变频器的运行控制方式

合集下载

变频器原理及控制方式

变频器原理及控制方式

机电江苏大区变频器基础培训变频器原理及控制方式张根军2011.11内容大纲7.V/F 控制模式下的参数调试6.变频器的接线5.变频器的控制模式4.变频器原理3.电机转速转矩图2.异步电机与同步电机的特性1.异步电机的基本参数异步电机的基本参数•额定功率•额定电流•额定电压•额定转速•极数•引出端子基本接法•频率范围异步电机与同步电机异步电机同步电机电机铭牌IM与SPM/IPM的差异同步马达是一种交流马达,转子旋转速度与所提供交流电的频率相同。

交流马达的原理是由交流电在马达的定子处产生旋转磁场,因此使马达转子旋转。

在同步电动机的转子有电磁铁或永久磁铁,使用永久磁铁的称为永磁同步马达。

同步马达的定子所产生的磁场吸引转子磁场的异极,由于定子所产生的磁场是以若干速度旋转,因此转子会随着定子磁场的旋转速度,以相同的速度旋转。

同步马达的特点是转速固定,不受电源电压的影响。

只要马达的负载低于其最大转矩,转速也不会受负载的影响。

SPM(Surface Permanent Magnet)IPM(Interior Permanent Magnet)电机速度,电流与转矩图额定转矩与功率与转速的关系式电机的额定转矩并不是电机当前输出的转矩,它是电机在额定转速下能连续长期工作的转矩。

电机产生的转矩不是恒定的,当负载很小时,即使电机的容量很大,电机产生的转矩一样很小,并且正比于负载大小。

电机产生的转矩随负载转矩的变化而变化,电机的速度同样也是随负载的波动而波动。

电机特性曲线市电控制与变频控制的对比市电直接控制:起动转矩也大,起动电流大,对电网有冲击,且电机无法调速。

由变频器控制控制:从低频率起动,使电机的起动电流小,同时,起动转矩也相应减小,电机可无极调速。

(1) 起动电流Is = 600 to 700 [%](2) 起动转矩Ts = 150 to 250 [%](3) 最大转矩Tm = 200 to 300 [%](4) 额定负载下的滑差S = 3 to 5 [%]市电直接控制06-12电流限制06-12电流限制06-12电流限制06-12电流限制外部模拟端子03-0~02d7 正向扭力限制d10 正/负向扭力限制d9 回生扭力限制外部模拟端子03-0~02d8 反向扭力限制d10 正/负向扭力限制d9 回生扭力限制外部模拟端子03-0~02d7 正向扭力限制d10 正/负向扭力限制外部模拟端子03-0~02d8 反向扭力限制d10 正/负向扭力限制第1象限第4象限第3象限第2象限正转电动扭力限制07-32反转回生扭力限制07-3507-34反转电动扭力限制07-33正转回生扭力限制正转电动机模式反转发电机模式反转电动机模式正转发电机模式正转反转速度速度正向转矩负向转矩电机的四象限运行电机的四象限运行异步电动机的调速方法l调压调速——控制加于电动机定子绕组的电压;l串级调速——控制附加在转子回路的电势;l变频调速——控制定子的供电电压与频率;l异步电动机矢量变换控制系统;l无换向器电机调速系统;l电磁转差离合器调速系统等。

变频器的控制方式

变频器的控制方式

变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。

根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。

这些控制方式在变频器通电运行前必须首先设置。

2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。

图1中所示就是变频器的基本运行v/f曲线。

由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。

也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。

在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。

同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。

当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。

基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。

因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

变频控制原理

变频控制原理

变频控制原理1. 引言变频控制是一种通过改变电机的供电频率来控制电机运行速度的技术。

它在工业自动化、能源节约和电机控制等领域有着广泛的应用。

本文将详细介绍与变频控制原理相关的基本原理,包括变频器的工作原理、电机的特性和调速方法等。

2. 变频器的工作原理变频器是实现变频控制的关键设备,它通过改变输入电源的频率和电压来控制电机的转速。

变频器由整流器、滤波器、逆变器和控制电路等组成。

整流器将交流电源转换为直流电源,滤波器用于平滑输出电压。

逆变器将直流电源转换为可调的交流电源,其输出频率和电压可以根据控制信号进行调节。

控制电路用于接收来自外部的控制信号,并将其转化为逆变器的控制信号。

变频器的工作原理可以简单地描述为:变频器接收来自外部的控制信号,经过控制电路的处理后,将其转化为逆变器的控制信号。

逆变器将直流电源转换为可调的交流电源,输出给电机。

通过改变逆变器的输出频率和电压,可以实现对电机转速的精确控制。

3. 电机的特性在理解变频控制原理之前,有必要了解电机的特性。

电机的运行速度与输入电压和负载有关。

通常情况下,电机的转速与输入电压成正比,并且在额定负载下,它们之间存在一个线性的关系。

电机的转矩与输入电压的平方成正比,并且在额定负载下,它们之间存在一个线性的关系。

当负载增加时,电机的转矩也会增加,但转速会下降。

这是因为在负载增加的情况下,电机需要提供更多的转矩来克服负载的阻力。

电机的效率与输出功率和输入功率之间的比值有关。

电机的效率越高,输出功率越大,输入功率越小。

在实际应用中,为了提高电机的效率和节约能源,需要对电机的转速进行精确控制。

4. 变频控制原理变频控制原理是基于电机的特性进行设计的。

通过改变电机的供电频率和电压,可以精确控制电机的转速和转矩。

变频器通过改变逆变器的输出频率和电压来实现对电机的控制。

在变频控制中,可以根据需要选择不同的调速方法。

常用的调速方法有电压调制方式、频率调制方式和矢量控制方式。

变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解

变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解

变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的先天条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

变频器简介1)变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

2)变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

变频器控制方式选择依据对于控制方式,要根据生产机械的具体要求来进行选择。

1、二次方律负载对于离心式风机、水泵和空气压缩机一类的二次方律负载,一般采用V/F控制方式为宜。

因为V/F控制方式有低励磁U/f线,在低频运行时可以更好地节能。

矢量控制方式实质上是使电动机始终保持额定磁通的控制方式,不可能实现低励磁。

2.恒转矩负载(1)对于负载率经常变动、调速范围又不很大的负载,一般以选择无反馈矢量控制为好,因为V/F控制方式的转矩提升量不易预置得恰到好处,但采用无馈矢量控制方式时,须注。

变频器如何控制电机

变频器如何控制电机

变频器如何控制电机1. 引言变频器是一种用于控制交流电机转速和运行状态的设备。

它可以根据需求来调节电机的转速,并实现精确的控制。

本文将介绍变频器的工作原理、控制方式以及如何正确地使用变频器来控制电机。

2. 变频器的工作原理变频器通过调整输入电源的频率和电压来控制电机的转速。

变频器内部有一个功率电子器件,可以将电源的直流电转换为交流电,并通过调整交流电的频率来实现电机转速的控制。

3. 变频器的控制方式3.1 开环控制开环控制是最简单的变频器控制方式。

在开环控制中,变频器只根据用户设置的频率来输出相应的电压给电机,而无法实时监测电机的转速和运行状态。

这种控制方式适用于一些简单的应用场景,如风扇、泵等。

3.2 闭环控制闭环控制是一种更高级的变频器控制方式。

在闭环控制中,变频器除了根据用户设置的频率来输出电压外,还会通过监测电机的反馈信号来实时调整输出信号,以达到精确控制电机转速的目的。

这种控制方式适用于一些对转速要求较高的应用场景,如机床、卷帘门等。

4. 使用变频器控制电机的步骤4.1 设置变频器参数在使用变频器控制电机之前,首先需要对变频器进行参数设置。

参数设置包括输入电源的频率、电流限制、控制模式等。

根据实际需求,合理设置这些参数可以确保电机在工作过程中的安全和稳定。

4.2 连接变频器和电机将变频器和电机通过电缆正确地进行连接。

确保连接的电缆符合规范,电缆截面积足够大,以保证电流的正常传输和电机的正常工作。

同时,还需要检查连接是否牢固,防止因松动而导致电气接触不良。

4.3 配置控制参数根据具体需要,通过变频器的控制面板或者专用软件来配置控制参数。

控制参数包括电机额定转速、转矩曲线、加速度、减速度等。

正确配置这些参数可以确保变频器按照预期的方式来控制电机,避免因参数设置不当而引起的故障。

4.4 开始运行电机配置完成后,可以通过控制面板或者外部控制信号来启动电机。

在启动过程中,需要注意电机的转速是否与期望值相符,以及电机是否正常运行。

变频器工作的常用模式

变频器工作的常用模式

变频器工作的常用模式变频器是一种常见的电器控制装置,用于调节电动机的速度和频率。

在工作过程中,变频器可以通过选择不同的工作模式来满足各种应用需求。

本文将介绍变频器工作的常用模式。

1. 恒定转速模式恒定转速是变频器最基本的工作模式之一,适用于需要保持电机恒定转速的场景。

变频器通过控制输出频率,使电机稳定地运行在设定的转速上。

该模式广泛应用于传送带、风机等需要稳定运转的设备。

2. 变频调速模式变频调速模式是变频器最常用的工作模式之一,适用于需要实现精细调速的场景。

通过改变输出频率,变频器可以调节电机的转速,实现从低速到高速的连续调节。

这种模式在机械加工、液压系统等领域得到广泛应用。

3. 节能运行模式节能运行模式是一种针对节约能源的工作模式。

在这个模式下,变频器根据实际需求调整电机的转速和负载,以达到最佳能效。

例如,当负载较轻时,变频器会适当降低电机的运行频率,降低能耗。

这种模式在节能的要求日益提高的环境中得到广泛应用。

4. 同步控制模式同步控制模式是一种多电机协同运行的工作模式。

通过变频器的同步控制功能,可以实现多台电动机的协同运行,保持各个电机的同步性和一致性。

这种模式在车间生产线、物流系统等需要多电机配合的场景中得到应用。

5. 故障检测与保护模式故障检测与保护模式是变频器工作中非常关键的一个模式。

变频器通过内置的故障检测与保护机制,对电机运行过程中的异常情况进行监测,并及时采取相应的措施,以避免设备损坏或人身安全事故的发生。

这种模式在电机运行安全保障方面起着重要作用。

总结:变频器作为一种重要的电气控制设备,可以通过不同的工作模式来满足各种应用需求。

无论是恒定转速、变频调速还是节能运行,每种模式都有其独特的应用场景。

而同步控制模式和故障检测与保护模式则分别在多电机协同和安全保障方面发挥着重要的作用。

通过灵活应用变频器的不同工作模式,可以更好地实现电机的控制和优化运行。

变频器的控制功能第1讲变频器的控制方式_上_李方园

变频器的控制功能第1讲变频器的控制方式_上_李方园
图 5 所示为旋转编码器 PG 与变频器 VF 组成的闭环 V/f 控 制。图 5a 中,PS+/PS- 为编码器的工作电源,A+ 信号为 A 相 信号或 B 相信号,本控制方式采用一相反馈。
a)PG 接口示意
b)速度增益曲线 图5 闭环V/f控制接线图和速度增益示意
闭环 V/f 控制为了获得良好的速度控制性能,还必须设置 比例增益 P 值和积分时间 I 值,图 5b 所示为参数设置情况。
动机的绕组电阻比大容量电动机大,电阻压降也大,应适当增
大 V 值;(3)当电动机抖动厉害时,说明转矩过大,转矩补 0
偿增益调得过高,应适当减小 V 值。这里必须避免这样一个 0
误区:即使提高很多输出电压,电动机转矩并不能和其电流相
2007 年 12 月刊 自动化博览 21
本期策划
Survey 综 述
本期策划
Survey 综 述
AC Inveter’s Control Function
变频器的控制功能 第 1 讲 变频器的控制方式(上)
李方园
李方园(1973 -)
男, 籍贯浙江舟山,毕业于浙江大学电气 自动化专业,高级工程师,长期从事于变 频器等现代工控产品的应用与研究工作。
摘要:根据不同的变频控制理论,可以发展为几种不同的变频器控制方式, 即 V/f 控制方式(包括开环 V/f 控制和闭环 V/f 控制)、无速度传感器矢量控 制方式(矢量控制 VC 的一种)、闭环矢量控制方式(即有速度传感器矢量控 制 VC 的一种)、转矩控制方式(矢量控制 VC 或直接转矩控制 DTC)等。这 些控制方式在变频器通电运行前必须首先设置。本文主要阐述的就是变频器 的这几种控制方式。 关键词:变频器; 控制方式; 矢量控制; 直接转矩控制

变频器的控制方式及合理选用

变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。

其控制方式经历以下四代。

(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。

其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。

他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。

以内切多边形逼近圆的方式而进行控制的。

经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

(3)第三代以矢量控制(磁场定向法)又称VC控制。

其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。

通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。

(4)第四代以直接转矩控制,又称DTC控制。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介1.1 变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

1.2 变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式2.1 非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。

上图中有个公式,描述转矩、转速、功率之间的关系。

变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。

速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。

以前一般的VF 控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。

在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。

变频器的控制方式

变频器的控制方式
③ fx不同时,临界转差ΔnKx
变化不是很大,所以稳定
工作区的机械特性基本是
平行的,且机械特性较硬,
图8-1 变频调速机械特性
《变频器原理与应用 第2版 》第8章
8.1.3 对额定频率fN以下变频调速特性的修正
1. TKx减小的原因分析
k f (k u k f) U U x xU E x x M T K x
机磁通保持一定,在较宽的调速范围内,电动机的 转矩、效率、功率因数不下降,
《变频器原理与应用 第2版 》第8章
8.1.2 恒U/f控制方式的机械特性
1. 调频比和调压比
调频时,通常都是相对于其额定频率
频频率fx就可以用下式表示:
fN来进行调节的,那么调
8-1
fx=kffN
式中 kf——频率调节比 也叫调频比 ,
然而,这种控制要依赖于精确的电动机数学模型和对 电动机参数的自动识别 ID ,
《变频器原理与应用 第2版 》第8章
8.5 单片机控制
8.5.1 概述 随着微电子工艺水平的提高,微型计算机的性能价格
比显著提高,全数字化变频调速系统大都是以高性能单 片机和数字信号处理器 DSP 等为控制核心来构成整个系 统,专用于电机控制的单片机的出现,使得系统的体积 减小,可靠性大大提高,它们大部分是在16位单片机或 DSP的基础上增加部分特殊的控制功能构成专用的集成 电路,如87C196MC,
各种参数,如I1、r2等经过计算得到的一个转速的实在值,
由这个计算出的转速实在值和给定值之间的差异来调整
iM*和iT*,改变变频器的输出频率和电压,
《变频器原理与应用 第2版 》第8章
8.3.5 使用矢量控制的要求
选择矢量控制模式,对变频器和电动机有如下要求: 1 一台变频器只能带一台电动机, 2 电动机的极数要按说明书的要求,一般以4极电动机为最

变频器的控制常用模式介绍

变频器的控制常用模式介绍

变频器的控制常用模式介绍随着现代工业的快速发展,电机在工业生产中的应用越来越广泛。

而作为电机控制的重要组成部分,变频器的出现使得电机的控制更加灵活和高效。

在变频器中,控制模式是影响电机运行的关键因素之一。

本文将介绍变频器的控制常用模式。

1. 开环控制模式开环控制模式是最简单和最基础的控制模式之一。

在开环控制模式下,变频器根据给定的频率和电压信号直接控制电机的转速和负载。

然而,这种控制模式并不能对电机的运行状态进行反馈和监控,因此无法实现对电机的精确控制。

2. 闭环控制模式闭环控制模式是一种通过对电机输出信号与实际运行情况进行反馈,从而实现对电机转速和负载的精确控制的模式。

在闭环控制模式下,变频器通过反馈装置(如编码器)获取电机的实际运行状态,并根据差异调整输出信号,实现对电机的反馈控制。

3. 矢量控制模式矢量控制模式是一种较为先进和高级的控制模式,其基本原理是通过分析电机的转子磁通和转速,实现对电机的精确控制。

在矢量控制模式下,变频器能够对电机的电流、转速和转矩进行精确控制,从而实现更高的控制精度和响应速度。

4. 脉宽调制(PWM)控制模式脉宽调制控制模式是一种通过改变脉冲宽度的方式来控制电机转速的模式。

在脉宽调制控制模式下,变频器通过改变电压的脉冲宽度来控制电机的转速。

脉宽调制模式具有控制精度高、响应速度快等优点,在工业生产中得到了广泛的应用。

5. 多点抑制(MPC)控制模式多点抑制控制模式是一种通过对电机的多个参量进行调整和抑制来实现对电机的控制的模式。

多点抑制控制模式具有较高的控制精度和稳定性,能够有效抑制电机在运行过程中的不稳定因素,提高电机的运行效率。

总结:变频器的控制模式包括开环控制、闭环控制、矢量控制、脉宽调制控制和多点抑制控制等多种模式。

不同的控制模式适用于不同的电机应用场景,可以根据具体需求选择合适的控制模式来实现对电机的精确控制和高效运行。

随着科技的不断进步,相信变频器的控制模式将会不断发展和创新,为工业生产带来更多的便利和高效。

变频器运行模式说明

变频器运行模式说明

采煤机变频器模式更改王剑峰目录第一章变频器工作原理简介 (4)第一节变频器主从控制原理 (5)第二节变频器控制方式分类 (6)第三节更换变频器用一拖一模式运行的方法 (7)第二章变频器运行模式修改 (8)第一节变频器修改注意事项 (9)第二节变频器参数更改 (9)第三节动力线更改方式 (11)第三章变频器控制盘操作说明 (12)附件各机型变频器出厂设置参数表 (20)采煤机变频器模式更改使用说明书第一章变频器工作原理简介第一节变频器主从控制原理通常左边为主变频器控制左牵引电机,右边为从变频器控制右牵引电机,如图1-1所示,可以通过变频器控制盘查看60.01参数来判断主从变频器。

采煤机主控箱将方向信号,加减速信号通过CANOPEN和IO两种方式给定主变频器,主变频器为速度控制模式,此时从变频器跟随主变频器输出的转矩运行,以确保两个变频器出力一样大,实现主从同步。

图1-1 变频器控制牵引电机示意图第二节变频器控制方式分类1、本地控制使用ABB CDP312R控制盘按下本地控制按键“LOC”时,变频器显视屏左上方ID号右端显视“L”,则此时进入本地控制模式。

当更改变频器参数或将控制盘作为控制源控制变频器行走时,都要将变频器切到本地控制模式。

用控制盘本地控制变频器行走的步骤为:(1).按下“LOC”键切换为本地控制;(2).按下REF键给定一个初始转速;(3).给定一个方向;(4).打开采煤机牵引抱闸(非常重要);(5).按启动按键,启动牵引变频器;(6).按停止按键,停牵引变频器。

2、远程控制CAN通信控制:采煤机主控系统通过CAN线发送控制命令控制变频器。

IO端子控制:采煤机主控系统通过继电器给+24v信号来控制变频器。

实际上采煤机主控系统同时发送CAN信号和IO信号给变频器,接收哪种信号则要看变频器的参数设置情况。

通过修改主变频器的10.01、11.02、11.03参数来切换总线和端子控制(详见变频器参数设置)。

控制变频器的方法

控制变频器的方法

控制变频器的方法
控制变频器的方法包括以下几种:
1. 使用控制面板: 变频器通常配备有一个控制面板,通过面板上的按钮和显示屏可以设定变频器的参数和运行模式。

2. 通过外部信号控制: 变频器通常支持通过外部信号输入进行控制,可以通过接入外部传感器或PLC等设备,以实现自动控制。

3. 通过通信接口控制: 变频器通常配备有通信接口,如RS485、Modbus等,可以通过与上位机或监控系统进行通信来远程控制和监测变频器的运行状态。

4. 使用编程方式控制: 对于一些高级变频器,可以通过编程方式进行控制,使用编程语言或专门的软件对变频器进行编程,实现更复杂的控制逻辑。

需要根据具体的变频器型号和应用需求选择合适的控制方法,并按照变频器的说明手册进行设置和操作。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种用于调节电机转速的电子设备,它通过改变电压、频率和电流来控制电机的运行。

变频器的控制方法有很多种,下面将就几种常见的控制方法进行介绍。

1. 开环控制开环控制是最基本的变频器控制方法之一,也是最简单的控制方法。

在开环控制中,变频器根据事先设定的频率和电压输出信号,直接控制电机的运行。

这种方法适用于负载要求不高的场合,但无法对电机的运行状态进行实时监测和调整。

2. 闭环控制闭环控制是一种反馈控制方法,它通过传感器实时监测电机的运行状态,将监测到的反馈信号与设定值进行比较,并根据比较结果调整输出信号,从而实现对电机转速的精确控制。

闭环控制可以使电机在各种负载条件下保持稳定的运行,具有较高的控制精度和稳定性。

3. 矢量控制矢量控制是一种较为复杂的控制方法,它不仅可以精确控制电机的转速,还可以同时控制电机的转矩和位置。

矢量控制将电机分解为磁场定向控制和转矩控制两个部分,通过控制两个部分的信号来实现对电机的全面控制。

矢量控制具有高精度、高效率、低噪音等优点,适用于对电机运行精度要求较高的场合。

4. 伺服控制伺服控制是一种高性能的控制方法,它通过将电机的转速和位置与设定值进行比较,通过控制电机的输出信号实现对电机的精确控制。

伺服控制具有较高的动态响应能力和控制精度,适用于对电机运行要求非常高的场合,如机床、印刷设备等。

5. 多变量控制多变量控制是一种综合应用多种控制方法的控制策略,它可以根据电机运行的实际需求,同时控制电机的转速、转矩、位置等多个参数。

多变量控制可以根据不同的工况自动调整控制参数,从而实现对电机的最优控制。

这种控制方法适用于对电机运行精度要求高、工况变化较大的场合。

变频器的控制方法有很多种,每种方法都有其适用的场合和优势。

在选择控制方法时,需要根据具体的应用需求和电机的特性进行合理选择,并结合实际情况进行参数调整和优化,以实现对电机的精确控制。

简述变频器的工作原理和控制方式

简述变频器的工作原理和控制方式

简述变频器的工作原理和控制方式1变频器的工作原理我们知道,交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。

由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。

变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。

2变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。

其控制方式经历了以下四代。

2.1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

2.2电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。

经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

2.3矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

变频器的使用方法

变频器的使用方法

变频器的使用方法
变频器是一种能够改变电源频率的装置,用于控制电动机或其他电力设备的运行速度。

以下是变频器的使用方法:
1. 安装变频器:将变频器正确安装在所需控制的电动机或设备上。

确保电源线和控制线正确连接,并且接地良好。

2. 连接电源:将变频器与电源连接,确保电源电压符合变频器的额定电压要求。

接线时应按照变频器的接线图进行正确连接。

3. 设置参数:根据实际需求,进行变频器参数的设置。

参数设置涉及到电机的额定功率、额定转速、额定电流等,应根据实际情况进行调整。

4. 调试运行:在进行实际运行前,需要对变频器进行调试。

先通过手动方式调整变频器的输出频率,观察电动机或设备的运行情况。

如果一切正常,可以使用自动模式进行实际运行。

5. 监测和调整:在设备运行过程中,需要监测电动机或设备的运行状态。

可以通过变频器的显示屏来查看相关参数,如输出频率、输出电压、输出电流等。

根据实际情况,可以通过调整参数来优化设备的运行效果。

6. 故障排除:如果发现设备运行异常或出现故障,需要进行故障排除。

可以通过变频器的故障代码或报警信息来判断故障原因,并进行相应的修复或调整。

总之,使用变频器需要仔细阅读变频器的使用说明书,并按照操作步骤进行正确的安装、设置和调试。

在运行过程中,需要进行监测和调整,以确保电动机或设备的正常运行。

在遇到故障时,及时进行排除和修复,以保证设备的安全和稳定运行。

变频启动工作原理

变频启动工作原理

变频启动工作原理
变频启动工作原理是指通过调节变频器输出频率来控制电机启
动和运行的过程。

变频器将交流电源输入转换为直流电,然后再将直流电转换成高频交流电,通过改变高频交流电的频率和电压来控制电机的转速和负载。

变频启动工作原理的核心是变频器,其主要由整流器、中间电容、逆变器组成。

在变频器中,整流器将交流电源输入转换为直流电,中间电容平滑直流电,逆变器将平滑后的直流电转换成高频交流电并输出,从而控制电机的启动和运行。

变频器通过控制输出频率来实现电机的启动和运行。

当电机启动时,变频器输出低频电压,电机启动后逐渐调整频率和电压,以达到合适的转速和负载。

当电机进入稳定运行状态后,变频器将维持输出频率不变,以保持电机稳定运行。

变频启动工作原理的优点是可以在启动和运行过程中平稳控制
电机输出功率和转速,从而减少启动冲击和能源浪费,提高电机的效率和寿命。

同时,变频器还可以实现多种保护功能,避免电机因过载、过热等原因损坏。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的运转指令方式变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。

与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。

这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。

1操作器键盘控制操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。

操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。

按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。

同理,距离较远时则必须使用远程操作器键盘。

在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。

如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。

对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。

该功能对端子控制、通讯控制都有效。

2端子控制2.1基本概念端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。

这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

图1端子控制原理在图1中,正转fwd、反转rev、点动jog、复位reset、使能enable 在实际变频器的端子中有三种具体表现形式:(1)上述几个功能都是由专用的端子组成,即每个端子固定为一种功能。

在实际接线中,非常简单,不会造成误解,这在早期的变频器中较为普遍。

(2)上述几个功能都是由通用的多功能端子组成,即每个端子都不固定,可以通过定义多功能端子的具体内容来实现。

在实际接线中,非常灵活,可以大量节省端子空间。

目前的小型变频器都有这个趋向,如艾默生td900变频器。

(3)上述几个功能除正转和反转功能由专用固定端子实现,其余如点动、复位、使能融合在多功能端子中来实现。

在实际接线中,能充分考虑到灵活性和简单性于一体。

现在大部分主流变频器都采用这种方式。

2.2正转和反转由变频器拖动的电动机负载在实现正转和反转功能非常简单,只需改变控制回路(或激活正转和反转)即可,而无须改变主回路。

(a)控制方法一(b)控制方法二图2正反转控制原理常见的正反转控制有两种方法,如图2所示。

fwd代表正转端子,rev代表反转端子,k1、k2代表正反转控制的接点信号(“0”表示断开、“1”表示吸合)。

图2(a)的方法中,接通fwd和rev的其中一个就能正反转控制,即fwd接通后正转、rev接通后反转,若两者都接通或都不接通,则表示停机。

图2(b)的方法中,接通fwd才能正反转控制,即rev不接通表示正转、rev接通表示反转,若fwd不接通,则表示停机。

这两种方法在不同的变频器里有些只能选择其中的一种,有些可以通过功能设置来选择任意一种。

但是如变频器定义为“反转禁止”时,则反转端子无效。

变频器由正向运装过渡到反向运转,或者由反向运转过渡到正向运转的过程中,中间都有输出零频的阶段,在这个阶段中,设置一个等待时间,即称为“正反转死区时间”,如图3所示。

图3正反转死区时间2.3二线制和三线制控制模式所谓三线制控制,就是模仿普通的接触器控制电路模式,当按下常开按钮sb2时,电动机正转启动,由于x多功能端子自定义为保持信号(或自锁信号)功能,松开sb2,电动机的运行状态将能继续保持下去;当按下常闭按钮sb1时,x与com之间的联系被切断,自锁解除,电动机停止运行。

如要选择反转控制,只需将k吸合,即rev功能作用(反转)。

三线制控制模式的“三线”是指自锁控制时需要将控制线接入到三个输入端子,与此相对应的就是以上讲述的“二线制”控制模式。

三线制控制模式共有两种类型,如下图4a和图4b。

两者的唯一区别是右边一种可以接收脉冲控制,即用脉冲的上升沿来替代sb2(启动),下降沿来替代sb1(停止)。

在脉冲控制中,要求sb1和sb2的指令脉冲能够保持时间达50ms以上,否则为不动作。

(a)控制方法一(b)控制方法二图4三线制端子控制2.4点动端子控制的点动命令将比键盘更简单,它只要在变频器运行的情况下(无论正转还是反转),都能设置单独的两个端子来实现正向点动和反向点动,其点动运行频率、点动间隔时间以及点动加减速时间跟键盘控制和通讯控制方式下相同,均可在参数内设置。

2.5操作器stop键的功能在进行端子控制时,变频器的操作器键盘的大部分运转功能键都没有作用,但对于“stop”键却还可以选择是否有效。

至于“stop”键是否有效必须基于用户的具体情况:(1)如果变频器拖动的电动机在其运行过程中不允许随意停机,只能通过现场停止按钮由现场人员进行停机操作时,则需定义操作器“stop”键无效;(2)如果现场控制按钮离开变频器本体较远,而一旦出现变频器异常情况或电动机异常,用户可以从变频器的操作器键盘直接停机的话,或者需要定义操作器键盘“stop”键为紧急停止按钮,则需定义操作器“stop”键有效;(3)许多变频器的操作器“stop”键与“reset”常常为同一个键,而且用户需要在变频器异常停机后,需要在故障出现时直接从操作器键盘复位,则同样需定义操作器“stop”键有效。

2.6数字量输入端子数字量输入端子是用于控制输入变频器运行状态的信号,这些信号包括待机准备、运行、故障以及其他与变频器频率有关的内容。

这些数字开关量信号,除固定端子(正转、反转和点动)外,其余均为多功能数字量输入端子。

常见的数字量输入端子都采用光电耦合隔离方式,且应用了全桥整流电路,如下图5,pl是数字量输入fwd正转、rev反转、xi多功能输入端子的公共端子,流经pl端子的电流可以是拉电流,也可以是灌电流。

图5数字量输入结构示意数字量输入端子与外部接口方式非常灵活,主要有以下几种:(1)干接点方式。

它可以使用变频器内部电源,也可以使用外部电源9-30vdc。

这种方式常见于按钮、继电器等信号源。

(2)源极方式。

当外部控制器为npn型的共发射极输出的连接方式时,为源极方式。

这种方式常见于接近开关或旋转脉冲编码器输入信号,用于测速、计数或限位动作等。

(3)漏极方式。

当外部控制器为pnp型的共发射极输出的连接方式时,为源极方式。

这种方式的信号源与源极相同。

多功能数字量输入端子的信号定义包括多段速度选择、多段加减速时间选择、频率给定方式切换、运转命令方式切换、复位和计数输入等。

综合各类变频器的输入定义,具体有以下主要参数:2.6.1带切换或选择功能的输入信号(1)多段速选择。

通过选择这些功能的端子on/off组合,最多可以定义4种(二个输入端子)或8种(二个输入端子)或16种(四个输入端子)速度的运行曲线。

(2)多种加减速时间的选择。

通过选择相应数字量输入端子的on/off组合,最多可以定义2种(一个输入端子)或4种(二个输入端子)的加减速时间值。

(3)多种频率给定方式的选择。

通过选择相应数字量输入端子的on/off组合,可以选择操作器键盘给定、接点给定、模拟量给定、脉冲给定、通讯给定的一种,或者进行运行时的切换选择。

有些变频器还增加了提供同一种给定方式下不同通道的选择功能,如一台变频器通常有2~3模拟量通道、2个脉冲输入通道以及几个接点通道,为了在同一频率给定方式下不同通道的输入选择,就必须进行第二次选择。

(4)运转命令方式的选择。

通过选择相应数字量输入端子的on/off组合,可以选择操作器键盘控制、端子控制和通讯控制的切换或选择。

有些变频器还能提供强制信号电平,保证运行命令的及时性。

(5)多段闭环pid给定值的选择。

通过选择相应数字量输入端子的on/off组合,最多可以定义2种(一个输入端子)或4种(二个输入端子)或8种(三个输入端子)的闭环给定值。

2.6.2计数或脉冲输入信号多功能输入端子能够接受脉冲输入信号,这些脉冲信号可以用于计数,也可以用于复位等命令,具体可定义为以下内容:(1)计数器清零信号。

即对变频器的内置计数器进行清零操作。

(2)计数器触发信号。

该使能信号允许变频器对该数字量输入端子进行计数,脉冲的最高频率大约在几百个赫兹左右,掉电时可以存储记忆当前计数值。

(3)外部复位输入。

当变频器发生故障报警后,通过该端子的定义,对变频器故障进行复位,其作用与操作器键盘的reset复位键一致。

(4)摆频状态复位。

当选择变频器的摆频功能时,无论是自动投入还是手动投入,闭合该端子将清楚变频器内部记忆的摆频状态信息。

断开该端子,摆频重新开始。

(5)简易程序控制方式下的停机状态复位。

在简易程序控制下的停机状态中,该功能端子有效时将清楚简易程序停机时记忆的运行阶段、运行时间、运行频率等信息。

(6)三线制定义。

具体可以见前面章节。

(7)接点给定方式。

可以在定义频率给定方式为接点给定后,定义两个端子为up或down功能。

2.6.3其他运行输入信号(1)变频器运行禁止。

该端子有效时,运行中的变频器则自由停车,若是在待机状态,则禁止起动。

本功能主要用于需要安全联动的场合。

(2)外部停机命令。

该端子有效时,则无论变频器处于什么运转模式状态或是什么运转给定通道中,都会按照预先定义的停机方式进行停机。

它与(1)的区别在于停机方式不同,后者只能是自由停车。

(3)外部设备故障的常开或常闭信号输入。

通过该端子可以输入外部设备的故障信号,便于变频器对外部设备进行故障监视。

变频器在接到外部设备故障信号后,可显示“外部故障”。

该故障信号可以是常开,也可以是常闭输入方式。

(4)外部中断的常开或常闭信号输入。

变频器在运行过程中,接到外部中断信号后,封锁输出,以零频运行。

一旦外部中断信号解除,变频器自动转为跟踪起动,恢复运行。

其输入信号也可以是常开和常闭两种输入方式。

它与(3)的区别在于外部中断不会引起变频器的报警,中断解除后还能正常运行。

(5)停机直流制动输入指令。

用外部控制端子对停机过程中的电动机实施直流制动,实现电动机的紧急停车和精确定位。

(6)简易程序控制暂停指令。

用于对运行中的简易程序控制实现暂停控制,该端子有效时则以零频运行,简易程序控制不计时;该端子命令无效后,变频器自动转为跟踪起动,继续简易程序运行。

相关文档
最新文档