n + 6 (n ∈ N * ) .23 4 3n6解析:先构造函数有 ln x ≤ x -1 ⇒ ln x ≤ 1 - 1 ,从而 ln 2 + ln 3 + ln 4x x 2 3 4< 3n - 1 - ( + +Λ + 3 3n1)因为 1 2 31 1 1 1 ⎫ ⎛ 1 = + ⎪+ + + + + + ⎪ +Λ + 3n ⎝23 ⎭ ⎝456789 ⎭ ⎝ 2n + 1 1 ⎫+Λ + ⎪2n + 1 3n ⎭5 ⎛ 3 3 ⎫ ⎛ 9 9 ⎫3n -1 ⎫ 5n + 63 / 24⎰ 1 ,从而, 1 ⋅ i < ⎰ 1 = ln x | xnx E 取 i = 1有, 1< ln n - ln(n -1) ,nOA ⎰ 1 ,从而有 1 取 i = 1有, 1 ⋅ i > ⎰ = ln x |n = ln n - ln(n - i) 1 ,所以综上有 1 +Λ + 1(1 + 1 )(1 + ) ⋅Λ ⋅ (1 + 1 ) < e 和1 2! 3! n! 9 例 13.证明: ln 22 - x ,令 ,所以 ln 2所以 ln 2 + ln 3 + ln 4 + Λ + ln 3n < 3n - 1 - 5n = 3n - 5n + 62343n66例 9.求证:(1)α ≥ 2, ln 2α + ln 3α + Λ + ln n α < 2n 2 - n - 1 (n ≥ 2)2α3α n α 2(n + 1)解析:构造函数f (x) =ln x x,得到 ln n n αα ≤ln n 2 n 2,再进行裂项 ln n 2 ≤ 1 - 1 < 1 -n 2 n 21 ,求和后可以得到答案n(n + 1)函数构造形式: ln x ≤ x -1 , ln n α ≤ n α - 1(α ≥ 2)例 10.求证: 1 + 1 + Λ + 1 < ln(n + 1) < 1 + 1 + Λ + 12 3n + 1 2 n解析:提示: ln(n + 1) = ln n + 1 ⋅ n ⋅Λ ⋅ 2 = ln n + 1 + ln n + Λ + ln 2n n - 1 1 n n - 1函数构造形式:ln x < x, ln x > 1 -1x当然本题的证明还可以运用积分放缩如图,取函数f (x) = 1 ,x首先:nn S<n = ln n - ln(n - i)ABCFn -in -in -iyFn-in D C Bx所以有 12 < ln 2, 1 < ln 3 - ln 2 ,…, 1 < ln n - ln(n -1) ,3 n1 n + 1< ln(n + 1) - ln n , 相 加 后 可 以 得 到 :1 1 1 + +Λ + < ln(n + 1)23 n + 1另一方面SABDE> n n -ix所以有ln(n +1) < 1+ 1 +Λ + + 1 2 n 2 31 1 < ln(n + 1) < 1 + +Λ +n + 1 2 n例 11.求证: 1 (1 + )(1 + 1 1) ⋅Λ ⋅ (1 + 81 32n) < e .解析:构造函数后即可证明例 12.求证: (1 + 1⨯ 2) ⋅ (1 + 2 ⨯ 3) ⋅Λ ⋅ [1 + n(n + 1)] > e 2n -3解析:ln[n(n + 1) + 1] > 2 -3n(n + 1) + 1,叠加之后就可以得到答案函数构造形式:ln(x + 1) > 2 -3 1 + ln(1 + x) 3 (x > 0) ⇔ > (x > 0)x + 1 x x + 1(加强命题)+ ln 3 + ln 4 3 4 5 +Λ + ln n n (n -1)< (n ∈ N *,n > 1) n + 1 4解析:构造函数 f (x) = ln(x - 1) - (x - 1) + 1(x > 1) ,求导,可以得到:f '(x) = 1-1 =x -1 x -1f ' ( x ) > 0 有1 < x < 2 ,令 f ' ( x ) < 0 有 x > 2 ,所以 f ( x ) ≤ f (2) = 0 ,所以 ln(x - 1) ≤ x - 2 ,令 x = n 2 + 1 有, ln n 2 ≤ n 2 - 1所以ln n n +1 ≤n -12+ ln 3 + ln 4 3 4 5 +Λ + ln n n(n -1) < (n ∈ N *,n > 1) n + 1 44 / 242n n (n +1) 2 n (n +1) 2 nn ln a < ln(1 +1+ 1) + ln a≤ (1+ 1 n 2 + n 2n≤ ln(1 + 1 ≤ ln a + 1 。

浅析用放缩法证明数列不等式的策略

浅析用放缩法证明数列不等式的策略

浅析用放缩法证明数列不等式的策略用放缩法证明数列不等式的策略是一种常用的证明方法,它主要通过找到合适的变量放缩原来的数列不等式,从而得到更为简单的不等式,进而完成证明。

该策略的主要步骤如下:第一步:观察被证明的数列不等式,找出其中的特点和规律。

这个步骤是理解问题的基础,只有通过深入了解数列的特性才能找到合适的放缩变量。

第二步:寻找合适的放缩变量。

放缩变量应该满足以下条件:一是能够保留原始不等式的特点和规律,二是能够得到更为简单的不等式。

第三步:通过放缩变量重新构建不等式。

根据放缩变量的特点,将原始不等式进行变形,得到新的不等式。

第四步:证明新的不等式。

根据新的不等式的特点,运用已有的数学方法和技巧进行证明,例如数学归纳法、数学推理等。

第五步:逆向放缩。

将新的不等式通过放缩变量逆向还原成原来的不等式,从而完成整个证明过程。

在实际应用中,这个策略可能需要结合具体情况进行灵活运用。

以下是一个具体的例子,用该策略来证明一个数列的递推公式。

例:证明数列{an}满足递推公式an = an-1 + 2n - 1。

第一步:观察数列的特点和规律,发现相邻项之间的差值是随着项数n增加而变化的。

第二步:找到合适的放缩变量,我们可以设定bn = an - n^2,则bn可以看作是相邻项之间的差值。

第三步:根据放缩变量重新构建不等式,我们有bn = (an - 1 - (n - 1)^2) + 2n - 1。

其中(n - 1)^2可以展开得到n^2 - 2n + 1。

第四步:证明新的不等式,我们可以证明bn = 2n,这可以通过计算得到。

第五步:逆向放缩,将新的不等式通过放缩变量逆向还原成原来的不等式,即an -n^2 = 2n,化简得到an = an - 1 + 2n - 1。

通过这样的放缩法证明,我们可以得到数列的递推公式,并成功证明了该数列的性质。

这个例子展示了放缩法证明数列不等式的策略,说明了放缩变量的重要性和放缩的过程。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

思路二 将通项放得比变式1更小一点. 保留第一项,
从第二项开
1 n2
1 n2 1
1( 1 2 n 1
1) n 1
(n
2)
始放缩
左边
1
1 2
(1
1) 3
(
1 2
1) 4
(
1 n
1
n
1 1)
1 1 (1 1 1 1 ) 1 1 (1 1) 7 (n 2)
2 2 n n1
2 24
当n = 1时,不等式显然也成立.
1 2
(
1 2
1) (1 43
1) 5
(
1 n 1
n 1 1)
1 1 1 (1 1 1 1 ) 1 1 1 (1 1) 5 (n 3)
4 2 2 3 n n 1
4 22 3 3
当n = 1, 2时,不等式显然也成立.
变式3
求证:1
1 22
1 32
1 n2
5 3
(n N)
分析 变式3的结论比变式2更强,要达目的,须将
例3 (2009珠海二模理20第(2)问)
求S 1 1 1 1 的整数部分.
23
100
分析 不能直接求和式 S ,须将通项 1 放缩为裂项相消模型后求和。 n
思路 为了确定S的整数部分,必须将S的值放缩在相邻的两个
整数之间.
2( n 1
n)
2 n 1
1 2 n n 2n
2
2( n n 1)
用放缩法证明 数列中的不等式
张家界市第一中学 高三数学组
放缩法灵活多变,技巧性要求较高,所谓“放大一点 点就太大,缩小一点点又太小”,这就让同学们找不到头 绪,摸不着规律,总觉得高不可攀!

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法是解决数学问题中常用的一种技巧。

通过将数列进行放缩,可以使得原问题更易于解决,或者得到更加精确的结果。

本文将介绍数列放缩法的基本概念和常用技巧,并通过一些例子来说明其应用。

基本概念在使用数列放缩法解决问题时,我们需要理解以下几个基本概念:1. 数列放缩数列放缩是指通过对数列中的每一项进行适当的操作,使得数列满足一些特定的性质。

常用的数列放缩操作包括:乘法放缩、加法放缩和取对数放缩等。

2. 性质保持数列放缩后,原数列的一些性质可能得以保持,例如单调性、有界性等。

这样可以为问题的解决提供一些有用的线索。

3. 题目转化数列放缩还可以将原问题转化为一个更容易解决的形式。

通过变换数列中的项,我们可以得到一个新的数列,从而将原问题转化为对新数列进行分析的问题。

常用技巧1. 乘法放缩乘法放缩是数列放缩中最常用的技巧之一。

通过乘以一个适当的常数,可以使得数列中的项满足某种性质,比如有界性或单调性。

以下是一些常见的乘法放缩技巧:•将数列中的项全部乘以一个常数。

这可以用来放缩数列中的每一项,使得它们满足某种条件,例如有界性。

比如,对于一个递增的数列a n,我们可以将每一项乘以2,得到一个递增且更大的数列2a n。

•对数列中的每一项都乘以一个缩放因子,使得数列中的项的比较关系得以保持。

这种放缩常用于解决含有不等式的问题。

比如,对于一个递减的数列a n,我们可以将每一项都乘以−1,得到一个递增的数列−a n。

•利用数列放缩的特性进行条件的放缩。

比如,对于一个不等式问题,我们可以将不等式两边都乘以一个常数,使得问题更易解决。

2. 加法放缩加法放缩是利用数列的加法、减法性质进行放缩的一种技巧。

通过对数列中的项进行加减操作,可以得到一个新的数列,从而顺利解决问题。

以下是一些常见的加法放缩技巧:•利用数列之间的加减关系进行放缩。

比如,对于一个递增的数列a n,我们可以构造一个新的递增数列b n=a n+1−a n,从而将问题转化为分析数列b n的性质的问题。

解决数列放缩问题的六大技巧

解决数列放缩问题的六大技巧

解决数列放缩问题的六大技巧本篇主要目标是聚焦于数列放缩,常见的方法有六种,具体我将在文中以实例详细说明.类型1.利用单调性放缩例1.已知数列{}n a 满足11a =,131n n a a +=+(1)设12n n b a =+,证明:{}n b 是等比数列,并求{}n b 的通项公式;(2)证明:12211113nb b b ≤+++< .解析:(1)∵131n n a a +=+,则111322n n a a +⎛⎫+=+ ⎪⎝⎭,即13n n b b +=,又∵111322b a =+=,所以{}n b 是首项为32,公比为3的等比数列,∴32n n b =,故{}n b 的通项公式为32nn b =.(2)由(1)知123n n b =,即1n b ⎧⎫⎨⎩⎭是首项为23,公比为13的等比数列,∴121221133111222111333313nnnn b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++=+++==- ⎪⎝⎭- ,又∵数列113n⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调递增,∴11111133n⎛⎫⎛⎫-≤-< ⎪ ⎪⎝⎭⎝⎭,故12211113nb b b ≤+++< .类型2.先求和再放缩先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.例2.记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式;(2)证明:121112+++< na a a .解析:(1)111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .(2)121111112[]1223(1)+++=+++⨯⨯+ n a a a n n 111112(1)2231=-+-++-+ n n 12(1)21=-<+n .注:111111().n n n n a a d a a ++=-,则:1223111111111......()n n n a a a a a a d a a ++⇒+++=-.可以看到,裂项后一定可以得到一个估计.例3.已知等比数列{}()n a n N*∈为递增数列,且236324,522==+aa a a a .(1)求数列{}n a 的通项公式;(2)设()42n nn b n N a *-=∈,数列{}n b 的前n 项和为n S ,证明:6n S <.解析:(1)由题意,()2251123111522a q a q a q a q a q⎧=⎪⎨=+⎪⎩,解得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或122a q =⎧⎨=⎩,因为等比数列{}()n a n *∈N 为递增数列,所以122a q =⎧⎨=⎩,所以1222n nn a -=⨯=.(2)由(1)知数列{}n b 的前n 项和为:0111322212n n n S -=++-+ ①,112123212122223n n n n n S --=++-++ ②,两式相减可得:1112111112121232212312222211122212n n n n n n n n n S --⎛⎫=+⎛⎫- ⎪--+⎝⎭=+=+++-⎝-⎪⎭-- ,所以12362n n n S -+=-,又因为*n N ∈,所以12302n n -+>,所以123662n n n S -+=-<.类型3.先放缩通项再求和(公众号:凌晨讲数学)这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点.此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩.当然,下面的这些常见的裂项公式与放缩公式需要注意.1.常见的裂项公式:(公众号:凌晨讲数学)例如:n n n n n )1(11)1(12-<<+或者12112-+<<++n n nn n 等2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 这样的话,可得:1)(-->-n nnab a b a ,就放缩出一个等比数列.3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<.下面来看上面这些基本的放缩结构的应用.例4.(2013年广东)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .解析:(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =.(公众号:凌晨讲数学)(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.例5.(2014全国2卷)已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112na a a ++<…+.解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+,又11322a +=,所以1{}2n a +是首项为32,公比为3的等比数列,1322n n a +=,因此{}n a 的通项公式为312n n a -=(2)由(1)知1231nn a =-,因为当1n ≥时,13123n n --≥⨯,所以1113123n n -≤-⨯于是12-112311-1111111313311-13332321-3n n n n a a a a ++++<++++==< (.所以123111132n a a a a ++++< .注:此处13123nn --≥⨯便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 当然,利用糖水不等式亦可放缩:13133132-=<-n n n ,请读者自行尝试.类型4.基于递推结构的放缩1.nnn a a a +=+11型:取倒数加配方法.例6.(2021浙江卷)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100332S <<B.10034S <<C.100942S <<D.100952S <<解析:由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<++⎪⎪⎭12<根据累加法可得,11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++.一方面:252111)1(41002>⇒+-+>+>S n n n a n .另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<.故选:A.2.二次递推型:r qa pa a n n n ++=+21.12121211+++++=-⇒+=-⇒++=n n n n n nn n n nn a a r pa a qa r pa qa a r qa pa a ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.例7.(2015浙江卷)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).分析:=-⇒=-++n n n n n a a a a a 11121211[1,2]1n n n n n na a a a a a +==∈--,累加,则可证得.解析:(1)由题意得210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤.由11(1)n n n a a a --=-得1211(1)(1)...(1)0n n n a a a a a --=--->,由102n a <≤得211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤.(2)由题意得21n n n a a a +=-,所以11n n S a a +=-①,由1111n n n n a a a a ++-=和112n n a a +≤≤得11112n n a a +≤-≤所以11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②由①②得:*11()2(2)2(1)n S n N n n n ≤≤∈++.类型5.数列中的恒成立例8.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+-∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++,所以{}21n a n ++是以12114a +⨯+=为首项,公比为2的等比数列,所以1121422n n n a n -+++=⨯=,所以1221n n a n +=--.(2)()()()231122325221n n n S a a a n +⎡⎤=+++=-+-++-+⎣⎦()()23122235721n n +=+++-+++++ ()()222212321122242n n n n n n +-++=--=---,若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+---+>,可得22222nn n n λ+⋅>+-即2242nn n λ+>-对于任意正整数n 恒成立,所以2max242n n n λ⎡⎤+>-⎢⎥⎣⎦,令()242n nn n b +=-,则21132n n n n b b ++--=,所以1234b b b b <>>>⋯,可得()222max222422n b b +⨯==-=-,所以2λ>-,所以λ的取值范围为()2,-+∞.类型6.利用导数产生数列放缩1.由不等式1ln -≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.例9.(2017全国3卷)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1(1)222n m ++⋅⋅⋅+<,求m 的最小值.解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->,令112n x =+得11ln(1)22n n +<,从而221111111ln(1ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立.进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b->-+,即111ln ln ()2b a b a a b-<+-.令,1a n b n ==+,则111ln(1)ln ()21n n n n +-<++,所以111ln(1)ln (21n n n n +-<++①.(,)L a b<1ln ln ln 2ln (1)a ab x x x b x ⇔-⇔⇔<->其中,接下来令t =2>11(1)n ln n >+,1(n ln n+>②.例10.已知函数(1)()ln(1)1x x f x x xλ+=+-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n n a a n-+>.解析:(1)综上可知,λ的最小值时12.(2)由上述不等式①,所以111ln(1)ln (21n n n n +-<++,111ln(2)ln(1)()212n n n n +-+<+++,111ln(3)ln(2)(223n n n n +-+<+++…,111ln 2ln(21)(2212n n n n--<+-.将以上各不等式左右两边相加得:1122221ln 2ln (2123212n n n n n n n n-<+++++++++- ,即111211ln 22123214n n n n n n<+++++++++- ,故11211ln 212324n n n n n +++++>+++ ,即21ln 24n n a a n-+>.例12.已知函数()ax x f x xe e =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设*n N ∈(1)ln n ++⋯+>+.1()n ln n+>,进一步求和可得:11231((...(1)12nnk k k n ln ln ln n k n==++>=⨯⨯⨯=+∑,...(1)ln n ++.。

用放缩法证明数列中的不等式(超级好!).

用放缩法证明数列中的不等式(超级好!).

1
22
2
2
3 23
3
n 2n
n
2
(n N)
2021/6/22
例1
求证:1 2
1 22
1 23
1 2n
1
(n N)
分析 不等式左边可用等比数列前n项和公式求和.
左边
1 (1 2
1 )
2n
1
1
1
1 1
2n
2
表面是证数列不等式,
实质是数列求和
2021/6/22
变式1
求证:1 2
2 22
3 23
2n n 2n
将通项放缩为 错 位相减模型
左边 1 2 3 n 2 n 2 2
2 22 23
2n
2n
2021/6/22
【方法总结之一】
n
放缩法证明与数列求和有关的不等式,若 ai 可直 i 1
接求和,就先求和再放缩;若不能直接求和的,一般要
先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不
用放缩法证明 数列中的不等式
2021/6/22
常见的数列不等式大多与数列求和或求积有关,
其基本结构形式有如下 4 种:
n
n
①形如 ai k ( k 为常数);②形如 ai f (n) ;
i 1
i 1
n
n
③形如 ai f (n) ;④形如 ai k ( k 为常数).
i1
i1
2021/6/22
思路一 将变式2思路二中通项从第三项才开始放缩.
1 n2
1 n2 1

放缩法技巧和经典例题讲解

放缩法技巧和经典例题讲解

放缩法技巧及经典例题讲解 一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2)<>,11>n >=(3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<=(5)若,,a b m R +∈,则,a a a a mb b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n nnnn n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(10) 12112-+<<++k k k k k【经典回放】例1、设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n+-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 例2:【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S 分析:(1)此时我们不妨设)(2)1(1B An a B n A a n n ++=++++即BA An a a n n +-+=+21与已知条件式比较系数得.0,1=-=B A )(2)1(1n a n a n n -=--∴+又}{,211n a a n -∴=-是首项为2,公比为2的等比数列。

放缩法证明数列不等式的基本策略

放缩法证明数列不等式的基本策略

放缩法证明数列不等式的基本策略放缩法是一种常用的证明数列不等式的有效策略,其基本理论为:当一个数列满足某一条件时,如果从这个数列中选定两个数来构造一
个新的数列,使新的数列也满足这个条件时,这种方法就是放缩法。

借助放缩法,我们可以轻松地证明数组的不等式。

步骤如下:
首先,我们从一个原始数列开始,要求这个数列满足某一条件。

其次,从这个原始数列中选定两个数a和b,令a<b,则定义一个新的,数列为(a+b,a,b)。

第三,我们应用原始数列的某一不等式在新的数列上,也就是说把不等式看作是满足a<b的数列(a+b,a,b)上的一个性质,要求它仍然适用于这个新数列。

第四,假设不等式对原始数列不适用,那么就不可能满足上述性质的要求;反之,如果不等式对原始数列适用,那么我们也可以证明它对新的数列也适用。

第五,此时得出的结
论是:如果某一不等式对原始数列不适用,那么就不可能满足上述性
质的要求;反之,如果原始数列本身就满足某一不等式,那么就可以
说明它也适用于新的数列。

最后,这就是放缩法用来证明数组的不等
式的基本策略。

放缩法不仅可以证明数列的不等式,而且在众多领域也有着广泛的应用,比如在几何几何推理中研究几何不等式,在运筹学中研究多项式不等式等。

通过放缩法,我们可以得到复杂的不等式的证明,从而更加有效地研究出数学不等式,给数学研究者提供了更多的研究思路。

放缩法证明数列的不等式,这几种方式你学会了吗?

放缩法证明数列的不等式,这几种方式你学会了吗?

放缩法证明数列的不等式,这几种方式你学会了吗?
关于数列的不等式证明,一直以来都是老大难问题。

因为部分涉及到放缩技巧,但是放缩有些时候掌控不好尺寸就容易出现错误。

从数列的不等式证明来看,一共是两种方式,一种是直接求和再放缩。

还有一种是先放缩在求和。

那么放缩到底有哪些方式那?主要放缩成成等差数列、等比数列、裂项相消、错位相减(等差数列乘以等比数列)等。

另外放缩的时候,大部分都会留首项或者前两项,防止放缩过大或者过小的问题。

具体类型题
数列的放缩除了以上几种方式,还有比如根据不等式的性质,去构造糖水不等式进行缩放。

无论是哪一种类型题,一定要多去尝试多去做。

而且我们平时考察的题目,大部分是缩放成等差数列或者等比数列。

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。

处理数列型不等式最重要要的方法为放缩法。

放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。

对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。

一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。

裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。

例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =L 。

设2n n nT S =,1,2,3,n =L ,证明:132ni i T =<∑。

证明:易得12(21)(21),3n nn S +=--1132311()2(21)(21)22121n n n n n n T ++==-----, 112231113113111111()()221212212121212121nn i i i n n i i T ++===-=-+-++---------∑∑L=113113()221212n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。

例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。

数列放缩通项证明不等式与数列不等式恒成立问题(解析版)

数列放缩通项证明不等式与数列不等式恒成立问题(解析版)

数列放缩通项证明不等式与数列不等式恒成立问题数列通项放缩问题是放缩问题的常考类型,相较于求和之后再比较大小的题型而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点. 此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩. 当然,下面的这些常见的裂项公式与放缩公式需要注意.目录题型一 通项放缩 (3)题型二 与导数结合的放缩 (8)题型三 数列恒成立问题 (9)1.常见的裂项公式:必须记例如:n n n n n )1(11)1(12−<<+或者12112−+<<++n n n n n 等 2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++这样的话,可得:1)(−−>−n n n a b a b a ,就放缩出一个等比数列. 3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<. 4.利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.常见放缩公式:(太多了,不一定要全部记,自行选择) 一、等差型(1)()()21111211<=−≥−−n n n n n n; (2)()2111111>=−++n n n n n ; (3)2221441124412121 =<=− −−+n n n n n ; (4)()()()11!111112!!!11+=⋅=⋅<<=−≥−−−rr n r r n T C r n r n r n r r r r r; 二、根式型 (5(()22=<=+≥n ; (7(2>=;(8<2=−()22<−≥n;(9<)2==≥n ;三、指数型(10)()()()()()()()1211222211212121212122212121−−−=<==−−−−−−−−−−nn n n n n n n n n n n n()2≥n ;(11)()1111111312231+<+++++< ××−nn n n ; (12)()()01211122221111111=<==−−++−+++−n n n n n C C C n n n n ; (13)()()()111121122121212121−−−<=−≥−−−−−n nn n n n n . (14)=<<.(2021浙江卷)已知数列{}n a满足)111,N n a a n ∗+==∈.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S << D .100952S <<解析:由211111124n n n a a a ++ ==−2111122n a +∴<+⇒<12<11122n n −++=,当且仅当1n =时取等号,112311n n n n a n a a a n n ++∴≥∴=≤=+++. 一方面:252111)1(41002>⇒+−+>+>S n n n a n . 另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S≤−+−+−++−=−<,即100332S <<.故选:A .题型一 通项放缩1.已知1n a n =+,若数列21n a的前n 项和为n T ,求证:23n T <.【详解】证明:由(1)得()*1n a n n =+∈N , 重点题型·归类精讲所以()()()()()22221144411221232123141411na n n n n n n n ==<==− ++++ +++−, 所以()222211*********1222223435577921231nT n n n =+++⋅⋅⋅+<−+−+−+⋅⋅⋅+− ++ +111111111122235577921233233n n n −+−+−+⋅⋅⋅+−=−< +++1121212331333n n n n a +=×<×=+, 所以2341112321111112222111931333333313n n n n a a a a ++− ++++<++++==−<−3.(2014全国2卷)已知312n n a −=,证明:1231112n a a a ++<…+.解析:1231n n a =−,因为当1n ≥时,13123n n −−≥×,所以1113123nn −≤−× 于是2-112311-111111313311-1332321-3n n n na a a a ++++<+++==< (). 所以123111132na a a a ++++< . 注:此处13123n n −−≥×便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++当然,利用糖水不等式亦可放缩:13133132−=<−n n n ,请读者自行尝试.4.已知21na n =−,{}n a 的前n 项和为n S ,0nb >,2121n n b S +=+,数列{}n b 的前n 项和为n T ,证明:1n T n <+.【详解】2n S n =,则21(1)n S n +=+,2221(1)n b n =++.22223(1)nn n b n ++=+,则n b =∴()()211121n b n n −=<=+⋅+ 2111(1)1n n n <−++.∴121111n n T b b b n n n =+++<+−<++5) A .3 B .4 C .5 D .6 【答案】B【分析】注意到据此可得答案. 【详解】..故,即整数部分为4.<>< 152<> 12>−+−+−++−92>=952<<2023届·广东省综合素质测试(光大联考)【详解】(1)当2,N n n ∗≥∈时,由22211121211n n n n n n n n n n a a S S S S S S S S −−−−−=−⇒=−⇒−=, 所以数列{}2n S 是等差数列;(2)112211211S S S S =−⇒=,由(1)可知数列{}2n S 是等差数列,且公差为1, 所以21(1)1n Sn n =+−⋅=,又因为数列{}n a 是正项数列,所以=n S,即1n S=,1001)1)1)18T >−+++> .2024届·广州·仲元中学校考7.已知是公差为2的等差数列,其前8项和为是公比大于0的等比数列,, (1)求和的通项公式: (2)记,证明: 【答案】(1), (2)证明见解析【分析】(1)由等差数列与等比数列的性质求解, (2)由放缩法与错位相减法求和证明. 【详解】(1)对于等差数列,,而,解得,故, 对于等比数列,,则,而公比,解得,故 (2)令,则,两式相减得, 得,故,原式得证{}n a {}64.n b 14b =3248.b b −={}n a {}n b *21,N n n n c b n b =+∈)*N n k n =<∈21na n =−4n nb ={}n a 81878642S a d ×=+=2d =11a =21na n =−{}nb 14b =232)484(b q b q −=−=0q >4q =4n n b =2144nn n c =+<212222n n S =+++ 2311122222n nS +=+++ 2111111112222222n n n n n n S ++=+++−=−− 112222n n nS −=−−<nk =<<【详解】121212311n n n T a a a n n =⋅⋅⋅⋅⋅⋅=××⋅⋅⋅×=++.所以2221222211123(1)n n S T T T n =+++=++++ 111111111112334(1)(2)23341222n n n n n >++=−+−++−=−××+++++ . 又因为11111122222n n a n n ++−=−=−++, 所以112n n S a +>−.【分析】当1n =时,验证所证不等式成立,当2n ≥时,由放缩法可得出11134n n b −≤⋅,再结合等比数列求和公式可证得原不等式成立,综合可得出结论.【详解】解:由141nn n b na =−=−,所以,1111441344134n n n n n b −−−−=⋅−=⋅+−≥⋅, 所以,11134n n b −≤⋅, 当1n =时,111439b =<, 当2n ≥时,211211*********144111344394914nn nn b b b −⋅−+++<++=⋅=−<− . 综上所述,对任意的n ∗∈N ,1211149n b b b +++< .10.已知11223n n n a ++=−,若2nn n b a a =−,n S 为n b 的前n 项和,证明:1215n S ≤<. 【解析】11223n n n a ++=− ,2n n nb a a =−,111211112223123232323n n n n n n n n n n b a a +++++++ ∴=−−=× −−−− =, 11111123N ,230,0,122323n n n n n n n b S S b +∗+++∈−>∴=×>∴≥==−− ,1111112323116,232323232323n n n n n n n n n b ++++++ ×<×− −−−−−−21224121525S b b ∴=+=+<,123445131N ,3,1111116232323232323241124654126121215,25232325525n n n n n n S b b ∗++∴∈≥ <++−+−++−−−−−−− =++−=++=+<−− 1215n S ∴≤<.题型二 与导数结合的放缩利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n n n n ,1)11ln(11.11.(2017全国3卷)已知函数()1ln f x x a x =−−. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值. 解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x −−>,令112nx =+得11ln(1)22n n +<,从而221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=−<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b − ≠=− = 对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立. 进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b−>−+,即111ln ln ()2b a b a a b −<+−.令,1a n b n ==+,则111ln(1)ln ()21n n n n +−<++,所以111ln(1)ln ()21n n n n +−<++①.(,)L a b <1ln ln ln 2ln (1)a a b x x x b x ⇔−<⇔<⇔<−=>其中,接下来令t=2−>1(1)lnn>+,1()nlnn+>②.12.已知函数(1)()ln(1)1x xf x xxλ++−+,设数列{}na的通项111123nan=++++,证明:21ln24n na an−+>.解析:由上述不等式①,所以111ln(1)ln()21n nn n+−<++,111ln(2)ln(1)()212n nn n+−+<+++,111ln(3)ln(2)()223n nn n+−+<+++…,111ln2ln(21)()2212n nn n−−<+−.将以上各不等式左右两边相加得:1122221ln2ln()2123212n nn n n n n n−<+++++++++−,即111211ln22123214n n n n n n<+++++++++−,故11211ln212324n n n n n+++++>+++,即21ln24n na an−+>.13.已知函数()ax xf x xe e=−.(1)当1a=时,讨论()f x的单调性;(2)当0x>时,()1f x<−,求a的取值范围;(3)设*n N∈(1)ln n+…+>+.【答案】(31()nlnn+>,进一步求和可得:11231()(...)(1)12n nk kk nln ln ln nk n=++>=×××=+∑, (1)ln n+>+.题型三数列恒成立问题14.已知等差数列{}n a的前n项和记为n S(*n∈N),满足235326a a S+=+,数列{}n S为单调递减数列,求1a的取值范围. 【答案】(),2−∞【分析】设等差数列{}n a 的公差为d ,由已知可得2d =−,求得n S ,由数列的单调性列不等式即可得1a 的取值范围;【详解】设等差数列{}n a 的公差为d ,由于235326a a S +=+, 所以()()1113225106a d a d a d +++=++,解得2d =−, 所以()()211112n n n S na d n a n −=+=−++,若数列{}n S 为单调递减数列,则10n n S S +−<对于*n ∈N 恒成立,所以()()()()221111111120n n S S n a n n a n a n + −=−++++−−++=−<在*n ∈N 上恒成立, 则12a n <,所以()1min 2a n <,又数列{}2n 为递增数列,所以()min 2212n =×=,即12a <, 故1a 的取值范围为(),2−∞15.已知数列{}n a 满足:11a =,12n n a a +=.设()232n n b nn a −−⋅,若对于任意的N n ∗∈,n b λ≤恒成立,则实数λ的取值范围为 【答案】1,2+∞【分析】由11a =,12n n a a +=可得112n n a −=,进而得到21322n n n n b −−−=,结合()152n nnn n b b +−−=−,分15n ≤≤和6n ≥分类讨论,确定数列{}n b 的单调性,求出n b 最大值,进而得解.【详解】由数列{}n a 满足11a =、1n n a a +=得:{}n a 是首项为1,公比为12的等比数列, ∴112n n a −=,∴21322n n n n b −−−=,∴()()()22111312532222n nn n nn n n n n n b b +−+−+−−−−−=−=−, 当15n ≤≤时,10n n b b +−≥,∴1n n b b +≥,当且仅当5n =时取等号,65b b =, 当6n ≥时,10n n b b ,∴1n n b b +<,当5n ≤时,数列{}n b 单调递增,当6n ≥时,数列{}n b 单调递减,则当5n =或6n =时,()24max 2512152n b −==−, 而任意的N n ∗∈,n b λ≤恒成立,则12λ≥,∴实数λ的取值范围为1,2+∞.16.已知数列{an }对任意m ,n ∈N *都满足am +n =am +an ,且a 1=1,若命题“∀n ∈N *,λan ≤2n a +12”为真,则实数λ的最大值为 . 【答案】7【分析】先求出{}n a 的通项公式,然后参变分离转化为求最值【详解】令m =1,则a n+1=a n +a 1,a n+1-a n =a 1=1,所以数列{a n }为等差数列,首项为1,公差为1,所以a n =n , 所以λa n ≤2n a +12⇒λn ≤n 2+12⇒λ≤n +12n, 又函数12y x x=+在(0,上单调递减,在)+∞上单调递增, 当3n =或4n =时,min 12()7n n+=所以7λ≤【分析】先由题设求得n a ,然后利用数列的单调性求得其最大值,把对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立转化为12k λλ<+对任意0λ>恒成立,再利用基本不等式求得12λλ+的最小值,即可得到答案.【详解】由()()211231222113n n a a a a n n n −++++=+− , 当2n ≥时,()()2212311222123n n a a a a n n n −−++++=−− , 两式相减可得:()()()()()112111213n n a n n n n n n n n −=+−−−−=−, ∴()112n n n n a −−=,由10a =,显然成立, 设()()22211112232222n nnn n nn n n n n n n n n na a +−+−+−+−+−=−==, ∴当03n <≤时,10n n a a +−>,当4n ≥时,10n n a a +−<,因此,03n <≤,数列{}n a 单调递增,当4n ≥时,数列{}n a 单调递减, 由332a =,432a =,故当3n =或4n =时,数列{}na 取最大值,且最大值为32,对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立,可得2322k λλ−+>, 因此,212k λλ<+,即12k λλ<+对任意0λ>恒成立,由12λλ+≥12λλ=,即λ=min 12k λλ <+ ∴实数k 的取值范围是(−∞.18.已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是 .【答案】15,4 +∞【分析】先分离参数将问题转化为232n n n λ+≤对于任意*n ∈N 恒成立,进而转化为2max 3()2n n n λ+≤,构造232n nn nb +=,再作差判定单调性求出数列{}n b 的最值,进而求出λ的取值范围. 【详解】因为23n a n n =+,且2nn a λ≤对于任意*n ∈N 恒成立,所以232nn n λ+≤对于任意*n ∈N 恒成立,即2max 3()2n n n λ+≤, 令232n nn n b +=,则2221113(1)(1)3354222n nn n n n n n n n n b b +++++++−++−=−=, 因为21302b b −=>,32104b b −=>,43102b b −=−<, 且21135402n nn n n b b ++−++−=<对于任意3n ≥恒成立, 所以12345b b b b b <<>>>⋅⋅⋅,即2max 3315()24nn n b +==, 所以实数λ的取值范围是15,4+∞【分析】利用11,1,2n n n S n a S S n −= =−≥ ,得到118a =,1433nn n a a −=×−,变形后得到3n n a 是等差数列,首项为6,公差为4,从而求出()423nn a n =+⋅,故代入n a ≥3n n ≥,利用作差法得到3n n 单调递减,最小值为13,列出不等式求出答案.【详解】当1n =时,2111332a S a ==−,解得:118a =, 当2n ≥时,111333322n n n n n n n a S a a S −−+==−+−−, 整理得1433nn n a a −=×−,方程两边同除以3n ,得11343n n nn a a −−−=,又163a =,故3n n a 是等差数列,首项为6,公差为4, 所以()123644nnn n a =+−=+, 故()423n n a n =+⋅,经验证,满足要求,所以n a ≥为()423nn +⋅≥故3nn≥,对任意N n +∈恒成立, 111113123333n n n n n n n n n+++++−−−==,当1n ≥时,111120333n n n n n n +++−−=<, 故1133n n n n ++<, 3n n 单调递减,当1n =时,3nn 取得最大值13,故13≥,解得:136k ≥, 则k 的最小值为136【分析】先利用等差数列通项公式求解n a ,再利用数列的单调性求解数列()()221212n n n b n −−=−⋅的最大值,进而解决不等式恒成立问题即可.【详解】由()*122n n n a a a n ++=+∈N 可知数列{}n a 是等差数列,设其公差为d , 解方程218650x x −+=得5x =或13x =,又73a a >, ∴37513a a ==,,73135424d a a d −−=∴== ,, ()52321n a n n ∴=+−=−.由()()2241n n n a a λ−>−得()()()2224212n n n λ>−−−,()()2212142n n n λ−−>−∴−,设()()221212n n n b n −−=−⋅, 则()()()()2232111221252212212412n n n n n n n n n b b n n n −+−−−−+−−=−=+⋅−⋅−⋅,由()21412n n −−⋅>0对于任意*n ∈N 恒成立,所以只考虑32252n n −+−的符号,设()()322521f n n n n =−+−≥,()()2610235f n n n n n ′=−+=−−, 令()0f n ′>解得513n ≤<,即()f n 在513n ≤<上单调递增, 令()0f n ′<解得53n >,即()f n 在53n >上单调递减,()11f =,()22f =,()311f =−,当3n ≥,()()30f x f ≤<,当1n =,2n =时,()0f n >,即10n n b b +−>,123b b b ∴<<, 当3n ≥,()0f x <,即()221132520412n n n n n b b n +−−+−−=<−⋅, 即从3n ≥,n b 开始单调递减, 即325≤=n b b ,245λ∴−>,即185λ<,λ∴的取值范围为185−∞ ,.解:14122n n nb n na −−−=, 则()()211112135222n n nT −−=−+−×+−×++ ,则()2111132121322222n n n n n T −−−=−×+−×+++ , 两式相减得:()()2312111111112121122212()123+122222222212nn n n n n n n n n T −−−−−−=−+−×++++−=−+−×−=−−− 于是得3112126+2n n n n T −−−=−−, 由1361122n nn T +>−+得:12512n n −+<,即12250n n −−−>,令1225n n c n −−−,N n ∗∈, 显然,16c =−,27c =−,37c =−,45c =−,51c =,由111(227)(225)220n n n n n c c n n −−+−=−−−−−=−>,解得2n >,即数列{}n c 在3n ≥时是递增的,于是得当12250n n −−−>时,即510n c c ≥=>,5n ≥,则min 5n =, 所以不等式1361122n nn T +>−+成立的n 的最小值是5.22.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+−∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++, 所以{}21n a n ++是以12114a +×+=为首项,公比为2的等比数列, 所以1121422n n n a n −+++=×=,所以1221n n a n +−−.(2)()()()231122325221n n n S a a a n + =+++=−+−++−+ ()()23122235721n n ++++−+++++ ()()222212321122242n n n n n n +−++=−−−−−, 若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+−−−+>,可得22222n n n n λ+⋅>+−即2242nn n λ+>−对于任意正整数n 恒成立, 所以2max 242n n n λ +>− ,令()242n n n n b +=−,则21132n n n n b b ++−−=, 所以1234b b b b <>>>…,可得()222max222422n b b +×==−=−,所以2λ>−,所以λ的取值范围为()2,−+∞。

放缩法证明数列不等式典例精讲

放缩法证明数列不等式典例精讲

放缩法证明数列不等式典例精讲1.已知数列a n 的前n 项和为S n ,若4S n =2n -1 a n +1+1,且a 1=1(1)求证:数列a n 是等差数列,并求出a n 的通项公式(2)设b n =1a n S n ,数列b n 的前n 项和为T n ,求证:T n <32解:(1)4S n =2n -1 a n +1+1∴4S n -1=2n -3 a n +1n ≥2∴4a n =2n -1 a n +1-2n -3 a n n ≥2即2n +1 a n =2n -1 a n +1⇒a n +1a n =2n +12n -1∴a n a n -1=2n -12n -3,a n -1a n -2=2n -32n -5,⋯,a 3a 2=53∴a n a n -1⋅a n -1a n -2⋅⋯⋅a 3a 2=2n -12n -3⋅2n -32n -5⋅⋯⋅53即a n a 2=2n -13n ≥2 ∴a n =2n -13a 2,由4S n =2n -1 a n +1+1令n =1可得:4S 1=a 2+1⇒a 2=3∴a n =2n -1n ≥2 ,验证a 1=1符合上式∴a n =2n -1S n =n 2(2)由(1)得:b n =12n -1 n 2=1n 2n -1 b 1=1可知当n ≥2时,b n =1n 2n -1 <1n 2n -2 =12n n -1=121n -1-1n ∴T n =b 1+b 2+⋯+b n <b 1+121-12 +12-13+⋯+1n -1-1n=1+121-1n <32不等式得证2.设数列a n 满足:a 1=1,a n +1=3a n ,n ∈N ∗,设S n 为数列b n 的前n 项和,已知b 1≠0,2b n-b 1=S 1⋅S n ,n ∈N ∗(1)求数列a n ,b n 的通项公式(2)求证:对任意的n ∈N ∗且n ≥2,有1a 2-b 2+1a 3-b 3+⋯+1a n -b n<32解:(1)∵a n +1=3a n ∴a n 为公比是3的等比数列∴a n =a 1⋅3n -1=3n -1在b n 中,令n =1,2b 1-b 1=S 1⋅S 1⇒b 1=1∴2b n -1=S n 2b n -1-1=S n -1∴2b n -2b n -1=b n n ≥2 ⇒b n =2b n -1∴b n 是公比为2的等比数列∴b n =b 1⋅2n -1=2n -1(2)证明:1a n -b n =13n -1-2n -1<13n -21a 2-b 2+1a 3-b 3+⋯+1a n -b n<1+13+⋯+13n -2=1⋅1-13n -11-13=321-13n -1<323.已知正项数列a n 的前n 项和为S n ,且a n +1a n=2S n ,n ∈N ∗(1)求证:数列S 2n 是等差数列(2)记数列b n =2S 3n ,T n =1b 1+1b 2+⋯+1b n ,证明:1-1n +1<T n ≤32-1n解:(1)a n +1a n =2S n ⇒S n -S n -1+1S n -S n -1=2S n n ≥2∴1S n -S n -1=S n +S n -1∴S 2n -S 2n -1=1∴S 2n 为等差数列(2)思路:先利用(1)可求出S n 的公式进而求出b n =2n n ,则1b n =12n n,考虑进行放缩求和,结合不等号的方向向裂项相消的形式进行放缩。

数列不等式证明的十种放缩技巧

数列不等式证明的十种放缩技巧

数列不等式证明的十种放缩技巧
数列不等式的证明是高中数学教学的重点和难点,也是历年高考考查的热点,虽然现在高考对数列考察的难度有所降低,但该类问题依旧是考察的重点.证明此类不等式最常用的手段是放缩策略,但放缩策略的思维跨度大、构造性强,除要求解题者时刻注意把握好放缩的“尺度”外,还需要具有较强的拆分组合能力,本文结合新课程介绍数列不等式证明中的十种放缩技巧,供师生参考.
用通项放缩技巧证明数列不等式的关键在于观察通项特征和所证结论,适当调整放缩幅度,做到放缩得恰到好处,同时还要做到放缩求和两兼顾.将不等式加强主要是为了方便使用数学归纳法证明不等式,加强不等式的形式有多种,解答时要注意观察不等式的结构,仔细推敲,大胆猜想,找出简洁合理的加强方式加以证明.。

专题10 放缩法证明数列不等式之常数型与函数型(解析精编版)

专题10 放缩法证明数列不等式之常数型与函数型(解析精编版)

专题10 放缩法证明数列不等式之常数型与函数型答案◆题型一:放缩法证明数列不等式之常数型类型一:裂项放缩【经典例题1】【解析】因为()()2211111211n n n n n n n n<==-≥---,所以2222222211111111111111..........11.....=22123122332231n n n n n n++++<++++=+-+-++--<----,所以原式得证. 为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以222222221111111111111111........11....1231213112324351n n n n ⎛⎫++++<++++=+-+-+-+- ⎪----⎝⎭11117=112214n n ⎛⎫++--< ⎪+⎝⎭,所以原式得证.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以 222222222111111111111111111........1....12312311222435461n n n n ⎛⎫++++<++++=++-+-+-++- ⎪---⎝⎭11111151115=1=422313213n n n n ⎛⎫⎛⎫+++---+< ⎪ ⎪++⎝⎭⎝⎭,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项. 【经典例题2】【解析】已知2,2n n na b n ==,因为 222441122(21)2(21)(21)(21)2121n c n n n n n n n n n n ⎛⎫===<=- ⎪+++-+-+⎝⎭所以1221111112224233557212133132n c c c n n n ⎛⎫+++<+-+-++-=+-< ⎪-++⎝⎭,故不等式得证. 【经典例题3】【答案】(1)n a n =;(2)证明见解析. 【详解】(1)由题意11n n a na n -=-(2n ≥),∴321121231121n n n a a a na a n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=-,11a =也适合. 所以n a n =(*n N ∈); (2)由已知1125312b =<,214251312b b =+=<,32214119252341212b b =+=+=<, 当3n ≥时,121111(1)1n n b b n n n n n+-=<=---, 因此1343541()()()n n n b b b b b b b b ++=+-+-++-1911111125125()()()12233411212n n n <+-+-++-=-<-, 则1212512n n b b n +=-<综上,2512n b <. 类型二:等比放缩【经典例题4】【解析】令121n na =-,则1111212111212222n n n n n n n n a a a a ++++--=<=⇒<-- 又因为1211,3a a ==,由于不等式右边分母为3 ,因此从第三项开始放缩,得21121222111115321122312n n n a a a a a a a --⎛⎫- ⎪⎛⎫⎝⎭+++<++++=+<⎪⎝⎭-故不等式得证.【经典例题5】【答案】(1)证明见解析,2nn a n =⋅;(2)1(1)22n n S n +=-+;(3)证明见解析.【详解】(1)证明:11111211222222n n n n n n n n n n n n na a a a a a ++++++-==+-=,∴2n n a ⎧⎫⎨⎬⎩⎭是首项为1112a =,公差为1的等差数列,∴1(1)12n n a n n =+-=,∴2n n a n =⋅. (2)∵1231222322n n S n =⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅,∴234121222322n n S n +=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅,两式相减得:123122222n n n S n +-=+++⋅⋅⋅⋅⋅⋅-⋅,()1212212n n n n S +-=-⋅--,∴1(1)22n n S n +=-+.(3)证明:∵2n n a n =⋅,∴11(1)2n n a n ++=+⋅,∴1(2)2n n n a a n +-=+⋅,当*n N ∈时,22n +>,∴1(2)22n n n ++⋅>,∴111(2)22n n n +<+⋅,∴21324311111n n a a a a a a a a ++++⋅⋅⋅⋅⋅⋅----234111112222n ++++⋅⋅⋅⋅⋅⋅<111421111122212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-.【练习1】【答案】(1)证明见解析;(2)证明见解析【解析】(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.【练习2】【答案】(1)()*1n a n n N =+∈.(2)见解析【解析】(1)当1n =时,111112S a a =+-,即12a =,当2n ≥时,112n n n S na a =+-①,()1111112n n n S n a a ---=-+-②,①-②,得:()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+, 11n n a a n n -∴=+,且112a =,∴数列1n a n ⎧⎫⎨⎬+⎩⎭是以每一项均为1的常数列,则11n a n =+,即()*1n a n n N =+∈;(2)由(1)得1n a n =+,()()2222211221na n n n n n ∴=<=-+++,11111111113113243522122n T n n n n ∴<-+-+-++-=+--<+++. 【练习3】【答案】(1)见解析;(2)见解析 【解析】(1)由函数()32xf x x=-,在数列{}n a 中,若1()n n a f a +=,得:132n n n a a a +=-,上式两边都倒过来,可得:11n a +=32n n a a -=3n a ﹣2,∴11n a +﹣1=3n a ﹣2﹣1=3n a ﹣3=3(1n a ﹣1).∵11a ﹣1=3.∴数列11n a ⎧⎫-⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)由(1),可知:11n a -=3n ,∴a n =131n +,n ∈N*.∵当n ∈N*时,不等式131n +<13n成立. ∴S n =a 1+a 2+…+a n =2121111111 (313131333)n n +++<++++++=11133113n⎛⎫⋅- ⎪⎝⎭-=12﹣12•13n <12.∴1S 2n<.【练习4】【答案】(1)12bnn b +<;(2)证明见解析.【详解】(1)2()2f x x x ∴=-,故22n S n n =-,当2n ≥时,123n n n a S S n -=-=-,当1n =时,111a S ==-适合上式,因此()*23n a n n N =-∈.从而1,1,22n b nn n b n b n +==+=,当2n ≥时,()01211 1nn n n C C n =+=++⋯>+故122n b n n b +<=(2)1n n c b n==11c =()*2(1),21n n n N n n n n n n =<=-∈≥++- )12400 (12)21232 (2)400399c c c +++<++++400139==.◆题型二:放缩法证明数列不等式之函数型【经典例题1】【解析】(1)由题可知()*111322n n a a n N +⎛⎫-=-∈ ⎪⎝⎭,从而有11113,12n n b b b a +==-=,所以{}n b 是以1为首项, 3为公比的等比数列.(2)由(1)知13n n b -=,从而1132n n a -=+,131log 32n n c -⎛⎫=+ ⎪⎝⎭设(1)2n n -为数列n d 的前n 项和n Q ,欲证(1)2n n n T ->,只需证n n c d >.当1n =时,经检验成立当2n ≥时,()()112(1)122n n n n n n n d Q Q n ----=-=-=-易证11331log 3log 312n n n --⎛⎫+>=- ⎪⎝⎭,所以n n c d >.所以(1)2n n n T ->. 【经典例题2】【答案】(1)2n a n =,N n *∈;(2)证明见解析.【解析】(1)当2n ≥时,()21n n S n a =+,-112n n S na -=,两式相减得:()121n n n a n a na -=+-,整理可得:1=1n n a a n n --,而1=21a ,所以{}n a n 是首项为2,公比为1的等比数列,故2n a n=,即2n a n =,N n *∈. (2)1n +n b 的前n 项积n T ,欲证12121111n n a a a n a a a +++⨯⨯⨯>+只需证1nn n a b a +>.当1n =时,322>.当2n ≥时,11n n n T n b T n -+=2212144124n na n n n n a n n n ++++=12121111n n a a a n a a a +++⨯⨯⋯⨯+.得证. 【练习1】【解析】不等式左边是1n -个式子的乘积,所以也将不等式右边的1n看成1n -个式子的乘积,作商求通项. 令112311n n T a a a a n --=⋅⋅⋅=,则1121(3)n n n T n a n T n ----==,显然只需证ln 1n n n n-<,即ln 1n n <-. 通过构造函数ln 1(1)x x x <->证明. 令()ln 1(1)f x x x x =-+>,则11()10(1)xf x x xx-'=-=<>, 因此()f x 在(1,)+∞上单调递减,所以()(1)0f x f <=,即ln 10(1)x x x -+<>, ∴ln 1(1)x x x <->.该不等式显然成立,累乘可得ln 2ln 3ln 4ln 1(3)234n n n n ⋅⋅⋅⋅<,而当2n =时, ln 212<,显然成立.故不等式得证.【练习2】【答案】(1)221,n n a n S n =-=(n *∈N )(2)证明见解析【解析】(1)解:设数列{}n a 公差为d , 因为2a ,5a ,14a 成等比数列.所以25214a a a =,即()()()2141113d d d +=++,得2360d d -=,又0d ≠,所以2d =. 故()()212112121,2n n n n a n n S n +-=+-=-== (n *∈N ),(2)设3121n -+为数列n b 的前n 项和n T ,12n-为数列n c 的前n 项和n Q . 欲证1233111111221n n S S S S n -<++++<-+,只需证1n n nb c S <<. 当2n ≥时,()1313112121n n n b T T n n n n -=-=--+=++ ()11112211n n n c Q Q n n n n -=-=--+=-- 因为211n S n=, 易证()()211111n n n n n <<+-.,所以1n n nb c S <<.,即1233111111221n n S S S S n-<+++⋯+<-+. 【练习3】【答案】(1)证明见解析 (2)证明见解析【解析】(1)∵22010,2(1)()n n a a a n n +=-=+∈N , ∴20242(1)n a n n n =++++=+,∴121221,11n n n n a a a n a n +++=+=++ ∴211n n n na a a a +++<. (2)设ln n 为数列nb 的前n 项和n T ,欲证23111ln nn a a a +++<,只需证1n n b a <.()1ln ln 1ln 1n n n n b T T n n n -⎛⎫=-=--= ⎪-⎝⎭∵(1)n a n n =+11n a n<, ∴2311111123n a a a n+++<+++. 接下来需要证明1ln 1n n n ⎛⎫< ⎪-⎝⎭通过构造函数ln 1(1)x x x <->证明. 令()ln 1(1)f x x x x =-+>,则11()10(1)xf x x xx-'=-=<>, 因此()f x 在(1,)+∞上单调递减,所以()(1)0f x f <=,即ln 10(1)x x x -+<>, ∴ln 1(1)x x x <->,∴1ln 1(1)x x x >-≠,∴11ln 11n n n n n->-=-, ∴23111111ln 23nn n a a a >+++>+++ 【练习4】【答案】(1)n a n =,()12n n n S +=;(2)证明见解析. 【解析】(1)解:当2n =时,222122a a S -==,因为20a >,解得22a =;当3n ≥时,由212n n n a a S --=可得21122n n n a a S ----=,上述两个等式相减可得221112n n n n n a a a a a -----+=,所以,()()1110n n n n a a a a --+--=,对任意的N n *∈,0n a >,故11n n a a --=且211a a -=,故数列{}n a 为等差数列,且该数列的首项和公差均为1,故11n a n n =+-=, 所以,()12n n n S +=. (2)设231n n +为数列n d 的前n 项和n c ,欲证231n nT n ≥+,只需证n n b d ≥.当1n =时,11b d ≥成立. 当2n ≥时, ()()1222233132312n n n n n d c c n n n n --=-=-=+-+- ()21211221n n nb a a n n -==⋅-,因为()()()()()21232312213231n b n n n n n n -=--+--+()()()()()()()()()()()()()()232314211220221323122132312213231n n n n n n n n n n n n n n n n n n n n -+---++-===≥--+--+--+, 所以,()()()2121122213231n n nb a a n n n n -==≥⋅--+,因此,231n n T n ≥+.。

微专题12 数列中的不等式证明及放缩问题

微专题12 数列中的不等式证明及放缩问题

微专题12 数列中的不等式证明及放缩问题数列中的不等式证明问题的常用放缩技巧(1)对1n 2的放缩,根据不同的要求,大致有三种情况(下列n ∈N *): 1n 2<1n 2-n =1n -1-1n (n ≥2); 1n 2<1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1(n ≥2); 1n 2=44n 2<44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1(n ≥1). (2)对12n的放缩,根据不同的要求,大致有两种情况(下列n ∈N *): 12n>1n +n +1=n +1-n (n ≥1); 12n<1n +n -1=n -n -1(n ≥1).类型一 关于数列项的不等式证明(1)结合“累加”“累乘”“迭代”放缩;(2)利用二项式定理放缩;(3)利用基本不等式或不等式的性质;(4)转化为求最值、值域问题. 例1 设正项数列{a n }满足a 1=1,a n +1=a n +1a n(n ∈N *).(1)求证:2<a 2n +1-a 2n ≤3;(2)求证:3n -13n -2≤a n +1a n≤2n2n -1. 证明 (1)因为a 1=1及a n +1=a n +1a n(n ≥1),所以a n ≥1,所以0<1a 2n≤1.因为a 2n +1=⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2, 所以a 2n +1-a 2n=1a 2n+2∈(2,3],即2<a 2n +1-a 2n ≤3. (2)由(1)得2<a 22-a 21≤3, 2<a 23-a 22≤3, 2<a 24-a 23≤3,⋮2<a 2n +1-a 2n ≤3,故2n <a 2n +1-a 21≤3n , 所以2n +1<a 2n +1≤3n +1, 即2n -1<a 2n ≤3n -2(n ≥2),而n =1时,也满足2n -1≤a 2n ≤3n -2, 所以2n -1≤a 2n ≤3n -2,所以a n +1a n =1+1a 2n∈⎣⎢⎢⎡⎦⎥⎥⎤3n -13n -2,2n 2n -1. 即3n -13n -2≤a n +1a n ≤2n2n -1.训练1 (2022·天津模拟)已知数列{a n }满足a n =n n -1a n -1-13n ·⎝ ⎛⎭⎪⎫23n(n ≥2,n ∈N *),a 1=49.(1)求数列{a n }的通项公式;(2)设数列{c n }满足c 1=12,c n +1=⎝ ⎛⎭⎪⎫23k +1a k ·c 2n +c n ,其中k 为一个给定的正整数,求证:当n ≤k 时,恒有c n <1.(1)解 由已知可得:a n n =a n -1n -1-13⎝ ⎛⎭⎪⎫23n(n ≥2), 即a n n -a n -1n -1=-13⎝ ⎛⎭⎪⎫23n,由累加法可求得a n n =⎝ ⎛⎭⎪⎪⎫a n n -a n -1n -1+⎝ ⎛⎭⎪⎪⎫a n -1n -1-a n -2n -2+…+⎝ ⎛⎭⎪⎫a 22-a 11+a 11=-13⎝ ⎛⎭⎪⎫23n -13⎝ ⎛⎭⎪⎫23n -1-…-13⎝ ⎛⎭⎪⎫232+49=⎝ ⎛⎭⎪⎫23n +1,即a n =n ⎝ ⎛⎭⎪⎫23n +1(n ≥2),又n =1时也成立,故a n =n ⎝ ⎛⎭⎪⎫23n +1(n ∈N *).(2)证明 由题意知c n +1=1k c 2n +c n , ∴{c n }为递增数列, ∴只需证c k <1即可. 当k =1时,c 1=12<1成立,当k ≥2时,c n +1=1k c 2n +c n <1k c n c n +1+c n , 即1c n +1-1c n>-1k ,因此1c k =⎝ ⎛⎭⎪⎫1c k-1c k -1+…+⎝ ⎛⎭⎪⎫1c 2-1c 1+1c 1>-k -1k +2=k +1k , ∴c k <kk +1<1,∴当n ≤k 时,恒有c n <1. 类型二 对求和结论进行放缩对于含有数列和的不等式,若数列的和易于求出,则一般采用先求和再放缩的策略证明不等式.例2 已知数列{a n }满足a 1=2,(n +1)a n +1=2(n +2)a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n 是数列{a n }的前n 项和,求证:S n <2a n . (1)解 法一 由题意得a n +1n +2=2·a nn +1, 又a 11+1=1, 所以数列⎩⎨⎧⎭⎬⎫a n n +1是首项为1,公比为2的等比数列, 所以a nn +1=2n -1,所以a n =(n +1)·2n -1(n ∈N *). 法二 由题意得a n +1a n =2(n +2)n +1,所以a n a 1=a n a n -1·a n -1a n -2·…·a 2a 1=2(n +1)n ·2n n -1·2(n -1)n -2·…·2×32=(n +1)·2n -2.因为a 1=2,所以a n =(n +1)·2n -1(n ∈N *). (2)证明 因为a n =(n +1)·2n -1,所以S n =2×20+3×21+4×22+…+n ·2n -2+(n +1)·2n -1,① 2S n =2×21+3×22+…+(n -1)×2n -2+n ×2n -1+(n +1)×2n ,② ②-①得S n =-2×20-(21+22+…+2n -1)+(n +1)×2n =n ·2n . 因为S n -2a n =n ·2n -(n +1)2n =-2n <0, ∴S n <2a n .训练2 (2022·广州模拟)在各项均为正数的等比数列{a n }中,a 1=2,-a n +1,a n ,a n +2成等差数列.等差数列{b n }满足b 1=a 2+1,2b 5-3b 2=a 3-3. (1)求数列{a n },{b n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(2n +1)b n 的前n 项和为T n ,证明:T n <16.(1)解 设等比数列{a n }的公比为q (q >0), 因为-a n +1,a n ,a n +2成等差数列, 所以2a n =a n +2-a n +1, 所以2a n =a n ·q 2-a n ·q .因为a n >0,所以q 2-q -2=0, 解得q =2或q =-1(舍去), 又a 1=2,所以a n =2n (n ∈N *). 设等差数列{b n }的公差为d , 由题意,得b 1=a 2+1=5, 由2b 5-3b 2=a 3-3=5,得2(b 1+4d )-3(b 1+d )=-b 1+5d =-5+5d =5,解得d =2, 所以b n =b 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *). (2)证明1(2n +1)b n =1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3).因为n ∈N *,所以12(2n +3)>0,所以T n <16.类型三 对通项公式放缩后求和在解决与数列的和有关的不等式证明问题时,若不易求和,可根据项的结构特征进行放缩,转化为易求和数列来证明.例3 (2022·济南模拟)在数列{a n }中,a 1=2,2na n +1=(n +1)·a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =a 2n16n 2-a 2n ,若数列{b n }的前n 项和是T n ,求证:T n <12. (1)解 由题知2na n +1=(n +1)a n , 所以a n +1n +1=12×a n n ,a 11=2,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,所以a n =n ·22-n (n ∈N *). (2)证明 由(1)可知a n =n ·22-n ,所以b n =a 2n 16n 2-a 2n =14n -1=12n +1×12n -1,根据指数增长的特征知,对任意n ∈N *, 2n ≥2n 恒成立,所以22n ≥(2n )2,即4n ≥4n 2.所以14n -1≤14n 2-1=12⎝⎛⎭⎪⎫12n -1-12n +1, 所以b n ≤12⎝⎛⎭⎪⎫12n -1-12n +1, 所以数列{b n }的前n 项和T n ≤12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12. 训练3 已知数列{a n }的前n 项和为S n ,3a n =2S n +2n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的前n 项和S n , (2)设b n =log 3(a n +1+1),证明:1b 21+1b 22+…+1b 2n<1.证明 (1)∵3a n =2S n +2n ,n ∈N *, ∴当n =1时,3a 1=2S 1+2,解得a 1=2; 当n ≥2时,3a n -1=2S n -1+2(n -1), 两式相减得a n =3a n -1+2, ∴a n +1=3(a n -1+1), 即a n +1a n -1+1=3,a 1+1=3,∴数列{a n +1}是以3为首项,3为公比的等比数列, ∴a n +1=3n ,则a n =3n -1,∴S n =3+32+…+3n -n =3(1-3n )1-3-n =3n +12-n -32.(2)b n =log 3(a n +1+1)=log 33n +1=n +1, ∵1b 2n=1(n +1)2<1n (n +1)=1n -1n +1, ∴1b 21+1b 22+…+1b 2n <⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.类型四 求和后利用函数的单调性证明数列不等式若所证的数列不等式中有等号,常考虑利用数列的单调性来证明. 例4 已知数列{a n }的前n 项和为S n ,且满足2a n -S n =1(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =a n +1(a n +1-1)(a n +2-1),数列{b n }的前n 项和为T n ,求证:23≤T n <1.(1)解 已知2a n -S n =1, 令n =1,解得a 1=1,当n ≥2时,2a n -1-S n -1=1(n ∈N *), 两式相减得a n =2a n -1,∴数列{a n }是以1为首项,2为公比的等比数列, 所以a n =2n -1(n ∈N *). (2)证明 由(1)可得b n =a n +1(a n +1-1)(a n +2-1)=2n(2n -1)(2n +1-1) =12n -1-12n +1-1, ∴T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1. ∵⎩⎨⎧⎭⎬⎫1-12n +1-1是单调递增的数列,∴1-12n +1-1∈⎣⎢⎡⎭⎪⎫23,1. ∴23≤T n <1.训练4 已知等差数列{a n }的公差d ≠0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求使不等式a n ≥0成立的最大自然数n ;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:-1325≤T n ≤1225.(1)解 由题意,可知a 211=a 1·a 13, 即(a 1+10d )2=a 1·(a 1+12d ), ∴d (2a 1+25d )=0. 又a 1=25,d ≠0,∴d =-2,∴a n =-2n +27, ∴-2n +27≥0,∴n ≤13.5, 故满足题意的最大自然数为n =13. (2)证明1a n a n +1=1(-2n +27)(-2n +25)=-12⎝ ⎛⎭⎪⎫1-2n +27-1-2n +25, ∴T n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=-12⎣⎢⎡⎝ ⎛⎭⎪⎫125-123+⎝ ⎛⎭⎪⎫123-121+…⎦⎥⎤+⎝⎛⎭⎪⎫1-2n +27-1-2n +25 =-12⎝ ⎛⎭⎪⎫125-1-2n +25 =-150+150-4n.从而当n ≤12时,T n =-150+150-4n单调递增,且T n >0;当n ≥13时,T n =-150+150-4n单调递增,且T n <0, ∴T 13≤T n ≤T 12, 由T 12=1225,T 13=-1325, ∴-1325≤T n ≤1225.一、基本技能练1.已知数列{a n }是等差数列,且a 2=3,a 4=7,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,数列{c n }的前n 项和为T n ,求证:T n <2. (1)解 因为数列{a n }是等差数列,a 2=3,a 4=7, 设数列{a n } 的公差为d , 则⎩⎪⎨⎪⎧a 1+d =3,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1(n ∈N *). 对于数列{b n },S n =1-12b n (n ∈N *),当n =1时,b 1=1-12b 1,解得b 1=23;当n ≥2时,b n =S n -S n -1=⎝ ⎛⎭⎪⎫1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,整理得b n =13b n -1,所以数列{b n }是首项为23,公比为13的等比数列, 所以b n =23×⎝ ⎛⎭⎪⎫13n -1=23n (n ∈N *).(2)证明 由题意得c n =a n b n =2(2n -1)3n=4n -23n , 所以数列{c n }的前n 项和T n =23+632+1033+…+4(n -1)-23n -1+4n -23n , 则3T n =2+63+1032+…+4n -23n -1, 两式相减可得2T n =2+43+432+…+43n -1-4n -23n =2+4×13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -23n =4-4n +43n ,所以T n =2-2n +23n .所以T n <2.2.(2022·石家庄模拟)已知数列{a n }的前n 项和为S n ,a 1=3,a 2=4,S n +1+2S n -1=3S n -2(n ≥2).(1)证明:数列{a n -2}是等比数列,并求数列{a n }的通项公式;(2)记b n =2n -1a n a n +1,数列{b n }的前n 项和为T n ,证明:112≤T n <13. 证明 (1)当n ≥2时,由S n +1+2S n -1=3S n -2可变形为S n +1-S n =2(S n -S n -1)-2, 即a n +1=2a n -2,即a n +1-2=2(a n -2),所以a n +1-2a n -2=2(n ≥2), 又因为a 1=3,a 2=4,可得a 1-2=1,a 2-2=2,所以a 2-2a 1-2=2, 所以数列{a n -2}是以1为首项,2为公比的等比数列, 所以a n -2=2n -1,所以数列{a n }的通项公式为a n =2+2n -1(n ∈N *).(2)由a n =2+2n -1,可得b n =2n -1a n a n +1=2n -1(2+2n -1)(2+2n )=12+2n -1-12+2n , 所以T n =b 1+b 2+b 3+…+b n =13-14+14-16+16-110+…+12+2n -1-12+2n =13-12+2n , 因为12+2n >0, 所以13-12+2n <13,即T n <13, 又因为f (n )=13-12+2n ,n ∈N *,单调递增,所以T n ≥b 1=1(2+1)(2+2)=112, 所以112≤T n <13.3.已知数列{a n }的前n 项和S n =n 2+n 2.(1)求{a n }的通项公式;(2)若数列{b n }满足对任意的正整数n ,b 1a 1·b 2a 2·b 3a 3·…·b n a n =(n +1)2恒成立,求证:b n ≥4. (1)解 因为S n =n 2+n 2,所以当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n , 当n =1时,a 1=S 1=1满足a n =n ,所以{a n }的通项公式为a n =n (n ∈N *).(2)证明 因为b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2,所以当n ≥2时,b 1a 1·b 2a 2·b 3a 3·…·b n -1a n -1=n 2, 所以b n a n =(n +1)2n 2(n ≥2), 又n =1时,b 1a 1=22=4, 满足b n a n =(n +1)2n 2, 所以对任意正整数n ,b n a n =(n +1)2n 2, 由(1)得,a n =n ,所以b n =(n +1)2n =n 2+2n +1n=n +1n +2≥2n ·1n +2=4,当且仅当n =1时,等号成立.二、创新拓展练4.(2022·武汉质检)已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n a n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12. (1)解 ∵4S n =a n a n +1,n ∈N *,∴4a 1=a 1·a 2,又a 1=2,∴a 2=4,当n ≥2时,4S n -1=a n -1a n ,得4a n =a n a n +1-a n -1a n . 由题意知a n ≠0,∴a n +1-a n -1=4,∴数列{a n }的奇数项与偶数项分别为等差数列,公差都为4, ∴a 2k -1=2+4(k -1)=2(2k -1),a 2k =4+4(k -1)=2·2k ,∴该数列是等差数列,首项为2,公差为2. 综上可知,a n =2n ,n ∈N *.(2)证明 ∵1a 2n =14n 2>14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =1a 21+1a 22+…+1a 2n> 14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. ∴T n =1a 21+1a 22+…+1a 2n <12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1<12. 即得n 4n +4<T n <12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档