隐圆问题(辅助圆)
专题03 隐圆(辅助圆)最值模型
专题03 隐圆类最值问题题型一 滑梯类1.如图,ABC ∆中,90C ∠=︒,10AC =,8BC =,线段DE 的两个端点D 、E 分别在边AC ,BC 上滑动,且6DE =,若点M 、N 分别是DE 、AB 的中点,则MN 的最小值为( )A .10B 3-C .6D .32.如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 .3.已知边长为a 的正方形ABCD ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 点D 在第一象限,点E 为正方形ABCD 的对称中心,连接OE ,则OE 的长的最大值是 .4.已知边长为a 的正三角形ABC ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是.5.如图,矩形ABCD中,20AD=,点E,F分别是AB,BC边上的两个动点,且10EF=,AB=,30点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH CH+的最小值为.题型二定点定长6.如图,在矩形ABCD中,4∆沿AB=,6AD=,E是AB边的中点,F是线段BC边上的动点,将EBF EF所在直线折叠得到△EB F',连接B D',则B D'的最小值是.7.如图,在边长为4的菱形ABCD中,60∠=︒,M是AD边的中点,点N是AB边上一动点,将AMN∆A沿MN所在的直线翻折得到△A MN',连接A C',则线段A C'长度的最小值是.8.如图,四边形ABCD中,AB AC AD∠=度.∠=︒,则CBDCAD==,若769.如图,在Rt ABCBC=,点F在边AC上,并且2CF=,点E为边BC上的AC=,8∠=︒,6C∆中,90动点,将CEF∆沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.1.5B.1.2C.2.4D.以上都不对10.如图,在平行四边形ABCD中,30BC=,CD=M是AD边的中点,N是AB边上BCD∠=︒,4的一动点,将AMN',连接A C',则A C'长度的最小值是.∆沿MN所在直线翻折得到△A MN题型三直角所对的是直径11.如图,在圆O中,半径OA弦10⊥,BC=,点Q是劣弧AC上的一个动点,连接BQ,作CP BQ垂足为P.在点Q移动的过程中,线段AP的最小值是()A.6B.7C.8D.912.如图,在ABCAB=,12BC=,D为AC边上的一个动点,连接BD,E为BD ∠=︒,8ABC∆中,90上的一个动点,连接AE,CE,当ABD BCE∠=∠时,线段AE的最小值是()A .3B .4C .5D .613.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP 长的最小值为 .14.如图,已知C 的半径为3,圆外一定点O 满足5OC =,点P 为C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=︒,l 不经过点C ,则AB 的最小值为 .15.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE DF =,连接CF 交BD 于G ,连接BE 交AG 于点H ,若正方形的边长为3,则线段DH 长度的最小值是 .题型四 定边对定角16.如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为 .第16题 第19题 17.在锐角三角形ABC 中,30A ∠=︒,2BC =,设BC 边上的高为h ,则h 的取值范围是 .18.在ABC ∆中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为 .19.如图,ABC ∆为等边三角形,2AB =.若P 为ABC ∆内一动点,且满足PAB ACP ∠=∠,则线段PB 长度的最小值为 .20.【问题情境】(1)点A 是O 外一点,点P 是O 上一动点.若O 的半径为2,且5OA =,则点P 到点A 的最短距离为 .【直接运用】(2)如图1,在Rt ABC ∆中,90ACB ∠=︒,2AC BC ==,以BC 为直径的半圆交AB 于D ,P 是弧CD 上的一个动点,连接AP ,则AP 的最小值是 .【构造运用】(3)如图2ABCD 的边长为6,点M 、N 分别从点B 、C 同时出发,以相同的速度沿边BC 、CD 方向向终点C 和D 运动,连接AM 和BN 交于点P ,则点P 到点C 的最短距离,并说明理由.【灵活运用】(4)如图3,O 的半径为4,弦4AB =,点C 为优弧AB 上一动点,AM AC ⊥交直线CB 于点M ,则ABM ∆的面积最大值是 .21.(1)如图1,已知ABC ∆中,30ABC ∠=︒,1AB AC ==,则ABC S ∆= .(2)如图2,在平面直角坐标系xOy 中,点A 在y 轴上运动,点B 在x 轴上运动,且4AB =,求AOB ∆面积的最大值.(3)如图3,O的半径为2,弦AB=C为优弧AmB上一动点,AM AC⊥交射线CB于点M,请问,ABM∆的周长存在最大值还是最小值?若存在,求出相应的最值;若不存在,说明理由.22.如图,在平面直角坐标系中,抛物线289=--的图象经过点(0,3)y ax ax aC,交x轴于点A、(B A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;∠=∠?若存在,求出点P的坐标;若不(2)抛物线的对称轴上是否存在点P,使BPC BAC存在,请说明理由.23.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于C 点,P为y 轴上的一个动点,已知(2,0)A -、(0,C -,且抛物线的对称轴是直线1x =.(1)求此二次函数的解析式;(2)连接PA 、PB ,P 点运动到何处时,使得60APB ∠=︒,请求出P 点坐标.24.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(3,0)A ,(1,0)B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.题型五 定角定高25.如图,在矩形ABCD 中,1AB =,AD =,E 为BC 边上一动点,F 、G 为AD 边上两个动点,45FEG ∠=︒,则线段FG 的长度最大值为 .26.辅助圆之定角定高求解探究(1)如图①,已知线段AB ,以AB 为斜边,在图中画出一个直角三角形;(2)如图②,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断AB 是否存在最小值,若存在,请求出AB 最小值;若不存在,请说明理由;(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,45A ∠=︒,90B D ∠=∠=︒,CB CD ==点E 、F 分别为AB 、AD 上的点,若保持CE CF ⊥,那么四边形AECF 的面积是否存在最大值,若存在,请求出面积的最大值,若不存在,请说明理由.27.问题研究(1)若等边ABC ∆边长为4,则ABC ∆的面积为 ;(2)如图1,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断ABC ∆的面积是否存在最小值.若存在,求出这个最小值;若不存在,请说明理由.问题解决(3)如图2,四边形ABCD 中,AB AD ==,45B ∠=︒,60C ∠=︒,135D ∠=︒,点E 、F 分别为边AB 、BC 上的动点,且EAF C ∠=∠,求四边形AECF 面积的最大值.28.(1)如图1,已知AC 、BC 为O 的两条弦,点D 为O 外一点,则ACB ∠ ADB ∠(请用“<”“ >”或“=”填空)(2)①如图2,若等边ABC ∆内接于O ,4AB =,CD 为O 的切线,则ABD ∆的面积为 . ②如图3,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高.若4CD =,试判断ABC ∆的面积是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.(3)如图4,正方形ABCD 的边长为4,点E 、F 分别为边AB 、BC 上的动点,且45EDF ∠=︒,求四边形DEBF 面积的最大值.29.问题探究(1)如图1.在ABC ∆中,8BC =,D 为BC 上一点,6AD =.则ABC ∆面积的最大值是 .(2)如图2,在ABC ∆中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC ∆的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.30.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.AOB∆的两条外角平分线交于点P,P在反比例函数9yx=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求P∠的度数及点P的坐标;(2)求OCD∆的面积;(3)AOB∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.专题03 隐圆(辅助圆)最值模型题型一 滑梯类模型1.如图,ABC ∆中,90C ∠=︒,10AC =,8BC =,线段DE 的两个端点D 、E 分别在边AC ,BC 上滑动,且6DE =,若点M 、N 分别是DE 、AB 的中点,则MN 的最小值为( )A .10B 3-C .6D .3【解答】解:ABC ∆中,90C ∠=︒,10AC =,8BC =,AB ∴==,6DE =,点M 、N 分别是DE 、AB 的中点,12CN AB ∴==,132CM DE ==, 当C 、M 、N 在同一直线上时,取最小值,MN ∴3,故选:B .2.如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 1 .【解答】解:如图,取AD 的中点H ,连接CH ,OH ,矩形ABCD ,1AB =,2BC =,1CD AB ∴==,2AD BC ==,点H 是AD 的中点,1AH DH ∴==,CH ∴===90AOD ∠=︒,点H 是AD 的中点,112OH AD ∴==, 在OCH ∆中,CO OH CH <+,当点H 在OC 上时,CO OH CH =+,CO ∴的最大值为1OH CH +=,1.3.已知边长为a 的正方形ABCD ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 点D 在第一象限,点E 为正方形ABCD 的对称中心,连接OE ,则OE 的长的最大值是 a .【解答】解:取AB 中点F ,连OF ,EF ,有OE OF FC +,当O 、E 、F 共线时,OE 有最大值,最大值是OF EF +.四边形ABCD 为正方形,90BEA ∴∠=︒,且F 为AB 中点,1122EF OF AB a ∴===, OE ∴的最大值为1122OF EF a a a +=+=, 故答案为:a .4.已知边长为a 的正三角形ABC ,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 的长的最大值是 .【解答】解:取AB 中点D ,连OD ,DC ,有OC OD DC +,当O 、D 、C 共线时,OC 有最大值,最大值是OD CD +.ABC ∆为等边三角形,AB BC AC a ∴===,根据三角形的性质可知:12OD a =,CD ==.OC ∴.5.如图,矩形ABCD 中,20AB =,30AD =,点E ,F 分别是AB ,BC 边上的两个动点,且10EF =,点G 为EF 的中点,点H 为AD 边上一动点,连接CH 、GH ,则GH CH +的最小值为 45 .【解答】解:由已知,点G 在以B 圆心,5为半径的圆在与长方形重合的弧上运动. 作C 关于AD 的对称点C ',连接C B ',交AD 于H ,交以B 为圆心,以5为半径的圆于G 由两点之间线段最短,此时C B '50==,则GH CH +的最小值50545=-=,故答案为:45.题型二 定点定长模型6.如图,在矩形ABCD中,4∆沿AB=,6AD=,E是AB边的中点,F是线段BC边上的动点,将EBFEF所在直线折叠得到△EB F',连接B D',则B D'的最小值是2.【解答】解:如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,此时B D'的值最小,根据折叠的性质,EBF∆≅△EB F',∴'⊥',EB B F∴'=,EB EBAB=,E是AB边的中点,4∴='=,2AE EBAD=,6∴=DE2∴'=.B D7.如图,在边长为4的菱形ABCD中,60∆A∠=︒,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到△A MN',连接A C',则线段A C'长度的最小值是2.【解答】解:如图所示:在N的运动过程中A'在以M为圆心,MA的长为半径的圆上,∴'是定值,A C'长度取最小值时,即A'在MC上时,MA过点M作MF DC⊥于点F,在边长为4的菱形ABCD 中,60A ∠=︒,M 为AD 中点,2MD ∴=,60FDM ∠=︒,30FMD ∴∠=︒,112FD MD ∴==,cos30FM DM ∴=⨯︒=,MC ∴=2A C MC MA ∴'=-'=.故答案为:2.8.如图,四边形ABCD 中,AB AC AD ==,若76CAD ∠=︒,则CBD ∠= 38 度.【解答】解:AB AC AD ==,∴点B ,C ,D 可以看成是以点A 为圆心,AB 为半径的圆上的三个点,CBD ∴∠是弧CD 对的圆周角,CAD ∠是弧CD 对的圆心角;76CAD ∠=︒,11763822CBD CAD ∴∠=∠=⨯︒=︒. 9.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是( )A .1.5B .1.2C .2.4D .以上都不对【解答】解:以F 为圆心,CF 为半径作F ,过点F 作FH AB ⊥于点H 交F 于点G ,则点P 到AB 的距离的最小值FH FP FH FG =-=-.由翻折的性质可知,2PF CF ==,∴点P 在F 上,6AC =,8BC =,10AB ∴=,由AHF ACB ∆∆∽, ∴AF FH AB BC =, ∴4108FH =, 3.2FH ∴=,∴点P 到AB 的距离的最小值 3.22 1.2FH FG =-=-=.故选:B .10.如图,在平行四边形ABCD 中,30BCD ∠=︒,4BC =,CD =M 是AD 边的中点,N 是AB 边上的一动点,将AMN ∆沿MN A MN ',连接A C ',则A C '长度的最小值是 5 .【解答】解:如图,连接MC ;过点M 作ME CD ⊥,交CD 的延长线于点E ;四边形ABCD 为平行四边形,//AD BC ∴,4AD BC ==,点M 为AD 的中点,30BCD ∠=︒,2DM MA ∴==,30MDE BCD ∠=∠=︒,112ME DM ∴==,DE ,CE CD DE ∴=+=222CM ME CE =+,7CM ∴=;由翻折变换的性质得:2MA MA '==,显然,当折线MA C '与线段MC 重合时,线段A C '的长度最短,此时725AC '=-=,故答案为5.题型三 直角所对的是直径11.如图,在圆O 中,半径OA 弦10BC =,点Q 是劣弧AC 上的一个动点,连接BQ ,作CP BQ ⊥,垂足为P .在点Q 移动的过程中,线段AP 的最小值是( )A .6B .7C .8D .9【解答】解:如图,连接AC ,取BC 的中点K ,连接PK ,AKAB 是直径,90ACB ∴∠=︒,12AC ∴=,5CK BK ==,13AK ∴==,CP BQ ⊥,152PK BC ∴==, PA AK PK -,1358PA ∴-=,PA ∴的最小值为8.故选:C .12.如图,在ABC ∆中,90ABC ∠=︒,8AB =,12BC =,D 为AC 边上的一个动点,连接BD ,E 为BD 上的一个动点,连接AE ,CE ,当ABD BCE ∠=∠时,线段AE 的最小值是( )A .3B .4C .5D .6【解答】解:如图,取BC 的中点T ,连接AT ,ET .90ABC ∠=︒,90ABD CBD ∴∠+∠=︒,ABD BCE ∠=∠,90CBD BCE ∴∠+∠=︒,90CEB ∴∠=︒,6CT TB ==,162ET BC ∴==,10AT ==, AE AT ET -,4AE ∴,AE ∴的最小值为4,故选:B .13.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP 长的最小值为 4 .【解答】解:90ABC ∠=︒,90ABP PBC ∴∠+∠=︒,PAB PBC ∠=∠,90BAP ABP ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的O 上,连接OC 交O 于点P ,此时PC 最小,在Rt BCO ∆中,90OBC ∠=︒,8BC =,6OB =,10OC ∴==,1064PC OC OP ∴=-=-=.PC ∴最小值为4.故答案为:4.14.如图,已知C 的半径为3,圆外一定点O 满足5OC =,点P 为C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=︒,l 不经过点C ,则AB 的最小值为 4 .【解答】解:如图,连接OP ,PC ,OC ,OP PC OC +,5OC =,3PC =,∴当点O ,P ,C 三点共线时,OP 最短,如图,OA OB =,90APB ∠=︒,2AB OP ∴=,当O ,P ,C 三点共线时,5OC =,3CP =,532OP ∴=-=,24AB OP ∴==,故答案为:4.15.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE DF =,连接CF 交BD 于G ,连接BE 交AG 于点H ,若正方形的边长为3,则线段DH 长度的最小值是 31)2- .【解答】解:在正方形ABCD 中,AB AD CD ==,BAD CDA ∠=∠,ADG CDG ∠=∠, 在ABE ∆和DCF ∆中,AB CDBAD CDA AE DF=⎧⎪∠=∠⎨⎪=⎩,()ABE DCF SAS ∴∆≅∆,12∴∠=∠,在ADG ∆和CDG ∆中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,()ADG CDG SAS ∴∆≅∆,23∴∠=∠,13∴∠=∠,390BAH BAD ∠+∠=∠=︒,190BAH ∴∠+∠=︒,1809090AHB ∴∠=︒-︒=︒,取AB 的中点O ,连接OH 、OD , 则1322OH AO AB ===,在Rt AOD ∆中,OD根据三角形的三边关系,OH DH OD +>,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值31)2OD OH =-=.故答案为:31)2.题型四 定边对定角模型16.如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为【解答】解:ABC ∆是等边三角形,AB AC BC ∴==,60CAB ACB ∠=∠=︒,在ABE ∆和CAF ∆中,AB AC BAC ACB AE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE CAF SAS ∴∆≅∆,ABE CAF ∴∠=∠,60BPF PAB ABP CAP BAP ∴∠=∠+∠=∠+∠=︒,120APB ∴∠=︒,如图,过点A ,点P ,点B 作O ,连接CO ,PO ,∴点P 在AB 上运动,AO OP OB ==,OAP OPA ∴∠=∠,OPB OBP ∠=∠,OAB OBA ∠=∠,360120AOB OAP OPA OPB OBP ∴∠=︒-∠-∠-∠-∠=︒,30OAB ∴∠=︒,90CAO ∴∠=︒,AC BC =,OA OB =,CO ∴垂直平分AB ,30ACO ∴∠=︒,cos AC ACO CO ∴∠==2CO AO =,CO ∴=AO ∴=,在CPO ∆中,CP CO OP -,∴当点P 在CO 上时,CP 有最小值,CP ∴的最小值=故答案为17.在锐角三角形ABC 中,30A ∠=︒,2BC =,设BC 边上的高为h ,则h 的取值范围是 23h <+ 【解答】解:如图,BC 为O 的弦,2OB OC ==,2BC =,OB OC BC ∴==,OBC ∴∆为等边三角形,60BOC ∴∠=︒,1302BAC BOC ∴∠=∠=︒, 作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,∴当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,在Rt BCD ∆中,30D BAC ∠=∠=︒,CD ∴==当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图, A 点为DE 的中点,∴AB AC =,AH BC ∴⊥,1BH CH ∴==,OH ∴==2AH OA OH ∴=+=+h ∴的范围为23h +.故答案为23h +.18.在ABC ∆中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为 【解答】解:如图所示.45ADB ∠=︒,2AB =,作ABD ∆的外接圆O (因求CD 最小值,故圆心O 在AB 的右侧),连接OC , 当O 、D 、C 三点共线时,CD 的值最小.90AOB ∴∠=︒,AOB ∴∆为等腰直角三角形,sin 45AO BO AB ∴==︒⨯=45OBA ∠=︒,90ABC ∠=︒,45OBE ∴∠=︒,作OE BC ⊥于点E ,OBE ∴∆为等腰直角三角形.sin451OE BE OB ∴==︒⋅=,312CE BC BE ∴=-=-=,在Rt OEC ∆中,OC ==当O 、D 、C 三点共线时,CD 最小为CD OC OD =-.19.如图,ABC ∆为等边三角形,2AB =.若P 为ABC ∆内一动点,且满足PAB ACP ∠=∠,则线段PB 长度的最小值为 .【解答】解:ABC ∆是等边三角形,60ABC BAC ∴∠=∠=︒,2AC AB ==,PAB ACP ∠=∠,60PAC ACP ∴∠+∠=︒,∴点P的运动轨迹是AC,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA PC=,OB AC⊥,则112AD CD AC===,30PAC ACP∠=∠=︒,1302ABD ABC∠=∠=︒,tan30PD AD AD∴=⋅︒==,BDPB BD PD∴=-==20.【问题情境】(1)点A是O外一点,点P是O上一动点.若O的半径为2,且5OA=,则点P到点A的最短距离为3.【直接运用】(2)如图1,在Rt ABC∆中,90ACB∠=︒,2AC BC==,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP AP的最小值是.【构造运用】(3)如图2,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.【灵活运用】(4)如图3,O的半径为4,弦4AB=,点C为优弧AB上一动点,AM AC⊥交直线CB于点M,则ABM∆的面积最大值是.【解答】解:(1)连接AP、OP,如图4所示:O 的半径为2,2OP ∴=,523OA OP ∴-=-=,PA OA OP ∴-,3PA ∴,∴当点P 在OA 上时,PA 最短,最小值为3,故答案为:3;(2)连接OA ,交半圆于P ',连接OP ,如图1所示:2AC BC ==,BC 为半圆的直径,112OP OC BC ∴===,90ACB ∠=︒,OA ∴==AP OA OP -, 51AP ∴-,∴当点P 在OA 上时,AP1-,1;(3)点P 到点C 的最短距离为3,理由如下:取AB 中点O ,连接OP 、OC 、PC ,如图2所示:点M 、N 分别从点B 、C 同时出发,以相同的速度沿边BC 、CD 方向向终点C 和D 运动, BM CN ∴=,四边形ABCD 是正方形,6AB BC ∴==,90ABM BCN ∠=∠=︒,在ABM ∆和BCN ∆中,BM CNABM BCN AB BC=⎧⎪∠=∠⎨⎪=⎩,()ABM BCN SAS ∴∆≅∆,BAM CBN ∴∠=∠,90CBN ABN ∠+∠=︒, 90BAM ABN ∴∠+∠=︒, 90APB ∴∠=︒, ∴点P 在以AB 为直径的O 上运动, 132OP OA OB AB ====,OC =又PC OC OP -, 353PC ∴-,PC ∴的最小值为3;(4)连接OA 、OB ,如图3所示: 4OA OB AB ===, AOB ∴∆是等边三角形, 60AOB ∴∠=︒, 11603022ACB AOB ∴∠=∠=⨯︒=︒,AM AC ⊥, 60M ∴∠=︒, ∴点M 在以120ADB ∠=︒的D 上, 4AB =,ABM S ∆最大,则点M 的距离最大, ∴当AM BM =时点M 到AB 的距离最大, ABM ∴∆是等边三角形,114422ABM S AB AB ∆∴==⨯=故答案为:21.(1)如图1,已知ABC ∆中,30ABC ∠=︒,1AB AC ==,则ABC S ∆= . (2)如图2,在平面直角坐标系xOy 中,点A 在y 轴上运动,点B 在x 轴上运动,且4AB =,求AOB ∆面积的最大值.(3)如图3,O 的半径为2,弦AB =C 为优弧AmB 上一动点,AM AC ⊥交射线CB 于点M ,请问,ABM ∆的周长存在最大值还是最小值?若存在,求出相应的最值;若不存在,说明理由.【解答】解:(1)如图1中,作AH BC ⊥于H .AB AC =,AH BC ⊥,BH CH ∴=,1AB =,30B ∠=︒,1122AH AB ∴==,2BC BH ==1122ABC S ∆∴==.(2)如图2中,取AB 的中点E ,连接OE ,作OH AB ⊥于H .90AOB ∠=︒,AE EB =,122OE AB ∴==,OH AB ⊥,OH OE ∴,即2OH ,OH ∴的最大值为2,AOB ∴∆的面积的最大值12442=⨯⨯=.(3)如图3中,连接OA ,OB ,作OH AB ⊥于H .OH AB ⊥,OA OB =,AH BH ∴==AOH BOH ∠=∠,sin AOH ∴∠,60AOH ∴∠=︒,2120AOB AOH ∠=∠=︒,1602ACB AOB ∴∠=∠=︒, MA AC ⊥,90MAC ∴∠=︒30M ∴∠=︒,如图31-中,ABM ∆中,AB =30AMB ∠=︒,ABM ∆的周长存在最大值,理由如下;作ABM ∆的外接圆,取优弧AB 的中点O ,连接OA ,OB ,以O 为圆心,OA 为半径作O ,延长AM 交O 于F ,连接BF .30AOB AMB ∠=∠=︒,1152AFB AOB ∴∠=∠=︒, 30AMB F MBF ∠=∠+∠=︒,F MBF ∴∠=∠,MF MB ∴=,MA MB MA MF AF ∴+=+=,∴当AF 的值最大时,MA MB +的值最大,此时MAB ∆的周长最大,延长AO 交O 于E ,连接BE 交ABM ∆的外接圆于D ,连接AD ,OD . 易知:90ABD AOD ∠=∠=︒,OD AE ∴⊥,OA OE =,DA DE ∴=,15E EAD ∴∠=∠=︒,151530ADB ∴∠=︒+︒=︒,2AD DE AB ∴===6BD =,6BE ∴=,AE ∴当AF 与AE 重合时,AF 的值最大,AF ∴的最大值为ABM ∴∆的周长的最大值为22.如图, 在平面直角坐标系中, 抛物线289y ax ax a =--的图象经过点(0,3)C ,交x 轴于点A 、(B A 点在B 点左侧) ,顶点为D .(1) 求抛物线的解析式及点A 、B 的坐标;(2)抛物线的对称轴上是否存在点P ,使BPC BAC ∠=∠?若存在, 求出点P 的坐标;若不存在, 请说明理由 .【解答】解: (1)把(0,3)C 代入289y ax ax a =--得93a -=,解得13a =-, ∴所以抛物线的解析式为182333y x x =-++. 令0y =得:1823033x x -++=,解得:11x =-,29x =, (1,0)A ∴-,(9,0)B .(2)分两种情况:①如图 2 ,以AB 为直径作M ,M 交抛物线的对称轴于(P BC 的下方) .42b x a=-=, ∴点P 的横坐标为 4 .由圆周角定理得CPB CAB ∠=∠,(1,0)A -,(9,0)B ,10AB ∴=.152MP AB ∴==. (4,5)P ∴-.②如图 3 所示: 以A B '为直径作M ',M '交抛物线的对称轴于P ',过点M '作M E P F '⊥',垂足为E ,连接P M ''.点A '与点A 关于BC 对称,10AB A B ∴='=,A A ∠=∠'.CP B CA B ∠'=∠',CP B A ∴∠'=∠.(1,6)A ',(9,0)B(5,3)M ∴'.1M E ∴'=.152M P A B ''='=,P E ∴'=∴点P '的坐标为(4,3).综上所述, 点P 的坐标为(4,5)P -或(4,3).23.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知(2,0)A -、(0,C -,且抛物线的对称轴是直线1x =.(1)求此二次函数的解析式;(2)连接PA 、PB ,P 点运动到何处时,使得60APB ∠=︒,请求出P 点坐标.【解答】解:(1)将A ,C 点坐标代入函数解析式,及对称轴,得42012a b c c b a⎧-+=⎪⎪=-⎨⎪⎪-=⎩,解得a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=-⎪⎪⎩,抛物线的解析式为2y x -,(2)以AB 为边作等边ABM ∆,作ABM ∆的外接圆O ',交y 轴负半轴于P ,作O E AB '⊥于E ,连接BO ',O P '.设(0,)P m . 易知:(1,3)O '-,23BO O P '='=,21(3)12m ∴++=,113m ∴=--或113-(舍弃), (0,311)P ∴--,根据对称性可知(0,311)P '+也符合条件.24.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(3,0)A ,(1,0)B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.【解答】解:(1)抛物线23y ax bx =++过点(3,0)A ,(1,0)B -,∴933030a b a b ++=⎧⎨-+=⎩ 解得:12a b =-⎧⎨=⎩, ∴这条抛物线对应的函数表达式为223y x x =-++.(2)解法一:如图,连接IO ,ID ,IA ,I 是ADG ∆的内心,IA ∴平分DAG ∠,ID 平分ADG ∠,12IAD DAG ∴∠=∠,12ADI ADG ∠=∠.90DAG ADG ∠+∠=︒,45IAD ADI ∴∠+∠=︒,135AID ∴∠=︒.在ADI ∆和AOI ∆中,AD AODAI OAI AI AI=⎧⎪∠=∠⎨⎪=⎩,()ADI AOI SAS ∴∆≅∆.135AID AIO ∴∠=∠=︒. OA 为定线段,OIA ∠恒等于135︒,∴点I 在以OA 为弦,所含的圆周角等于135︒的圆弧上,设该圆的圆心为E ,连接EO ,EA ,135OIA ∠=︒,90OEA ∴∠=︒.EO EA =,EOA ∴∆为等腰直角三角形.过点E 作EH OA ⊥于点H , 则1322AH OH OA ===.OE ∴=.∴圆心E 的坐标为3(2,3)2,E . 当点I 在线段CE 上时,CI 的值最小,CI 的最小值CE OE =-==.题型五 定角定高模型25.如图,在矩形ABCD 中,1AB =,AD =,E 为BC 边上一动点,F 、G 为AD 边上两个动点,45FEG ∠=︒,则线段FG 的长度最大值为 2 .【解答】解:如图,作EFG ∆的外接圆O ,连接OA ,OE ,OG ,过点O 作OH AD ⊥于H ,过点E 作EQ AD ⊥于Q ,连接AC .四边形ABCD 是矩形,90B ∴∠=︒,1AB CD ==,AD BC ==2AC ∴=,45FEG ∠=︒,290FOG FEG ∴∠=∠=︒,12EFG EOG ∠=∠, 290EOF FOG EOG EFG ∴∠=∠+∠=∠+︒,1112221cos cos(45)cos(90)2EF EF EF OF OE OEF EFG EOF ====∠︒-∠︒-∠, ∴当EF 最大,且EFG ∠最小时,OF 的值最大,则FG 的值最大, 1sin 2EQEQ EFG FQ AC ∠==, ∴当点E 与C 重合,F与A 重合时,“=”号成立,12cos(4530)AC OF OE ∴==-︒-︒FG ∴的最大值2==.故答案为2.26.辅助圆之定角定高求解探究(1)如图①,已知线段AB ,以AB 为斜边,在图中画出一个直角三角形;(2)如图②,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断AB 是否存在最小值,若存在,请求出AB 最小值;若不存在,请说明理由;(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,45A∠=︒,90B D ∠=∠=︒,CB CD ==点E 、F 分别为AB 、AD 上的点,若保持CE CF⊥,那么四边形AECF【解答】解:(1)如图①中,ABC ∆即为所求.(2)如图②中,作ABC ∆的外接圆O ,连接OA ,OB ,OC ,作OE AB ⊥于E .设2OA OC x ==.2120AOB ACB ∠=∠=︒,OA OB =,OE AB ⊥,AE EB ∴=,60AOE BOE ∠=∠=︒, 12OE OA x ∴==,AE =,OC OE CD +,34x ∴, 43x∴, x ∴的最小值为43,2AB =,AB ∴. (3)如图③中,连接AC ,延长BC 交AD 的延长线于G ,将CDF ∆顺时针旋转得到CBH ∆,作CEH ∆的外接圆O .90ADC ABC ∠=∠=︒,AC AC =,CD CB =,Rt ACD Rt ACB(HL)∴∆≅∆, ACD ACB S S ∆∆∴=,45DAB ∠=︒,135DCB ∴∠=︒, 45DCG ∴∠=︒, 90CDG ∠=︒,CD DG ∴==12CG ∴==,12AB GB ∴==+由(2)可知,当CEH ∆的外接圆的圆心O 在线段BC 上时,ECH ∆的面积最小,此时四边形AFCE 的面积最大,设OC OE r ==,易知2OB EB ==,r ∴=r ∴=,12(2EH ∴=,∴四边形AFCE 的面积的最大值112(1212(214422=⨯⨯+⨯⨯⨯. 27.问题研究(1)若等边ABC ∆边长为4,则ABC ∆的面积为(2)如图1,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高,若4CD =,试判断ABC ∆的面积是否存在最小值.若存在,求出这个最小值;若不存在,请说明理由. 问题解决(3)如图2,四边形ABCD 中,AB AD ==,45B ∠=︒,60C ∠=︒,135D ∠=︒,点E 、F 分别为边AB 、BC 上的动点,且EAF C ∠=∠,求四边形AECF 面积的最大值.【解答】解:(1)过点C 作CD AB ⊥于D ,等边ABC ∆边长为4,114222AD BD AB ∴===⨯=, 在Rt ACD ∆中,由勾股定理得22AC AD CD =+,即22242CD =+,解得:CD =,11422ABC S AB CD ∆∴=-=⨯⨯故答案为:(2)CD 为AB 边上的高,若4CD =,设AB c =,AC b =,BC a =,过A 作AE BC ⊥于E ,111sin60222ABC S AB CD AE BC BC AC ∆∴=⨯=⨯=⨯⨯︒,4c ∴=,又sin 60AE AC =⋅︒=,1cos602CE AC b =⋅︒=, 12BE BC EC a b =-=-,在Rt ABE ∆中,由勾股定理得222AB AE BE =+,即2221)()2c a b =+-, 2222c a b ab ab ab ab ∴=+--=,仅当a b =时取等号,即ABC ∆为等边三角形时, 283c c ∴,833c∴,11422ABC S AB CD ∆∴=⋅==最小 (3)45B ∠=︒,60C ∠=︒,135ADC ∠=︒,3603604560135120BAD B C D ∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,将ABE ∆逆时针旋转120︒得ADG ∆, 45ADG B ∠=∠=︒,AE AG =, 45135180ADG ADC ∴∠+∠=︒+︒=︒, C ∴、D 、G 三点共线,60EAF C ∠=∠=︒,12060BAE FAD EAF ∠+∠=︒-∠=︒, 60GAD FAD BAE FAD ∴∠+∠=∠+∠=︒,在EAF ∆和GAF ∆中,AE AGEAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ()EAF GAF SAS ∴∆≅∆, EF GF ∴=,ABE ADF AGF AECF ABCD ABCD S S S S S S ∆∆∆=--=-四边形四边形四边形,∴当AGF S ∆最小时,AECF S 四边形最大,过A 作AH CG ⊥于H ,4AD =45ADH ∠=',sin454AH DH AD ∴==⋅︒=, 60FAG ∠=︒,11sin 6022AGF S AF AG AG AH GF ∆∴=--︒⋅=-, 由(2)知AG AF =时,AFG ∆面积最小,由点F 在CD 上运动,达不到AFG ∆是等边三角形,当向D 运动时,AFG ∆面积逐渐减小,∴点F 到点D 时,AFG ∆面积最小,此时ABE AFG AFE ∆≅∆≅∆,45ABE AFE AFG HAF ∴∠=∠=∠=∠=︒,6BAE FAE AG O ∠=∠=∠=︒,AB AF AD ===在_AH 上取点M 使30HGM ∠=︒, 604515HAG FAG FAH ∠=∠-∠=︒-︒=︒,9075AGH GAH '∴∠=-∠=︒,75(9030)15AGM AGH MGH HAG ∴∠=∠-∠=︒-︒-︒=︒=∠,设GH x =,2MG x =,由勾股定理MH =,24AH AM MH x ∴=+=+=,4(2x ∴=-,44(212GF ∴=+=-,14(12242AEF AGF S S ∆∆==⨯⨯-=-12EF GF ==-1354590EFC ADC ADE ∠=∠-∠=︒-︒=︒,60C ∠=︒,2111tan (1248222CEF S EF FC EF EF FEC ∆∴=⋅=⋅⋅∠=⨯-=,244824AEF CEF AECF S S S ∆∆∴=+=-=四边形.∴四边形AECF 面积的最大值为24.28.(1)如图1,已知AC 、BC 为O 的两条弦,点D 为O 外一点,则ACB ∠ > ADB ∠(请用“<”“ >”或“=”填空)(2)①如图2,若等边ABC ∆内接于O ,4AB =,CD 为O 的切线,则ABD ∆的面积为 . ②如图3,在ABC ∆中,60ACB ∠=︒,CD 为AB 边上的高.若4CD =,试判断ABC ∆的面积是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.(3)如图4,正方形ABCD 的边长为4,点E 、F 分别为边AB 、BC 上的动点,且45EDF ∠=︒,求四边形DEBF 面积的最大值.【解答】解:(1)如图1,设AD 与O 交于E ,连接BE , 则C AEB ∠=∠,AEB D ∠>∠,ACB ADB ∴∠>∠;故答案为:>;(2)①如图2,连接CO 并延长交AB 于E , ABC ∆是等边三角形, AC CB ∴=,∴AC BC =,CE AB ∴⊥,2AE BE ==,CE ∴=CD 为O 的切线,CE CD ∴⊥, //CD AB ∴,ABD ∴∆的面积11422AB CE =⋅=⨯=故答案为:②如图3中,作ABC ∆的外接圆O ,连接OA ,OB ,OC ,作OE AB ⊥于E .设2OA OC x ==. 2120AOB ACB ∠=∠=︒,OA OB =,OE AB ⊥,AE EB ∴=,60AOE BOE ∠=∠=︒, 12OE OA x ∴==,AE =,OC OE CD +, 34x ∴, 43x∴, x ∴的最小值为43,2AB =,AB ∴; ABC ∴∆的面积的最小值142=⨯; (3)四边形DEBF 面积ADE CDF ABCD S S S ∆∆=--正方形,∴当ADE CDF S S ∆∆+DEBF 的面积有最大值,如图4,将DAE ∆逆时针旋转90︒得到DCM ∆, 180FCM FCD DCM ∴∠=∠+∠=︒,AE CM =,F ∴、C 、M 三点共线, DE DM ∴=,90EDM ∠=︒,90EDF FDM ∴∠+∠=︒, 45EDF ∠=︒,45FDM EDF ∴∠=∠=︒,在DEF ∆和DMF ∆中,DE DMEDF MDF DF DF =⎧⎪∠=∠⎨⎪=⎩, ()DEF DMF SAS ∴∆≅∆,EF MF ∴=,EF CF AE ∴=+;DEF ∆的面积DFM =∆的面积122ADE DCF S S EF CD EF ∆∆=+=⨯=,DEF ∴∆面积2EF =.EF AE CF =+,4AE BE AB +==,4BF CF BC +==, 8EF BE BF AB BC ∴++=+=, 8BE BF EF ∴+=-,22222(8)6416BE BF BE BF EF EF EF ∴⋅++=-=+-,且222BE FB EF +=, 328BE BF EF ∴⋅=-,2()0BE BF -, 222BE BF BE BF ∴+⋅, 26416EF EF ∴-2(8)128EF ∴+,828EF ∴-,或828EF --(舍去),EF ∴的最小值为8-,DEF ∴∆面积的最小值为,∴四边形DEBF 面积的最大值441632=⨯-=-29.问题探究(1)如图1.在ABC ∆中,8BC =,D 为BC 上一点,6AD =.则ABC ∆面积的最大值是 24 . (2)如图2,在ABC ∆中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC ∆的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,12AB =,6BC =,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.【解答】解:(1)当AD BC ⊥时,ABC ∆面积的最大,则ABC ∆面积的最大值是11862422BC AD ⋅=⨯⨯=,故答案为:24;(2)如图2中,连接OA ,OB ,OC ,作OE BC ⊥于E .设2OA OC x ==,2120COB CAB ∠=∠=︒,OC OB =,OE CB ⊥, CE EB ∴=,60COE BOE ∠=∠=︒,12OE OB x ∴==,BE ,OA OE AG +,33x ∴, 1x ∴,x ∴的最小值为1,2BC =,BC ∴的最小值为(3)如图3中,连接AF ,EF ,延长BC 交AE 的延长线于G ,90D ∠=︒,6AD DE ==,45DAE AED ∴∠=∠=︒,12CD AB ==,6CE CF ∴==,45CEF CFE ∴∠=∠=︒, 90AEF ∴∠=︒,EF BF ∴=,将EFM ∆顺时针旋转得到FBH ∆,作FHN ∆的外接圆O 交AB 于N , 连接ON ,90AEF ABF ∠=∠=︒,AF AF =,EF BF =,Rt AEF Rt ABF(HL)∴∆≅∆, AEF ABF S S ∆∆∴=,。
中考数学专题:隐形圆解析
D
O
E
C
B
【分析】连接 CE ,由于 CD 为直径,故∠CED=90°,考虑到 CD 是动线段,故可以将此 题看成定线段 CB 对直角∠CEB .
A
D
E O
C
B
取 CB 中点 M,所以 E 点轨迹是以 M 为圆心、CB 为直径的圆弧.
A
D
E O
CM
B
连接 AM,与圆弧交点即为所求 E 点,此时 AE 值最小, AE AM EM 102 22 2 2 26 2 .
【2017 四川德阳】 如图,已知圆 C 的半径为 3,圆外一定点 O 满足 OC=5,点 P 为圆 C 上一动点,经过点 O 的直线 l 上有两点 A、B,且 OA=OB,∠APB=90°,l 不经过点 C,则 AB 的最小值为________.
C P
l AO B
【分析】连接 OP,根据△APB 为直角三角形且 O 是斜边 AB 中点,可得 OP 是 AB 的一半, 若 AB 最小,则 OP 最小即可.
【2019 扬州中考】 如图,已知等边△ABC 的边长为 8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直 线 l 是经过点 P 的一条直线,把△ABC 沿直线 l 折叠,点 B 的对应点是点 B’.当 PB=6 时, 在直线 l 变化过程中,求△ACB ’面积的最大值.
A P
B
A
P F
C
E
B
【分析】考虑到将△FCE 沿 EF 翻折得到△FPE,可得 P 点轨迹是以 F 点为圆心,FC 为半径的圆弧. A
P F
C
E
B
过 F 点作 FH ⊥AB,与圆的交点即为所求 P 点,此时点 P 到 AB 的距离最小.由相似先求 FH ,再减去 FP, 即可得到 PH .
初中数学《隐形圆》模型梳理与题型分类含答案解析
隐形圆(4大模型与6类题型)第一部分【模型梳理与题型目录】隐形圆模型是初中数学中的重要知识点,常用于解决一些看似没有直接使用圆的知识但实际上需要运用圆的性质来解决的问题,隐形圆常常用于解决最值问题.本专题梳理了隐形圆四大模型,供大家参考使用.【模型1】 定点定长模型【模型分析】(1)出现共端点、等线段时,可以利用圆的定义构造辅助圆;(2)如图1,若OA=OB =OC,则A、B、C在以O为圆心,OA为半径的圆上.由圆周角定理可得:∠ABC= 1∠AOC,∠ACB=12∠AOB,∠BAC=12∠BOC.2图1【模型2】 90°圆周角模型【模型分析】如图2,在△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的⊙O (不包含A、B两点).注:作出辅助圆是关键,计算时结合求点圆、线圆、最值等方法进行相关计算.图2应用:常用于解决直角三角形中动点的轨迹问题。
【模型3】 定弦定角模型【模型分析】固定的线段只要对应固定的角度,那么这个角的顶点轨迹为圆的一部分.如图①,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;(注意:弦AB所对的劣弧(AB)上也有圆周角,需要根据题目灵活运用)如图②,若有一固定线段AB及线段AB所对的∠C大小固定,根据圆的知识可知点C不唯一.当∠C<90°时,点C在优弧上运动;当∠C=90°时,点C在半圆上运动,且线段AB是⊙O的直径;当∠C >90°时,点C在劣弧上运动.【模型4】四点共圆模型【模型分析】在四边形ABCD中,若∠A+∠C=1800,则A、B、C、D在圆O上,称之为A、B、C、D四点共圆.图3应用:常用于解决四点共圆的问题,如角度相等、线段最值等问题.【题型1】定点定长模型......................................................3;【模型2】 90°圆周角模型...................................................6;【题型3】定弦定角模型.....................................................11;【题型4】四点共圆模型.....................................................15;【题型5】直通中考.........................................................20;【题型6】拓展延伸.........................................................23.第二部分【题型展示与方法点拨】【题型1】 定点定长模型1.(23-24九年级上·福建福州·期末)如图,在等边△ABC中,AB=4,D,E分别是边AB,BC上的动点(不与△ABC的顶点重合),连接AE,CD相交于点F,连接BF,若∠BDF+∠BEF=180°,则BF的最小值为.【433/433【∠BDF +∠BEF =180°,∠DFE =120°,∠AFC =120°,F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,△AOB ≌△COB ,△AOB 为含30度角的直角三角形进行求解即可.解∵等边△ABC ,∴∠ABC =60°,AB =BC ,∵∠BDF +∠BEF =180°,∴∠DFE +∠ABC =360°-∠BDF +∠BEF =180°,∴∠DFE =120°,∴∠AFC =120°,∴点F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,∵AB =BC ,OB =OB ,OA =OC ,∴△AOB ≌△COB ,∴∠ABO =∠CBO =12∠ABC =30°,∠AOB =∠BOC =12∠AOC =60°,∴∠BAO =90°,∴BO =2AO ,AB =3AO =4,∴AO =433,∴BO =2OA =833,OF =AO =433,∴BF ≤433,BF 的最小值为433;故答案为433.【30度角的直角三角形一点到圆上一点的最值F 的运动轨迹.2.(24-25九年级上·全国·课后作业)如图,P 是边长为1的正方形ABCD 内的一个动点,且满足∠PBC +∠PDC =45°,则CP 的最小值是()A.2-2B.12C.22D.2-1【答案】D【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、圆周角定理,在凹四边形BCDP中,求出∠BPD=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,求出AC和AP的长度,即可得到结果,解本题的关键是证明∠BPD是定值,从而得到点P的轨迹.解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°-∠BCD-(∠PBC+∠PDC)=225°,∴∠BPD=360°-(∠BPC+∠CPD)始终为135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,,由解图可得AP+CP≥AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,在Rt△ABC中,∵AB=BC=1,∴AC=AB2+BC2=2,∵AP=AB=1,∴CP最小=AC-AP=2-1,故选:D.3.(24-25九年级上·江苏宿迁)如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为()A.30B.32C.35D.38【答案】D【分析】首先连接AC,BG,证明G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH 上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,再进一步解答即可.解:连接AC,BG,∵矩形ABCD,∴∠ABC=90°,S矩形=48,∵EF=4,G为EF的中点,∴BG=12EF=2,∴G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.设圆弧交BH于G ,此时四边形AGCD面积取最小值,由勾股定理得:AC=62+82=10,∵1 2AC⋅BH=12AB⋅BC,∴BH=4.8,∴G H=2.8,即四边形AGCD面积的最小值=12×10×2.8+24=38.故选:D.【点拨】本题考查了勾股定理及矩形中的与动点相关的最值问题,圆的确定,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.【题型2】 90°圆周角模型4.(2024·湖南娄底·一模)如图,正方形ABCD的边长为a,点E、F分别在BC、CD上,且BE=CF,AE与BF相交于点G,连接CG,则CG的最小值为.【答案】5-1 a2【分析】本题考查了正方形的性质,圆周角定理,勾股定理,以及全等三角形的判定与性质,熟练掌握90°的圆周角所对的弦是直径是解答本题的关键.通过证明△ABE ≌△BCF SAS ,可证∠AGB =90°,则点G 在以AB 为直径的一段弧上运动,当点G 在OC 与弧的交点处时,CG 最短,然后根据勾股定理求出OC 的长即可求解.解:∵四边形ABCD 是正方形,∴∠ABC =∠BCF =90°,AB =BC =a ,∴在△ABE 和△BCF 中,AB =BC∠ABC =∠BCFBE =CF∴△ABE ≌△BCF SAS ,∴∠BAE =∠CBF ,∵∠ABF +∠CBF =90°,∴∠ABF +∠BAE =90°,∴∠AGB =90°,∴点G 在以AB 为直径的一段弧上运动,设AB 的中点为O ,则当点G 在OC 与弧的交点处时,CG 最短,∵AB =a ,∴OB =OG =a 2,∴OC =a 2 2+a 2=52a ,∴CG=OC -OG =5-1 a 2,故答案为:5-1 a 2.5.(23-24九年级下·山东日照)如图,已知正方形ABCD 的边长为2,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为()A.13-1B.10-1C.10D.5+1【答案】A【分析】根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠CDF=90°,∵∠ADF=∠DCF,∴∠DCF+∠CDF=90°,∴∠DFC=90°,∴点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,OF=1,∵∠C =90°,B C =C D =CD=2,∴OC =3,∴OB =B C 2+OC 2=13,∴B F=13-1,∴FD+FE的长度最小值为13-1,故选:A.【点拨】此题考查了正方形的性质,圆周角定理,轴对称的性质,点的运动轨迹,勾股定理,最小值问题,正确理解点的运动轨迹是解题的关键.6.(24-25九年级上·广东深圳·开学考试)如图,E,F是正方形ABCD的边AD上两个动点,满足AE= DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是()A.52-1 B.5-12C.52D.5-1【答案】B【分析】由SAS可判定△ABE≌△DCF,由全等三角形的性质得∠ABE=∠DCF,同理可证∠DCG=∠DAG,由角的和差得∠AHB=90°,取AB的中点O,连接OH,H的运动轨迹为以O为圆心,OH=1 2AB=12为半径的半圆,当O、H、D三点共线时,DH最小,即可求解.解:∵四边形ABCD是正方形,∴AB=AD=CD=1,∠BAE=∠CDF=90°,∠ADG=∠CDG,∵∠BAH+∠DAG=90°,在△ABE和△DCF中,AB=CD∠BAE=∠CDFAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠DCG=∠DAG,∴∠ABE=∠DAG,∴∠ABE+∠BAH=90°,∴∠AHB=90°,如下图,取AB的中点O,连接OH,∴OA=12,∴H的运动轨迹为以O为圆心,OH=12AB=12为半径的半圆,如图,当O、H、D三点共线时,DH最小,∴OD=OA2+AD2=122+12=52,∴DH=OD-OH=52-1 2=5-12;故选:B.【点拨】本题考查了正方形的性质,全等三角形的判定及性质,勾股定理,直角三角形的特征,圆外一点到圆上任一点距离的最值等;能找出动点的运动轨迹及取得最小值的条件,熟练利用勾股定咯求解是解题的关键.【题型3】 定弦定角模型7.(22-23九年级上·江苏南京·阶段练习)如图,CD是△ABC的高,若AB=2,∠ACB=45°,则CD长的最大值为()A.1+2B.4-2C.2D.4【答案】A【分析】在AB上方作以AB为斜边的等腰直角三角形△AOB,根据“定线段对定角度”确定点C在以O为圆心,OA长为半径的圆上运动,当CD经过圆心时CD最长,再计算即可.解:在AB上方作以AB为斜边的等腰直角三角形△AOB,∵∠ACB=45°∴点C在以O为圆心,OA长为半径的圆上运动,∵AB=2,∴OA=OC=2,当CD经过圆心时CD最长∵CD是△ABC的高,∴AD=BD=OD=1AB=12此时CD=OC+OD=2+1,故选:A.【点拨】本题考查几何最值问题,解题的关键是确定点C在以O为圆心,OA长为半径的圆上运动.8.(20-21九年级上·江苏无锡·期末)如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.22+2B.22+4C.25D.25+2【答案】A【分析】根据y=x与x轴的夹角为45°,以AB为斜边作等腰直角三角形,连接AD,CD,OD,则∠DBC= 45°,根据勾股定理求得DB的长,进而证明△DCB是直角三角形,求得DC的长,根据OD+DC≥OC,即可求得OC的最大值解:如图,以AB为斜边作等腰直角三角形,连接AD,CD,OD,∵y=x与x轴的夹角为45°,∴∠AOB=45°=1∠ADB2∴A,O,B在⊙D上,∵AB=4,∠ADB=90°,∴BD=AD=22,∴∠ABD=45°∵BC⊥AB∴∠CBA=90°∴∠CBD=45°∴△BCD中BC=2,BD=22,∠CBD=45°过点C作CE⊥BD于点E,如图则BE=CE=2=DE∴CD=CB=2∵OD+DC≥OC∴当O,D,C三点共线时,OC取得最大值,最大值为OD+DC=DB+DC=22+2故选A【点拨】本题主要考查了勾股定理,同弧所对的圆周角等于圆心角的一半,找到⊙D是解决本题的关键.9.(19-20九年级上·浙江宁波·期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.2-1C.2-2D.13【答案】C 【分析】先计算出∠PBC +∠PCB =45°,则∠BPC =135°,利用圆周角定理可判断点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC 于P ′,作BC 所对的圆周角∠BQC ,利用圆周角定理计算出∠BOC =90°,从而得到△OBC 为等腰直角三角形,四边形ABOC 为正方形,所以OA =BC =2,OB =2,根据三角形三边关系得到AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),于是得到AP 的最小值.解:解:∵△ABC 为等腰直角三角形,∴∠ACB =45°,即∠PCB +∠PCA =45°,∵∠PBC =∠PCA ,∴∠PBC +∠PCB =45°,∴∠BPC =135°,∴点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC于P ′,作BC 所对的圆周角∠BQC ,则∠BCQ =180°-∠BPC =45°,∴∠BOC =2∠BQC =90°,∴△OBC 为等腰直角三角形,∴四边形ABOC 为正方形,∴OA =BC =2,∴OB =22BC =2,∵AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),∴AP 的最小值为2-2.故选:C .【点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【题型4】四点共圆模型10.(22-23九年级上·黑龙江哈尔滨·阶段练习)如图,在四边形ABCD 中,∠ABC =∠D =90°,连接AC ,点F 为边CD 上一点,连接BF 交AC 于点E ,AB =AE ,∠FGC +∠FBG =90°,∠BFG +2∠GFC =180°,若AD =722,BG =4,则CG 的长为.【答案】8【分析】延长BA 与CD 的延长线相交于点H ,证明∠FGC =∠ABF ,∠GFC =∠BFD ,由三角形内角和定理得到∠H=∠ACB,BH=BC,进一步得到∠H=∠DAH=45°,则AD=DH=722,由勾股定理得到AH=AD2+DH2=7,证明点C、G、E、F四点共圆,如图,连接EG,证明CE=CG,设CE=CG=x,则BH=BC=4+x,AE=AB=x-3,AC=2x-3,由勾股定理得AB2+BC2=AC2,即x-32+x+42 =2x-32,解方程即可得到答案.解:延长BA与CD的延长线相交于点H,∵∠FGC+∠FBG=90°,∠FBG+∠ABF=∠ABC=90°∴∠FGC=∠ABF,∵∠BFG+2∠GFC=180°,∠BFG+∠BFD+∠CFG=180°,∴2∠GFC=∠BFD+∠CFG,∴∠GFC=∠BFD,∵∠H+∠ABF+∠BFD=180°=∠ACB+∠FGC+∠GFC,∴∠H=∠ACB,∵∠ABC=90°,∴∠H=∠ACB=45°,BH=BC,∵∠ADH=90°,∴∠H=∠DAH=45°,∴AD=DH=722,∴AH=AD2+DH2=7,∵AB=AE,∴∠ABE=∠AEB,∵∠FGC=∠ABE,∠CEF=∠AEB,∴∠FGC=∠CEF,∴点C、G、E、F四点共圆,如图,连接EG,∴∠GFC=∠CEG,∠BFD=∠CGE,∵∠GFC=∠BFD,∴∠CGE=∠CEG,∴CE=CG,设CE=CG=x,则BH=BC=BG+CG=4+x,∴AE=AB=BH-AH=x+4-7=x-3,∴AC=AE+CE=x-3+x=2x-3,由勾股定理得,AB2+BC2=AC2,∴x-32+x+42=2x-32,解得x=-1(不合题意,舍去)或x=8,∴CG=8,故答案为:8【点拨】此题考查了等腰直角三角形的判定和性质、勾股定理、等腰三角形的判定和性质、四点共圆、圆周角定理、圆内接四边形的性质、解一元二次方程等知识,关键在于等腰直角三角形的判定和性质与证明四点共圆.11.(24-25九年级上·江苏宿迁·阶段练习)如图,等边三角形ABC中,AB=5,P为AB边上一动点,PD⊥BC ,PE ⊥AC ,垂足分别为D ,E 则DE 的最小值为.【答案】154【分析】如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,首先证明△ODE 是顶角为120°的等腰三角形,当OE 的值最小时,DE 的值最小,即可求出PC 的最小值.解:如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,∵△ABC 是等边三角形,∴∠ACB =60°,AB =BC =AC =5,∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∵OP =OC ,∴OE =OP =OC =OD ,∴C 、D 、P 、E 四点共圆,∴∠EOD =2∠ECD =120°,∴当OE 的值最小时,DE 的值最小,根据垂线段最短可得,当CP ⊥AB 时,PC =532,此时OE 最小,OE =534,∵OE =OD ,OH ⊥DE ,∴DH =EH ,∠DOH =∠EOH =60°,∴∠OEH =30°,∴OH =12OE =538,∴DH =EH =OE 2-OH 2=158,∴DE =2DH =154,∴DE 的值最小为154,故答案为:154.【点拨】本题考查了四点共圆、垂线段最短、圆周角定理、含30°角的直角三角形的性质、等腰直角三角形的判定与性质等知识;正确判断当CP ⊥AB 时OE 最小是解题的关键.12.(23-24九年级下·江苏南京·阶段练习)如图,在△ABC 中,∠ACB =90°,AC =BC =2,点P 是射线AB 上一动点,∠CPD =90°,且PC =PD ,连接AD 、CD ,则AD +CD 的最小值是.【答案】25【分析】取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,此时易得△ACD是等腰三角形,推出AD=CD,即AD,CD有最小值,则AD+CD有最小值,此时根据∠AHD=∠CHD=∠ACB=90°,推出DH∥BC,设CD中点为O,根据∠CHD=∠CPD=90°,易得点C,H,P,D在以点O为圆心CD为直径的圆上,易得∠CHP+∠PDC=180°,由∠ABC=45°,易得此时点B在圆O上,进而推出∠CBD+∠CPD=180°,则∠CBD=90°,得到四边形BCHD是矩形,即HD=BC=2,利用勾股定理即可计算出CD的最小值,进而得出结果.解:取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,∵点H是AC中点,DH⊥AC,∴△ACD是等腰三角形,∴AD=CD,∵AH,CH是定值,DH有最小值时,即AD,CD有最小值,则AD+CD有最小值,∵∠AHD=∠CHD=∠ACB=90°,∴DH∥BC,设CD中点为O,∵∠CHD=∠CPD=90°,∴点C,H,P,D在以点O为圆心CD为直径的圆上,∴∠CHP+∠PDC=180°,∵∠ABC=45°,∴此时点B在圆O上,∴∠CBD+∠CPD=180°,∴∠CBD=90°,∵DH∥BC,∴四边形BCHD是矩形,∴HD=BC=2,∵HC=1AC=1,2在Rt△CHD中,∴CD=CH2+HD2=5,∴AD+CD的最小值为2CD=25,故答案为:25.【点拨】本题考查勾股定理求最短距离,圆周角定理,四点共圆,等腰三角形的判定与性质,矩形的判定与性质,正确作出辅助线,证明四点共圆是解题的关键.第三部分【中考链接与拓展延伸】1、直通中考1.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4);Rt △COD 中,∠COD =90°,OD =43,∠D =30°,连接BC ,点M 是BC 中点,连接AM .将Rt △COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,根据点A 的坐标为(-6,4)得到BE =8,再证明AM 是△BCE 的中位线,得到AM =12CE ;解Rt △COD 得到OC =4,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.解:如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,∵Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4),∴AB =4,OB =6,∴AE =AB =4,∴BE =8,∵点M 为BC 中点,点A 为BE 中点,∴AM 是△BCE 的中位线,∴AM =12CE ;在Rt △COD 中,∠COD =90°,OD =43,∠D =30°,∴OC =33OD =4,∵将Rt △COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵OE =BE 2+OB 2=10,∴CE 的最小值为10-4=6,∴AM 的最小值为3,故选A .【点拨】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2022·广西柳州·中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】25-2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明△ADE≌△CDF (SAS),可得AE=CF,可得当A,E,G三点共线时,AE最短,则CF最短,再利用勾股定理可得答案.解:如图,由EG=2,可得E在以G为圆心,半径为2的圆上运动,连接AE,∵正方形ABCD,∴AD=CD,∠ADC=90°,∴∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∴当A,E,G三点共线时,AE最短,则CF最短,∵G位BC中点,BC=AB=4,∴BG=2,此时AG=BG2+AB2=22+42=25,此时AE=25-2,所以CF的最小值为:25-2.故答案为:25-2【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.2、拓展延伸3.(2022·辽宁抚顺·中考真题)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.【答案】55-5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.解:①分析所求线段GF端点:G是定点、F是动点;②动点F的轨迹:正方形ABCD的边长为10,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,则BF=BA=10,因此动点轨迹是以B为圆心,BA=10为半径的圆周上,如图所示:③最值模型为点圆模型;④GF最小值对应的线段为GB-10;⑤求线段长,连接GB,如图所示:在RtΔBCG中,∠C=90°,正方形ABCD的边长为10,点G是边CD的中点,则CG=5,BC=10,根据勾股定理可得BG=CG2+BC2=52+102=55,当G、F、B三点共线时,GF最小为55-10,接下来,求AE的长:连接EG,如图所示=SΔEDG+SΔBCG+根据翻折可知EF=EA,∠EFB=∠EAB=90°,设AE=x,则根据等面积法可知S正方形SΔBAE+SΔBEG,即100=12DE⋅DG+12BC⋅CG+12AB⋅AE+12BG⋅EF=1 2510-x+5×10+10x+55x整理得5+1x=20,解得x=AE=205+1=205-15+15-1=55-5,故答案为:55-5.【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.4.(2024·内蒙古兴安盟·二模)如图,在正方形ABCD中,点M,N分别为AB,BC上的动点,且AM= BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF,若AB=4,则PE +PF的最小值为.【答案】210-2【分析】证明△DAM≌△ABN SAS,则∠ADM=∠BAN,∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,则PF = PF,由PE+PF=PE+PF ,可知当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=210,根据E F =OF -OE ,求解作答即可.解:∵正方形ABCD,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN SAS,∴∠ADM=∠BAN,∴∠ADM+∠DAE=∠BAN+∠DAE=90°,∴∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,∴PF =PF,∴PE+PF=PE+PF ,∴当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=62+22=210,∴E F =OF -OE =210-2,故答案为:210-2.【点拨】本题考查了正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理等知识.熟练掌握正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理是解题的关键.。
模型24 辅助圆系列最值模型(解析版)-中考数学解题大招复习讲义
模型介绍【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P 运动轨迹为过A 、B 、C 三点的圆备注:点P 在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A 、B 、C 、D 四点共圆备注:点A 与点C 在线段AB 异侧(5)四点共圆模型②固定线段AB 所对同侧动角∠P=∠C原理:弦AB 所对同侧圆周角恒相等则A 、B 、C 、P 四点共圆备注:点P 与点C 需在线段AB 同侧【点睛2】圆中旋转最值问题条件:线段AB 绕点O 旋转一周,点M 是线段AB 上的一动点,点C 是定点(1)求CM 最小值与最大值(2)求线段AB 扫过的面积(3)求ABC S △最大值与最小值作法:如图建立三个同心圆,作OM ⊥AB ,B 、A 、M 运动路径分别为大圆、中圆、小圆 结论:①CM 1最小,CM 3最大②线段AB 扫过面积为大圆与小圆组成的圆环面积③ABC S △最小值以AB 为底,CM 1为高;最大值以AB 为底,CM 2为高例题精讲考点一:定点定长构造隐圆【例1】.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为.解:∵AB =AC =AD ,∴B ,C ,D 在以A 为圆心,AB 为半径的圆上,∴∠CAD =2∠CBD ,∠BAC =2∠BDC ,∵∠CBD =2∠BDC ,∠BAC =44°,∴∠CAD =2∠BAC =88°.故答案为:88°变式训练【变式1-1】.如图所示,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2.则BD 的长为()A .B .C .D .解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .∵DC ∥AB ,∴=,∴DF =CB =1,BF =2+2=4,∵FB 是⊙A 的直径,∴∠FDB =90°,∴BD ==.故选:B .【变式1-2】.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,OM的最大值为.解:∵C为坐标平面内一点,BC=2,∴点C的运动轨迹是在半径为2的⊙B上,如图,取OD=OA=4,连接OD,∵点M为线段AC的中点,∴OM是△ACD的中位线,∴OM=,∴OM最大值时,CD取最大值,此时D、B、C三点共线,此时在Rt△OBD中,BD==4,∴CD=2+4,∴OM的最大值是1+2.故答案为:1+2.考点二:定弦定角构造隐圆【例2】.如图,在△ABC中,BC=2,点A为动点,在点A运动的过程中始终有∠BAC=45°,则△ABC面积的最大值为.解:如图,△ABC的外接圆⊙O,连接OB、OC,∵∠BAC=45°,∴∠BOC=2∠BAC=2×45°=90°,过点O作OD⊥BC,垂足为D,∵OB=OC,∴BD=CD=BC=1,∵∠BOC=90°,OD⊥BC,∴OD=BC=1,∴OB==,∵BC=2保持不变,∴BC边上的高越大,则△ABC的面积越大,当高过圆心时,最大,此时BC边上的高为:+1,∴△ABC的最大面积是:×2×(+1)=+1.故答案为:+1.变式训练【变式2-1】.如图,P是矩形ABCD内一点,AB=4,AD=2,AP⊥BP,则当线段DP最短时,CP=.解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP 最短,则AO=OP′=OB=AB=2,∵AD=2,∠BAD=90°,∴OD=2,∠ADO=∠AOD=∠ODC=45°,∴DP′=OD﹣OP′=2﹣2,过P′作P′E⊥CD于点E,则P′E=DE=DP′=2﹣,∴CE=CD﹣DE=+2,∴CP′=.故答案为:2.【变式2-2】.如图,边长为4的正方形ABCD外有一点E,∠AEB=90°,F为DE的中点,连接CF,则CF的最大值为.解:如图,以AB为直径作圆H,∵∠AEB=90°,∴点E在这个⊙H上,延长DC至P,使CD=PC,连接BE,EH,PH,过H作HM⊥CD于M,∵EF=DF,CD=PC,∴CF=PE,Rt△AEB中,∵H是AB的中点,∴EH=AB=2,Rt△PHM中,由勾股定理得:PH===2,∵PE≤EH+PH=2+2,当P,E,H三点共线时,PE最大,CF最大,∴CF的最大值是+1考点三:对角互补构造隐圆【例3】.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=__________.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴四边形EFCB对角互补,∴B,C,F,E四点共圆,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点在以O为圆心的圆上,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==变式训练【变式3-1】.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为.解:∵∠BAD=∠BCD=90°,∴A、B、C、D四点共圆,且BD为直径,取BD中点O,则圆心为点O,连接AO、CO,取AO中点F,连接EF,DF,∵∠ACD=30°,∴∠AOD=60°,∵OA=OD,∴△OAD为等边三角形,∴OA=OD=OC=AD=2,∴∠AFD=90°,则DF=,∵EF是△AOC的中位线,∴EF=OC=1,在△DEF中,DF﹣EF≤DE,∴当D、E、F三点共线时,DE取到最小,最小值为.∴DE的最小值为.【变式3-2】.如图,正方形ABCD的边长为2,点E是BC边上的一动点,点F是CD上一点,且CE=DF,AF、DE相交于点O,BO=BA,则OC的值为.解:如图∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠ECD=∠ABC=90°,∵DF=CE,∴△ADF≌△DCE,∴∠DAF=∠EDC,∵∠EDC+∠ADO=90°,∴∠DAF+∠ADO=90°,∴∠AOD=90°,∴四边形ABEO对角互补,∴A、B、E、O四点共圆,取AE的中点K,连接BK、OK,作OM⊥CD于M.则KB=AK=KE=OK,∵BA=BO,∴∠BAO=∠BOA=∠AEB=∠DEC,∵AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,∴△ABE≌△DCE,∴BE=EC=1,∴DF=EC=FC=1,∴DE==,∵△DFO∽△DEC,∴==,∴==,∴OD=,OF=,∵•DO•OF=•DF•OM,∴OM=,∴MF==,∴CM=1+=,在Rt△OMC中,OC==,故答案为.实战演练1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)解:∵点A、B的坐标分别为(﹣3,0)、(0,4),∴OA=3,OB=4,∴AB==5,∴AC′=5,AC=5,∴C′点坐标为(2,0);C点坐标为(﹣8,0).故选:D.2.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C 重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.C.3D.解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=,AM=AB=3,∴CM=5﹣3=2,故选:A.3.如图,在矩形ABCD中,AB=8,BC=6,点P在矩形的内部,连接PA,PB,PC,若∠PBC=∠PAB,则PC的最小值是()A.6B.﹣3C.2﹣4D.4﹣4解:∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,连接OC交⊙O于P,此时PC最小,∵OC===2,∴PC的最小值为2﹣4,故选:C.4.如图所示,∠MON=45°,Rt△ABC,∠ACB=90°,BC=6,AC=8,当A、B分别在射线OM、ON上滑动时,OC的最大值为()A.12B.14C.16D.14解:如图,在Rt△ABC中,由勾股定理得AB=,在AB的下方作等腰直角△AQB,∠AQB=90°,作BH⊥QC于H,∴点O在以点Q为圆心,QB为半径的圆上,∵∠AQB+∠ACB=180°,∴点A、C、B、Q共圆,∴∠BCQ=∠BAQ=45°,∴BH=CH=3,在Rt△BQH中,由勾股定理得QH=4,∴CQ=7,当点C、Q、O共线时,OC最大,∴OC的最大值为OQ+CQ=5+7=12,故选:A.5.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.6.如图示,A,B两点的坐标分别为(﹣2,0),(3,0),点C在y轴上,且∠ACB=45°,则点C的坐标为.解:在x轴的上方作等腰直角△ABF,FB=FA,∠BAF=90°,以F为圆心,FA为半径作⊙F交y轴于C,连接CB,CA.∵∠ACB=∠AFB=45°,∵B(﹣2,0),A(3,0),△ABF是等腰直角三角形,∴F(,),FA=FB=FC=,设C(0.m),则()2+(﹣m)2=()2,解得m=6或﹣1(舍弃)∴C(0,6),根据对称性可知C′(0,﹣6)也符合条件,综上所述,点C的坐标为(0,6)或(0,﹣6).故答案为(0,6)或(0,﹣6).7.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为2.解:∵∠PAB+∠PBA=90°,∴∠APB=90°,∴P在以AB为直径的圆周上(P在△ACB内部),连接OC,交⊙O于P,此时CP的值最小,如图,∵AB=6,∴OB=3,∵BC=4,∴由勾股定理得:OC=5,∴CP=5﹣3=2,故答案为:2.8.在△ABC中,AB=4,∠C=45°,则AC+BC的最大值为.解:过点B作BD⊥AC于点D,∵∠C=45°,∴△BCD为等腰直角三角形,∴BD=CD,设BD=CD=a,延长AC至点F,使得CF=a,∵tan∠AFB==,作△ABF的外接圆⊙O,过点O作OE⊥AB于点E,则AE=AB=2,∠AOE=∠AFB,∴tan∠AOE=,∴OE=4,OA==,∴+BC=(AC+BC)=(AC+CF)=≤(OA+OF),∴+BC的最大值为×=4.故答案为:.9.如图,等边△ABC中,AB=6,点D、点E分别在BC和AC上,且BD=CE,连接AD、BE交于点F,则CF的最小值为.解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为2.10.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D 出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为.解:如图:,∵动点F,E的速度相同,∴DF=AE,又∵正方形ABCD中,AB=2,∴AD=AB,在△ABE和△DAF中,,∴△ABE≌△DAF,∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠FAD+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,AG=BG=AB=1.在Rt△BCG中,DG===,∵PG=AG=1,∴DP=DG﹣PG=﹣1即线段DP的最小值为﹣1,故答案为:﹣1.11.如图,四边形ABCD 中,∠ABC =∠ACD =∠ADC =45°,△DBC 的面积为8,则BC 长为.解:如图,作DH ⊥BC 交BC 的延长线于H ,取CD 的中点O ,连接OA ,OB .∵DH ⊥BH ,∴∠DHC =90°,∴四边形DACH 对角互补,∴A ,C ,H ,D 四点共圆,∵∠DAC =90°,CO =OD ,∴OA =OD =OC =OH ,∴A ,C ,H ,D 四点在以O 为圆心的圆上,∵AC =AD ,∴∠CHA =∠AHD =45°,(没有学习四点共圆,可以这样证明:过点A 作AM ⊥DH 于M ,过点A 作AN ⊥BH 于N ,证明△AMD ≌△ANC ,推出AM =AN ,推出AH 平分∠MHN 即可)∵∠ABC =45°,∴∠BAH =90°,∴BA =AH ,∵∠BAH =∠CAD =90°,∴∠BAC =∠HAD ,∵AC =AD ,AB =AH ,∴△BAC ≌△HAD (SAS ),∴BC =DH ,∴S △BCD =×BC ×DH =×BC 2=16,∴BC =4或﹣4(舍弃),故答案为4.12.已知:在△ABC中,AB=AC=6,∠B=30°,E为BC上一点,BE=2EC,DE=DC,∠ADC=60°,则AD的长.解:连接AE,过点A作AH⊥BC于H点,在Rt△ABH中,∵∠B=30°,∴AH=AB=3.利用勾股定理可得BH=3,根据等腰三角形性质可知CH=BH=3,BC=6.∴CE=BC=2.∴HE=CH﹣CE=.在Rt△AHE中,由勾股定理可求AE=2.所以AE=CE,∠CAE=∠ACB=30°,所以∠AEB=60°=∠ADC,∴四边形AECD对角互补,∴点A、D、C、E四点共圆,∴∠ADE=∠ACE=30°,所以∠CDE=∠ADC﹣∠ADE=30°.∵DE=DC,∴∠DEC=75°.∴∠AED=120°﹣75°=45°.过点A作AM⊥DE于M点,则AM=AE=.在Rt△AMD中,∠ADM=30°,∴AD=2AM=.故答案为2.13.如图,在正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF ⊥ED,连接DF交AC于点G,将△EFG沿EF翻折,得到△EFM.连接DM.交EF于点N.若AF=2.则△EMN的面积是.解:如图,取DF的中点K,连接AK,EK.连接GM交EF于H.∵四边形ACD是正方形,∴AD=AB=6,∠DAB=90°,AB∥CD,∠DAC=∠CAB=45°,∵DE⊥EF,∴∠DEF=∠DAF=90°,∴四边形AFED对角互补,∴A,F,E,D四点共圆,∵DK=KF,∴KA=KD=KF=KE,∴∠DFE=∠DAE=45°,∴∠EDF=∠EFD=45°,∴DE=EF,∵AF=2,AD=6,∴DF==2,∴DE=DF=2,∵AF∥CD,∴==,∴FG=FM=,∴GM=FM=,∴FH=GH=HM=,∵EF⊥GM,∴GH=HM=,∴EH=EF﹣FH=2﹣=,∵MH∥DE,∴===,∴EN=EH=,=•EN•MH=••=.∴S△ENM故答案为.14.如图,在正方形ABCD中,AD=8,点E是对角线AC上一点,连接DE,过点E作EF ⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则FM=,=.解:∵将△EFG沿EF翻折,得到△EFM,∴FG=FM,∵四边形ABCD是正方形,∴AB∥CD,∴△AGF∽△CGD,∴,∵点F是AB的中点,∴AF=CD,∴,∵AD=8,∴AF=4,∴DF==4,∴FM=FG=;∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵EF⊥DE,∴∠DEF=90°=∠BAD,∴∠BAD+∠DEF=180°,∴点A,D,E,F四点共圆,∴∠DFE=∠DAC=45°,∴∠EDF=45°,∴DE=EF=DF=2,连接GM,交EF于P,由折叠知,PG=PM,GM⊥EF,∵DE⊥EF,∴GM∥DE,∴△FPG∽△FED,∴,∴PF=EF=,∴PE=EF﹣PF=,∵GM∥DE,∴△MPN∽△DEN,∴,∴,∴EN=PE=,在Rt△DEN中,,故答案为:;.15.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AFE=90°,∴∠AFB+∠EFC=90°,∵∠EFC+∠FEC=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)取AE的中点O,连接OD、OF.∵∠AFE=∠ADE=90°(对角互补),∴A、D、E、F四点共圆,∴∠AED=∠AFD,∴当⊙O与BC相切时,∠AFD的值最大,易知BF=CF=4,∵△ABF∽△FCE,∴=,∴=,∴EC=,∴DE=DC﹣CE=6﹣=.∴当DE=时,∠AED的值最大.16.如图,将两张等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),A(0,4).将Rt△OCD绕点O顺时针旋转,连接AC,BD,直线AC与BD相交于点P.(1)求证:AP⊥BP;(2)若点Q为OA的中点,求PQ的最小值.(1)证明:∵△OAB和△OCD都是等腰直角三角形,∴OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC+∠COB=∠COB+∠BOD=90°,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,∵△OAB是等腰直角三角形,∴∠OAB+∠OBA=90°,∴∠OAC+∠CAB+∠ABO=90°,∴∠OBD+∠CAB+∠ABO=90°,∴∠APB=90°,∴AP⊥BP;(2)解:如图,∵AP⊥BP,∴点P在以AB为直径的圆E上运动,由点圆最值可得,当P,Q,E三点共线,且点P在EQ的延长线上时,PQ最小,∵△OAB是等腰直角三角形,A(0,4),∴OA=OB=4,∴AB=OA=4,∵E是AB的中点,Q是OA的中点,∴QE=OB=2,∵PE是圆E的半径,∴PE=AB=2,∴PQ=PE﹣QE=2﹣2,∴PQ的最小值为2﹣2.17.(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=45°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,AB为半径作圆A,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)如图3,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.18.如图,已知抛物线y=ax2+bx+6(a≠0)的图象与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)如图①,连接BC,点P是线段BC上方抛物线上一动点,若△PBC的面积为12,求点P的坐标;(3)如图②,已知⊙B的半径为2,点Q是⊙B上一个动点,连接AQ,DQ,求DQ+AQ 的最小值.解:(1)令x=0,则y=6,C(0,6),∵A(﹣2,0),B(6,0),∴设抛物线的表达式为y=a(x﹣6)(x+2)(a≠0),当x=0时,y=﹣12a=6,解得a=﹣,抛物线的表达式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴顶点D的坐标为(2,8);(2)由(1)知,C(0,6),设直线BC的表达式为y=kx+t,将点B、C的坐标代入得6k+t=0,,解得,∴直线BC的表达式为y=﹣x+6;如图,过点P作PH∥y轴交BC于点H,连接PB,PC,设P(x,﹣x2+2x+6),则H(x,﹣x+6)(0<x<6),∴PH=﹣x2+2x+6﹣(﹣x+6)=﹣x2+3x,∵△PBC的面积为12,∴OB•PH=×6×(﹣x2+3x)=12,即﹣x2+3x=4,解得x=2或x=4,∴点P的坐标为(2,8)或(4,6);(3)如图,取点E(5.5,0),∴BE=0.5,∵AB=8,BQ=2,∴AB:BQ=4:1,∵BE=0.5,BQ=2,∴BQ:BE=4:1,∵∠ABQ=∠QBE,∴△ABQ∽△QBE,∴AQ:QE=BQ:BE=4:1,即QE=AQ,∴DQ+AQ=DQ+QE,由两点间线段最短可知,当点D,Q,E三点共线时,DQ+QE最小,最小值为DE,∴DE==.即DQ+AQ的最小值为:.19.模型分析如图在△ABC中,AD⊥BC于点D,其中∠BAC为定角,AD为定值,我们称该模型为定角定高模型.问题:随着点A的运动,探究BC的最小值(△ABC面积的最小值).(1)当∠BAC=90°时(如图①):第一步:作△ABC的外接圈⊙O;第二步:连接OA;第三步:由图知AO≥AD,当AO=AD时,BC取得最小值.(2)当∠BAC<90°时(如图②):第一步:作△ABC的外接圆⊙O;第二步:连接OA,OB,OC,过点O作OE⊥BC于点E:第三步:由图知AO+OE≥AD,当AO+OE=AD时,BC取得最小值.那么∠BAC>90°呢?结论:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC的面积最小当∠BAC<90°时,请根据【模型分析】(2)中的做法将下面证明过程补充完整.求证:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC 的面积最小.证明:如解图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,设⊙O的半径为r,∠BOE=∠BAC=α,AD=h,∴BC=2BE=2OB•sinα=2r•sinα,∵sinα为定值,∴要使BC最小,只需…自主探究:我们知道了当AD过△ABC的外接圆圆心O(即AB=AC)时,△ABC的面积取得最小值,那么要使△ABC的周长取得最小值,需要满足什么条件呢?模型分析:证明:如图1,作△ABC的外接圆⊙O,连接OA,OB,作OE⊥BC于E,设⊙O的半径为r,AD=h,∴BC=2BE=2CE,∵=,∴∠BOC=2∠BAC=2α,∵OB=OC,∴∠BOE=∠BOC=α,∴OE=OB•cosα=r•cosα,∵OA+OE≥AD,∴r+r•cosα≥h,∴r≥,∵BE=OB•sinα=r•sinα,∴BC=2BE=2r•sinα,∴当r最小时,BC最小,∴当r=时,BC=;最小自主探究:解:如图2,延长CB知E,使BE=AB,延长BC至F,使CF=AC,∴AB+BC+AC=BE+BC+CF=EF,∠AEB=∠EAB,∠CAF=∠AFC,∴∠ABC=2∠EAB,∠ACB=2∠CAF,∵∠ABC+∠ACB=180°﹣∠BAC=180°﹣α,∴2∠EAB+2∠CAF=180°﹣α,∴∠EAF+∠CAF=90°﹣,∴∠EAF=∠EAF+∠CAF+∠BAC=90°+,作△AEF的外接圆O,作OH⊥EF于H,连接OA,OE,OF,在优弧EF上任取一点G (不在E和点F处),连接EG,FG,∴∠G=180°﹣∠EFA=90﹣,同理上可得:∠EOH=∠G=90°﹣,∴∠OEH=90°﹣∠EOH=,∴OH=r•sin,EF=2EH=2r•cos,∵OH+AD≤OA,∴r•sin+h≤r,∴(1﹣sin)r≥h,∴r≥,∴r=,最小∴EF=,最小∴△ABC的周长最小值为:.20.如图,抛物线y=ax2+x+c与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,直线y=kx+b经过点A,C,且OA=2OC=4.(1)求抛物线的解析式;(2)点E为AC上方抛物线上一动点,过点E作EF∥y轴交AC于点F,求线段EF的最大值;(3)在(2)的结论下,若点G是x轴上一点,当∠CGF的度数最大时,求点G的坐标.解:(1)∵OA=2OC=4,∴A(4,0),C(0,2),将A(4,0),C(0,2)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+2;(2)将点A(4,0),C(0,2)代入y=kx+b,∴,解得,∴y=﹣x+2,设E(t,﹣t2+t+2),则F(t,﹣t+2),∴EF=﹣t2+t+2+t﹣2=﹣t2+2t=﹣(t﹣2)2+2,当t=2时,EF的最大值为2;(3)∵t=2,∴E(2,3),F(2,1),设G(x,0),作△CFG的外接圆M,设圆M的半径为r,当圆M与x轴相切时,∠CGF最大,此时M(x,r),∵MC=MF=r,∴x2+(r﹣2)2=r2,(2﹣x)2+(1﹣r)2=r2,解得x=4﹣,∴G(4﹣,0).。
中考数学解题技巧(8)隐圆神助攻(几何计算问题)
中考数学解题技巧(八)、隐圆助神攻(马铁汉)遇到有些几何计算或证明的问题,用三角形或四边形的知识不易解决,可以考虑用圆作桥梁来辅助解决。
大多在较难的选择题和填空题中使用。
特别是动点问题中用的多:先三点定轨迹,然后作辅助圆帮忙计算或证明。
本专题主讲作辅助圆(让隐圆显现出来)的高效解题作用——“隐圆助神攻”。
作辅助圆通常有下面三种情况:(1)知道圆心和半径作辅助圆,(2)知道直径作辅助圆,(3)过四点作辅助圆。
怎样的四点在同一圆上?有以下一些常用的判定方法(圆的性质的逆命题):①共斜边的两个直角三角形,则四点共圆。
原命题:同一圆中,直径上的圆周角是直角。
②共底边的两个三角形顶角相等,且在底边的同侧,则四点共圆。
原命题:同一圆中,同弧所对的圆周角相等。
③对于凸四边形,对角互补,则四点共圆。
原命题:同一圆中,内接四边形对角互补。
(证四点共圆思路是先从四点中选出三点作一圆,然后证第4个点也在这个圆上,或者四点到某点的距离都相等,从而确定四点共圆。
)四点共圆的判定一般用在中考题的选择题或填空题中,想的到,能找出正确答案就好,不需要写过程,可以提高解题速度;解答题中不能用四点共圆的判定方法,课本上删除了四点共圆的判定定理,所以不能用。
后面举例简要介绍。
鉴赏题:重点关注第(4)问.(2022鄂州)24.如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.(1)请直接写出点B的坐标;解:B(8,6)(2)若动点P满足∠POB=45°,求此时点P的坐标;解法一:如图1—1,假如动点P满足∠POB=45°,作PH⊥OB于H.设PH=则OH=∵∆BHP∽∆BAO∴∴∴,∴PH=,BH=10-=PB=,AP=8-=∴P()解法二:如图1—2过点B作x轴的垂线,垂足为C;延长CB至D,使BD=AB=8;过点D作CD的垂线,过点B作OB的垂线,两线相交于点E;连接OE交AB于点P.则△BDE≌△OCB (遇到45°角,经常这样构造全等三角形)∴DE=BC=6, BE=OB=10,又∠EBO=90°∴△OBE为等腰直角三角形。
圆中常见数学模型
圆中常见数学模型中考数学圆常见模型:辅助圆(隐形圆)、圆幂定理、米勒定理、托勒密定理、瓜豆原理、阿波罗尼斯圆问题(一).辅助圆(隐圆)1.当线段一端点固定,长度固定时:另一端点运动轨迹是圆Eg:如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF 沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.2.三点共圆:Eg1:如图,若AB=OA=OB=OC,则∠ACB的大小是()A.40°B.30° C.20° D.35°Eg2:如图在四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC的度数为.3.四点共圆问题:Eg:如图,ΔABC中,AB=4,AC=2,以BC为边在ΔABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为4.三角形中:一定边且其对角一定,则其对应顶点轨迹为圆3,0)、(0,5),点D在第一象限,Eg:在平面直角坐标系中,A、B、C三点的坐标分别为(3,0)、(3且∠ADB=60°,则线段CD长的最小值为_________.D CBAQOPEDPC(二).圆幂定理:1.相交弦定理:在⊙O中,弦AB、CD相交于点P,则PA PB PC PD⋅=⋅推论:在⊙O中,直径AB CD⊥,则2CE AE BE=⋅Eg1:如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)2IE ED EA=.Eg2:如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则QAQC的值为()(A)132-;(B)32;(C)23+;(D)23+2.切割线定理:在⊙O中,PA是切线,PB是割线,则2PA PC PB=⋅Eg1:如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为Eg2:如图,⊙O为△ABC的外接圆,过C作⊙O的切线,交AB的延长线于P,∠APC的平分线和AC,BC分别相交于D,EPODCBAO EDCBADEC BPAO(1) 证明:△CDE 是等腰三角形 (2) 证明:PD CE PE AD ⋅=⋅3. 割线定理:在⊙O 中,PB 、PE 是割线,则PC PB PD PE ⋅=⋅Eg1:如图,P 是圆O 外的一点,点B 、D 在圆上,PB 、PD 分别交圆O 于点A 、C ,如果AP =4,AB =2,PC =CD ,那么PD =________.Eg2:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连接BE 、AD 交于点P .求证:(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB •CE=2DP •AD .(三).米勒定理:如图,点C 在运动的过程中,∠ACB 的大小在不断发生变化。
隐圆、辅助圆问题
上的动点,且点P不与B、M重全,将线段PA绕点P旋转2,得到线段PQ,
连接CQ并延长与射线BM 交于点D, 求CDB的大小(用含的代数式表示)
A
B
M
D
P
Q C
由BA BC、BM AC故PA PC PQ,点P、C、Q共圆,P为圆心
ACQ 1 APQ ,故BDQ 900
2
学霸 数学
2.等腰+半角
学霸 数学
隐圆、辅助圆问题
学霸
数学 一.隐圆
• 隐圆指的是图中本有圆,只是被隐藏起来了。我们只需要找到,然后画出这个圆就好; • 隐圆是在静态图中存在的; •隐圆的分类: 1.等线段、共端点; 2.等腰 半角; 3.对角互补; 4.等角对等边
学霸 数学
1.等线段、共端点
条件:OA OB OC 结论:A、B、C共圆,O为圆心
学霸 数学
经典例题
如图,在三角形ABC 中,BA BC,BAC ,M是AC中点,P是线段BM
上的动点,且点P不与B、M重全,将线段PA绕点P旋转2,得到线段PQ,
连接CQ并延长与射线BM 交于点D, 求CDB的大小(用含的代数式表示)
A
B
M
D
P
Q C
学霸 数学
经典例题
如图,在三角形ABC 中,BA BC,BAC ,M是AC中点,P是线段BM
ABC的外角平分线于点 F,求证: FE DE
D
C
A
E
F B
学霸 数学
经典例题
如图,E是正方形 ABCD 的边AB上的一点,过点 E作DE的垂线交
ABC的外角平分线于点 F,求证: FE DE
D
A
E
C
九年级数学上册第24章: 辅助圆(隐圆)专题练习(无答案)
隐圆模型一定点定长(一中同长)《墨子,经上》中说:圆,一中同长也。
清朝陈澧《东塾读书记·诸子》解释道:“《几何原本》云:‘圜之中处一圜心,一圜惟一心,无二心,圜界至中心作直线俱等。
’即此所谓‘一中同长’也。
模型分析若有一定点,一动点,且动点到定点的距离为定长,则动点的轨迹为圆模型实例如图,在矩形ABCD中,AB=4,AD=8,点E是AB中点,点F是BC 上一点,把△BEF沿着EF翻折,点B落在点B'处,求B'D的最小值.练习:如图,OA⊥OB,P、Q分别是射线OA、OB上两个动点,C是线段PQ的中点,且PQ=4,则在线段PQ滑动的过程中,点C运动形成的路径长为_________2、如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________3图2图BC OABC OAABC O图13、如图,在矩形ABCD 中,AB=4,BC=8,P 、Q 分别是直线BC 、AB 上的两个动点,AE=2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF ,PD ,则PF+PD 的最小值是_________.模型二 共端点,等线段模型(鸡爪模型)12BCA D模型分析(1)若有共端点的三条等线段,可考虑构造辅助圆; (2)构造辅助圆是方便利用圆的性质快速解决角度问题。
模型典例如图 1,四边形 ABCD 中,AB=AC=AD ,若∠CAD=76°,则∠CBD=__________度。
练习1、如图,△ABC 和△ACD 都是等腰三角形,AB=AC ,AC=AD ,连接BD 。
求证:∠1+∠2=90°。
2、如图,在△ABC 内有一点 D,使得 DA=DB=DC,若∠DAB=20°,则∠ACB=__________模型三定弦定角模型分析若有一固定线段AB及线段AB所对的角(∠C)固定,则点C可以看作是以AB为弧的圆上运动.模型典例如图在△ABC中,BC=2,∠A=45°,求△ABC的面积最大值.练习1、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P为一动点,且PA⊥PC,连接BP,则BP的最大值为_____2、如图,△ABC中,AB=AC=2,BC=2√3,D点是△ABC所在平面上的一个动点,且∠BDC=60°,则△DBC面积的最大值是E BCADF模型四 共斜边的直角三角形模型分析:(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角相等重要的途径之一。
数学隐圆问题解题技巧
数学隐圆问题解题技巧数学,作为探索世界奥秘的重要工具,其魅力在于解决一个又一个难题。
在几何问题中,隐圆问题是一类极具挑战性的题型。
本文将为你揭示数学隐圆问题的解题技巧,帮助你更好地理解和解决这类问题。
一、什么是隐圆问题?隐圆问题是指在几何图形中,圆的一部分或全部隐藏在其他图形内部,需要通过已知条件找出这个圆的位置和大小的问题。
解决这类问题的关键是找出圆心和半径。
二、解题技巧1.利用直径所对的圆周角是直角当题目中给出直径时,我们可以利用直径所对的圆周角是直角这一性质来求解。
通过构造直角三角形,我们可以找到圆心所在的位置。
2.利用圆的切线垂直于过切点的半径在隐圆问题中,若已知某点是圆上的一个切点,我们可以利用切线垂直于过切点的半径这一性质,找到圆心的位置。
3.利用圆周角定理圆周角定理是指在圆上的任意一点,对应的圆周角等于其所对的圆心角的一半。
通过构造圆周角和圆心角的关系,我们可以求解出圆心的位置。
4.利用垂径定理垂径定理是指在圆中,从圆心到弦的垂线将弦平分,并且垂直于弦。
通过构造垂径定理,我们可以找到圆心的位置。
5.利用对称性在隐圆问题中,圆心往往具有某种对称性。
通过观察题目中的对称元素,我们可以找到圆心的位置。
三、实战演练以下是一个隐圆问题的实例:已知:在四边形ABCD中,对角线AC和BD相交于点E,且∠AEC=∠BED=90°,AC=6,BD=8。
求:证明四边形ABCD内接于一个圆,并求出这个圆的半径。
解题步骤:1.通过构造直径,找到圆心O在AC和BD的交点E处。
2.利用圆周角定理,证明∠ABC=∠ADC=90°,∠ABD=∠ACD。
3.利用对称性,得出四边形ABCD内接于一个圆。
4.利用勾股定理,求出圆的半径:r=AB/2=BC/2=CD/2=DA/2=5。
通过以上解题技巧和实战演练,相信你已经对数学隐圆问题的解题方法有了更深入的了解。
专题3、中考辅助圆问题之定弦定角最值问题
隐圆再现--定弦定角问题【知识要点】若固定线段AB所对动角∠P为定值,则点P运动轨迹为过A、B、P三点的圆。
备注:点P在优弧、劣弧上运动皆可。
原理:同弧所对的圆周角相等;同弧所对的圆周角等于圆心角的一半。
请在上方后面的图形中找到圆心。
【解题技巧】解题技巧:构造隐圆圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。
定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(这个时候一般是找出张角的补角),(这个补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径【例题讲解】例题1、如图,∠O的半径为1,弦AB﹦1,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积为.例题2、在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA﹦45°,点C的坐标为.训练2、如图所示,在平面直角坐标系中,抛物线y 83 x2 3x 6 3 的顶点为A,并与x 轴正半轴交于点B,在y 轴上存在点C,使∠ACB=30°. 则点C 的坐标是______例题3、如图,∠ABC,∠EFG均是边长为2的等边三角形,当D是边BC、EF的中点,直线AG、FC相交于点M.当∠EFG绕点D旋转时,线段BM长的最大值为.训练3、如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为∠G 上一动点,CF ∠AE 于F .若点E 从在圆周上运动一周,则点F 所经过的路径长为 .【及时训练】1、如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-2、如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-3、如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【课堂总结】1.2.3.4.【课上练习】1、如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为_________2、如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________3、如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________4.如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________【真题再现】1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________2.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上运动,且形状和大小保持不变,其中AB =4,BC =3.(1)当∠OAB =45°时,OA 的长为 ;(2)连接AC ,当AC ∥ON 时,求OA 的长;(3)设AB 边的中点为E ,分别求出OA 、OB 、OC 、OD 、OE 在运动过程中的长度变化范围.A C3.如图,已知∠MON=45°,矩形ABCD的顶点A、D分别是边OM、ON边上的动点,且AD=4,AB=2,则OB长的最大值为.2,以DE为边4,如图,点D和点E是等腰直角三角形ABC的边AC和AB上的点,且DE=2向外作正方形DEFG,则AF的最大值是。
中考数学专题《隐形圆解析》
D
E O
C
B
取 CB 中点 M,所以 E 点轨迹是以 M 为圆心、CB 为直径的圆弧.
A
D
E O
CM
B
连接 AM,与圆弧交点即为所求 E 点,此时 AE 值最小, AE AM EM 102 22 2 2 26 2 .
A
E
C
M
B
【2019 园区一模】如图,正方形 ABCD 的边长为 4,动点 E、F 分别从点 A、C 同时出发,
C
M
E
A
O
B
【寻找定边与直角】如图,在 Rt△ABC 中,∠ACB =90°,BC=4,AC=10,点 D 是 AC 上的 一个动点,以 CD 为直径作圆 O,连接 BD 交圆 O 于点 E,则 AE 的最小值为_________.
A
D
O
E
C
B
【分析】连接 CE ,由于 CD 为直径,故∠CED=90°,考虑到 CD 是动线段,故可以将此 题看成定线段 CB 对直角∠CEB .
A
D
O
P
F
B
E
C
连接 OC,与圆的交点即为 P 点,再通过勾股定理即可求出 PC 长度. 思路概述:分析动点形 成原理,通常“ 非直即圆” (不是直线就 是圆),接下来可以 寻找与动 点相关有无定直线与定 角.
【2013 武汉中考】如图,E 、F 是正方形 ABCD 的边 AD 上的两个动点,满足 AE =DF,连 接 CF 交 BD 于点 G,连接 BE 交 AG 于点 H,若正方形边长为 2,则线段 DH 长度的最小 值是________.
A
O
B
【辅助圆+相切】如图,在 Rt△ABC 中,∠ACB =90°,∠B=30°,AB =4,D 是 BC 上一动点, CE ⊥AD 于 E ,EF⊥AB 交 BC 于点 F,则 CF 的最大值是_________.
“隐圆”模型(与圆有关的模型)-中考数学二轮复习
A
AB=AC=AP
A
辅
助
圆
B
C
P2
典例精讲
知识点一
定点定长型
25º
【变试题】如图,四边形ABCD中,AB=AC=AD,若∠CAD=50º,则∠CBD=_____.
A
B
D
C
01
定点定长型
02
定边对定角
考点聚焦
03
定角夹定高
04
四点共圆
精讲精练
定边对定角
模型分析
知识点二
定边对定角:固定的线段对应的角度固定叫定边对定角,也叫定弦定角,
中考总复习-几何模型
专题四 与圆有关的模型
“隐圆”模型
情境导入 理论依据 考点聚焦 典例精讲 查漏补缺 课堂小结 提升能力
知识梳理
“隐圆”模型概述
考点归纳
在辅助圆问题中,我们了解了求关于动点最值问题的方式之
一---求出动点轨迹,即可求出关于动点的最值.
本节课我们继续讨论另一类动点引发的最值问题,在此类题
那么这个角的顶点轨迹为圆(一部分).
(1)如图,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;
P2
条件:固定线段AB所对动角∠P为定值.
P3
O
P1
结论:点P运动轨迹为过A,B,P三点的圆.
原理:弦AB所对同侧圆周角相等.
B
A
备注:点P在优弧,劣弧上皆可.
(2)有一固定线段AB及线段AB所对的∠P大小固定,根据圆的知识可知P点并
C
条件:AB为定线段(即直径),线段AB外一点C与
B
A
A,B两端形成的张角为直角(即∠ACB=90º),
遇等长 圆帮忙——以中考试题中“隐圆”问题为例
学习指导2023年12月下半月㊀㊀㊀遇等长㊀圆帮忙∗以中考试题中 隐圆 问题为例◉南京外国语学校㊀邵传经㊀刘㊀辉㊀㊀每年的中考试题都对后续的教学具有引导性和指向性,作为一线数学教师,分析中考试题是很有必要的.纵观南京市近几年中考数学试题,有很多值得我们去细细研究.挖掘试题要表现的内涵,可以提升课堂教学的有效性,也能够提高学生学习的积极性和效率,促进学生逻辑思维㊁发散思维和高阶思维的发展.解题时,学生如果能读懂条件,揭示其本质,挖掘出隐含信息就能从根本上解决问题.本文中以南京的中考题和部分区的模拟题为例,寻找出 隐圆 ,突出圆的独特性质来彰显其魅力,现将笔者的思考与大家分享.1试题呈现图1(2021年南京中考第15题)如图1,在四边形A B C D中,A B=B C=B D.设øA B C=α,则øA D C=(用含α的代数式表示).2试题解读本试题以等腰三角形为背景,把两个共腰的等腰三角形放在一起,考查已知等腰三角形的顶角求底角问题.利用等腰三角形的性质 等边对等角 和三角形内角和定理来解答此题时,需要进行整体分析,学生可能不易想到.本题的取材是简单熟悉的图形,题干简练,学生并不陌生,体现了考查的公平性,没在图形上给学生造成障碍,但求解的过程并不容易.由于øA B C=α是两个等腰三角形的顶角的和,因此实质上是变相提醒学生要从整体上思考,渗透了对模型观念以及抽象能力㊁运算能力㊁推理能力的考查.本试题看上去像是考查等腰三角形基础知识与基本技能,其实质是考查学生运用知识来分析问题和解决问题的能力,体现了命题的导向性,对平时的教学提出了更高的要求,要求学生具有对平面图形性质的领会和感知能力㊁推理和转化能力.3试题解析平面内到定点的距离等于定长的点都在同一个圆上,题中条件A B=D B=C B,说明点A,D,C到点B的距离相等,即点A,D,C在以B为圆心的圆上.上图2述试题解答如下.解:如图2,以B为圆心,B A长为半径画圆,在优弧A C上取一点M,则øA B C=2øAM C.由øA B C=α,得øA M C=12α.又点A,M,C,D在以B为圆心的圆上,所以øAM C+øA D C=180ʎ.故øA D C=180ʎ-øAM C=180ʎ-12α.本解法的关键是发现了A,D,C三点共圆,巧妙借助圆来解答问题,解法非常简单,学生容易掌握.解决问题时,如果能够想到利用已知条件作出辅助圆,在所给的题目中寻找 隐圆 来转换问题,便可快速求解.4链接中考图3试题1㊀(2018年南京中考第20题)如图3,在四边形A B C D中,B C=C D,øC=2øB A D.O是四边形A B C D内一点,且O A=O B=O D.求证:(1)øB O D=øC;(2)四边形O B C D是菱形.分析:这里只分析第(1)问.由题目条件中O A=O B=O D,可得点A,B,D到点O的距离相等,即A,B,D三点在以O为圆心,O A长为半径的圆上,从而06∗课题信息:本文系江苏省南京市教育科学 十三五 规划2020年度立项课题 指向初中生数学关键能力培养的单元教学设计研究 (课题编号:L/2020/328)的阶段性研究成果之一.2023年12月下半月㊀学习指导㊀㊀㊀㊀将问题转化为圆心角øB O D 与圆周角øB A D 的关系,再利用条件中的øC =2øB A D ,第(1)问就很简单地解决了.图4试题2㊀(2020年南京中考第15题)如图4,线段A B ,B C 的垂直平分线l 1,l 2相交于点O ,若ø1=39ʎ,则øA O C =.分析:连接B O ,根据垂直平分线上的点到线段两端点的距离相等,可知A O =B O =C O ,于是可得点A ,B ,C 到点O 的距离相等,即A ,B ,C 三点在以O 为圆心,O A 长为半径的圆上,从而将问题转化为圆心角øA O C与圆周角øA B C 的关系,再利用四边形有关知识求得ø1=øA B C ,进而得到øA O C 的度数.上面两道中考题虽然也可以用等腰三角形的相关知识解答,但仔细观察发现有点O 以及一些相等的线段,能够找到 隐圆 ,再利用圆中相关性质求解,非常简便,大大降低了题目的难度.抓住命题者的意图,明确考查的知识要点,避免一些复杂的计算,为解题赢得了时间.其实在平时各区模拟试题中也出现过类似的试题,善于思考的学生能够很快找到所解问题的实质.5拓展训练图5试题3㊀(2021年南师附中集团二模第6题)如图5,O A =O B =O C =O D ,øB O C +øA O D =180ʎ.若B C =4,A D =6,则O A 的长为.分析:由O A =O B =O C =O D ,可得点A ,B ,C ,D 到点O 的距离相等,即A ,B ,C ,D 四点在以O 为圆心,O A 长为半径的圆上.要求O A 的长,实际上求该圆的半径(或直径)即可.图6试题4㊀(2021年玄武二模第15题)如图6,直线P Q 经过正五边形A B C D E 的中心O ,与A B ,C D 边分别交于点P ,Q ,点C 1是点C 关于直线P Q 的对称点,连接C C 1,A C 1,则øC C 1A的度数为ʎ.分析:本题中没有直接给出线段相等,需要学生根据已有的条件进行分析.已知点O 是正五边形A B C D E 的中心,则有O A =O B =O C =O D =O E .又由点C 1是点C 关于直线P Q (P Q 经过正五边形A B C D E 的中心O )的对称点,可以得到O C =O C 1.所以O A =O B =O C =O D =O C 1=O E ,即A ,B ,C ,C 1四点在以O 为圆心,O A 长为半径的圆上,进而求出øC C 1A 的度数.图7试题5㊀(2021年建邺区一模第15题)如图7,在әA B C 中,A B =82,B C =10,D E 是A C 的垂直平分线,分别交A C ,A B于点D ,E ,O 是线段D E 上一点.若O B =O C ,O B ʅO C ,则D E =.分析:连接O A .由O 是D E 上的一点,且D E 是A C 的垂直平分线,可得O A =O C .又因为OB =OC ,所以O A =O C =O B ,即A ,B ,C 三点在以O 为圆心,O A 长为半径的圆上,从而得圆心角øB O C 与圆周角øB A C 的关系.由øB O C =90ʎ,可知øB A C =45ʎ,再解三角形得到D E 的长.6反思与启发教师的教学应以学生的认知发展水平和已有的经验为基础,引导学生独立思考㊁主动探究㊁合作交流,促使学生理解和掌握基本的数学知识与技能,体会和运用数学思想与方法,获得基本的数学活动经验.初中平面图形中的等腰三角形㊁正多边形㊁圆等都是轴对称图形,这些图形联系紧密.近几年的中考试题中常常涉及图形的转化㊁知识点之间的渗透,灵活性较强.由于圆中半径相等,会形成等腰三角形,垂径定理就是以半径为腰的等腰三角形的 三线合一 性质在圆中的运用.将求线段的长度㊁角度问题放在新的图形中,解题的途径多了起来,思维一下就活跃了,把原问题转化为另一问题来考虑,知识点就能融为一体.对于一些相等线段的问题,引导学生充分体会题中的意境,找出 隐圆 并及时归类总结,让学生学会思考,提高他们的解题能力,促进其数学思维的发展.上文是研究如何挖掘圆这一基本图形,特别是挖掘条件背后隐含的基本图形,在某些特定的条件下,变隐为显,争取做到 图中无圆,心中有圆 ,为圆的性质的巧妙运用创造条件,从而利用所学的基本图形来解决问题,领会命题者的意图.通过问题解决,提升学生的解题能力和解题技巧,同时也大大提高了专题教学的效率.波利亚曾说过:一个专心㊁认真备课的教师能够拿出一个有意义但又不太复杂的题目,去帮助学生挖掘问题的各个方面,使得通过这道题,就好像通过一道门户,把学生引入一个完整的理论领域.在与学生共同学习的过程中,发现并总结此类问题,提高了教师的内在素养,也拓展了学生的解题思路.Z16。
2024年中考数学重难点押题预测《隐圆问题》含答案解析
隐圆问题3种模型通用的解题思路:隐圆一般有如下呈现方式:(1)定点定长:当遇到同一个端点出发的等长线段时,通常以这个端点为圆心,等线段长为半径构造辅助圆;(2)定弦定角:当遇到动点对定点对定线段所张的角为定值时,通常把张角转化为圆周角构造辅助圆。
当遇到直角时,通常以斜边为直径构造辅助圆。
(3)四点共圆:对角互补的四边形的四个顶点共圆。
隐圆常与线段最值结合考查。
类型1:定点定长1(2023•新城区校级三模)圆的定义:在同一平面内,到定点的距离等于定长的所有点所组成的图形.(1)已知:如图1,OA=OB=OC,请利用圆规画出过A、B.C三点的圆.若∠AOB=70°,则∠ACB= 35° .如图,RtΔABC中,∠ABC=90°,∠BCA=30°,AB=2.(2)已知,如图2.点P为AC边的中点,将AC沿BA方向平移2个单位长度,点A、P、C的对应点分别为点D、E、F,求四边形BDFC的面积和∠BEA的大小.(3)如图3,将AC边沿BC方向平移a个单位至DF,是否存在这样的a,使得直线DF上有一点Q,满足∠BQA=45°且此时四边形BADF的面积最大?若存在,求出四边形BADF面积的最大值及平移距离a,若不存在,说明理由.【分析】(1)利用圆的定义知A,B,C三点共圆,再利用圆周角定理求解.(2)根据图形的平移性质,判定平移后图形形状,继而确定面积的计算方式和方法,角度问题也迎刃而解.(3)因角度不变,借助圆周角定点在圆周上运动时角度不变的思想,判断出D点能够向右移动的最大距离,求出四边形的最大面积.【解答】(1)以O为圆心,OA为半径作辅助圆,如图,,∵∠AOB =70°,∴∠ACB =35°,故答案为35°.(2)连接PB ,PE ,如图,Rt ΔABC 中,∠ABC =90°,∠BCA =30°,AB =2.∴AC =4,∠BAC =60°,BC =23.∵P 为Rt ΔABC 斜边AC 中点,∴BP =12AC =2,线段AC 平移到DF 之后,AB =AD =PE =2,BP =AE =2,∴四边形ABPE 为菱形,∵∠BAC =60°,∴∠BEA =30°,∵CF ⎳BD ,且∠ABC =90°,∴四边形BDFC 为直角梯形,∴S =12(BD +CF )×BC =12×6×23=63,(3)如图所示,以AB 为斜边在AB 的右侧作等腰直角三角形OAB ,以O 为圆心,OA 为半径作⊙O ,当AC 边沿BC 方向平移a 个单位至DF 时,满足∠BQA =45°且此时四边形BADF 的面积最大,∴直线DF 与⊙O 相切于点Q ,连接OQ 交AD 于G ,过点O 作OH ⊥AD 于H ,则∠AHO =∠OHG =∠DQG =90°,∠OAH =45°,∠GDQ =30°,∵∠ABC =90°,∠BCA =30°,AB =2,∴BC =23,OA =OB =OQ =2,∴AH =OH =1,HG =33,OG =233,∴GQ =2-233,DG =2GQ =22-433,∴AD =AH +HG +GD =1+33+22-433=1+22-3,∴a =1+22-3,此时直角梯形ABFD 的最大面积为:S =12×(BF +AD )×AB =12×(23+1+22-3+1+22-3)×2=42+2.【点评】本题主要考查图形的平移,圆心角,圆周角之间的关系,解题的关键是数形结合,找到极值点求解.2(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在ΔABC 中,AB =AC ,∠BAC =90°,点D 为平面内一点(点A ,B ,D 三点不共线),AE 为ΔABD 的中线.【初步尝试】(1)如图1,小林同学发现:延长AE 至点M ,使得ME =AE ,连接DM .始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM =AC ;②∠MDA +∠DAB =180°;【类比探究】(2)如图2,将AD 绕点A 顺时针旋转90°得到AF ,连接CF .小斌同学沿着小林同学的思考进一步探究后发现:AE =12CF ,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,AD 为半径的圆上运动(AD >AB ),直线AE 与直线CF 相交于点G ,连接BG ,在点D 的运动过程中BG 存在最大值.若AB =4,请直接写出BG 的最大值.【分析】(1)利用SAS 证明ΔABE ≅ΔMDE ,可得AB =DM ,再结合AB =AC ,即可证得DM =AC ;由全等三角形性质可得∠BAE =∠DME ,再运用平行线的判定和性质即可证得∠MDA +∠DAB =180°;(2)延长AE 至点M ,使得ME =AE ,连接DM .利用SAS 证得ΔACF ≅ΔDMA ,可得CF =AM ,再由AE =12AM ,可证得AE =12CF ;(3)延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,可证得ΔACF ≅ΔABM (SAS ),利用三角形中位线定理可得AE ⎳BM ,即AG ⎳BM ,利用直角三角形性质可得GP =12AC =12AB =2,得出点G 在以P 为圆心,2为半径的⊙P 上运动,连接BP 并延长交⊙P 于G ′,可得BG ′的长为BG 的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE 为ΔABD 的中线,∴BE =DE ,在ΔABE 和ΔMDE 中,BE =DE∠AEB =∠MED AE =ME,∴ΔABE ≅ΔMDE (SAS ),∴AB =DM ,∵AB =AC ,∴DM =AC ;②由①知ΔABE ≅ΔMDE ,∴∠BAE =∠DME ,∴AB ⎳DM ,∴∠MDA +∠DAB =180°;(2)证明:延长AE 至点M ,使得ME =AE ,连接DM .由旋转得:AF =AD ,∠DAF =90°,∵∠BAC =90°,∠DAF +∠BAC +∠BAD +∠CAF =360°,∴∠BAD +∠CAF =180°,由(1)②得:∠MDA +∠DAB =180°,DM =AB =AC ,∴∠CAF =∠MDA ,在ΔACF 和ΔDMA 中,AF =AD∠CAF =∠MDA AC =DM,∴ΔACF ≅ΔDMA (SAS ),∴CF =AM ,∵AE =12AM ,∴AE =12CF ;(3)如图3,延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,由旋转得:AF =AD ,∠DAF =90°,∴AF =AM ,∠MAF =180°-90°=90°,∵∠BAC =90°,∴∠MAF +∠CAM =∠BAC +∠CAM ,即∠CAF =∠BAM ,在ΔACF 和ΔABM 中,AC =AB∠CAF =∠BAM AF =AM,∴ΔACF ≅ΔABM (SAS ),∴∠AFC =∠AMB ,即∠AFN =∠KMN ,∵∠ANF =∠KNM ,∴∠FAN =∠MKN =90°,∴BM ⊥CF ,∵E 、A 分别是DB 、DM 的中点,∴AE 是ΔBDM 的中位线,∴AE ⎳BM ,即AG ⎳BM ,∴AG ⊥CF ,∴∠AGC =90°,∵点P 是AC 的中点,∴GP =12AC =12AB =2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在RtΔABP中,BP=AB2+AP2=42+22=25,∴BG′=BP+PG′=25+2,∴BG的最大值为25+2.【点评】本题是几何综合题,考查了三角形的全等的性质与判定,两直线垂直的判定,三角形中位线定理,勾股定理,圆的性质,熟练掌握全等三角形的判定定理是解决本题的关键.3(2022•番禺区二模)已知抛物线y=ax2+bx-32(a>0)与x轴交于点A,B两点,OA<OB,AB=4.其顶点C的横坐标为-1.(1)求该抛物线的解析式;(2)设点D在抛物线第一象限的图象上,DE⊥AC垂足为E,DF⎳y轴交直线AC于点F,当ΔDEF面积等于4时,求点D的坐标;(3)在(2)的条件下,点M是抛物线上的一点,M点从点B运动到达点C,FM⊥FN交直线BD于点N,延长MF与线段DE的延长线交于点H,点P为N,F,H三点构成的三角形的外心,求点P经过的路线长.【分析】(1)利用对称性,求得A和B的坐标,然后用待定系数法求得抛物线的解析式;(2)证明ΔCGA和ΔDEF都为等腰直角三角形,利用等面积法求得DF=4,再求得直线AC的解析式为y =x-1,设点D的坐标,得到点F的坐标,然后求解即可;(3)先求得∠BDF=45°,推出点P的运动路径时H1N1的中点绕点F逆时针旋转90°得到N2H的中点之间的弧长,证明四边形DN2FE为正方形,即可求解.【解答】解:(1)∵点A,点B两点关于直线x=-1对称,AB=4,∴A(1,0),B(-3,0),代入y=ax2+bx-32得,a+b-32=09a-3b-32=0,解得:a=12b=1,∴抛物线的解析式为y=12x2+x-32.(2)如图1所示:∵DF⎳y轴⎳GC,∴∠GCA=∠DFE,∵抛物线的解析式为y=12x2+x-32=12(x+1)2-2,∴顶点C(-1,-2),∵A(1,0),∴AG=2,CG=2,∴ΔCGA为等腰直角三角形,∴∠GCA=∠DFE=45°,∵DE⊥AC,∴ΔDEF为等腰直角三角形,∴DE=EF,DF=2DE,∵SΔDEF=12DE⋅EF=4,∴DE=22,∴DF =2×22=4,设直线AC 的解析式为y =kx +b ,则k +b =0-k +b =-2 ,解得:k =1b =-1 ,∴直线AC 的解析式为y =x -1,设点D x ,12x 2+x -32 ,则F (x ,x -1),∴DF =12x 2+x -32-(x -1)=12x 2-12=4,解得:x =3或x =-3(舍),∴D (3,6),F (3,2).(3)如图2所示,∵ΔNFH 是直角三角形,∴ΔNFH 的外心是斜边NH 的中点,当点M 位于点B 时,△N 1FH 1,其外心是斜边H 1N 1的中点,当点M 位于点C 时,得△N 2FE ,其外心是斜边N 2H 2的中点,即N 2E 的中点,∵D (3,6),B (-3,0),∴tan ∠BDF =3+36=1,∴∠BDF =45°,由(2)得,∠FDE =45°,∴∠DBA =∠BAC =45°,∴BD ⎳AC ,∴FN ⊥BD ,∴DF 平分∠BDE ,∠BDE =90°,∴点D ,N ,F ,H 四点共圆,∴点P 在线段DF 的垂直平分线上,即点P 在N 2E 上运动,即点P 的运动轨迹是一条线段.∵∠DN 2F =∠N 2DH =∠DHF =90°,FN 2=FE ,∴四边形DN 2FE 为正方形,此时点P 在DF 上,且EP =2;当点M 与点C 重合时,此时点P 在DF 上,即为P 2,且FP 2=EP 2=2,由题意,BN 2=BD -DN 2=4,BF =210,N 2F =22,FN 2⎳DH 1,∴ΔBFN 2∽△BH 1D ,∴BN 2BD =BF BH 1,解得FH 1=10,∴FP 1=5,由勾股定理可得:P 1P 2=1,即点P 的运动轨迹长为1.【点评】本题主要考查二次函数的综合问题,包括待定系数法确定函数解析式,三角形外接圆的性质,弧长公式,勾股定理,三角函数解直角三角形等,理解题意,作出相应辅助线是解题的关键.4(2021•红谷滩区校级模拟)(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC中,AB=AC,∠BAC=80°,D是ΔABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= 40° .(2)问题解决:如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)问题拓展:抛物线y=-14(x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ⎳BC交x轴于点Q,连接BQ.①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,点D与点B,点Q不重合,求点P的坐标.【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)①先求出抛物线顶点的坐标,再由点D、C、Q、E共圆,得出∠CQB=∠OED=45°,求出CQ,再求点Q的坐标.②分两种情况,Ⅰ、当30°的角的顶点与点C重合时,Ⅱ、当60°的角的顶点与点C重合时,运用点D、C、Q、E共圆,求出CQ即点P的横坐标,再代入抛物线求出点P的纵坐标,即可求出点P的坐标.【解答】解:(1)∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=40°,(2)如图2,∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)①如图3∵点B为抛物线y=-14(x-1)2+3的顶点,∴点B的坐标为(1,3),∵45°角的直角三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =45°,∴CQ =BC =3,∴OQ =4,∴点Q 的坐标为(4,0),②如图4,Ⅰ、当30°的角的顶点与点C 重合时,∵直角三角板30°角的顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =60°,∴CQ =33BC =3,∴OQ =1+3,∴把1+3代入y =-14(x -1)2+3得y =94,∴点P 的坐标是1+3,94Ⅱ、如图5,当60°的角的顶点与点C 重合时,∵直角三角板60°角的顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上∴点D 、C 、Q 、E 共圆,∴∠CQB =∠CED =30°,∴CQ =3BC =33,∴OQ =1+33,∴把1+33代入y =-14(x -1)2+3得y =-154,∴点P 的坐标是1+33,-154综上所述,点P 的坐标是1+3,94 或1+33,-154 .【点评】本题主要考查了圆的综合题,解题的关键就是运用同弦对的圆周角相等.类型2:定弦定角5(2022•雁塔区校级三模)问题提出(1)如图①,已知ΔABC 为边长为2的等边三角形,则ΔABC 的面积为 3 ;问题探究(2)如图②,在ΔABC 中,已知∠BAC =120°,BC =63,求ΔABC 的最大面积;问题解决(3)如图③,某校学生礼堂的平面示意为矩形ABCD ,其宽AB =20米,长BC =24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD 上安装一台摄像头M 进行观测,并且要求能观测到礼堂前端墙面AB 区域,同时为了观测效果达到最佳,还需要从点M 出发的观测角∠AMB =45°,请你通过所学知识进行分析,在墙面CD 区域上是否存在点M 满足要求?若存在,求出MC 的长度;若不存在,请说明理由.【分析】(1)作AD ⊥BC 于D ,由勾股定理求出AD 的长,即可求出面积;(2)作ΔABC 的外接圆⊙O ,可知点A 在BC上运动,当A O ⊥BC 时,ΔABC 的面积最大,求出A H 的长,从而得出答案;(3)以AB 为边,在矩形ABCD 的内部作一个等腰直角三角形AOB ,且∠AOB =90°,过O 作HG ⊥AB 于H ,交CD 于G ,利用等腰直角三角形的性质求出OA ,OG 的长,则以O 为圆心,OA 为半径的圆与CD 相交,从而⊙O 上存在点M ,满足∠AMB =45°,此时满足条件的有两个点M ,过M 1作M 1F ⊥AB 于F ,作EO ⊥M 1F 于E ,连接OF ,利用勾股定理求出OE 的长,从而解决问题.【解答】解:(1)作AD ⊥BC 于D ,∵ΔABC 是边长为2的等边三角形,∴BD =1,∴AD =AB 2-BD 2=3,∴ΔABC 的面积为12×2×3=3,故答案为:3;(2)作ΔABC 的外接圆⊙O ,∵∠BAC =120°,BC =63,∴点A 在BC 上运动,当A O ⊥BC 时,ΔABC 的面积最大,∴∠BOA =60°,BH =CH =33,∴OH =3,OB =6,∴A H =OA -OH =6-3=3,∴ΔABC的最大面积为1×63×3=93;2(3)存在,以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,∵AB=20米,∴AH=OH=10米,OA=102米,∵BC=24米,∴OG=14米,∵102>14,∴以O为圆心,OA为半径的圆与CD相交,∴⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F于E,连接OF,∴EF=OH=10米,OM1=102米,∴EM1=14米,∴OE=OM12-M1E2=2米,∴CM1=BF=8米,同理CM2=BH+OE=10+2=12(米),∴MC的长度为8米或12米.【点评】本题是四边形综合题,主要考查了等边三角形的性质,矩形的性质,等腰直角三角形的性质,勾股定理,垂径定理等知识,熟练掌握定角定边的基本模型是解题的关键.6(2023•灞桥区校级模拟)问题提出:(1)如图①,ΔABC为等腰三角形,∠C=120°,AC=BC=8,D 是AB上一点,且CD平分ΔABC的面积,则线段CD的长度为4.问题探究:(2)如图②,ΔABC 中,∠C =120°,AB =10,试分析和判断ΔABC 的面积是否存在最大值,若存在,求出这个最大值;若不存在,请说明理由.问题解决:(3)如图③,2023年第九届丝绸之路国际电影开幕式在西安曲江竞技中心举行,主办方要在会场旁规划一个四边形花圃ABCD ,满足BC =600米,CD =300米,∠C =60°,∠A =60°,主办方打算过BC 的中点M 点(入口)修建一条径直的通道ME (宽度忽略不计)其中点E (出口)为四边形ABCD 边上一点,通道ME 把四边形ABCD 分成面积相等并且尽可能大的两部分,分别规划成不同品种的花圃以供影迷休闲观赏.问是否存在满足上述条件的通道ME ?若存在,请求出点A 距出口的距离AE 的长;若不存在,请说明理由.【分析】(1)由题意可知,CD 是ΔABC 的中线,利用等腰三角形的性质推出CD ⊥AB ,利用三角函数求解即可解决问题;(2)当ΔABC 的AB 边上的高CD 最大时,三角形ABC 的面积最大,即CD 过圆心O ,连接AO .求出CD 的最大值即可得出答案;(3)连接DM ,BD .首先证明∠BDC =90°,求出BD ,推出ΔBDC 的面积是定值,要使得四边形ABCD 的面积最大,只要ΔABD 的面积最大即可,因为BD 为定值,∠A 为定角=60°,推出当ΔABD 是等边三角形时,求出四边形ABCD 的面积最大值,然后再求出∠MDE =90°,构建方程解决问题即可.【解答】解:(1)如图①,∵CD 平分ΔABC 的面积,∴AD =DB ,∵AC =BC =8,∴CD ⊥AB ,∠ACD =∠BCD =12∠ACB =60°,∴CD =AC cos ∠ACD =8cos60°=4,∴CD 的长度为4,故答案为:4;(2)存在.如图②,∵AB =10,∠ACB =120°都是定值,∴点C 在AB 上,并且当点C 在AB的中点时,ΔABC 的面积最大;连接OC 交AB 于点D ,则CD ⊥AB ,AD =BD =12AB =5,∠ACD =12∠ACB =60°,∴tan ∠ACD =AD CD ,CD =AD tan60°=533,∴S ΔABC =12AB ⋅CD =2533,答:ΔABC 的面积最大值是2533;(3)存在.如图③,连接DM ,BD ,∵M 是BC 的中点,∴CM =12BC =300,∴CM =CD ,又∵∠C =60°,∴ΔCMD 是等边三角形,∴∠MDC =∠CMD =60°,CM =DM =BM ,∴∠CBD =∠MDB =30°,∴∠BDC =90°,∴BD =CD ⋅tan60°=3003米,在ΔABD 中,BD =3003米,∠A =60°为定值,由(2)可知当AB =AD 时,即ΔABD 为等边三角形时ΔABD 的面积最大,此时也为四边形ABCD 的最大值(ΔBDC 的面积不变),S max =S ΔBDC +S ΔBDA =12×300×3003+34(3003)2=1125003;∵ΔABD 是等边三角形,∴∠ADB =60°,∴∠ADM =∠ADB +∠BDM =90°,由S ΔEMD +S ΔCDM =12S max ,得:12DE ×300+34×3002=12×1125003,解得:DE =2253,∴AE =AD -DE =3003-2253=753(米),答:点A 距出口的距离AE 的长为753米.【点评】本题是圆的综合题,考查了勾股定理,垂径定理,解直角三角形,等边三角形的判定和性质等知识,解题的关键是理解题意构造辅助圆,灵活运用所学知识解决问题,难度较大,属于中考压轴题.7(2023•柯城区校级一模)如图,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该直角坐标系内的一个动点.(1)使∠APB =30°的点P 有无数个;(2)若点P 在y 轴上,且∠APB =30°,求满足条件的点P 的坐标;(3)当点P 在y 轴上移动时,∠APB 是否有最大值?若有,求点P 的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.【分析】(1)已知点A 、点B 是定点,要使∠APB =30°,只需点P 在过点A 、点B 的圆上,且弧AB 所对的圆心角为60°即可,显然符合条件的点P 有无数个.(2)结合(1)中的分析可知:当点P 在y 轴的正半轴上时,点P 是(1)中的圆与y 轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P 的坐标;当点P 在y 轴的负半轴上时,同理可求出符合条件的点P 的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB 最大,只需构造过点A 、点B 且与y 轴相切的圆,切点就是使得∠APB 最大的点P ,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.【解答】解:(1)以AB 为边,在第一象限内作等边三角形ABC ,以点C 为圆心,AC 为半径作⊙C ,交y 轴于点P 1、P 2.在优弧AP 1B 上任取一点P ,如图1,则∠APB =12∠ACB =12×60°=30°.∴使∠APB =30°的点P 有无数个.故答案为:无数.(2)①当点P 在y 轴的正半轴上时,过点C 作CG ⊥AB ,垂足为G ,如图1.∵点A (1,0),点B (5,0),∴OA =1,OB =5.∴AB =4.∵点C 为圆心,CG ⊥AB ,∴AG =BG =12AB =2.∴OG =OA +AG =3.∵ΔABC 是等边三角形,∴AC =BC =AB =4.∴CG =AC 2-AG 2=42-22=23.∴点C 的坐标为(3,23).过点C 作CD ⊥y 轴,垂足为D ,连接CP 2,如图1,∵点C 的坐标为(3,23),∴CD =3,OD =23.∵P 1、P 2是⊙C 与y 轴的交点,∴∠AP 1B =∠AP 2B =30°.∵CP 2=CA =4,CD =3,∴DP 2=42-32=7.∵点C 为圆心,CD ⊥P 1P 2,∴P 1D =P 2D =7.∴P 2(0,23-7).P 1(0,23+7).②当点P 在y 轴的负半轴上时,同理可得:P3(0,-23-7).P 4(0,-23+7).综上所述:满足条件的点P的坐标有:(0,23-7)、(0,23+7)、(0,-23-7)、(0,-23+7).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=2AE得:当AE最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH=EA2-AH2=32-22=5∴OP=5∴P(0,5).②当点P在y轴的负半轴上时,同理可得:P(0,-5).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是ΔAMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,5)和(0,-5).【点评】本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.类型3:四点共圆8(2022•中原区校级模拟)阅读下列材料,并完成相应的任务.西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).某数学兴趣小组的同学们尝试证明该定理.如图(1),已知ΔABC 内接于⊙O ,点P 在⊙O 上(不与点A ,B ,C 重合),过点P 分别作AB ,BC ,AC 的垂线,垂足分别为点D ,E ,F .求证:点D ,E ,F 在同一条直线上.如下是他们的证明过程(不完整):如图(1),连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE .QF ,则EQ =FQ =12PC =PQ =CQ ,(依据1)∵点E ,F ,P ,C 四点共圆,∴∠FCP +∠FEP =180°.(依据2)又∵∠ACP +∠ABP =180°,∴∠FEP =∠ABP .同上可得点B ,D ,P ,E 四点共圆,⋯⋯任务:(1)填空:①依据1指的是中点的定义及直角三角形斜边上的中线等于斜边的一半;②依据2指的是.(2)请将证明过程补充完整.(3)善于思考的小虎发现当点P 是BC 的中点时,BD =CF ,请你利用图(2)证明该结论的正确性.【分析】(1)利用直角直角三角形斜边上的中线的性质和圆内接四边形对角互补即可;(2)利用直角三角形斜边上中线的性质证明点E ,F ,P ,C 和点B ,D ,P ,E 四点分别共圆,再说明∠FEP +∠DEP =180°,可证明结论;(3)连接PA ,PB ,PC ,利用HL 证明Rt ΔPBD ≅Rt ΔPCF ,从而得出结论.【解答】(1)解:①依据1指的是中点的定义及直角三角形斜边上的中线等于斜边的一半,②依据2指的是圆内接四边形对角互补,故答案为:①直角三角形斜边上的中线等于斜边的一半;②圆内接四边形对角互补;(2)解:如图(1),连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE .QF ,则EQ =FQ =12PC =PQ =CQ ,∴点E ,F ,P ,C 四点共圆,∴∠FCP +∠FEP =180°,又∵∠ACP +∠ABP =180°,∴∠FEP =∠ABP ,同上可得点B ,D ,P ,E 四点共圆,∴∠DBP =∠DEP ,∵∠ABP +∠DBP =180°,∴∠FEP +∠DEP =180°,∴点D ,E ,F 在同一直线上;(3)证明:如图,连接PA ,PB ,PC ,∵点P 是BC的中点,∴BP =PC ,∴BP =PC ,∠PAD =∠PAC ,又∵PD ⊥AD ,PF ⊥AC ,∴PD =PF ,∴Rt ΔPBD ≅Rt ΔPCF (HL ),∴BD =CF .【点评】本题主要考查了四点共圆,以及圆内接四边形的性质,角平分线的性质,全等三角形的判定与性质等知识,证明Rt ΔPBD ≅Rt ΔPCF 是解题的关键.9(2021•哈尔滨模拟)(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC 中,AB =AC ,∠BAC =90°,D 是ΔABC 外一点,且AD =AC ,求∠BDC 的度数.若以点A 为圆心,AB 为半径作辅助⊙A ,则点C 、D 必在⊙A 上,∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,从而可容易得到∠BDC =45°.(2)【问题解决】如图2,在四边形ABCD 中,∠BAD =∠BCD =90°,∠BDC =25°,求∠BAC 的度数.(3)【问题拓展】如图3,如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是.【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明ΔABE 和ΔDCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明ΔADG 和ΔCDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小.【解答】解:(1)如图1,∵AB =AC ,AD =AC ,∴以点A 为圆心,AB 为半径作圆A ,点B 、C 、D 必在⊙A 上,∵∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,∴∠BDC =12∠BAC =45°,故答案为:45;(2)如图2,取BD 的中点O ,连接AO 、CO .∵∠BAD =∠BCD =90°,∴点A 、B 、C 、D 共圆,∴∠BDC =∠BAC ,∵∠BDC =25°,∴∠BAC =25°,(3)如图3,在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,在ΔABE 和ΔDCF 中,AB =CD∠BAD =∠CDA AE =DF,∴ΔABE ≅ΔDCF (SAS ),∴∠1=∠2,在ΔADG 和ΔCDG 中,AD =CD∠ADG =∠CDG DG =DG,∴ΔADG ≅ΔCDG (SAS ),∴∠2=∠3,∴∠1=∠3,∵∠BAH +∠3=∠BAD =90°,∴∠1+∠BAH =90°,∴∠AHB =180°-90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1,在Rt ΔAOD 中,OD =AO 2+AD 2=12+22=5,根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD-OH=5-1.(解法二:可以理解为点H 是在Rt ΔAHB ,AB 直径的半圆AB上运动当O 、H 、D 三点共线时,DH 长度最小)故答案为:5-1.【点评】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.10(2022•潢川县校级一模)如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC= 90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为45°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当ΔABD面积取得最大值时,请直接写AD的长.【分析】(1)由∠BAC=90°,且AB=AC,可得∠ACB=∠ABC=45°,由∠BAC=∠BDC=90°,推出A、B、C、D四点共圆,所以∠ADB=∠ACB=45°;由题意知ΔEAB≅ΔDAC,所以BE=CD,由AE=AD,∠EAD=90°,可知ΔADE是等腰直角三角形,推出CD+DB=EB+BD=DE=2AD;(2)如图2,将AD绕点A顺时针旋转90°交直线l于点E.易证ΔEAB≅ΔDAC(SAS),则BE=CD,由AE=AD,∠EAD=90°,所以ΔADE是等腰直角三角形,则DE=2AD,由BD-CD=BD-BE=DE,推出BD-CD=2AD;(3)当点D在线段AB的垂直平分线上且在AB的左侧时,ΔABD的面积最大.【解答】解:(1)①如图,在图1中.∵∠BAC=90°,且AB=AC,∴∠ACB=∠ABC=45°,∵∠BAC=∠BDC=90°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°;②由题意可知,∠EAD=∠BAC=90°,∴∠EAB=∠DAC,又AE=AD,AB=AC,∴ΔEAB≅ΔDAC(SAS),∴BE=CD,∵AE=AD,∠EAD=90°,∴ΔADE是等腰直角三角形,∴DE=2AD,∵CD+DB=EB+BD=DE,∴CD+DB=2AD;故答案为45°,CD+DB=2AD;(2)线段AD,BD,CD的数量关系会变化,数量关系为BD-CD=2AD.理由如下:如图2,将AD绕点A顺时针旋转90°交直线l于点E.则∠DAE=∠CAB=90°,∴∠DAC=∠EAB,又AD=AE,AC=AB,∴ΔEAB≅ΔDAC(SAS),∴BE=CD,∵AE=AD,∠EAD=90°,∴ΔADE是等腰直角三角形,∴DE=2AD,∵BD-CD=BD-BE=DE,∴BD-CD=2AD;(3)由(2)知,ΔCDA≅ΔBEA,∴∠CDA=∠AEB,∵∠DEA=45°,∴∠AEB=180°-45°=135°,∴∠CDA=∠AEB=135°,∴∠CDA+∠ABC=135°+45°=180°,∴A、B、C、D四点共圆,于是作A、B、C、D外接圆⊙O,如图,当点D在线段AB的垂直平分线上且在AB的左侧时,DG经过圆心,此时DG最长,因此ΔABD的面积最大.作DG⊥AB,则DG平分∠ADB,DB=DA,在DA上截取一点H,使得CD=DH=1,∵∠ADB=∠ACB=45°,∴∠GDB=22.5°,∠DBG=67.5°,∴∠DBC=67.5°-45°=22.5°,∠HCB=∠DHC-∠HBC=45°-22.5°=22.5°,∴∠HCB=∠HBC,∴HB=CH=2,∴AD=BD=DH+BH=1+2.【点评】本题考查三角形综合题、等腰直角三角形的性质和判定、全等三角形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。
2023年安徽中考数学总复习专题:辅助圆问题(PDF版,有答案)
2023年安徽中考物理总复习专题:辅助圆问题类型一定点定长(1)利用几个点到定点距离相等构造圆典例1如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是 .【思路点拨】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故答案为:140°.【关键点】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.针对训练1.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是( )A.25°B.50°C.60°D.80°(2)翻折产生隐圆典例2如图,等边△ABC的边长为8,点P是AB边上的一点,且PB=6,直线l经过点P,把△ABC沿直线l折叠,点B的对应点为点B',在直线l变化的过程中,则△ACB'面积的最大值为 .【思路点拨】由已知确定B'在以P为圆心,PB为半径的圆上,过点P作PH⊥AC交于H,当B'、P、H三点共线时,S△AB'C的面积最大,再求面积即可.解:由对称性可知,PB=PB',∴B'在以P为圆心,PB为半径的圆上,过点P作PH⊥AC交于H,当B'、P、H三点共线时,S△ACB'的面积最大,∵∠BAC=60°,PB=6,AB=8,∴AP=2,在Rt△APH中,PH=AP•sin60°=2×32=3,∴B'H=6+3,∴S△AB'C=12×8×(6+3)=24+43,故答案为:24+43.【关键点】本题考查折叠的性质,熟练掌握折叠的性质,等边三角形的性质,能判断点B'的运动轨迹是解题的关键.针对训练2.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是( )A.5B.4C.22D.25类型二定角对定弦构造圆(1)定直角对定边典例3已知正方形ABCD边长为2,E、F分别是直线BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PD的最小值为 .【思路点拨】先证明△ABE≌△BCF,即可得到∠APB=90°,所以点P在以AB为直径的圆上,由图形可知:当O、P、D在同一直线上时,DP有最小值,然后根据勾股定理即可解决问题.解:在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,AB=BC∠ABE=∠BCF,BE=CF∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°,∴∠BAE+∠ABF=90°,∴∠APB=90°,∴点P在以AB为直径的圆上,由图形可知:当O、P、D在同一直线上时,DP有最小值,如图所示:∵正方形ABCD,BC=2,∴AO=1=OP,Rt△OAD中,OD=22+12=5,∴PD=OD﹣OP=5―1.【关键点】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理,解决本题的关键是得到△ABE≌△BCF.针对训练3.如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为 .4.如图,AB是半圆O的直径,点C在半圆O上,AB=10,AC=8,D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于点E,连接BE.在点D移动的过程中,BE的最小值等于 .5.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为 226―2 .(2)任意角对定边典例4如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为( )A.1.5B.3C.433D.2【思路点拨】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当O、P、B共线时,PB长度最小,由等边三角形的性质得出AD=CD=12 AC=32,∠PAC=∠ACP=30°,求出PD和BD的长,可得PB的长,即可得出答案.解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=3,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是AC,设AC所在圆的圆心为O,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=12AC=32,∠PAC=∠ACP=30°,∠ABD=12∠ABC=30°,∴PD=32,BD=332,∴PB=BD﹣PD=332―32=3.故选:B.【关键点】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理等知识;作辅助线构建圆是解决问题的关键.针对训练6.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .7.在平面直角坐标系中,已知A(3,0),B(﹣1,0),点C是y轴上一动点,当∠BCA=45°时,点C的坐标为 .类型三对角互补构造圆典例5如图,AB是⊙O的直径,M、N是AB(异于A、B)上两点,C是MN上一动点,∠ACB 的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是 .【思路点拨】连接EB,设OA=r,作等腰直角三角形ADB,AD=DB,∠ADB=90°,则点E在以D为圆心DA为半径的弧上运动,运动轨迹是GF,点C的运动轨迹是MN,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.解:如图,连接EB,设OA=r∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.∴E是△ACB的内心,∴∠AEB=135°,作等腰直角三角形ADB,AD=DB,∠ADB=90°,则点E在以D为圆心DA为半径的弧上运动,运动轨迹是GF,点C的运动轨迹是MN,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,∴弧MN的长度:弧GF的长度=2α×π×r180α×π×2r180=2.故答案为:2.【关键点】本题考查了轨迹,圆周角定理,弧长公式,解决本题的关键是掌握与圆有关的性质.针对训练8.如图,在菱形ABCD中,点P是BC边上一动点,P和C不重合,连接AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )A.变大B.先变大后变小C.先变小后变大D.不变综合训练1.如图,等边△ABC的边长为3,F为边BC上的动点,FD⊥AB于D,FE⊥AC于E,则DE的长( )A.随点F运动而变化,最小值为94B.随点F运动而变化,最大值为94C.随点F运动而变化,最小值为323D.随点F运动,其值不变2.在直角坐标系xOy中,点O(0,0),动点A(t,t)在第一象限,动点B(0,m)在y 轴上.当AB=4时,△OAB面积的最大值为( )A.8B.42+4C.43+4D.823.如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE 于点F,点P是AD边上另一动点,则PC+PF的最小值为( )A.5B.213―2C.6D.25+24.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 .5.如图,在△ABC中,AB=2,∠ACB=120°,则△ABC周长的最大值为 .6.如图,∠MON=90°,直角三角形ABC斜边的端点A,B分别在射线OM,ON上滑动,BC=1,∠BAC=30°,连接OC.当AB平分OC时,OC的长为 .7.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF 的垂线BG,垂足为点G,连接AG,则AG长的最小值为 cm.8.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,连接AD,过点C作CE⊥AD于E,过点E作EF⊥AB交BC于点F,则CF的最大值是 .9.(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC 是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= °.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD 于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 .参考答案针对训练1.B【解析】连接BD,并延长AE交BD于点O,∵AE=BE=DE=BC=DC,AB=AD,∴四边形BCDE是菱形,∵∠C=100°,∴∠BED=100°,∵EA=EB=ED,∴∠EAB=∠EBA,∠EAD=∠EDA,∵∠BEO=∠EAB+∠EBA,∠DEO=∠EAD+∠EDA,∴∠BED=2∠BAD,∴∠BAD=50°.2.B【解析】如图作点D关于BC的对称点D′,连接PD′,ED′.∵DE=3,DD′=4,∴ED′=DE2+DD′2=5,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=1是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=5﹣1=4,∴PF+PD 的最小值为4.3.2【解析】∵AB⊥BC,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP =90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,当O、P、C共线时PC最小,在Rt△BCO中,AB=6,BC=4,∴OB=12AB=3,∴OC=OB2+BC2=5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.4.213―4【解析】如图,取AC 的中点O ',连接BO ′、BC .∵CE ⊥AD ,∴∠AEC =90°,∴在点D 移动的过程中,点E 在以AC 为直径的圆上运动,∴CO '=12AC =4,∵AB 是直径,∴∠ACB =90°,在Rt △ABC 中,∵AC =8,AB =10,∴BC =AB 2―AC 2=102―82=6,在Rt △BCO ′中,BO ′=BC 2+CO′2=62+42=213,∵O ′E +BE ≥O ′B ,∴当O ′、E 、B 共线时,BE 的值最小,最小值为O ′B ﹣O ′E =213―4.5.226―2【解析】连接CE ,取BC 的中点F ,作直径为BC 的⊙F ,连接EF ,AF ,∵BC =4,∴CF =2,∵∠ACB =90°,AC =10,∴AF =AC 2+CF 2=104=226,∵CD 是⊙O 的直径,∴∠CED =∠CEB =90°,∴E 点在⊙F 上,∵在D 的运动过程中,AE ≥AF ﹣EF ,且A 、E 、F 三点共线时等号成立,∴当A 、E 、F 三点共线时,AE 取最小值为AF ﹣EF =226―2.6.4<BC ≤833【解析】作△ABC 的外接圆,如图所示,∵∠BAC >∠ABC ,AB =4,当∠BAC =90°时,BC 是直径最长,∵∠C =60°,∴∠ABC =30°,∴BC =2AC ,AB =3AC =4,∴AC =433,∴BC =833;当∠BAC =∠ABC 时,△ABC 是等边三角形,BC =AC =AB =4,∵∠BAC >∠ABC ,∴BC 长的取值范围是4<BC ≤833.7.(0,2+7)或(0,﹣2―7)【解析】如图,先作等腰直角△PAB ,再以P 点为圆心,PA 为半径作⊙O 交y 轴于C 点,作PD ⊥y 轴于D ,可得P (1,2),PA =22,∴PC =22,∴CD =(22)2―12=7,∴OC =2+7,∴C (0,2+7),同理可得C ′(0,﹣2―7),综上所述,满足条件的C 点坐标为:(0,2+7)或(0,﹣2―7).8.D 【解析】连接AC 交BD 于O ,连接EO 、AG ,∵四边形ABCD 是菱形,∴∠AOB =90°,∵EG 是AP 的垂直平分线,∴AG =PG ,∠AEG =∠AOB =90°,∴A 、E 、G 、O 四点共圆,∴∠PAG =∠EOB ,∠APG =∠PAG ,∴∠EOG =∠APG ,∵四边形ABCD是菱形,∴OA =OC ,∵AE =PE ,∴OE ∥BC ,∴∠EOB =∠DBC =12∠ABC ,∵菱形ABCD 固定,∴∠ABC 的度数固定,即∠APG 的度数不变.综合训练1.A 【解析】作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B =60°,∴AG =32AB =332,∵S △ABF +S △ACF =S △ABC ,∴12AB •DF +12AC •EF =12BC •AG ,∵AB =AC =BC =3,∴DF +EF =AG =332,∵△DEF 中,DE <DF +EF ,∴DE 的长随F 点运动而变化,当F 运动到BC 中点时DE 最小值为94(四边形ADFE 四点共圆,当直径AF 最小时,DE 的值最小,根据垂线段最短,可得结论).2.B【解析】根据条件可知,∠AOB=45°,AB=4,以AB为弦,所对圆周角等于45°作一辅助圆,如图所示,当点O位于优弧中点时,点O到直线AB的距离最大,即“高”最大,而底AB为定值4,所以此时△OAB的面积最大,计辅助圆圆心为G,∠AGB=90°,AG=BG=22,所以点O位于优弧中点时,点O到直线AB的距离为22+2,所以△OAB面积的最大值12×4×(22+2)=42+4.3.B【解析】如图,取点C关于直线DA的对称点C′.以AB中点O为圆心,OA为半径画半圆.连接OC′交DA于点P,交半圆O于点F,连AF.连BF并延长交DA于点E.由以上作图可知,AF⊥EB于F.PC+PF=PC'′+EF=C'F,由两点之间线段最短可知,此时PC+PF最小.∵C'B'=4,OB′=6,∴C'O=42+62=213,∴C'F=213―2,∴PC+PF的最小值为213―24.92+9【解析】作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=12AB=12×6=3,∴OA=OM2+AM2=32,∴CM=OC+OM=32+3,∴S△ABC=12AB•CM=12×6×(32+3)=92+9.5.2+433【解析】如图所示,延长AC至P,使CB=CP,则∠P=∠PBC,∵∠ACB=∠P+∠PBC=90°,∴∠P=60°,作△ABP的外接圆,当AP为△ABP的外接圆的直径时,AP最长,AP=AC+CP=AC+CB,则∠ABP=90°,∴△ABP是直角三角形,∴PB=3 3AB=233,∴AP=2PB=433,∴△ABC周长的最大值=AB+AC+BC=AB+AP=2+433.6.2或3【解析】①当OA=OC时,∵∠ACB=∠AOB=90°,AB=AB,∴△ACB≌△AOB(HL),∴BC=BO,∴AB垂直平分线段OC,∵∠ACB=∠AOB=90°,∴A,O,B,C四点共圆,∴∠CAB=∠COB=30°,∴∠AOC=60°,∵AC=OA=3,∴△AOC 是等边三角形,∴OC=AC=3.②当四边形AOBC是矩形时,此时AB平分OC,∴OC =AB=2,综上所述,满足条件的OC的值为3或2.7.(10―2)【解析】设正方形的中心为O,可证EF经过O点.连接OB,取OB中点M,连接MA,MG,则MA,MG为定长,∴MA=10,MG=12OB=2,AG≥AM﹣MG=10―2,当A,M,G三点共线时,AG最小=(10―2)cm.8.33【解析】如图,取AC的中点O,连接OE,OF,延长FE交AB于T.∵∠ACB=90°,AB=4,∠B=30°,∴∠CAB=60°,AC=12AB=2,∵CE⊥AD,∴∠AEC=90°,∵AO=OC=1,∴OE=12AC=1,∴点E在以O为圆心,1为半径的圆上运动,∵FT⊥AB,∴当FT与⊙O相切时,CF的值最大,∵直线CF,直线EF都是⊙O的切线,∴FC=FE,∴∠FCE=∠FEC,∵∠CAE+∠ACE=90°,∠ACE+∠ECF=90°,∴∠CAE =∠FCE,∵∠CEF+∠AET=90°,∠AET+∠EAT=90°,∴∠FEC=∠EAT,∴∠CAE =∠EAT=30°,∵CF=FE,OC=OE,∴OF⊥EC,∵AD⊥CE,∵OF∥AD,∴∠COF=∠CAD=30°,∴CF=OC•tan30°=33,∴CF的最大值为33.9.【解析】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,AB为半径作圆A,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=45°,当点D在BC的下方时,∠BDC=135°,故答案是:45或135;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)如图3,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,AB=CD∠BAD=∠CDAAE=DF,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=12AB=1,在Rt△AOD中,OD=AO2+AD2=12+22=5,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH最小值=OD﹣OH=5―1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆AB上运动当O、H、D三点共线时,DH长度最小)。
14、辅助圆的应用
隐圆的应用一、隐圆题型知识储备观察下列图形,画出隐藏的圆二、模型归纳模型一:定弦定角例1.(2017 威海)如图1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为__________。
例2.如图所示,边长为2 的等边△ABC 的顶点B 在x 轴的正半轴上移动,∠BOD=30°,顶点A 在射线OD 上移动,则顶点C 到原点O 的最大距离为__________变式练习1.如图,点 A 是直线y=-x 上的一个动点,点 B 是x 轴上的动点,若AB=2,则△AOB 面积最大值为。
模型二:动点到定点定长例3.如图,已知O 是四边形ABCD 内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO =度变式练习1.如图,在四边形ABCD 中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,则∠BDC=,∠DBC =.模型三:直角所对的是直径例4.如图1,Rt△ABC 中,AB⊥BC,AB=6,BC=4,P 是△ABC 内部的一个动点,且始终有AP⊥BP,则线段CP 长的最小值为。
例5.在△ABC 中,∠ABC=90,AB=6,BC=8,O 为AC 的中点,过O 作OE⊥OF,OE、OF 分别交射线AB,BC 于E、F,则EF 的最小值为?模型四:四点共圆例6.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的角平分线CF于点F,求证AE=AF。
三、综合题型例7.(2018•泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.例8.如图,已知边长为2的正三角形ABC,两顶点A、B分别在直角∠MON的两边上滑动,点C在∠MON 的内部,则OC长的最大值为.例9.(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8例10.一次函数434y +=x 分别交 x 轴、y 轴于 A ,B 两点,在 x 轴上取一点 C ,使△ABC 为等腰三角形,则这样的点 C 最多有( )A .1 个B .2 个C .3 个D .4 个变式练习1.如图,⊙O 是以数轴原点O 为圆心,半径为3的圆,与坐标轴的正半轴分别交于A .C 两点,OB 平分∠AOC ,点P 在数轴上运动,过点P 且与OB 平行的直线与⊙O 有公共点,则线段OP 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定边对定角
A
P
B
E
F C
圆的定义-到定点距离等于定长
圆的定义-到定点距离等于定长
A
P F
C
E
B
• 2.四点共圆的常用判定 • (1)到一点距离相等的四个点共圆; • (2)同斜边的直角三角形的顶点共圆; • (3)同底且同侧顶角相等的两个三角形的顶点共圆; • (4)对角互补或有一个外角等于其内对角的四边形的顶点共圆; • (5)两条线段被一点分成(内分或外分)两段长的乘积相等,则这两条线
辅助圆-隐圆
• 1.构造辅助圆的常见条件 • (1)圆的定义 • 如图1,∵OA=OB=OC,∴点A,B,C三点共圆,圆心为O点。 • (2)同弧所对的圆周角等于圆心角的一半 • 如图2,∵AB=AC,∠A=2∠B,∴点D,B,C三点共圆,圆心为A。 • (3)定边对定角 • 如图3,∵AB边和所对的∠C确定,∴点C的轨迹是以AB为弦的圆弧。 • 特例:如图4,当定边AB,∠C=90°时,点C的轨迹是以AB为直径的圆。 • (4)同弧所对的圆周角相等 • 如图5、图6,共用斜边的两直角三角形的四个顶点共圆。 • 如图7,定边AB,所对的两个角∠C=∠D,则A,B,C,D四点共圆。 • (5)圆内接四边形的对角互补 • 如图8,∵△ACB,△ADB中,∠C+∠D=180°,∴A,B,C,D四点共圆。
ቤተ መጻሕፍቲ ባይዱ
• 1.构造辅助圆的常见条件 • (1)圆的定义 • 如图1,∵OA=OB=OC,∴点A,B,C三点共圆,圆心为O点。 • (2)同弧所对的圆周角等于圆心角的一半 • 如图2,∵AB=AC,∠A=2∠B,∴点D,B,C三点共圆,圆心为A。 • (3)定边对定角 • 如图3,∵AB边和所对的∠C确定,∴点C的轨迹是以AB为弦的圆弧。 • 特例:如图4,当定边AB,∠C=90°时,点C的轨迹是以AB为直径的圆。 • (4)同弧所对的圆周角相等 • 如图5、图6,共用斜边的两直角三角形的四个顶点共圆。 • 如图7,定边AB,所对的两个角∠C=∠D,则A,B,C,D四点共圆。 • (5)圆内接四边形的对角互补 • 如图8,∵△ACB,△ADB中,∠C+∠D=180°,∴A,B,C,D四点共圆。