二次根式的乘除 八年级数学下册优秀课件ppt
合集下载
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
人教版数学八年级下册16.2二次根式的乘除(共26张PPT)
36 8 -2 6 =6 -2 8 6=-12 48
4 4 9 16=4 9 16=4 3=12
16
16
解答过程
解答(2)正确(1)(3)(4)不正确
1因为 -4与 -9无意义,又因为-4 -9=4 9 所以1 (4) (9)= 4 9= 36=6
36 8 -2 6 =6-2 8 6=-12 42 3=-48 3
2、32
20
-
5
-
1 3
48
3 2
ab
ab2
-
3 2
a3b 1 3
a
b
解答过程
4、计算
解1- 3
2
6
-
1 3
48
= =
1 2
-
3 2
62
1 -3 2
6642
=6 2
问题解答
解2、32
20
-
5
-
1 3
48
=
3 2
-1
-
1 3
42 52 22 3
=1 452 3 2
计算:
1 3 24 2 6
4
3
提高练习
2
-
2 3
42
-6
56
3
3 2
20
- 15
-
1 3
48
4 2
b
ab2
-
3 2
a3b 3
a
b
精讲指导
解:1 3 24 2 6 = 3 2 24 6 = 1 4 62 =6
4
3
43
2解2来自-2 342
-6
56
=
-
2 3
-6
4 4 9 16=4 9 16=4 3=12
16
16
解答过程
解答(2)正确(1)(3)(4)不正确
1因为 -4与 -9无意义,又因为-4 -9=4 9 所以1 (4) (9)= 4 9= 36=6
36 8 -2 6 =6-2 8 6=-12 42 3=-48 3
2、32
20
-
5
-
1 3
48
3 2
ab
ab2
-
3 2
a3b 1 3
a
b
解答过程
4、计算
解1- 3
2
6
-
1 3
48
= =
1 2
-
3 2
62
1 -3 2
6642
=6 2
问题解答
解2、32
20
-
5
-
1 3
48
=
3 2
-1
-
1 3
42 52 22 3
=1 452 3 2
计算:
1 3 24 2 6
4
3
提高练习
2
-
2 3
42
-6
56
3
3 2
20
- 15
-
1 3
48
4 2
b
ab2
-
3 2
a3b 3
a
b
精讲指导
解:1 3 24 2 6 = 3 2 24 6 = 1 4 62 =6
4
3
43
2解2来自-2 342
-6
56
=
-
2 3
-6
人教数学八下《二次根式的乘除》二次根式PPT课件(第1课时)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙
−
∙ ∙
= −
= −
= − ×
= −
解:原式= × ×
=
= ×
=
=
=
针对练习
2、计算: +
解:原式= +
= ×
=×
=
= ∙ ≥ , ≥
解:原式= +
=
=
针对练习
3、计算: − × (−)
m a n b =mn ab (a 0, b 0)
典型例题3——比大小
1.比大小
______
解(1) =
=
×
=
பைடு நூலகம்
× =
(2)− = − × = −
− = − × = −
(2)- 4 2 ___ - 2 7
= ∙ ≥ , ≥
2.在化简时,,我们一般先将被开方数进行因数分解或因
式分解,然后将所有能开得尽方的因数或因式开出来。
典型例题1——化简
1、
= × = × =
2、 =
∙ = ∙ =
本章中,如果没有
特别说明,所有字
母都表示正数
针对练习
3、 >
解:原式=
=
∙ ∙
= ∙ ∙ ∙
=∙∙∙
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件
36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a
b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a
( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)
2
1
.
18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用
把
a
b
aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a
( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a
( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙
人教版八年级数学下册 16.2 二次根式的乘法 课件(共16张ppt)
中a和b必须是非负数.
(1) 144 169;
(2) 1 2a 8a3 . 4
解: (1) 144 169= 144 169
12 13 156;
(2) 1 2a 8a3 1 2a 8a3
4
4
1 16a 4 1 4a 2 a 2 .
4
4
四、拓展
1.课堂小结
一、本节课的主要内容是什么?
(一)二次根式的乘法法则: a b aba 0,b 0.
(二)积的算术平方根的性质:
ab a b .
(三)化简二次根式的步骤:
1.将被开方数尽可能分解成完全平方数.
2.平方项用公式 a2 aa 0移出根号外.
(1)
14
7;(2) 3 5 2 10;(3)
3x
1 3
xy
.
解:(1)
14
7 14 7 7 2;
72 2 72 2
二次根式相乘,被开 方数的积中有开得尽 方的要移出根号外.
二、探究
(2)3 5 2 10 3 2 510 6 52 2
三、检测
1.化简:1 2 5
2 3 12
3 2 xy 1 4 288 1
x
72
2.化简:
(1) 49121 (2)
225
(3) 4 y
(4)
16ab2c3
3.已知一个矩形的长和宽分别
是 10cm和2 2cm,求这个矩
形的面积。
三、检测
4 计算:
易错提醒: ab a b
注意:a,b都必须是非负数.
二、探究
例1 计算:
(1) 3 5 ;
(1) 144 169;
(2) 1 2a 8a3 . 4
解: (1) 144 169= 144 169
12 13 156;
(2) 1 2a 8a3 1 2a 8a3
4
4
1 16a 4 1 4a 2 a 2 .
4
4
四、拓展
1.课堂小结
一、本节课的主要内容是什么?
(一)二次根式的乘法法则: a b aba 0,b 0.
(二)积的算术平方根的性质:
ab a b .
(三)化简二次根式的步骤:
1.将被开方数尽可能分解成完全平方数.
2.平方项用公式 a2 aa 0移出根号外.
(1)
14
7;(2) 3 5 2 10;(3)
3x
1 3
xy
.
解:(1)
14
7 14 7 7 2;
72 2 72 2
二次根式相乘,被开 方数的积中有开得尽 方的要移出根号外.
二、探究
(2)3 5 2 10 3 2 510 6 52 2
三、检测
1.化简:1 2 5
2 3 12
3 2 xy 1 4 288 1
x
72
2.化简:
(1) 49121 (2)
225
(3) 4 y
(4)
16ab2c3
3.已知一个矩形的长和宽分别
是 10cm和2 2cm,求这个矩
形的面积。
三、检测
4 计算:
易错提醒: ab a b
注意:a,b都必须是非负数.
二、探究
例1 计算:
(1) 3 5 ;
人教版八年级下册 16.2 二次根式的乘除 共23张PPT
拓展提高
例7 分母有理化:
3 1 ( 3+1)( 3+1) (1) 2 3 3 1 ( 3 1)( 3 1)
1 3 2 1( 3+ 2 ) (2) 3 2 3 2 ( 3 2)( 3 2) 3 2
拓展提高
例8 设长方形的面积为S,相邻两边长分别为a,b.已知
人教版数学八年级下册
16.2二次根式的乘除 (2)
新知导入
二次根式的乘法:
a b ab ( a 0, b 0)
ab a ( b a 0, b 0)
现在我们知道,两个二次根式可以进行乘法运算, 那么,两个二次根式能否进行除法运算呢?
24
3 = _____ ; 2 3
1 = _____ . 18
新知讲解
计算下列各式,观察计算结果,你能发现什么规
律?
2 = (1 ) 3 ; 9 _______
16
4
2 4 = 3 9 _______ ;
4 16 4 = = (2 ) 5 5 ; 25 _______ ; 25 _______ 6 6 36 = = (3 ) 7 ; 49 _______ 7 49 _______ .
b2 b2 b (3) 3 6 6 81a 9a 81a
64a 2 (4) 2 4 49 x y
8a 2 2 4 7 xy 49 x y
64a 2
新知讲解
例4
1
3 5
2
3 2
3
8 2a
3 3 5 15 15 (1) = = = 2= 解: 5 5 5 5 5 5 3
新知讲解
小试牛刀 化简:
人教版八年级下册16.2二次根式乘除 (共23张PPT)
第二节 二次根式的乘除 (第二课时)
1.二次根式的概念
(1) 一般地,我们把形如 a (a 0)
的式子叫做二次根式。 (2)“ ” 称为二次根 号。
(3)“ a a ” 中,必须有: 0
2.二次根式的性质
(1)
双非负性:
①a ②
a
0
0
(2) a 2 பைடு நூலகம்;(a 0)
计算:
4 9
2 __3_
16 ___4 25 5
4
2
___
93
16 ___4 25 5
计算:
36
6
___
一般49地: 7
6
36 49
__7_
a a ;(a 0,b 0) bb
二次根式的除法法则:
二次根式相除,把被开方数相除作 为商的被开方数,根号不变。
二次根式的除法公式:
②被开方数中不含能开得尽方的因数和因式。
满足上述两个条件的二次根式叫做最简 二次根式。
注意:在二次根式的运算与化简中,一 定要把结果化成最简二次根式。
(2)把下列二次根式化成最简二次根式:
① 32
② 40
③ 1.5
答案:① 4 2
③6 2
④4 3
② 2 10 ④ 23
3
(3)设长方形的面积为S,相邻两边长分别
a a ;(a 0,b 0) bb
(3)最简二次根式:
①被开方数不含分母;分母中不含二次根式。 ②被开方数中不含能开得尽方的因数和因式。
满足上述两个条件的二次根式叫 做最简二次根式。
注意:在二次根式的运算与化简中, 一定要把结果化成最简二次根式。
1.二次根式的概念
(1) 一般地,我们把形如 a (a 0)
的式子叫做二次根式。 (2)“ ” 称为二次根 号。
(3)“ a a ” 中,必须有: 0
2.二次根式的性质
(1)
双非负性:
①a ②
a
0
0
(2) a 2 பைடு நூலகம்;(a 0)
计算:
4 9
2 __3_
16 ___4 25 5
4
2
___
93
16 ___4 25 5
计算:
36
6
___
一般49地: 7
6
36 49
__7_
a a ;(a 0,b 0) bb
二次根式的除法法则:
二次根式相除,把被开方数相除作 为商的被开方数,根号不变。
二次根式的除法公式:
②被开方数中不含能开得尽方的因数和因式。
满足上述两个条件的二次根式叫做最简 二次根式。
注意:在二次根式的运算与化简中,一 定要把结果化成最简二次根式。
(2)把下列二次根式化成最简二次根式:
① 32
② 40
③ 1.5
答案:① 4 2
③6 2
④4 3
② 2 10 ④ 23
3
(3)设长方形的面积为S,相邻两边长分别
a a ;(a 0,b 0) bb
(3)最简二次根式:
①被开方数不含分母;分母中不含二次根式。 ②被开方数中不含能开得尽方的因数和因式。
满足上述两个条件的二次根式叫 做最简二次根式。
注意:在二次根式的运算与化简中, 一定要把结果化成最简二次根式。
人教版八年级数学下:16.2二次根式的乘除课件(共15张PPT)(课件精选)
想一想:
化简:(1) 1 2 -1
(2) 2 2 3
13
小结 课件在线
1.二次根式的除法利用公式:
a aa 0,b 0
bb
2.最简二次根式:
a b
a a 0,b 0
b
(1).被开方数不含分母;
(2).被开方数不含能开得尽方的因 数或因式.
3.在二次根式的运算中,对最后结果的要求。
14
比一比,看谁最棒
2 3
,
2.
16 49
4 7
,
(3) 2 = 2 33
4 9
2 3
4 4 99
16 49
4 7
16 49
16 49
2= 2
55
规律:
a a
b
b
a 0,b 0
两个二次根式相除,等于把被开方数相除,作为商的
被开方数 6
课件在线
二次根式的除法公式的应用:
例4: 计算1 24 ,
3
2 3 1
2 18
(3) 8 2a
课件在线 10
课件在线
做一做:教材第10页练习第1、2、3题.
11
课件在线
应用新知 例: 设长方形的面积为S,相邻两边长分别 为a,b.已知S= 2 3,b= 10,求a.
解:因为S= ab, 所以
a S 2 3 2 3 10 30 . b 10 10 10 5
12
课件在线
课件在线
(1)4 3 a 3 8 3 ( 2) a2 b 5 x3 y a b 2 0
a
xy
(3 ) 18 2 x3 3 3 x y (4) 3ab 6 b
3a
15
课件在线
化简:(1) 1 2 -1
(2) 2 2 3
13
小结 课件在线
1.二次根式的除法利用公式:
a aa 0,b 0
bb
2.最简二次根式:
a b
a a 0,b 0
b
(1).被开方数不含分母;
(2).被开方数不含能开得尽方的因 数或因式.
3.在二次根式的运算中,对最后结果的要求。
14
比一比,看谁最棒
2 3
,
2.
16 49
4 7
,
(3) 2 = 2 33
4 9
2 3
4 4 99
16 49
4 7
16 49
16 49
2= 2
55
规律:
a a
b
b
a 0,b 0
两个二次根式相除,等于把被开方数相除,作为商的
被开方数 6
课件在线
二次根式的除法公式的应用:
例4: 计算1 24 ,
3
2 3 1
2 18
(3) 8 2a
课件在线 10
课件在线
做一做:教材第10页练习第1、2、3题.
11
课件在线
应用新知 例: 设长方形的面积为S,相邻两边长分别 为a,b.已知S= 2 3,b= 10,求a.
解:因为S= ab, 所以
a S 2 3 2 3 10 30 . b 10 10 10 5
12
课件在线
课件在线
(1)4 3 a 3 8 3 ( 2) a2 b 5 x3 y a b 2 0
a
xy
(3 ) 18 2 x3 3 3 x y (4) 3ab 6 b
3a
15
课件在线
八年级数学下册教学-16.2 二次根式的乘除 课件(共16张PPT).ppt
02
练一练
1.(2019·海口市丰南中学初三期末)已知: 是整数,则满足条件
的最小正整数为(
A.2
)
B.3
C.4
D.5
【答案】D
【解析】
∵ 20 = 4 × 5 = 2 5 ,且 20 是整数,
∴2 5是整数,即5n是完全平方数,
∴n的最小正整数为5.
故选D.
02
练一练
2.已知 = , = ,则 = (
PA R T
02
练一练
02
练一练
计算:
1) 14 × 7 = 14 × 7 = 2 × 72 = 7 2
2)2 10 × 3 5 = 2 × 3 × 10 × 5
= 6× 2×5×5
= 6 × 52 × 2=30 2
3) 3 ×
1
3
= 3 × 1 =
3
× 2= = 2 × =
A.2a
B.ab
C.
)
D.
【答案】D
【详解】
解: 18 = 2 × 3 × 3 = 2 × 3 ×
3 = ⋅ ⋅ = 2 .
故选D.
3.(2019·肇庆市端州区南国中英文学校初二期中)下列
各数中,与2 的积为有理数的是(
A.2
B.3
C.
)
【答案】D
【详解】
解:A、2×2 3=4 3为无理数,故不能;
01
二次根式的乘法法则变形
注意公式成立条件
ab = • ≥ 0,b ≥ 0
在本章中,如果没有特别说明,所有的字母都表示正数.
计算:
1) 16 × 81 =
=
人教版八级下册 二次根式的乘除参考课件(共14张PPT)
2 3
2 3
23 33
3 62 6 6 32 3Fra bibliotek解法二:
2 2 3 6 6 3 3 3 ( 3)2 3
第7页,共14页。
(2)2323 3 32 6 8 22 2 22 2
(3) 27 2 73x9x3x 3x 3x3x 3x x
在二次根式的运算中,一般要求最后 结果的分母中不含根式。
第8页,共14页。
第5页,共14页。
例题讲解
化简: (1) 1300 (2 ) 92x5y2
解: (1) 3 3 3 100 100 10
(2)
9 2x5 y2 9 2x5 y2
52y 5 y
32x2 3x
第6页,共14页。
计算:(1) 2 (2 )2 3 (3 ) 27
3
8
3x
解(1)解法一:
叫做最简二次根式。 一般地,对二次根式的除法,有:
我们把满足上述两个条件的二次根式,叫做最简二次根式。
把
反过来,就可以得到:
1、被开方数不含分母;
二次根式的运算中,最后的结果中的二次 根式一般要写成最简二次根式的形式。
第9页,共14页。
探究
下列根式中,哪些是最简二次根式?
12a, 18, x2 9, 5x3y, 27abc,
bb
第3页,共14页。
例题讲解
计算: (1) 24 (2) 2 1
3
3 18
解: (1) 24 24 82 2 33
(2) 2 1 21 218 3 18 3 18 3
122 3
第4页,共14页。
探究
把 a a 反过来,就可以得到: bb
a a (a≥0,b>0) bb
八年级数学人教版下册16.2二次根式的乘除二次根式的除法课件(共20张PPT)
3.最简二次根式有何特征? 4.如何化去分母中的根号?请举例说明?
课堂总结
积 分
榜
学生典型问题展示: 《二次根式的除法课前自测》中第3、4题的正确率,以及做错的学生的错题选项;教
材中10页练习2(3)(4)、3做错学生的错题内容.
知识点一:二次根式的除法法则
知识点三:最简二自次学根式释疑、拓展提升
(3) ;
(4)是最简二次根式.
(4)
. 知识点三:最简二次根式
(1) ;
((31))被开;方问数题不解含决分母:; 例3.下列二次根式是最简二次根式吗?
49
0.81 225
解: (1)115 64 64 8;
49 49 49 7
(2) 0.09144 0.09144 0.312 4 ; 0.81 225 0.81 225 0.915 15
(3)
5b3 4a2
5b3 4a2
b2 5b b 5b .
22 a2
2a
5b3 4a2
(a>0, b.>0)
(1) 0.2;(2)
;8 1(3) 6
1
;(4)
27
解:
(1) 0.2 1 1 1 5 5 ; 5 5 5 5 5
3b 2a
(a
.
0,
b
0)
(2)8 1 49 49 7 7 6 7 6 ; 6 6 6 6 6 6 6
自学释疑、拓展提升
知识点三:最简二次根式 问题解决:
例4 把下列二次根式化成最简二次根式:
同类题检测:平板推题
化简:
(1) 25; (2) 81
;8 (3)
25
;9 (41)6 25
a
.28 a3
课堂总结
积 分
榜
学生典型问题展示: 《二次根式的除法课前自测》中第3、4题的正确率,以及做错的学生的错题选项;教
材中10页练习2(3)(4)、3做错学生的错题内容.
知识点一:二次根式的除法法则
知识点三:最简二自次学根式释疑、拓展提升
(3) ;
(4)是最简二次根式.
(4)
. 知识点三:最简二次根式
(1) ;
((31))被开;方问数题不解含决分母:; 例3.下列二次根式是最简二次根式吗?
49
0.81 225
解: (1)115 64 64 8;
49 49 49 7
(2) 0.09144 0.09144 0.312 4 ; 0.81 225 0.81 225 0.915 15
(3)
5b3 4a2
5b3 4a2
b2 5b b 5b .
22 a2
2a
5b3 4a2
(a>0, b.>0)
(1) 0.2;(2)
;8 1(3) 6
1
;(4)
27
解:
(1) 0.2 1 1 1 5 5 ; 5 5 5 5 5
3b 2a
(a
.
0,
b
0)
(2)8 1 49 49 7 7 6 7 6 ; 6 6 6 6 6 6 6
自学释疑、拓展提升
知识点三:最简二次根式 问题解决:
例4 把下列二次根式化成最简二次根式:
同类题检测:平板推题
化简:
(1) 25; (2) 81
;8 (3)
25
;9 (41)6 25
a
.28 a3
人教版初中数学八年级下册课件16.2.1二次根式的乘除 (共24张PPT)
2.当二次根式前面有因数或因式时,则
a b c d ac bd (b 0, d 0)
人教版八年级数学 16.2.1二次根式的乘除
二次根式的化简步骤:
1、把被开方数分解因式(或因数) ;
2、 把各因式(或因数)积的算术平方根化为每个 因式(或因数)的算术平方根的积;
3、如果因式中有平方式(或平方数),应用关系 式 a2 =a(a≥0)把这个因式(或因数)开出来,将 二次根式化简
2ab b.
被开方数 4a2b3含4,a2,b2这 样的因数或因式, 它们可以开方后 移到根号外,它 们是开得尽的因 数或因式.
2020/3/8
人教版八年级数学 16.2.1二次根式的乘除
独立完成
1. 14 7
3. 3x 1 xy
3
2.3 5 2 10
人教版八年级数学 16.2.1二次根式的乘除
总结归纳:
化简二次根式的步骤:
1、把被开方数分解因式(或因数) ;
2、 把各因式(或因数)积的算术平方根化为每个 因式(或因数)的算术平方根的积;
3、如果因式中有平方式(或平方数),应用关系 式 a2 =a(a≥0)把这个因式(或因数)开出来,将 二次根式化简
人教版八年级数学 16.2.1二次根式的乘除
2.化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数.
2.应用 ab a b
3.将平方项应用 a2 a (a 0) 化简
独立学习 人教版八年级数学 16.2.1二次根式的乘除 计算下列各式, 观察计算结果,你发现什么规律
思考: 1、 4 × 9 =_6___ 4 9 _6____
2、 16 25 _2_0_, 16 25 2_0____
a b c d ac bd (b 0, d 0)
人教版八年级数学 16.2.1二次根式的乘除
二次根式的化简步骤:
1、把被开方数分解因式(或因数) ;
2、 把各因式(或因数)积的算术平方根化为每个 因式(或因数)的算术平方根的积;
3、如果因式中有平方式(或平方数),应用关系 式 a2 =a(a≥0)把这个因式(或因数)开出来,将 二次根式化简
2ab b.
被开方数 4a2b3含4,a2,b2这 样的因数或因式, 它们可以开方后 移到根号外,它 们是开得尽的因 数或因式.
2020/3/8
人教版八年级数学 16.2.1二次根式的乘除
独立完成
1. 14 7
3. 3x 1 xy
3
2.3 5 2 10
人教版八年级数学 16.2.1二次根式的乘除
总结归纳:
化简二次根式的步骤:
1、把被开方数分解因式(或因数) ;
2、 把各因式(或因数)积的算术平方根化为每个 因式(或因数)的算术平方根的积;
3、如果因式中有平方式(或平方数),应用关系 式 a2 =a(a≥0)把这个因式(或因数)开出来,将 二次根式化简
人教版八年级数学 16.2.1二次根式的乘除
2.化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数.
2.应用 ab a b
3.将平方项应用 a2 a (a 0) 化简
独立学习 人教版八年级数学 16.2.1二次根式的乘除 计算下列各式, 观察计算结果,你发现什么规律
思考: 1、 4 × 9 =_6___ 4 9 _6____
2、 16 25 _2_0_, 16 25 2_0____
人教版八年级数学下册二次根式的乘除二次根式的乘法PPT精品课件
知识讲解
试一试: 你能化简下列二次根式吗?
16 81
解:1681 1296 362 36
8
知识讲解
把 a· b aba 0,b 0) 反过来,就得到
ab a· b (a≥0,b≥0)
两个数的积的算术平方根,等于这两个 数的算术平方根的积。
利用它可以进行二次根式的化简。
9
知识讲解
5.以景物衬托情思,以幻境刻画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
4.开篇写湘君眺望洞庭,盼望湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
13
小结 计算公式:
a· b aba 0,b 0)
化简公式:
ab a b (a≥0,b≥0)
a2 a(a 0)
14
15
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1 运用运载火箭发射航天行器时,火箭必须达 到一定的速度(第一宇宙速度),才能克服地球的 引力,从而将飞船送入环地球运行的轨道.第一宇宙 速度v与地球半径R之间存在如下关系:v12=gR,其 中g是重力加速度.请用含g,R的代数式表示出第一 宇宙速度v1.
第一宇宙速度v1可以表示为 gR .
问题2 飞行器脱离地心引力,进入围绕太阳运 行的轨道所需要的速度称为第二宇宙速度.第二宇 宙速度为v2= 2 v1,请结合问题1用含g,R的代数 式表示出第二宇宙速度v2.
归纳总结
二次根式的乘法法则: 一般地,对于二次根式的乘法是
a b a b a 0,b 0.
在本章中, 如果没有特别 说明,所有的 字母都表示正 数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘. 语言表述: 算术平方根的积等于各个被开方数积的算术平方根.
当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
m agn b mn ab a 0,b 0
例3 比较大小(一题多解):
(1)2 5与3 3;
解:(1)方法一: ∵2 5= 22 5= 20 ,3 3= 32 3= 27, 又∵20<27, ∴ 20< 27 ,即 2 5<3 3 . 方法二:
∵ 2 5>0,3 3>0 ,
2 5 2 =22
5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:(2)∵ 2 13= 22 13= 52 ,
例2 计算:
(1)2 5 3 7;
的计算哦
(2)4
27
-
1 2
3 .
解:(1)2 5 3 7 2 3 5 7 =6 35;
(2)4
27
1 2
3
4
1 2
27 3 29 18.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b L k a bL k(a 0,b 0,k 0).
问题 你还记得单项式乘单项式法则吗?
试回顾如何计算3a2·2a3= 6a5 .
提示:可 类比上面
第二宇宙速度v2可以表示为 2g gR .
思考 若已知地球半径R≈6371km及重力加速度 g≈10m/s2,要求第二宇宙速度,本质是把两个二次 根式相乘,该怎么乘呢?
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
第十六章 二次根式
16.2 二根次式的乘除
第1课时 二次根式的乘法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解二次根式的乘法法则.(重点) 2.会运用二次根式的乘法法则和积的算术平方根的性
质进行简单运算.(难点)
导入新课
情景引入 近年来我国探月工程取得了一个又一个的成就,无
论是嫦娥探测器还是玉兔月球车,既体现了中华民 族传统文化的意味,又契合了我国和平利用太空的 意愿,下面一起来观看嫦娥三号发射模拟视频:
(2) 16 25= 16 25;
(3) 25 36= 25 36.
思考 你发现了什么规律?你能用字母表示你所
发现的规律吗?
你能证明这 个猜测吗?
猜测: a b a b a 0,b 0.
证一证
求证: a b a b a 0,b 0.
证明:根据积的乘方法则,有 ( a b )2 ( a )2 ( b )2 ab. ∴ a b 就是ab算术平方根. 又∵ ab 表示ab算术平方根, ∴ a b ab (a 0,b 0.)
3.计算: 6 15 10 __3_0_.
注意:a,b都必须是非负数.
典例精析
例1 计算: (1) 3 5; (2) 1 27; (3) 2 3 5.
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 当二次根式根号外的因数不为1时,可类比单项
式乘单项式的法则计算,即m agn b mn ab a 0,b 0.
归纳总结
二次根式的乘法法则的推广: 多个二次根式相乘时此法则也适用,即
ag bg cgg n abc n a 0,b 0,c 0n 0
被开方数大的,其算术平方根也大.也可以采用平方法.
练一练 1.计算 8 2 的结果是
( B)
A. 10
B.4
C. 6 D.2
2.下面计算结果正确的是(来自)A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
D. 5 3 4 2 20 6
3 6= 32 6= 又∵52<54,
∴ 52< 54 ,
54,
两个负数比较 大小,绝对值 大的反而小
∴ 52> 54 ,即 2 13>-3 6.
归纳 比较两个二次根式大小的方法:可转化为比较 两个被开方数的大小,即将根号外的正数平方后移到
根号内,计算出被开方数后,再比较被开方数的大小
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
观察两者有什么关系?
观察三组式子的结果,我们得到下面三个等式: (1) 4 9= 4 9;