大物复习题(1)
北方民族大学大物题库—波动光学计算题(1)
1. 在杨氏双缝干涉实验中,用波长550nm 的单色光垂直照射在双缝上.若用一厚度为e=6.6×10-6m 、折射率为n=1.58的云母片覆盖在狭缝上方,问:(1)屏上干涉条纹有什么变化? (2)屏上中央O 点现在是明纹还是暗纹?2. 薄钢片上有两条紧靠的平行细缝,用波长为nm 480=λ的平面光波正入射到钢片上,屏幕距双缝的距离为D = 2.00 m .现测得中央明条纹两侧的第五级明条纹间的距离为mm 0.12=∆x ,(1) 求两缝间的距离;(2) 从任一明条纹(计作0)向一边数到第20条明条纹,共经过多少距离?解:(1) 设两缝间距离为d ,则明纹坐标 λdD kx k = 由题意 k =5,λdD x x k 102==∆ 所以有m 100.8m 1012108.421010437---⨯=⨯⨯⨯⨯=∆=x D d λ (2) 共经过20个条纹间距,即m 104.2m 100.8108.422020247---⨯=⨯⨯⨯⨯==λd D l3. 以单色光照射到相距为0.2 mm 的双缝上,双缝与屏幕的垂直距离为1 m ,从第一级明纹到同侧的第四级明纹间的距离为7.5 mm ,求单色光的波长;4. 一油轮漏出的油(折射率n 1=1.20)污染了某海域, 在海水(n 2=1.30)表面形成一层薄薄的油污.(1) 如果太阳正位于海域上空,一直升飞机的驾驶员从机上向正下方观察,他所正对的油层厚度为460 nm,则他将观察到油层呈什么颜色?(2)如果一潜水员潜入该区域水下,并向正上方观察,又将看到油层呈什么颜色?5. 波长λ= 650 nm 的红光垂直照射到劈形液膜上,膜的折射率n = 1.33,液面两侧是同一种介质.观察反射光的干涉条纹.(1) 离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少?(2) 若相邻的明条纹间距mm 6=l , 上述第一条明纹中心到劈形膜棱边的距离x 是多少?解:(1) λλk ne k =+22 (明纹中心)现 k = 1, 1e e k = 膜厚度mm 1022.1441-⨯==ne λ(2) mm 00.32==lx 6. 波长为680 nm 的平行光照射到L=12 cm 长的两块玻璃片上,两玻璃片的一边相互接触 ,另一边被厚度D=0.048 mm 的纸片隔开. 试问在这12 cm 长度内会呈现多少条暗条纹 ?7.如图所示,利用空气劈尖测细丝直径,已知 λ=589.3 nm ,L=2.888×10-2 m,测得30条条纹的总宽度为4.295×10-3 m ,求细丝直径d.解:相邻条纹间距1=-N xb ∆,则细丝的直径为 m .)-(-510×755=21=2=L xn N L nb d ∆λλ8. 图所示为一牛顿环装置,设平凸透镜中心恰好与平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长; (2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.解:(1)明环半径为 ,3,2,1,212=-=k R k r λ 所以入射光波长()()()m 105m 41521030.021227222--⨯=⨯-⨯⨯⨯=-=R k r λ (2)由明环半径公式()λR k r 1222-=得 5.50211054)10(217222=+⨯⨯=+=--λR r k 所以, 在OA 范围内可观察到50个明纹.9.如图所示为测量油膜折射率的实验装置,在平面玻璃片G 上放一油滴,并展开成圆形油膜,在波长 λ=600nm 的单色光垂直入射下,从反射光中可观察到油膜所形成的干涉条纹.已知玻璃的折射率为 n 1=1.50,油膜的折射率 n 2=1.20,问:当油膜中心最高点与玻璃片的上表面相距800nm 时,可看到几条明纹?明纹所在处的油膜厚度为多少 ?10.如图如示,折射率n 2=1.2的油滴落在n 3=1.5的平板玻璃上,.OA.形成一个上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1μm ,用 λ=600 nm 的单色光垂直照射油膜。
大物习题答案1
习 题 一1—1 一质点在平面xOy 内运动,运动方程为x =2t ,2219t y -= (SI)。
(1)求质点的运动轨道;(2)求t =1s 和t =2s 时刻质点的位置矢量;(3)求t =1s 和t =2s 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大?[解] 质点的运动方程:t x 2=,2219t y -= (1)消去参数t ,得轨道方程为: 22119x y -= (2)把t=1s 代入运动方程,得j i j i r 172)219(22+=-+=t t 把t =2s 代入运动方程,可得j i j i r 114)2219(222+=⨯-+⨯= (3)由速度、加速度定义式,有4/,0/4/,2/-====-====dt dv a dt dv a t dt dy v dt dx v y y x x y x所以,t 时刻质点的速度和加速度为 j i j i t v v v y x 42-=+= j j i a 4-=+=y x a a所以,t=1s 时,j i v 42-=,j a 4-= t=2s 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有 0=⋅v r即 0]42[])219(2[2=-⋅-+j i j i t t t 整理,得 093=-t t解得 3,3;0321-===t t t (舍去) m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时 (5)任一时刻t 质点离原点的距离 222)219()2()(t t t r -+= 令d r/d t =0 可得 t =3所以,t =3s 时,质点离原点最近 r1—2 一粒子按规律59323+--=t t t x 沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动,减速运动的时间间隔。
物理实验习题
物理实验习题大学物理实验复习题一、选择题1、以下说法正确的是()A.多次测量可以减小随机误差B. 多次测量可以消除随机误差C.多次测量可以减小系统误差 D.多次测量可以消除系统误差2、下列表述正确的是()3、用分度值为0.05的游标尺测量一物体的长度,下面读数正确的是()A.12.63mmB.12.64mmC. 12.60mm C.12.635mm4、测量仪器的零点误差应该是( )A.系统误差B. 随机误差C.粗大误差D.引入误差5、下列测量读数中,正确的是()A.感量为 0.05g 的物理天称得物体的质量为20.2gB.分度值为 0.01mm 的螺旋测微计测得物体的长度为4.37mmC.分度值为 0.02mm 的游标尺测得物体的长度为1.47mm D.分度值为 0.05mm 的游标尺测得物体长度为6.05mm6、用螺旋测微计测量长度时,测量值末读数和初读数,初读数是为了消除()A.系统误差B.偶然误差C.过失误差D.其他误差 7、对一物理量进行多次等精度测量,其目的是()A.消除系统误差B.消除随机误差C.减小系统误差D. 减小随机误差 8、依据获得测量结果方法的不同,测量可以分为两大类,即()A.多次测量和单次测量B. 等精度测量和不等精度测量C.直接测量和间接测量D. A 、B、 C 都对9、对一物量量进行等精度多次测量,其算术平均值是()A.真值B.最接近真值的值C.误差最大的值D.误差为零的值 10、测量结果的标准表达式为X=X ±U 其含义为()A.被测量必定等于(X-U或(X+U) C.被测量必定在 (X-U )和 (X+U) 之间B.被测量可能等于(X-U)或(X+U) D.被测量以一定概率落在(X-U)和(X+U)之间 11、按照误差的性质不同,测量误差一般可分为()A.绝对误差、人为误差、仪器误差和引入误差 C.标准误差和算术平均误差B.环境误差点、系统误差和粗大误差 D. 随机误差、系统误差和粗大误差 12、0.070的有效数字有()A.1位B.2位C.3 位D.4位13、下面情况中,属于偶然误差的是()A. 视差B. 仪表计时,有人常设置过短C. 测量时把数字读当数读错了 D .千分尺零点不准 14、测得质量为m=(28.38± 0.02),相对误差儿为:()A.0.0007047B.0.07047%C.0.07%D.0.071%15、下列论述中正确的是()A.多次测量可以减小偶然误差 B.多次测量可以消除系统误差C.多次测量可以减小系统误差D.以上三种说法都不正确 16、N=A-B的相对误差为:()17、天平的灵敏度取决于刀口,为保护刀口,正确的做法是()A.在加减砝码、取放物体、调节平衡螺母时放下横梁 C. 首先调节天平水平B.首先检查挂钩、托盘安放是否正确 D. 加减砝码必须用摄子 18、选出下列说法中的正确者()A.仪器级别是用绝对误差的形式反映仪器误差的。
专题一 力与运动 (1)——2023届高考物理大单元二轮复习练重点
专题一力与运动(1)——2023届高考物理大单元二轮复习练重点【新课标全国卷】1.如图所示,细绳MO与NO所能承受的最大拉力相同,长度MO NO,则在不断增加重物G重力的过程中(绳OC不会断)( )A.ON 绳先被拉断B.OM 绳先被拉断C.ON 绳和OM 绳同时被拉断D.因无具体数据,故无法判断哪条绳先被拉断2.2022年4月份上海市爆发了新一轮的新冠疫情,广大市民积极响应市政府号召在家隔离。
市民居家隔离期间锻炼了厨艺的同时还产生了很多的奇思妙想。
其中一位隔离者通过如图所示的装置在与志愿者不接触的情况下将吊篮中的生活用品缓慢拉到窗口,图中轻绳的一端栓在轻杆上,另一端绕过定滑轮(不计一切摩擦)。
下列说法正确的是( )A.此人手上所受的拉力F 始终不变B.此人手上所受的拉力F 先减小,后增大C.轻杆所受压力一直增大D.轻杆所受压力大小始终不变3.如图所示,物体A 置于水平地面上,力F 竖直向下作用于物体B 上,A B 、保持静止,则物体A 的受力个数为( )A.3B.4C.5D.64.如图所示,小圆环A 吊着一个质量为2m 的物块并套在另一个坚直放置的大圆环上,有一细线一端拴在小圆环A 上,另一端跨过固定在大圆环最高点B 的一个小滑轮后吊着一个质量为1m 的物块。
如果小圆环、滑轮、绳子的大小和质量以及相互之间的摩擦都可以忽略不计,绳子又不可伸长,若平衡时弦AB 所对应的圆心角为α,则两物块的质量比12:m m 应为()A.cos2αB.sin2αC.2sin2αD.2cos2α5.如图,弹性绳一端系于A 点,绕过固定在B 处的光滑小滑轮,另一端与套在粗糙竖直固定杆M 处的小球相连,此时在同一水平线上,弹性绳原长恰好等于AB 间距。
小球从M 点由静止释放,弹性绳始终遵循胡克定律,则( )A.小球下滑过程中受到的摩擦力大小在不断增加B.小球下滑过程中受到的摩擦力大小在不断减小C.重力的功率在不断增加D.小球做匀加速运动6.如图所示,斜面体ABC 置于粗糙的水平地面上,小木块m 在斜面上静止或滑动时,斜面体均保持静止不动.下列哪种情况,斜面体受到地面向右的静摩擦力( )A.小木块m 静止在斜面BC 上B.小木块m 沿斜面BC 加速下滑C.小木块m 沿斜面BA 减速下滑D.小木块m 沿斜面AB 减速上滑7.如图所示,细线OA OB 、的O 端与质量为m 的小球(可视为质点)拴接在一起,A B 、两端固定于竖直墙面上,其中细线OA 与竖直方向成45°角,细线OB 与竖直方向成60角。
(2015年)大学物理复习题
2015年大学物理复习题一、单项选择题1.一质点在平面上运动,已知质点运动方程为x=at2,y=bt2(其中a、b为常量),则该质点运动轨迹为()A.双曲线B.抛物线C.圆周D.直线2.一质点沿x轴运动,运动方程为x=24+20t-5t2,式中x的单位为m,t的单位为s。
在t=1s到t=3s 的时间内,质点速率的变化情况是()A.一直在增加B.一直在减少C.先增加然后减少D.先减少然后增加3.一质点沿半径为R=0.4m的周围运动,角速度为ω=5t2,式中ω的单位为rad/s,t的单位为s。
则在t=1s时,质点的切向加速度a t=()A.2m/s2B.4m/s2C.8m/s2D.10m/s24.两个不同倾角的光滑斜面I、Ⅱ高度相等,如图所示,两质点分别由I、Ⅱ的顶端从静止开始沿斜面下滑,则到达斜面底端时()A.两质点的速率相同,加速度相同B.两质点的速率不同,加速度相同C.两质点的速率相同,加速度不同D.两质点的速率不同,加速度不同5.一质点沿x轴运动,运动方程为x=8t-2t2,式中x的单位为m,t的单位为s o在t=1s到t=3s的时间内,质点的路程s=()A.2m B.4m C.6m D.8m6.一质点沿半径为R=2m的圆周运动,运动方程为θ=6t+t2,式中θ的单位为rad,t的单位为s o在t=2s 时,质点的速率v=()A.2m/s B.4m/s C.10m/s D.20m/s7.下列叙述中正确的是( )A.在同一直线上,大小相等、方向相反的二个力必定是作用力与反作用力B.一物体受两个力的作用,其合力必定比这两个力中的任一个都大C.如果一质点所受合力的方向与质点运动方向成某一不为零的角度,则质点一定作曲线运动D.物体的质量越大,它的重力加速度也越大8.一质量m=0.5kg的质点作平面运动,其运动方程为x=2t2(SI),y=t2+t+1(SI),则质点所受的合力大小为( )A.1N B.3N C.5N D.7N9.以大小为F 的力推一静止物体,力的作用时间为Δt ,而物体始终处于静止状态,则在Δt 时间内恒力F 对物体的冲量和物体所受合力的冲量大小分别为( )A .0,0B .F Δt ,0C .F Δt ,F ΔtD .0,F Δt10.如图所示,一个质点在水平面内作匀速率圆周运动,在自A 点到B 点的六分之一圆周运动过程中,下列几种结论中正确的应为( )(1)合力的功为零;(2)合力为零;(3)合力的冲量为零;(4)合力的冲量不为零;(5)合力不为零;(6)合力的功不为零。
大物实验复习题
物理实验复习题1.误差是 与 的差值,偏差是 与 的差值,偏差是误差的 值。
2.有效数字是由 数字和一位 数字组成,有效数字的多少反映着测量 的高低。
3.写出下列几个符号的含义(文字叙述及公式表达)(1)σx (2)S x (3)S x4.在工科物理实验中,不确定度一般取 位有效数字,相对不确定度一般取 位有效数字。
5.写出以下几个简单函数不确定度的传递公式:N=x+y U N = ,E N =N=x.y U N = ,E N =N=x m /y n U N = ,E N =5.作图法有什么优点?作图时应注意什么?6.使用天平前要进行那些调节?称量时应注意什么?7.使用测量望远镜必须先调节,按顺序写出调节内容。
8.测量望远镜的视差是怎样形成的?如何消除视差?9.以下电表上所标符号的含义各是什么?V mA Ω ∩ —10.系统误差的特点是具有----------------性,它来自---------------- 。
------------------- 。
-------------------随机误差 的特点是具有----------------性,其误差的大小和符号的变化是----------------的。
但它服从-------------规律。
11.测量不确定度是表征被测量的---------------------在某个-------------------------的一个评定。
A 类不确定度分量由----------------方法求出、推出或评出。
B 类不确定度分量由不同于--------------------的其他方法求出的不确定度分量。
12.据误差限评定不确定度B 分量时,对于均匀分布u j =---------------,对于正态分布u j =---------------,13.物理实验仪器中误差限的确定或估计大体有三种情况,它们是什么?14.改正下列错误:(1) M=3169+200Kg(2) D=110.430+0.3cm(3) L=12Km+100m(4) Y=(1.96×105+5.79×103)N/㎜(5) T=18.5426+0.3241cm(6) h=26.7×104+200Km15.写出下列函数 不确定度的传递公式:(1)z y x N -= (2)33121y x N -= (3) ρπh m r =16.写出下列函数 不确定度的传递公式:(1)01ρρm m m -= (2)Dd D f 422-= 17.写出下列仪器的误差限:(1) 米尺类 (2)千分尺 (3)物理天平 (4)游标卡尺(50分度值)(5)电表 (6)电阻18.下列电器元件符号各表示什么?~19.某圆直径测量结果为 d=0.600+0.002cm,求圆的面积,并估算不确定度。
大学物理A(一)期末复习题
[1]. 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( c ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( b )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v[2]. 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( a )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确[3]. 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的[4]. 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变[5]. 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.[6]. 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr[7]. 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向[8]. 质点沿直线运动,加速度a =4 -t 2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.[9]. 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程. [10].一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r0=10 m i.求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图[11].质点在Oxy 平面内运动,其运动方程为r=2.0t i+(19.0 -2.0t2 )j,式中r的单位为m,t的单位为s.求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2=2.0s 时间内的平均速度;(3) t1=1.0s时的速度及切向和法向加速度;(4) t=1.0s 时质点所在处轨道的曲率半径ρ.[12].如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ[13].用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小()(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变 (D) 无法确定 [14].一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定 [15].一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加[16].图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?[17].工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00×102 kg,乙块质量为m2=1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?[18].如图(a)所示,已知两物体A、B 的质量均为m=3.0kg ,物体A 以加速度a =1.0m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)[19].如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?[20].一质量为50 g的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体作上下振动,若以物体静平衡位置为原点,向下为y轴正向.测得其运动规律按余弦形式即+.0πy,式中t以s计,y以m计,试求:(1)作用于该物体上的合外力=t)2/205cos(的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y距离成正比.[21].轻型飞机连同驾驶员总质量为1.0 ×103 kg.飞机以55.0 m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102N·s-1,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.[22].一质量为m的小球最初位于如图(a)所示的A 点,然后沿半径为r的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.[23].光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v0减少2/0v时,物体所经历的时间及经过的路程.[24].一物体自地球表面以速率v0 竖直上抛.假定空气对物体阻力的值为F r=km v2 ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)[25].对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的(D) (2)、(3)是正确的[26].有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒[27].对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.下列上述说法中判断正确的是()(A) (1)、(2)是正确的(B) (2)、(3)是正确的(C) 只有(2)是正确的(D) 只有(3)是正确的[28].如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B 和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有() (A) 动量守恒,机械能守恒(B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒(D) 动量守恒,机械能不一定守恒[29].如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是()(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热[30].一架以3.0 ×102m·s-1的速率水平飞行的飞机,与一只身长为0.20 m、质量为0.50 kg的飞鸟相碰.设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率甚小,可以忽略不计.试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算).根据本题的计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?[31].如图所示,质量为m的物体,由水平面上点O以初速为v0抛出,v0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.[32].如图所示,一质量为m的木块静止在光滑水平面上,一质量为m/2的子弹沿水平v射入木块一段距离L(此时木块滑行距离恰为s)后留在木块内,求:(1)方向以速率木块与子弹的共同速度v,此过程中木块和子弹的动能各变化了多少?(2)子弹与木块间的摩擦阻力对木块和子弹各作了多少功?(3)证明这一对摩擦阻力的所作功的代数和就等于其中一个摩擦阻力沿相对位移L所作的功.(4)证明这一对摩擦阻力所作功的代数和就等于子弹-木块系统总机械能的减少量(亦即转化为热的那部分能量).[33].用铁锤把钉子敲入墙面木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击,能把钉子钉入木板1.00 ×10 -2 m.第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?[34].如图(a)所示,天文观测台有一半径为R的半球形屋面,有一冰块从光滑屋面的最高点由静止沿屋面滑下,若摩擦力略去不计.求此冰块离开屋面的位置以及在该位置的速度.[35].有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确[36].关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的[37].均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零[38].一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )(A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定[39].假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒[40].一汽车发动机曲轴的转速在12 s 内由 1.2×103r·min-1均匀的增加到 2.7×103r·min-1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?[41].水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动惯量J AA′=1.93×10-47 kg·m2,对BB′轴转动惯量J BB′=1.14 ×10-47 kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D和夹角θ.假设各原子都可当质点处理.[42].一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m-3,求飞轮对轴的转动惯量.[43]. 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).[44]. 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×103N·m ,涡轮的转动惯量为25.0kg·m 2 .当轮的转速由2.80×103 r·min -1 增大到1.12×104 r·min -1时,所经历的时间t 为多少?[45]. 一质量为20.0 kg 的小孩,站在一半径为3.00 m 、转动惯量为450 kg· m 2 的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00 m· s -1 的速率沿转台边缘行走,问转台的角速率有多大? [46]. 一转台绕其中心的竖直轴以角速度ω0 =π1s rad -⋅转动,转台对转轴的转动惯量为J 0 =4.0×10-3 kg· m 2 .今有砂粒以Q =2t (Q 在单位为 g· s -1 ,t 的单位为s )的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10 m ,求砂粒下落t =10 s 时,转台的角速度.[47]. 一位溜冰者伸开双臂来以1.01s r -⋅绕身体中心轴转动,此时的转动惯量为1.332m kg ⋅,她收起双臂来增加转速,如收起双臂后的转动惯量变为0.48 2m kg ⋅.求(1)她收起双臂后的转速;(2)她收起双臂前后绕身体中心轴的转动动能各为多少?[48]. 一质量为m′、半径为R 的转台,以角速度ωa 转动,转轴的摩擦略去不计.(1) 有一质量为m 的蜘蛛垂直地落在转台边缘上.此时,转台的角速度ωb 为多少? (2) 若蜘蛛随后慢慢地爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少? 设蜘蛛下落前距离转台很近.[49]. 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )[50]. 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s (D )2.00 s[51]. 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π[52]. 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A ) 60 (B )90 (C )120 (D )180[53]. 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度[54]. 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期[55]. 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.[56]. 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.[57]. 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达 x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.[58]. 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.[59]. 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?[60]. 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?[61].图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π[62]. 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动[63]. 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()212121212112A πB 2πC 2π/2πD 2π/2πr r k k r r k r r k ϕϕϕϕλϕϕλ-=-=-+-=-+-=[64].在波长为λ的驻波中,两个相邻波腹之间的距离为( ) (A ) 4λ (B ) 2λ(C ) 43λ (D ) λ[65]. 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.[66]. 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程[67]. 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.[68]. 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.[69]. 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.[70]. 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t的单位为s,求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差.[71]. 为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m 和10.0 m 处的能流密度[72]. 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.[73]. 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1 )[74]. 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强[75]. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1[76]. 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果2O P )(v 和2H P )(v 分别表示氧气和氢气的最概然速率,则( )(A) 图中a 表示氧气分子的速率分布曲线且4)()(22HP O P =v v(B) 图中a 表示氧气分子的速率分布曲线且41)()(22H P O P =v v (C) 图中b 表示氧气分子的速率分布曲线且41)()(22H P O P =v v (D) 图中b 表示氧气分子的速率分布曲线且4)()(22HP O P =v v[77].一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能 [78].2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105 Pa 时,氢气分子的平均平动动能为多大? [79].某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大? [80].日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能. [81].在容积为2.0 ×10-3 m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022个,求分子的平均平动动能及气体的温度 [82].当温度为0C时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平均动能和平均转动动能;(2)kg 100.43-⨯氧气的内能;(3)kg 100.43-⨯氦气的内能. [83].容积为1 m 3 的容器储有1 mol 氧气,以v =10-1s m ⋅的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少. [84].有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.[85].如图,一定量的理想气体经历acb 过程时吸热700 J ,则经历acbda 过程时,吸热为( )(A) – 700 J (B ) 500 J (C )- 500 J (D ) -1 200 J [86].如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A=p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( ) (A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热[87].两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J [88].一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积2V ,如图所示,则下述正确的是 ( )(A )C A 吸热最多,内能增加(B ) D A →内能增加,作功最少 (C ) B A →吸热最多,内能不变 (D ) C A →对外作功,内能不变[89].一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J [90].如图所示,1 mol 氦气,由状态),(11V p A 沿直线变到状态),(22V p B ,求这过程中内能的变化、对外作的功、吸收的热量.[91].一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功?它的内能改变了多少?[92].如图所示,在绝热壁的汽缸内盛有1 mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105Pa ,活塞面积为0.02 m 2.从汽缸底部加热,使活塞缓慢上升了0.5 m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12 J·mol -1·K -1,摩尔定容热容C V ,m =20.80 J·mol -1·K -1)[93].一压强为1.0 ×105Pa,体积为1.0×10-3m3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?[94].如图所示,系统从状态A沿ABC变化到状态C的过程中,外界有326 J的热量传递给系统,同时系统对外作功126 J.当系统从状态C沿另一曲线CA返回到状态A时,外界对系统作功为52 J,则此过程中系统是吸热还是放热?传递热量是多少?[95].如图所示,使1 mol 氧气(1) 由A等温地变到B;(2) 由A等体地变到C,再由C等压地变到B.试分别计算氧气所作的功和吸收的热量.[96].0.32 kg的氧气作如图所示的ABCDA循环,V2=2V1,T1=300K,T2=200K,求循环效率.[97].图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.[98].一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少? [99].一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27 ℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少? [100].有一以理想气体为工作物质的热机,其循环如图所示,试证明热机效率为()()1/1/12121---=p p V V γη。
大物复习题汇总
【7-11】一条无限长直导线在一处弯折成半径为 R 的圆弧,
如图所示,若已知导线中电流强度为 I,试利用毕奥-萨伐
I
尔定律求:(1)当圆弧为半圆周时,圆心 O 处的磁感应强度 B;
(2)当圆弧为 1/4 圆周时,圆心 O 处的磁感应强度。
解:(1) B B左 B中 B右 因左右两边的半无限长的延迟线经
S
S
4R3 30
E R3 3r 20
当 r < R 时,同理有
S
E
E
• dS EdS
S
qr 4 0R3
cos
0
E
E dS E4 r2 q
S
qr 4 0R3
rˆ, (r
R)
r3 R3
q 4r 3 3
Ex3 静电场环路定理,电势能,电势
6-17 如图所示,A 点有电荷+q,B 点有电荷-q,AB=2l,OCD 是以 B 为中心、 l 为半径的半圆。
强 dE1
dE1i
且 dE1
dx 40 x2
,
La dx
L
EP1 Q dE1 i a
40 x2
i 40a(a L)
即
P1
点场强大小为
L 4 0 a(a
L)
,方向沿
AP1
方向。
6.5 一根玻璃棒被弯成半径为 R 的半圆形,其上电荷均匀分布,总电荷为 q,求半圆中心 O 点
的场强。
解:如图,以半圆圆心为原点、对称轴为 x 轴建立坐标系,在棒上取电荷元 dq。
q 4 0
3l
q 4 0l
q 6 0l
单位正电荷从 O 点移到 D 点,电场力做功为:
WOD
西南交通大学现代物流学基础复习题一(含答案).Text.Marked
7.地理信息系统的简称是
A.GIS
B.GPS
C.POSD.EDI Nhomakorabea【】
8.物流系统按地域范围分不包括
A.区域物流
B.国内物流
C.宏观物流
D.国际物流
【】
9.国际标准化组织规定的物流基础模数尺寸是
A.600x200mm
B.600x400mm C.1200x1000mm D.1200x800mm
【】
10.不属于发货出库步骤的是
1.B 2.B 3.C 4.A 5.C 6.C 7.A 8.C 9.B 10.C
11.D 12.C 13.A 14.C 15.D
二、 多项选择题(本大题共 5 小题,每小题 3 分,共 15 分)
16.ABE
17.ABCD
18.ABCDE
19.ABCD
20.ABCD
三、 名词解释题(本大题共 5 小题,每小题 4 分,共 20 分)
配送为主,储存为辅。
23.搬运活性是指在搬运作业中的物资进行搬运作业的难易程度。
24.第三方物流是指由供方和需方以外的物流企业提供物流服务的业务模式。
25.流通加工是指物品在从生产地到使用地的过程中,根据需要施加包装、分割、计量、分
拣、刷标志、拴标签、组装等简单作业的总称。
四、 简答题(本大题共 5 小题,每小题 7 分,共 35 分)
A.距离
B.装载量
C.产品密度
D.责任
E.风险
【
】
20.构成 EDI 系统的要素包括
A.软件
B.硬件
C.通信网络
D.数据标准化
E.计算机人员
【
】
三、 名词解释题(本大题共 5 小题,每小题 4 分,共 20 分) 21.物流
《大学物理》2017(I1)期末复习题(1)
2017级大物期末复习题(I1)一、单项选择题1、质量为0.5m kg =的质点,在oxy 坐标平面内运动,其运动方程为25,0.5x t y t ==,从t=2s 到t=4s 这段时间内,外力对质点做的功为(B )A 、 1.5JB 、 3JC 、 4.5JD 、 -1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
②保守力作正功时,系统内相应的势能增加。
③质点运动经一闭合路径,保守力对质点作的功为零。
在上述说法中:(D )(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
3、如图3所示1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下,M 与m 间有摩擦,则 (D)A 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒。
B 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒。
C 、M 与m 组成的系统动量不守恒,水平方向动量不守恒,M 、m 与地组成的系统机械能守恒。
D 、M 与m 组成的系统动量不守恒,水平方向动量守恒,M 、m 与地组成的系统机械能不守恒。
4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。
磁场的方向垂直指向纸内。
预使圆环中产生逆时针方向的感应电流,应使(C )A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度 减弱5、若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率的磁通量,则在两环中( A )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是(A)A 、当线圈远离导线运动时,线圈中有感应电动势B 、当线圈上下平行运动时,线圈中有感应电流C 、直导线中电流强度越大,线圈中的感应电流也越大D 、以上说法都不对7. 真空带电导体球面与一均匀带电介质球体,它们的半径和所带的电量都相等,设带电球面的静电能为W1,球体的静电能为W2,则( B )A 、W1>W 2;B 、W 1<W 2;C 、 W 1=W2D 、无法比较8. 关于高斯定理的理解有下面几种说法,其中正确的是:(D )(A)如果高斯面上E 处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上E 处处为零(C)如果高斯面上E 处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9.两个同心的均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r (r<R 1<R 2)处的P 点的场强大小E为:(D ) (A)20214r Q Q πε+ (B)2202210144R Q R Q πεπε+ (C)2014r Q πε (D)0 10.如图所示,螺绕环截面为矩形,通有电流I ,导线总匝数为N ,内外半径分别为R1和R2,则当 R2 >r >R1时,磁场的分布规律为(B )(A)0 (B) 02πNI r N S μ∙ (C) 0πNIr μ (D) 111. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( C )A12、一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( D )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π213. 带电导体达到静电平衡时,其正确结论是(D )A 、导体表面上曲率半径小处电荷密度小B 、表面曲率较小处电势较高C 、导体内部任一点电势都为零D 、导体内任一点与其表面上任一点的电势差等于零14. 在电场中的导体内部的 ( C )12R 112R 12R(A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。
大学物理试卷09大物下模拟试题1
Imax=Ia/ 2+Ib
Imin=Ia/ 2
令
所以
24.解:用相对论计算
由 ①
②
③
计算得
若不考虑相对论效应
则 ④
⑤
由③,④,⑤式计算得
3.88×10-12m
相对误差
四、问答题(共5分)
25.证:任一线元 ,以 运动时的动生电动势为
,
整个导体的动生电动势为
25.(本题5分)
图示在磁感强度为 的均匀磁场中,有一任意形状不共面的导体折线ab以速度 平动,试证明导体上的电动势为: 式中 是以a为起点,b为终点的矢量.
参考答案
一、选择题(共36分)
1. A;2. D;
3. C
参考解:
按题设条件,此粒子作圆周运动,半径为
∴
可见 ,所以是图(C).
4. B;5. C;6. C;7. D;8. B;9. D。
(A) 7.96×102(B)3.98×102
(C)1.99×102(D)63.3[]
5.有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r1和r2.管内充满均匀介质,其磁导率分别为1和2.设r1∶r2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L1∶L2与磁能之比Wm1∶Wm2分别为:
三、计算题(共35分)
20.(本题10分)
两条细导线,长度都是L,平行齐头放置,相距为a,通有同向等值电流I.求它们之间作用力的大小和方向.
[积分公式 ]
21.(本题5分)
在如图所示的瑞利干涉仪中,T1、T2是两个长度都是l的气室,波长为的单色光的缝光源S放在透镜L1的前焦面上,在双缝S1和S2处形成两个同相位的相干光源,用目镜E观察透镜L2焦平面C上的干涉条纹.当两气室均为真空时,观察到一组干涉条纹.在向气室T2中充入一定量的某种气体的过程中,观察到干涉条纹移动了M条.试求出该气体的折射率n(用已知量M,和l表示出来).
大物一复习思考题
大物一期末复习思考题一、问答题1、某人骑自行车以速率v 向正西方行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?2、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是什么?3、若在一个孤立导体球壳内偏离球心处放一个点电荷,则球壳内、外表面上将出现感应电荷,其分布情况是怎样的?4、如何求静电场力作功?5、静电场的高斯定理的内容是什么?你如何理解穿过整个高斯面的电通量、高斯面上的场强、高斯面所包围的体积内电量代数和间的关系?6、处于静电平衡的导体,内部的场强有何特点?导体表面处的场强大小与表面电荷面密度有怎样关系?方向与导体表面又有怎样的关系?7、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1) 和f (v p 2).若T 1<T 2,比较v p 1和v p 2;f (v p 1) 和f (v p 2)的大小关系.8、若质量一定,如何计算各种理想气体的内能?9、理想气体的状态方程?10、质点系动量守恒、机械能守恒条件是什么?刚体角动量守恒的条件是什么?11、变力做功的计算.12、电偶极子的定义及特点.13、麦克斯韦速率分布函数的物理意义是什么?一定量的气体处于平衡态时的最概然速率决定于哪些因素?计算其大小的公式?三种统计速率的物理意义?14、如何计算质点在某一物理过程中的动量增量?某个力的冲量?自己举例分析。
15、地球绕太阳转动角动量和动量都守恒吗?为什么?16、一根质量为m 与地面垂直的细杆受一扰动,绕接触点自由倒下过程中角速度、角加速度、杆上各点的线速度如何变化?17、静电场的电场强度与电势之间有怎样的关系?比如在空间的分布有何特点?18、为什么说静电场是保守力场?为什么说静电场是有源场?19、温度、压强相同的氦气、氮气和二氧化碳,它们分子的平均动能、平均平动动能、平均转动动能有怎样的特点?20、伽利略坐标变换的核心思想是什么?牛顿定律适用的条件是什么?21、“势能概念的引入是以保守力作功为前提的”这句话对吗?22、场强和电势的积分与微分关系式分别是什么?高斯定理说明静电场是有源场,对吗?23、在xoy 平面内的抛物运动,质点的x 分量运动方程为t v x 0=,y 分量的运动方程为23gt y =,写出用位矢来描述质点的运动方程?二、选择题1、质点作半径为R 的变速圆周运动时, 加速度大小为 (v 表示任一时刻质点的速率) [ ](A) d v/d t (B) v 2/R (C) d v/d t + v 2/R (D) [(d v/d t )2+(v 4/R 2)]1/22、某人骑自行车以速率v 向正西方行驶,遇到由北向南刮的风(设风速大小也为v ),则骑车人感觉风是来自于[ ](A)东北方向 (B)西北方向 (C)东南方向 (D)西南方向3、两个质量相等的小球A 和B 由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。
物理实验习题与指导
物理实验习题与指导03(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--大学物理实验复习题一、基础知识部分(误差与不确定度、数据处理、基本测量与方法)(一)问答题1、什么叫测量、直接测量、间接测量(看教材)2、什么叫随机误差随机误差的特点是什么(看教材)3、什么叫系统误差系统误差的特点是什么(看教材)4、下列情况哪些是属于随机误差,哪些是属于系统误差?(从定义角度考虑)(1)经校准的秒表的读数误差。
(2)在20℃下标定的标准电阻,在30℃下使用引起的误差。
(3)分光计实验中的偏心误差。
(4)千分尺的“零点读数不为零”引起的误差。
(5)读仪表时的视差。
(6)因为温度的随机变化所引起的米尺的伸缩,而用该米尺测长所引起的误差。
(7)水银温度计毛细管不均匀。
(8)仪表的零点不准。
5、什么叫误差、绝对误差、相对误差、视差、引用误差、回程误差、偏差、残差、示值误差、读数误差、估读误差、标准差(查相关资料一般了解)6、误差的绝对值与绝对误差是否相同未定系统误差与系统不确定度是否相同(从定义出发)7、什么叫不确定度、A类不确定度、B类不确定度(从定义出发)8、不确定度与不准确度是否相同(看教材一般了解)9、什么叫准确度、正确度、精密度(从打靶角度分析)10、对某量只测一次,标准误差是多少(不变)11、如何根据系统误差和随机误差相互转化的特点来减少实验结果的误差(如测金属丝的平均直径和直径的平均值)12、测量同一玻璃厚度,用不同的测量工具测出的结果如下,分析各值是使用哪些量具测量的其最小分度值是多少(自做答案)(1) (2) (3)13、有一角游标尺主尺分度值为1°,主尺上11个分度与游标上12个分度等弧长,则这个游标尺的分度值是多少(参考游标卡尺原理)14、逐差法使用的条件与优点是什么(参考教材)15、使用贝塞尔公式的条件是什么(等精度测量,n>=3)16、数据处理时,为什么采用“小于五则舍、大于五则入、等于五则凑偶”的修约规则(为使舍、入几率相等)17、如何从实验中测得的直线关系的x-y值求出该直线的斜率?(答案自做)18、作图规则和注意事项是什么(看教材)19、什么叫有效数字有效数字的位数如何取定(看教材规定)20、不确定度的有效数字位数如何取(看教材规定)21、用天平测量固体密度是有几种方法分别适合什么样的物体(自做答案)22、某长度测量值为1.235m,则所用测量仪器是下列中的哪一种为什么1)千分尺2)50分卡尺3)20分卡尺4)米尺23、天平有哪几部分组成,使用时应注意什么,操作过程如何使用升降手柄(看教材)(重点掌握)(二)填空题1.指出下列各数是几位有效数字.25⨯2S10(4)×10-102.把下列各数取三位有效数字.1)1.0752)0.862493)27.0524)8.971⨯106-5)3.14156)0.0020000结果:1)__2)__3)__4)__5)__6)__3.用正确表达式写出下列结果:1)A=17000±1000km2)B=1.001730±0.0005m3)C=10.8000±0.2cm4)D=99.5±0.820C正确表达式为:1)__2)__3)__4)__4.单位变换:1)L=(34.85±0.05)cm写成以μm.mm.m.km为单位.2)m=(201.750±0.001)kg写成以g.mg.t为单位.5.根据有效数字运算规则改正错误(请将正确的运算结果写在括号内):1)21605-1.32=215.18()2)0.0221⨯0.0221=0.00048841()3)400⨯1500/142.60-11.6=600000()4)521.2⨯2%=10.4()5)98.754+1.3=()6)107.50-2.5=()7)111⨯0.100=()8)237.5÷0.01=()9)76.00÷(40.00-2.0)=()10)50.000⨯(18.30-16.3)/103-3.0⨯(1.00+0.001)=()11)1000.0⨯(5.6+4.412)/(78.00-77.0)⨯10.000=()6.更正下面的结果表达式.(1)X=±,更正为:__(2)X=3.4⨯±3CM,更正为:__1065(3)X=+,更正为:__(4)V=×10-2cm/s±×10-4cm/s写成。
大物第一章知识题及答案解析
第一章章节测试题一、选择题(每小题3分,共计15分)1.以下四种运动形式中,a保持不变的运动是 ( D ) (A) 单摆的运动 (B) 匀速率圆周运动 (C) 行星的椭圆轨道运动 (D) 抛体运动2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v,那么它运动的时间是 ( C ) (A) gt 0v v - (B) gt 20v v -(C) ()gt 2/1202v v - (D) ()gt 22/1202v v -3.下列说法中,哪一个是正确的? ( C ) (A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大 (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零 (D) 物体加速度越大,则速度越大4.一质点沿x 轴运动,其运动方程为2353x t t =-,其中t 以s 为单位。
当t=2s 时,该质点正在 ( A ) (A )加速 (B )减速 (C )匀速 (D ) 静止5.下列关于加速度的说法中错误的是 ( C ) (A )质点加速度方向恒定,但其速度的方向仍可能在不断的变化着 (B )质点速度方向恒定,但加速度方向仍可能在不断的变化着 (C )某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大(D )质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零 二、填空题(每空2分,共计20分)1.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则汽车通过第一点时的速率v 1 =__5.00m/s_。
2.质点沿半径为R 的圆周运动,运动学方程为 223t +=θ,则t时刻质点的法向加速度大小为a n = 16Rt 2 。
3.一质点沿x 方向运动,其加速度随时间变化关系为:a = 3+2 t ,如果初始时刻质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = 23m/s 。
大物习题课练习1
E Ⅱ
EⅢ
I 有 电场的分布为: 由 E 0 Q 在Ⅰ区, EⅠ 方向向左 2 0 S Q 在Ⅱ区, EⅡ 方向向右 2 0 S Q 在Ⅲ区, E Ⅲ 方向向右 2 0 S
Ⅱ
II I
Q Q E1 E2 20 2S 20 2S
1 2 3 4
(2)如果把第二块金属板接地 ,其右表面上的电荷就会分散到 地球表面上,所以
R
4
B
14.一半径为R的无限长半圆柱面导体,其上电流与其轴 线上一无限长直导线的电流等值反向。电流I在半圆柱面 上均匀分布。(1)求轴线上导线单位长度所受的力;(2)若 将另一无限长直导线(通有大小、方向与半圆柱面相同的 电流I)代替圆柱面,产生同样的作用力,该导线应放在 何处? 解:(1)在半圆柱面上沿母线取宽为dl dl 的窄条,其电流 d dI I I R dI dl d x R 它在轴线上一点产生的 I dB I 磁感应强度: y
qH e
qO 2e
1 m H mO 16
1 2 mH vH eU 2 1 1 2 2 m H v H mO v O 2 4
1 2 mO v O 2eU 2
vH mO 2 2 vO 2mH
3. 求无限长均匀带电圆柱面的电场强度(轴对称) 已知:线电荷密度
R + + + + + + + S + + +
对称性分析:E 垂直柱面
选取闭合的柱型高斯面
rR
s ( 柱)
E ds
s ( 上底)
E ds
E ds 0
S
s ( 下底)
大物期末复习题
1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零 (B) 不一定都为零.(C) 处处不为零.(D)无法判定 .2. 下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处同. (C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确. 3.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:(A) 204y qεπ. (B) 202y q επ. (C) 302y qa επ. (D) 304y qa επ. [ ]4.设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]x5.有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq . (B) 04επq(C) 03επq . (D) 06εq6. 已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零.(B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零.(D) 以上说法都不对.7.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]8. 半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. 9. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带有电荷1Q , 外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r 处的P 点的场强大小E 为: q EOr (A)E ∝1/r(A) 20214r Q Q επ+. (B) 2202210144R Q R Q εεπ+π (C) 2014r Q επ. (D) 0.10. 如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在两圆柱面之间、距离轴线为r 的P 点处的场强大小E 为:(A) r012ελπ. (B) r 0212ελλπ+. (C) ()rR -π2022ελ. (D) ()1012R r -πελ.[ ]11.半径为R 的均匀带电球面,总电荷为Q .设无穷远处电势为零,则该带电体所产生的电场的电势U ,随离球心的距离r 变化的分布曲线为 [ ]12.在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ- 13. 如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 则与点电荷q 距离为r 的P'点的电势为(A)rq 04επ (B) ⎪⎭⎫ ⎝⎛-πR r q 1140ε (C) ()R r q -π04ε (D) ⎪⎭⎫ ⎝⎛-πr R q 1140ε (A) (B) (C)2 (D) 2(E)14. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a 、b 、c 、d 处都是负电荷. [ ]15.如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2) (A) E =0,U =0.(B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V .16. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D)204r Q E επ=,R Q U 04επ=. 17. 有N 个电荷均为q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心O 并垂直于圆平面的z 轴上任一点P (如图所示)的场强与电势,则有(A) 场强相等,电势相等.(B) 场强不等,电势不等.b a(C) 场强分量E z 相等,电势相等.(D) 场强分量E z 相等,电势不等.18. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为:(A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π210114R R Q ε. (C) E =204r Q επ,U =rQ 04επ. (D) E =204r Q επ, U =104R Q επ. 19. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A) r Q Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 20.点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等.21. 在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于(A) P 1和P 2两点的位置.(B) P 1和P 2两点处的电场强度的大小和方向.(C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小.22.半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2A为:(A) ⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε . (C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D) r q 04επ . 23. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε. (C) 2022S q ε. (D) 202S q ε. 24.充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2.25. 如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04επ. (B) RQq 02επ. (C) R Qq 08επ. (D) RQq 083επ. 26. 密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电场由两块带电平行板产生.实验中,半径为r 、带有两个电子电荷的油滴保持静止时,其所在电场的两块极板的电势差为U 12.当电势差增加到4U 12时,半径为2r 的油滴保持静止,则该油滴所带的电荷为:(A) 2e (B) 4e(C) 8e (D) 16e27.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. 28. 真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改.29. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大.(B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定.30.有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移.(B) 只有当q < 0时,金属球才下移.(C) 无论q 是正是负金属球都下移.(D) 无论q 是正是负金属球都不动.31. 半径分别为R 和r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR / σr 为(A) R / r . (B) R 2 / r 2.(C) r 2 / R 2. (D) r / R . q 0P32. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh .(D) 02εσh . 33. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R qεπ . (B) 204R q επ . (C) 102R q επ . (D) 20R q ε2π . 34. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.35. 同心导体球与导体球壳周围电场的电场线分布如图所示,由电场线分布情况可知球壳上所带总电荷(A) q > 0. (B) q = 0.(C) q < 0. (D) 无法确定.36.一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204rE ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 37. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确.38. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E .39. 在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强.(B) 高斯定理成立,但不能用它求出闭合面上各点的场强.(C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.40. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E2,U2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E1 = E2,U1 = U2.(B) E1 = E2,U1 > U2.(C) E1 > E2,U1 > U2.(D) E1 < E2,U1 < U2.41.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U12、电场强度的大小E、电场能量W将发生如下变化:(A)U12减小,E减小,W减小.(B) U12增大,E增大,W增大.(C) U12增大,E不变,W增大.(D) U12减小,E不变,W不变.42. C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.43.如果某带电体其电荷分布的体密度 增大为原来的2倍,则其电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 4倍.(D) 1/4倍.44.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q >B P >B O (C )B Q > B O > B P . (D) B O > B Q > Bp45. 一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. 46. 电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. 47. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域.(E) 最大不止一个. 48. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( rⅠⅡⅢⅣ< R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 (A) B i 、B e 均与r 成正比. (B) B i 、B e 均与r 成反比. (C) B i 与r 成反比,B e 与r 成正比. (D) B i 与r 成正比,B e 与r 成反比.49.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?50. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-= (D) qBm y v -=. 51. 一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . 52. α 粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比R α / R p 和周期比T α / T p 分别为:Bx OR(D) Bx O R(C) BxOR (E)(A) 1和2 ; (B) 1和1 ; (C) 2和2 ; (D) 2和1 .53.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将(A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab . 54. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)R r I I 22210πμ. (B)R r I I 22210μ.(C) rR I I 22210πμ. (D) 0.55. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8.(C) 7/8. (D) 5/4. [ ] 56. 把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将 (A) 不动.O r R I 1 I 2F 1F 2F 31 A2 A3 AⅠⅡⅢI(B) 顺时针方向转动(从上往下看). (C) 逆时针方向转动(从上往下看),然后下降. (D) 顺时针方向转动(从上往下看),然后下降. (E) 逆时针方向转动(从上往下看),然后上升. 57. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=2μ. (C) B = 0. (D) I aB π=μ.58. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b端流出,则环中心O 点的磁感强度的大小为(A) 0.(B)R I40μ. (C) R I 420μ. (D) R I0μ.(E)RI820μ. 59.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 则伏特计指示的电压值为(A) 0. (B)21v Bl . (C) v Bl . (D) 2v Bl . 60. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.IaI Ib a(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D)两环中感应电动势相等.61. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. 62. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]63.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)? [ ] 64. 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]磁极磁极 0 t I0 t I0 t I 0t I(A) (B)(C) (D)c ab d N M B65. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E) B L 221ω.66. 自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为: (A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . 67. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使 (A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. 68. 在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0. (C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0.B(2)69. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 (A) 4. (B) 2. (C) 1. (D)21. 选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______. 72.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为+σ +2σ.73.“无限大”均匀带电平面,σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C= 设方向向右为正).74.R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的挖去△S 后球心处电场强度的大小E =,其方向为_(由球心指向△S )__. 电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0 ,电势U 0=.(选无穷远处电势为零)79.+Q r 1吹胀到r 2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E变为_0_;电势U 由80.,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为S____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V . 86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (041επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19C, 1 eV=1.60×10-19J )87.在点电荷q 的静电场中,若选取与点电荷距离为r0的一点为电势零点,则点电荷距离为r 处的电势U 88.如图所示, 在场强为E的均匀电场中,A 、B 两点间距离为d .AB连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed . 89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p与E 间的夹角为α,则它所受的电场力F=0,力矩的大小M =__pEsin α__.92.一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' .93.在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间.Aa 094.带有电荷q 、半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置如图.则图中P 点的电场强度=EA 、B 连接起来,则A 球的电势U(设无穷远处电势为零)95.半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D,电场强度的大小 E96. 1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m.(μ0 =4π×10-7 H ·m -1)98.一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)__沿Z轴负向____.99.如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A的电流时,其内部的磁感强度B =_T310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A2)102. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:-μ0I(对环路a).__0__(对环路b).2μ0I(对环路c).103.如图所示,一半径为R,通有电流为I的圆形回路,位于Oxy平面内,圆心为O.一带正电荷为q的粒子,以速度v 沿z轴向上运动,当带正电荷的粒子恰好通过O点时,作用于圆形回路上的力为__0______,作用在带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd(磁场以边框为界).而a、b、c三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a缺口沿ad方向射入磁场区域,若b、c两缺口处分别有电子射出,则此两处出射电子的速率之比v b/v c =1:2.106.如图,半圆形线圈(半径为R)通有电流I.线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为,方向为_在图面中向上,O107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),可以分别绕它们的共同直径自由转动.把它们放在互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_两线圈平面平行(磁矩方向一致)__.108.如图所示,在真空中有一半径为a的3/4圆弧形的导线,其c以稳恒电流I,B中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为.109.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感强度的大小是.110.在xy平面内,有两根互相绝缘,分别通有电流I3和I的长直导线.设两根导线互相垂直(如图),则在xy平面内,磁感强度为零的点的轨迹方程为111.试写出下列两种情况的平面内的载流均匀导线在给定点P处所产生的磁感强度的大小.(1) B0_______.112.一根无限长直导线通有电流I,在P点处被弯成了一个半径为R 的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为,方向为垂直于纸面向里.113.用导线制成一半径为r=10 cm的闭合圆形线圈,其电阻R=10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A,B的变化率应为d B /d t =__3.185 T/S_.114.一段导线被弯成圆心在O点、半径为R的三段圆弧ab、bc、ca,它们构成了一个闭合回路,ab位于xOy平面内,bc和ca分别位于另两个坐标面中(如图).均匀磁场B沿x轴正方向穿过圆弧bcK(K>0),则闭合回路abca弧bc中感应电流的方向是由C 流向b115.半径为a的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流i =I m sinωt,则围在管外的同轴圆形回路(半径为r)上的感生电动势为)cos(2tnIamωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(tB,则此闭合线圈内的感应电动势.yx×××××xy。
大物习题
选择1、对质点系有下列几种说法:(1)质点系总动量的改变与内力无关;(2)质点系的总动能与内力无关;(3)质点系机械能的改变与保守内力无关。
对于这些说法,下述结论中正确的是(B)B、只有(1)、(3)是正确的2、对质点系的动量和机械能有下述三种说法。
(1)不受外力作用的系统,它的动量和机械能必然同时守恒;(2)内力是保守力的系统,当所受的合外力为零时,其机械能必然守恒;(3)只有保守内力而无外力作用的系统,它的动量和机械能必然守恒。
对于这些说法,下列结论中正确的是(C)C、只有(3)是正确的3、一力学系统由两个质点组成,它们之间只有引力作用。
若两质点所受外力的矢量和为零,则此系统中(C)C、动量守恒,但机械能和对一固定点的角动量是否守恒还不能断定4、关于角动量有以下四种说法,其中正确的是(B)B、一质点做直线运动,相对于直线上的任一点,质点的角动量一定为零5、一个人站在旋转平台的中央,两臂侧平举,整个系统以2πrad/s的角速度旋转,转动惯量为6.0kg·m平方;如果将两臂收回,该系统的转动惯量变为2.0kg·m平方。
此时系统的转动动能与原来的转动动能之比为(C)C、36、对一绕固定水平O轴匀速转动的转盘,沿如图所示的同一水平直线从相反方向射入两粒质量相同、速率相等的子弹,并留在盘中。
则子弹射入后的转盘的角速度应(B)B、减小第9页7、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始下落。
在棒摆动到竖直位置的过程中,应有(A)A、角速度从小到大,角加速度从大到小8、关于力矩有以下几种说法,其中正确的是(B)B、作用力和反作用力对同一轴的力矩之和必为零9、在相对论的时空观中,以下的判断哪一个是正确的(C)C、在一个惯性系中,两个同时又同地的事件,在另一惯性系中一定同时又同地10、根据狭义相对论观点,下列说法正确的是(C)C、如果光速是无限大,同时的相对性就不会存在了11、根据狭义相对论,有下列几种说法:(1)所有惯性系统对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。
大物实验复习题
大物实验复习题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--物理实验复习题1.误差是 与 的差值,偏差是 与 的差值,偏差是误差的 值。
2.有效数字是由 数字和一位 数字组成,有效数字的多少反映着测量 的高低。
3.写出下列几个符号的含义(文字叙述及公式表达)(1)σx (2)S x (3)S x4.在工科物理实验中,不确定度一般取 位有效数字,相对不确定度一般取 位有效数字。
5.写出以下几个简单函数不确定度的传递公式:N=x+y U N = ,E N =N= U N = ,E N =N=x m /y n U N = ,E N =5.作图法有什么优点作图时应注意什么6.使用天平前要进行那些调节称量时应注意什么7.使用测量望远镜必须先调节,按顺序写出调节内容。
8.测量望远镜的视差是怎样形成的如何消除视差9.以下电表上所标符号的含义各是什么V mA Ω ∩ —10.系统误差的特点是具有----------------性,它来自---------------- 。
------------------- 。
-------------------随机误差 的特点是具有----------------性,其误差的大小和符号的变化是----------------的。
但它服从-------------规律。
11.测量不确定度是表征被测量的---------------------在某个-------------------------的一个评定。
A 类不确定 度分量由----------------方法求出、推出或评出。
B 类不确定度分量由不同于--------------------的其他方法求出的不确定度分量。
12.据误差限评定不确定度B 分量时,对于均匀分布u j =---------------,对于正态分布u j =---------------,13.物理实验仪器中误差限的确定或估计大体有三种情况,它们是什么14.改正下列错误:(1) M=3169+200Kg(2) D=+(3) L=12Km+100m(4) Y=×105+×103)N/㎜(5) T=+(6) h=×104+200Km15.写出下列函数 不确定度的传递公式:(1)z y x N -= (2)33121y x N -= (3) ρπh m r =16.写出下列函数 不确定度的传递公式:(1)01ρρm m m -= (2)Dd D f 422-= 17.写出下列仪器的误差限:(1) 米尺类 (2)千分尺 (3)物理天平 (4)游标卡尺(50分度值)(5)电表 (6)电阻18.下列电器元件符号各表示什么19.某圆直径测量结果为 d=+,求圆的面积,并估算不确定度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-16-2课堂练习50题1. 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是多少?(c表示真空中光速)参考答案:v = (4/5) c.2. 已知电子的静能为0.51 MeV,若电子的动能为0.25 MeV,则它所增加的质量∆m与静止质量m0的比值近似为多少?参考答案:0.53. 静止时边长为50 cm的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m·s-1运动时,在地面上测得它的体积是多少?参考答案:0.075 m34. 一列高速火车以速度u驶过车站时,固定在站台上的两只机械手在车厢上同时划出两个痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为1 m,则车厢上的观察者应测出这两个痕迹之间的距离为多少?参考答案:mcu2)/(1/1-5. 一电子以0.99 c的速率运动(电子静止质量为9.11×10-31 kg,则电子的总能量是多少焦耳?,电子的经典力学的动能与相对论动能之比是多少?参考答案:5.8×10-13J ;8.04×10-26. 牛郎星距离地球约16光年,宇宙飞船若以多少速度的匀速度飞行,将用4年的时间(宇宙飞船上的钟指示的时间)抵达牛郎星.参考答案:2.91×108 m·s-1;7.一个余弦横波以速度u沿x轴正向传播,t时刻波形曲线如图所示.试分别指出图中A,B,C各质点在该时刻的运动方向.A_____________;B _____________ ;C ______________ .参考答案:向下;向上;向上8. 一声波在空气中的波长是0.25 m,传播速度是340 m/s,当它进入另一介质时,波长变成了0.37 m,它在该介质中传播速度为多少?参考答案:503 m/s9.波长为λ的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为n,第二条明纹与第五条明纹所对应的薄膜厚度之差是多少?参考答案:3λ / (2n)10. He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=?参考答案:7.6×10-2 mm11. 假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是多少?参考答案:54.7°12. 一束平行的自然光,以60°角入射到平玻璃表面上.若反射光束是完全偏振的,则透射光束的折射角是多少?玻璃的折射率为多少!参考答案:30︒;1.73附图表示一束自然光入射到两种媒质交界平面上产生反射光和折射光.按图中所示的各光的偏振状态,反射光是什么偏振光;折射光是什么偏振光;这时的入射角i0称为什么角.参考答案:线偏振光;部分偏振光;儒斯特角14. 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用 单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为多少米?参考答案:1×10-6m15. 某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V .当入射光的波长为纳米时,其遏止电压变为1.43 V .参考答案:3.82×102nm ( e =1.60×10-19 C ,h =6.63×10-34 J ·s )16. 已知钾的逸出功为 2.0 eV ,如果用波长为3.60×10-7 m 的光照射在钾上,则光电效应的遏止电压的绝对值|U a | 多少伏?.从钾表面发射出电子的最大速度v max 为多少?参考答案:1.45 V ;7.14×105 m ·s -1(h =6.63×10-34 J ·s ,1eV =1.60×10-19 J ,m e =9.11×10-31 kg)17. 根据氢原子理论,若大量氢原子处于主量子数n = 5的激发态,则跃迁辐射 的谱线可以有几条?其中属于巴耳末系的谱线有几条?参考答案:10;318. 根据量子力学理论,原子内电子的量子态由(n ,l ,m l ,m s )四个量子数表征.那 么,处于基态的氦原子内两个电子的量子态可由__________________________和 ____________________________两组量子数表征.参考答案:(1,0,0,21±)19.假定在实验室中测得静止在实验室中的μ+子(不稳定的粒子)的寿命为 2.2×10-6 m ,而当它相对于实验室运动时实验室中测得它的寿命为1.63×10-6 s .试问:这两个测量结果符合相对论的什么结论?μ+子相对于实验室的速度是真空中光速c 的多少倍?解:它符合相对论的时间膨胀(或运动时钟变慢)的结论设μ+子相对于实验室的速度为v μ+子的固有寿命τ0 =2.2×10-6 s μ+子相对实验室作匀速运动时的寿命τ0 =1.63×10-5 s按时间膨胀公式:20)/(1/c v -=ττ移项整理得:202)/(τττ-=c v 20)/(1ττ-=c= 0.99c20.要使电子的速度从v1=1.2×108m/s增加到v2=2.4×108m/s必须对它作多少功?(电子静止质量m e=9.11×10-31 kg)解:根据功能原理,要作的功W = ∆E根据相对论能量公式∆E = m2c2- m1c2根据相对论质量公式2/1222])/(1/[cmm v-=2/1211])/(1/[cmm v-=∴)1111(2212222cccmWvv---==4.72×10-14J=2.95×105 eV21. 一质量m= 0.25 kg的物体,在弹簧的力作用下沿x轴运动,平衡位置在原点. 弹簧的劲度系数k= 25 N·m-1.(1) 求振动的周期T和角频率ω.(2) 如果振幅A =15 cm,t = 0时物体位于x = 7.5 cm处,且物体沿x轴反向运动,求初速v0及初相φ.(3) 写出振动的数值表达式.解:(1)1s10/-==mkω63.0/2=π=ωTs(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由2020)/(ωv +=x A得3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴π=31φ(3) )3110cos(10152π+⨯=-t x (SI)22.xuOt =t ′y一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程; (2) 该波的表达式.解:(1) 设x = 0 处质点的振动方程为 )2cos(φν+π=t A y 由图可知,t=t'时)2cos(=+'π=φνt A y)2sin(2d /d <+'ππ-=φννt A t y 所以2/2π=+'πφνt , t 'π-π=νφ221x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν(2)该波的表达式为]21)/(2cos[π+-'-π=u x t t A y ν23.一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示. (1) 求解并画出x = 25 m 处质元的振动曲线. (2) 求解并画出t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为)2121cos(1022π-π⨯=-t y , (SI)波的表达式为)21)5/(21cos(1022π--π⨯=-x t y , (SI)x = 25 m 处质元的振动方程为)321cos(1022π-π⨯=-t y , (SI)振动曲线见图 (a)(2) t = 3 s 时的波形曲线方程)10/cos(1022x y π-π⨯=-,(SI)t (s)O -2×10-21y (m)234(a)2×24. 两个偏振片叠在一起,一束单色自然光垂直入射.(1) 若认为偏振片是理想的(对透射部分没有反射和吸收),当连续穿过两个偏振片后的透射光强为最大透射光强的31时,两偏振片偏振化方向间的夹角α为多大? (2)若考虑到每个偏振片因吸收和反射而使透射光部分的光强减弱5% ,要使透射光强仍如(1)中得到的透射光强,则此时α应为多大?解:设I 0为入射光强度;I 为连续穿过两偏振片的光强.(1)α20cos 21I I =显然,当α=0 时,即两偏振化方向平行时,I 最大.I max =21I 0由α200cos 212131I I =⎪⎭⎫ ⎝⎛得 α=54.8° (2) 考虑对透射光的吸收和反射,则()α2200cos %51212131-=⎪⎭⎫ ⎝⎛I Iα=52.6°25. 在杨氏双缝实验中,设两缝之间的距离为0.2 mm .在距双缝1 m 远的屏上观察干涉条纹,若入射光是波长为400 nm 至760 nm 的白光,问屏上离零级明纹20 mm 处,哪些波长的光最大限度地加强?(1 nm =10-9 m)解:已知:d =0.2 mm ,D =1 m ,l =20 mm依公式:λk l DdS ==∴Ddl k =λ=4×10-3 mm =4000 nm故当 k =10 λ1= 400 nm k =9 λ2=444.4 nm k =8 λ3= 500 nm k =7λ4=571.4 nmk =6 λ5=666.7 nm这五种波长的光在所给观察点最大限度地加强.26. 光电管的阴极用逸出功为A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| U a | = 5.0 V ,试求:(1) 光电管阴极金属的光电效应红限波长; (2) 入射光波长. (普朗克常量h = 6.63×10-34 J ·s , 基本电荷e = 1.6×10-19 C )解:(1) 由0/λνhc h A ==得==A hc 0λ 5.65×10-7m = 565 nm (2) 由a U e m =221v ,AU e hch a +==λν得 =+=AU e hca λ 1.73×10-7 m = 173 nm27. 用某频率的单色光照射基态氢原子气体,使气体发射出三种频率的谱线,试求原照射单色光的频率. (普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)解:按题意可知单色光照射的结果,氢原子被激发至n = 3的状态(因为它发射三种频率的谱线),故知原照射光子的能量为)6.13(36.13213---=-=E E ε = 12.09 eV=1.93×10-18 J该单色光的频率为==hεν2.92×1015 Hz28.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是多少?(c表示真空中光速) 参考答案:(3/5) c29.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.求此简谐振动的振动方程。