焊接冶金学(基本原理)
焊接冶金学大纲
焊接冶金学大纲
焊接冶金学主要包括以下几个方面的内容:
1. 冶金基础知识:包括金属的物理、化学性质,金属的结构与组织,金属的相变规律等。
2. 焊接原理:包括焊接过程中的热学、流体学、电学、力学等基础理论,以及焊接过程中的金属熔化、表面活性、气体保护、电弧特性等相关原理。
3. 焊接材料:包括焊接材料的分类、性能要求、选择和应用,焊接材料的组织结构与性能之间的关系等。
4. 焊接工艺:包括焊接工艺的设备、工具、操作规程等,焊接参数的选择与调整,焊接接头的设计与预处理,焊接过程中的热控制与温度分布等。
5. 焊接缺陷与质量控制:包括焊接过程中可能出现的缺陷类型、产生原因及其对焊接性能的影响,焊接缺陷的检测、评定与处理,焊接接头的质量评价与控制等。
6. 焊接工艺改进与优化:包括焊接工艺参数的优化设计,焊接设备的改进与更新,焊接自动化与机器人技术的应用,焊接工艺的环境友好性与节能性等。
7. 焊接应用与发展:包括焊接在工程领域中的广泛应用,新型焊接技术与材料的研究进展,焊接技术在先进制造、航空航天、
能源领域中的应用等。
以上是对焊接冶金学大纲的一个简要介绍,具体的教学内容与学习深度可根据实际教学需要进行调整和拓展。
焊接冶金原理知识点总结
焊接冶金原理知识点总结一、焊接的概念和分类1. 焊接的概念焊接是利用热或压力,或两者的联合作用,在接头表面形成一层永久性连接的材料,使毗邻金属连接,在一定程度上具有熔融结合或压力结合作用,从而使接头处的材料成为一个整体的金属连接工艺。
2. 焊接的分类(1)按焊接方式分类:手工焊、气体保护焊、电弧焊、搅拌摩擦焊、激光焊等;(2)按焊接材料分类:金属焊接、非金属焊接、金属与非金属焊接等;(3)按焊接方法分类:熔化焊接和压力焊接;(4)按焊接环境分类:气氛焊、真空焊等。
二、熔化焊接的冶金原理1. 熔化焊接的工艺熔化焊接是利用焊条、焊丝或焊粉,在熔化的金属表面形成永久连接的工艺。
通常分为气焊、电弧焊、氩弧焊和激光焊等。
2. 熔化焊接的冶金原理(1)熔化焊接中金属熔池的形成:熔化焊接时,焊接热能使金属焊件熔化,产生熔池;(2)熔化焊接中金属熔池的流动:在熔池形成后,金属熔池受到表面张力的影响,会形成流动;(3)熔化焊接中金属熔池的凝固:熔化焊接过程中,金属熔池冷却,从而形成焊缝。
三、压力焊接的冶金原理1. 压力焊接的工艺压力焊接是在金属材料表面施加压力,使得其表面产生剪切位移,从而实现永久连接的工艺。
2. 压力焊接的冶金原理(1)压力焊接中金属材料的塑性变形:在压力作用下,金属材料表面发生塑性变形;(2)压力焊接中金属材料的分子力作用:在压力作用下,金属材料表面分子间产生相互吸引,并使得金属材料形成永久连接;(3)压力焊接中金属材料的冷却:压力焊接过程中,金属材料冷却,并形成焊缝。
四、焊接质量控制1. 焊接质量的检测方法(1)焊缝外观检查:检查焊缝表面是否有裂纹、气孔、夹渣等缺陷;(2)X射线检测:用X射线透射技术检查焊接接头内部是否有气孔、夹渣、非金属夹杂等;(3)超声波探伤:利用超声波穿透焊缝进行波阵面扫描,检测焊缝内部是否有夹杂、裂纹等;(4)磁粉探伤:在焊缝表面施加可磁化的粉末,然后利用磁粉检测设备检测焊缝是否有裂纹等。
《焊接冶金学——基本原理》教学课件 第四章
4.1.2 熔池结晶的一般规律
试验研究证明,θ角的大小(图4-2)取决于新相晶核与现成表面之间的表
面张力。如果新相晶核与液相中原有现成表面固体粒子的晶体结构越相似,
也就是点阵类型与晶格常数相似,则两者之间的表面张力越小,θ角也越小,那
么形成非自发晶核的能量也越小。 在焊接条件下,熔池中存在两种现成表面:一种是合金元素或杂质的悬浮
熔池金属的结晶与一般金属的结晶基本一样,同样也是形核和晶核长大的过程。 由于熔池凝固的特点,使得熔池结晶过程有着自身的规律。
1.熔池中晶核的形成 由金属学理论可知,生成晶核的热力学条件是过冷度而造成的自由能降低,进行 结晶过程的动力学条件是自由能降低的程度。这两个条件在焊接过程中都是具备 的。 根据结晶理论,晶核有两种:自发晶核和非自发晶核。但在液相中无论形成自发 晶核或非自发晶核都需要消耗一定的能量。在液相中形成自发晶核所需的能量EK 为
式中 σ——新相与液相间的表面张力系数; ΔFv——单位体积内液-固两相自由能之差。
研究表明,在焊接熔池结晶中,非自发晶核起了主要作用。在液相金属中有非自 发晶核存在时,可以降低形成临界晶核所需的能量,使结晶易于进行。
在液相中形成非自发晶核所需的能量E'K为
4.1.2 熔池结晶的一般规律
式中 θ——非自发晶核的浸润角(见图4-2)。 由式(4-3)可见,当θ=0°时,EK=0,说明液相中有大量的悬浮质点和某些现成表面。 当θ=180°时,E'K=EK,说明液相中只存在自发晶核,不存在非自发晶核的现成表面。 由此可见,当θ=0°~180°时,E'K/EK=0~1,这就是说在液相中有现成表面存在时,将会 降低形成临界晶核所需的能量。
工业上用的金属大多是合金,即使是纯金属,也不是理论上的那么纯。合 金的结晶温度与成分有关,先结晶与后结晶的固液相成分也不相同,造成固-液 界面一定区域的成分起伏。因此合金凝固时,除了由于实际温度造成的过冷 之外(温度过冷),还存在由于固-液界面处成分起伏而造成的成分过冷。所以 合金结晶时不必需要很大的过冷就可出现树枝状晶,而且随着不同的过冷度, 晶体成长会出现不同的结晶形态。
焊接化学冶金知识概述
焊接化学冶金知识概述1. 焊接的定义焊接是一种通过加热和熔化填充材料来连接金属或非金属的工艺。
焊接常用于工业制造、建筑结构、航空航天和汽车等领域。
2. 焊接的基本原理焊接的基本原理是利用热能将工件加热到熔点或熔化状态,然后通过填充材料或者使工件之间发生扩散、合金化等方式实现连接。
3. 焊接的分类3.1 按焊接方式分类•熔化焊:包括气体焊、电弧焊、激光焊等。
•压力焊:如冷压焊和高频电磁铁焊等。
•固态焊接:如超声波焊接、摩擦焊接等。
3.2 按焊接材料分类•金属焊接:主要包括钢铁焊接、铝及其合金焊接等。
•非金属焊接:如塑料焊接、陶瓷焊接等。
4. 焊接过程中的化学反应焊接过程中常涉及几种重要的化学反应,包括氧化反应、还原反应和合金化反应。
4.1 氧化反应在焊接过程中,工件与氧气接触会导致氧化反应的发生。
氧化反应会产生氧化物,降低焊接接头的质量和强度。
因此,焊接过程中需要采取控制氧气的措施,如铜嘴焊接时采用保护气体。
4.2 还原反应焊接过程中,一些还原剂可以用来减少氧化反应,并将金属离子还原为金属形态。
常用的还原剂包括草酸、亚硫酸盐等。
这些还原剂可以在焊接过程中加入填充材料或采用保护气体形式。
4.3 合金化反应合金化反应是指在焊接过程中,工件之间发生化学反应,形成新的金属合金。
这种合金化反应可以增强焊接接头的强度和耐腐蚀性能。
5. 焊接中的冶金知识焊接冶金是焊接中重要的一部分,它涉及到金属的物理性质、热力学和组织变化等方面。
5.1 金属物理性质焊接过程中,金属的物理性质如导热性、熔点、膨胀系数等都会对焊接产生影响。
了解金属的物理性质有助于选择适合的焊接方法和工艺参数。
5.2 金属热力学热力学是研究能量转化和系统平衡的科学。
在焊接过程中,热力学的知识可以用来预测金属的相变行为、溶解度等。
这对于选择合适的焊接材料和研究焊接接头的稳定性非常重要。
5.3 组织变化焊接过程中,金属的组织会发生变化,这对焊接接头的性能有巨大影响。
焊接冶金学.
焊接冶金学(基本原理)李慕勤佳木斯大学材料工程学院二000年3月15日结论一、焊接过程的物理本质1、焊接定义被焊工件的材质通过加热或加压或二者并用,用或不用添充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程称为焊接。
定义掌握三个要点:一是材料,可以是金属、非金属;可以是同种材料、异种材料。
二是达到原子间的结合。
三是永久性。
2、金属连接的障碍1)金属表面只有个别微观点接触;2)材料表面存在着氧化膜、油、杂质、污物、锈等。
3、解决的方法1)加热加热到熔化状态——熔化焊2)加压(加热或不加热)——压力焊4、分类1)冶金角度分:液相焊接:指熔化焊,利用热源加热侍焊部位,使之发生熔化,利用液相的相溶,达到原子间的结合。
它包括电弧焊、电渣焊、气焊、电子束焊、激光焊等。
固相焊接:指压力焊,是焊接时必须使用压力,使待焊部位的表面在固态下达到紧密接触,并使待焊表面的温度升高(一般低于材料的熔点),通过调解温度、压力和时间,造成接头处材料进行扩散,实现原子间的结合。
它包括电阻焊、磨擦焊、超声波焊等。
固-液相焊接:待焊表面并不直接接触,通过两者毛细间隙中的中间液相联系。
在待焊的同质或异质材质固态母材与中间液相之间存在两个固-液界面,由于固液相间能充分进行扩散,可实现原子间的结合。
2)从焊接方法上分:一是熔化焊:a、电弧焊:手工电弧焊、埋弧焊、气电焊。
b、气焊c、电渣焊d、等离子焊e、真空电子束焊f、激光焊二是压力焊:a、磨擦焊、b、接触焊:点焊、对焊、闪光焊、缝焊等。
c、超声波焊d、扩散焊三是钎焊:真空钎焊、火焰钎焊、感应钎焊等。
二、焊接热源种类及其特性1、热源的发展上个世纪80年代发现碳弧焊;1891年金属极电弧焊;本世纪初薄皮焊条电弧焊和氧乙炔气焊;30年代,厚皮焊条电弧焊、氢原子焊、氦气保护焊;40年代,埋弧焊和电阻焊;50年代,CO2气体保护焊和电渣焊;60年代,电子束焊和等离子弧焊与切割;70年代,激光焊焊接与切割;80年代,逐步完善电子束焊接和激光焊接工程;90年代,寻找新能源,如太阳能、微波等。
《焊接冶金学——基本原理》教学课件 第七章
附近;第二类是与液态薄膜无关的热裂纹,对应图7-2中的Ⅱ区,位于奥氏体
再结晶温度TR附近。
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
(1)结晶裂纹 产生在焊缝中,是在结晶过程中形成的。结晶裂纹主要 产生在单相奥氏体钢、镍基合金、铝合金,以及含杂质较多的碳钢和低合 金钢中。
(2)高温液化裂纹 产生在近缝区或多层焊的层间,是由于母材含有较 多的低熔点共晶,在焊接热源的高温作用下晶间被重新熔化,在拉应力作用 下沿奥氏体晶界发生的开裂现象。图7-4所示为因科镍合金大刚度拘束试 板根部产生的高温液化裂纹
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
(3)多边化裂纹 产生在焊缝或热影响区,是当温度降到固相线稍下的 高温区形成的。它是由于在较高的温度和一定的应力条件下,晶格缺陷(位 错和空位)迁移和聚集,形成二次边界,即所谓“多边化边界”。
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
图7-2 形成焊接热裂纹的“脆 性温度区间”示意图
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
图7-2所示为温度对延性影响的示意图,可见存在延性最低的温度区间, 这个温度区间即为易于促使产生焊接热裂纹的所谓“脆性温度区间”。由 图7-2可见,有两个延性较低的温度区间,与此相对应,可以见到两类焊接热
焊接冶金学基本原理
目录
7.1 焊接裂纹的危害及分类 7.2 焊接热裂纹 7.3 焊接冷裂纹 7.4 再热裂纹
目录
7.5 层状撕裂 7.6 应力腐蚀裂纹 7.7 焊接裂纹诊断的一般方法
引言
焊接裂纹是在焊接应力及其他致脆因素的共同作用下,材料的原子结合 遭到破坏,形成新界面而产生的缝隙。焊接裂纹具有尖锐的缺口和长宽比 大的特征。近年来随着机械、能源、交通、石油化工等工业部门的发展, 各种焊接结构也日趋大型化、高参数化,有的焊接结构还需要在高温、深 冷以及强腐蚀介质等恶劣环境下工作。各种低合金高强度钢,以及低温、 耐热、耐蚀、抗氢等专用钢得到广泛应用。焊接裂纹正是这些焊接结构生 产中经常遇到的一种危害最严重的焊接缺欠,常发生于焊缝和热影响区。 焊接裂纹直接影响焊接部件及焊接结构的质量与安全性,甚至能造成灾难 性事故。因此,控制焊接裂纹就成了焊接技术中急需解决的首要课题。
焊接冶金学基本原理【打印版】
绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
第一章1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
熔合比:焊缝金属中,局部熔化的母材所占的比例。
熔滴的比表面积:表面积与质量之比2)熔滴过渡的形式:短路过渡、颗粒状过渡和附壁过渡。
3)熔池:焊接热源作用在焊件上所形成的具有一定几何形状的液态金属部分就是熔池。
4)焊接过程中对金属的保护的必要性:(1)防止熔化金属与空气发生激烈的相互作用,降低焊缝金属中氧和氮的含量。
(2)防止有益合金元素的烧损和蒸发而减少,使焊缝得到合适的化学成分。
(3)防止电弧不稳定,避免焊缝中产生气孔。
5)手工电弧焊时的反应区:药皮反应区、熔滴反应区和熔池反应区。
《焊接冶金学——基本原理》教学课件 第二章
熔渣
埋弧焊、电渣焊、不含造气成分的焊条和药芯焊丝焊接
气体
熔渣和气体 真空 自保护
气焊、在惰性气体和其他保护气体(如CO2、混合气体)中焊接
具有造气成分的焊条和药芯焊丝焊接 真空电子束焊接 用含有脱氧、脱氮剂的所谓自保护焊丝焊接
表2-2 熔焊方法的保护方式
2.1.1 焊接过程中对金属的保护
各种保护方式的保护效果是不同的。例如,埋弧焊是利用焊剂及其熔化 以后形成的熔渣隔离空气保护金属的,焊剂的保护效果取决于焊剂的粒度 和结构。多孔性的浮石状焊剂比玻璃状的焊剂具有更大的表面积,吸附的 空气更多,因此保护效果较差。试验表明,焊剂的粒度越大,其松装密度(单位 体积内焊剂的质量)越小,透气性越大,焊缝金属中含氮量越高,说明保护效果 越差(见表2-3)。但是不应当认为焊剂的松装密度越大越好。因为当熔池 中有大量气体析出时,如果松装密度过大,则透气性过小,将阻碍气体外逸,促 使焊缝中形成气孔,使焊缝表面出现压坑等缺欠,所以焊剂应当有适当的透 气性。埋弧焊时焊缝的含氮量一般为0.002%~0.007%(质量分数),比焊条 电弧焊的保护效果好。
180
20~40
伸长率(%)
25~30
5~10 冲击吸收能量/J 117.6 3.92~19.6
表2-1 低碳钢无保护焊时焊缝的性能 2.保护的方式和效果
事实上,大多数熔焊方法都是基于加强保护的思路发展和完善起来的。迄 今为止,已找到许多保护材料(如焊条药皮、焊剂、药芯焊丝中的药芯、保护 气体等)和保护手段(见表2-2)。
550 800 1000 1200
3800 3000 2500 2000
0.0094 0.0043 0.0022 0.0022
表2-3 中锰高硅低氟焊剂(HJ331)的松装密度与焊缝含氮量的关系
焊接冶金学基本原理
焊接冶金学基本原理1.第一章1、氮对焊接质量的影响?(1).有害杂质(2).促使产生气孔(3).促使焊缝金属时效脆化。
影响焊缝含氮量的因素及控制措施? 1)、机械保护2)、焊接工艺参数(采用短弧焊;增加焊接电流; 直流正接高于交流,高于直流反接(焊缝含N量); 增加焊丝直径;N%,多层焊>单层焊;N%,小直径焊条>大直径焊条3)合金元素( 增加含碳量可降低焊缝含氮量;Ti、Al、Zr和稀土元素对氮有较大亲和力2.、氢对焊接质量的影响?1).氢气孔2)、白点3)、氢脆4)、组织变化和显微斑点5)、产生冷裂纹控制氢的措施?1)、限制焊接材料的含氢量,药皮成分2)、严格清理工件及焊丝:去锈、油污、吸附水分3)、冶金处理4)、调整焊接规范5)、焊后脱氢处理3、氧对焊接质量的影响?1)、机械性能下降;化学性能变差2)、产生CO气孔,合金元素烧损3)、工艺性能变差应采取什么措施减小焊缝含氧量?1)纯化焊接材料2)控制焊接工艺参数3)脱氧4.CO2保护焊焊接低合金钢时,应采用什么焊丝,为什么?答:采用高锰高硅焊丝,原因:(1)Mn,Si被烧损;(2)Mn,Si联合脱氧。
5.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?答:L=(FeO)/[FeO] T↑L↓,焊接温度下L>1同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多。
然而碱性焊条的焊缝含氧量比酸性焊条低碱性焊条药皮的氧化势小的缘故6为什么焊接高铝钢时,即使焊条中不含SiO2,只是由于水玻璃作粘结剂焊缝还会严重增硅?1)焊接电弧的弧定性(稳弧性) 2)表面成型3)在各种位置焊接适应性4)脱渣性5)飞溅6)焊条的熔化速度7)药皮发红问题8)焊条发尘量2,低氢型焊条为什么对铁锈、油污、水份很敏感?同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多碱性渣含SiO2、TiO2等酸性氧化物较少,FeO 活度大,易向金属中扩散,使焊缝增氧➢第三章1.试述氢气孔和CO气孔的形成原因,特征以及防止措施:答: 氢气孔形成原因:高温时氢在熔池和熔滴金属中的溶解度急剧下降,特别是液态转为固态时,氢的溶解度发生突变,可从32ml/100g下降至10ml/100g。
焊接冶金[x
焊接冶金学(基本原理)李慕勤佳木斯大学材料工程学院二000年3月15日结论一、 焊接过程的物理本质1、焊接定义被焊工件的材质通过加热或加压或二者并用,用或不用添充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程称为焊接。
定义掌握三个要点:一是材料,可以是金属、非金属;可以是同种材料、异种材料。
二是达到原子间的结合。
三是永久性。
2、金属连接的障碍1)金属表面只有个别微观点接触;2)材料表面存在着氧化膜、油、杂质、污物、锈等。
3、解决的方法1)加热加热到熔化状态——熔化焊2)加压(加热或不加热)——压力焊4、分类1)冶金角度分:液相焊接:指熔化焊,利用热源加热侍焊部位,使之发生熔化,利用液相的相溶,达到原子间的结合。
它包括电弧焊、电渣焊、气焊、电子束焊、激光焊等。
固相焊接:指压力焊,是焊接时必须使用压力,使待焊部位的表面在固态下达到紧密接触,并使待焊表面的温度升高(一般低于材料的熔点),通过调解温度、压力和时间,造成接头处材料进行扩散,实现原子间的结合。
它包括电阻焊、磨擦焊、超声波焊等。
固-液相焊接:待焊表面并不直接接触,通过两者毛细间隙中的中间液相联系。
在待焊的同质或异质材质固态母材与中间液相之间存在两个固-液界面,由于固液相间能充分进行扩散,可实现原子间的结合。
2)从焊接方法上分:一是熔化焊:a、电弧焊:手工电弧焊、埋弧焊、气电焊。
b、气焊c、电渣焊d、等离子焊e、真空电子束焊f、激光焊二是压力焊:a、磨擦焊、b、接触焊:点焊、对焊、闪光焊、缝焊等。
c、超声波焊d、扩散焊三是钎焊:真空钎焊、火焰钎焊、感应钎焊等。
二、 焊接热源种类及其特性1、热源的发展上个世纪80年代发现碳弧焊;1891年金属极电弧焊;本世纪初薄皮焊条电弧焊和氧乙炔气焊;30年代,厚皮焊条电弧焊、氢原子焊、氦气保护焊;40年代,埋弧焊和电阻焊;50年代,CO2气体保护焊和电渣焊;60年代,电子束焊和等离子弧焊与切割;70年代,激光焊焊接与切割;80年代,逐步完善电子束焊接和激光焊接工程;90年代,寻找新能源,如太阳能、微波等。
焊接热源及熔池形成解析
gM
G t
pI
p ——焊条熔化系数
熔敷速度:单位时间内焊接材料进入焊缝金 属的质量。
gD
GD t
H I
H ——焊条熔敷系数
损失系数:飞溅、氧化和金属蒸发损失焊条金 属与熔化金属总量之比。
G GD gM gD 1 H
G
gM
p
或
M (1 ) p
焊条金属的瞬 时熔化速度
分析可知提高焊条熔化速度的途径:
单位时间内通过单位面积传入焊
件的热能)分布,可近似地用高
斯数学模型来描述。
q(r) qmeKr 2
立体高斯曲面下的总热量为
q
q(r)dF
பைடு நூலகம்
qme
Kr
2
d
r
F
0
K qm
qm
K
q
影响热能分布因素
K值说明热源的集 中程度,决定于焊接 方法、规范和材料导 热性能等。
1.1.3 焊接温度场
1)焊接传热的基本形式 电弧焊条件下,由热源传给焊件主要以辐
mtr
—
—熔滴平均质量
gcp
mtr
— —一个周期内焊芯平均熔化速度
cp
m0 mtr
1 2
平均作用时间变化范围0.01~1.0s
5)熔滴温度
对低碳钢熔滴平均温度2100~2700K。 电流 I↑,熔滴温度T↑ 焊条直径Φ↑,T↓
1.2.2 熔池的形成
熔池的形状、尺寸、温度、存在时间、 流动状态对熔池中的冶金反应、结晶方向、晶 体结构、夹杂物数量分布、焊接缺陷的产生均 有重要影响。
存在时间 tmax=L/v, 几秒~几十秒
平均作用时间
激光照射焊件,一部分被吸收,另一部分被反射。 只要被吸收就能被充分利用。
焊接冶金学(基本原理)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==寒冷的味道阅读答案篇一:寒冷的味道阅读答案寒冷的味道阅读答案1、第③段中,作者为什么说“也许我对寒冷还只是一知半解”? 这句话在全文中起什么作用?(3分)2、第④段说:“干净的树枝上也结了冰——不,是穿上了漂亮的琼衣,朔风一吹,发出有如碎玉的声响。
那是一种不可模拟不可复制不可言状的绝响。
”请分析它的表达特色和表达效果。
(4分)3、从文中看,作者回忆中的“寒冷”有哪些“异乎寻常”的味道?(6分)4、第①段作者说“寒冷离我们越来越远了”,最后一段又说“寒冷还会来的”.请探究作者这样表达的理由。
(5分)【答案】1、(4分)(1)在过去,我仅仅接触过南方的寒冷,体验寒冷程度不够深刻。
(1分)(2)引起下文,引出寒冷体验的叙述和对寒冷的感悟。
(2分)2、(4分)运用比喻、拟人、排比的修辞手法,从形和声两个角度,(2分),答出四种中的任何两种即可)描写了树枝结冰的美丽外观与动听声响,(1分)突出作者对冬天可爱之景的赞美和对寒冷的喜爱(1分)。
3、(6分)寒冷带来的美景;寒冷给我一种疼痛的味道;寒冷可以使人精神振奋;寒冷也有一种隽永的味道,使人感受到生活的温暖。
(答出一点得2分,答出三点得6分)4、(6分)开头是说人们对生活中“寒冷”体验的机会越来越少(1分);结尾说经历“寒冷”不仅是生活的自然规律,而遭受挫折乃至磨难等人生的“寒冷”更是生命的成长规律;人需要“寒冷”以发挥生命潜质,锻炼意志品格,使自己坚强勇敢。
(“磨难不可避免”“磨难锻炼意志”两点各1分,意思对即可)文章由实到虚,首尾呼应,紧扣主题,使主旨更加突出。
(2分,意思对即可)篇二:寒冷的味道阅读答案寒冷的味道阅读答案①寒冷离我们越来越远了。
②有人说,地球变得越来越热了。
还有人说,这是厄尔尼诺现象。
对此,我说不出个子丑寅卯来。
焊接冶金学——基本原理
PPT文档演模板
焊接冶金学——基本原理
1.4 焊接热循环 weld thermal cycle
➢ 焊接热循环的主要参数
① 加热速度 ② 加热的最高温度 ③ 在相变温度以上的停留时间 ④ 冷却速度或冷却时间
PPT文档演模板
•焊接热循环的参数
焊接冶金学——基本原理
1.4 焊接热循环 weld thermal cycle
化问题。
PPT文档演模板
焊接冶金学——基本原理
1.1 焊接过程分析
Ø 焊接过程
– 热源加热→熔化→冶金反应→
•加热过程
结晶→固态相变→接头(冷却而形成)
Ø 焊接热过程的特点
1. 局部性——加热和冷却过程极不均匀 2. 瞬时性——1800K/s 3. 热源是运动的 4. 焊接传热过程的复合性
•冷却过程
焊接冶金学——基本原理
1.2 焊接热源 welding heat source
➢ 热源在焊件上的分布
➢ 热流密度的分布
PPT文档演模板
•q:电弧的有效功率 •qm:加热斑点中心的最大比热流
•dH:回执斑点直径
•加热斑点的比热流分布---立体高斯锥体
焊接冶金学——基本原理
1.2 焊接热源 welding heat source
1.3 焊接温度场 field of weld temperature
➢ 焊条电弧焊时,焊接 电弧做为热源,对焊 条和母材进行加热
•焊接熔池形状示意图
➢ 在焊接热源作用下, 母材上所形成的具有 一定几何形状的液态 金属部分称为熔池
PPT文档演模板
焊接冶金学——基本原理
1.3 焊接温度场 field of weld temperature
焊接冶金学(基本原理)习题
焊接冶金学(基本原理)习题名词解释: 焊接冶金过程碳当量韧性长(短)段多层焊药皮重量系数绪论影响温度场的因素?1.试述焊接、钎焊和粘接在本质上有何区别?2.怎样才能实现焊接,应有什么外界条件?3.能实现焊接的能源大致哪几种?它们各自的特点是什么?4.焊接电弧加热区的特点及其热分布?5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响?6.试述提高焊缝金属强韧性的途径?7.什么是焊接,其物理本质是什么?8.焊接冶金研究的内容有哪些第一章焊接化学冶金焊条金属的平均熔化速度熔焊方法的保护方式?碱度1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同?2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分?3.焊接区内气体的主要来源是什么?它们是怎样产生的?4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度?5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么?6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律?7.氢对焊接质量有哪些影响?8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少?9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。
10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施?11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量?12.保护焊焊接低合金钢时,应采用什么焊丝?为什么?13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么?14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。
15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量?16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅?18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。
焊接冶金学基本原理-第2章焊接化学冶金
西安工业大学材化学院
焊接冶金学--基本原理
c)熔滴温度
第2章 焊接化学冶金 The Principle of Welding
《焊接成形原理》
实测手工电弧焊碳钢焊条: 熔滴平均温度: 1800-2400℃ 熔渣平均温度: <1600℃ 熔池平均温度: 1770±100℃ 电流越大温度越高,焊丝直径越细温度越高。
焊接冶金学--基本原理
第2章 焊接化学冶金 The Principle of Welding
《焊接成形原理》
第2章 焊接化学冶金
内容:
2.1焊接化学冶金过程特点 2.2气相对金属的作用 2.3熔渣及其对金属的作用 2.4焊缝金属的净化及合金过渡
School of Material and Chemical Engineering
《焊接成形原理》
熔池:熔焊时,母材上由熔化的焊条金属与局部熔化的母 材所组成的具有一定几何形状的液体金属。
就像钢锭冶炼一样,不过体积小。
School of Material and Chemical Engineering
西安工业大学材化学院
焊接冶金学--基本原理
第2章 焊接化学冶金 The Principle of Welding
School of Material and Chemical Engineering
西安工业大学材化学院
焊接冶金学--基本原理
第2章 焊接化学冶金 The Principle of Welding
《焊接成形原理》
b) 熔滴的比表面积和 与周围介质相互作用时间 熔滴的比表面积S: 熔滴的表面积与其质量之比,称为~。
西安工业大学材化学院
焊接冶金学--基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论一、焊接过程的物理本质1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
三、熔焊加热特点及焊接接头的形成(一)焊件上加热区的能量分布热源把热能传给焊件是通过焊件上一定的作用面积进行的。
对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区;1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能;2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。
在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体.(二)焊接接头的形成:熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。
(l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的。
它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。
(2)焊接化学冶金过程:熔焊时,金属、熔渣与气相之间进行一系列的化学冶金反应,如金属氧化、还原、脱硫、脱磷、掺合金等。
这些冶金反应可直接影响到焊缝的成分、组织和性能。
(提高焊缝的强韧性:1 通过焊接材料向焊缝中加入微量合金元素(如Ti、Mo、Nb、V 、Zr 、B 和稀土等)进行变质处理,从而提高焊缝的韧性;2 适当降低焊缝中的碳,并最大限度排除焊缝中的硫、磷、氧、氮、氢等杂质进行净化焊缝,也可提高焊缝的韧性)(3)焊接时的金属凝固结晶和相变过程:随着热源离开,经过化学冶金反应的熔池金属就开始凝固结晶,金属原子由近程有序排列转变为远程有序排列,即由液态转变为固态。
对于具有同素异构转变的金属,随温度下降,将发生固态相变。
因焊接条件下是快速连续冷却,并受局部拘束应力的作用,因此,可能产生偏析、夹杂、气孔、热裂纹、冷裂纹、脆化等缺陷。
故而控制和调整焊缝金属的凝固和相变过程,就成为保证焊接质量的关键。
由此看来,焊接接头是由两部分所组成,即焊缝和热影响区,其间有过渡区,称为熔合区。
焊接时除必须保证焊缝金属的性能之外,还必须保证焊接热影响区的性能。
四、焊接温度场:(一)焊接传热的基本形式:在熔焊的条件下,由热源传热给焊件的热量,主要是以辐射和对流为主,而母材和焊条(焊丝)获得热能之后,热的传播则是以热传导为主。
焊接传热过程所研究的内容主要是焊件上的温度分布及其随时间的温度变化何题,因研究焊接温度场,是以热传导为主,适当考虑辐射和对流的作用。
(二)焊接温度场的一般特征:焊接时焊件上各点的温度每一瞬时都在变化,而且是有规律地变化。
焊件上(包括内部)某瞬时的温度分布称为“温度场。
焊接温度场的分布情况可以用等温线或等温面表示。
所谓等温线或等温面,就是把焊件上瞬时温度相同的各点连接在一起,成为一条线或一个面。
各个等温线或等温面彼此之间不能相交,而存在一定的温度差,这个温度差的大小可以用温度梯度来表示。
焊接温度场各点的温度不随时间而变动时,称为稳定温度场;随时间而变动时,称为非稳定温度场。
在绝大多数情况下,焊件上各点的温度是随时间变动的,因此焊接温度场应属非稳定温度场。
恒定热功率的热源固定作用在焊件上时(相当于补焊缺陷的情况),开始一段时间内,温度是非稳定的.但经过一段时间之后便达到了饱和状态,形成了暂时稳定的温度场(即各点的温度不随时间而变),把这种情况称为准稳定温度场。
对于正常焊接条件下的移动热源,经过一定时间之后,焊件上同样会形成准稳定温度场,这时焊件上各点温度虽然随时间而变化,但各点以固定的温度跟随热源一起移动,也就是说,这个温度场与热源以同样的速度跟踪。
如果采用移动坐标系,坐标原点与热源中心重合,则焊件上各点的温度只取决于这个系统的空间坐标,而与热源的移动距离和速度无关。
(三)影响温度场的因素:(l)热源的性质: 一般电弧焊的条件下,25mm 以上的钢板就可以认为是点状热源,而100mm以上的厚钢板电渣焊时却是线状热源。
电子束和激光焊接时,热能极其集中,所以温度场的范围很小;而气焊时,热源作用的面积较大,因此温度场的范围也大。
(2)焊接线能量(3)被焊金属的热物理性质(l 热导率:表示金属导热的能力,它的物理意义是在单位时间内,沿法线方向单位距离相差l ℃时经过单位面积所传递的热能。
2 比热容:1克物质每升高1℃所需的热谓之比热容。
3 容积比热容:单位体积物质每升高1 ℃所需的热量称为容积比热容,用cρ表示。
4 )热扩散率:热扩散率是表示温度传播的速度。
5 热焓(H )单位物质所具有的全部热能,它与温度有关。
6 表面散热系数:表面散热系数的物理意义是散热体表面与周围介质每相差1 ℃时,在单位时间内单位面积所散失的热量。
根据实验,在焊接过程中所散失的热能,在静止的空气中主要是通过辐射,而对流的作用很小。
因此,当焊接不锈钢和耐热钢时,所选用的焊接线能量(q/v的比值)应比焊接低碳钢时要小。
相反,焊接铜和铝时,由于导热性能良好,因此应选用比焊接低碳钢更大的线能量。
)4)焊件的板厚及形状: (l厚板焊接结构2薄板焊接结构)第一章焊接化学冶金:在熔焊过程中,焊接区内各种物质之间在高温下相互作用的过程,称为焊接化学冶金过程。
它主要研究在各种焊接工艺条件下,冶金反应与焊缝金属成分、性能之间的关系及其变化规律。
研究的目的在于运用这些规律合理地选择焊接材料,控制焊缝金属的成分和性能使之符合使用要求,设计创造新的焊接材料。
第一节焊接化学冶金过程的特点一、焊条熔化及熔池形成:(一)焊条的加热及熔化: 1.焊条的加热:电弧焊时用于加热和熔化焊条(或焊丝)的热能有:电阻热、电弧热和化学反应热。
在使用大电流密度焊接时,由于电阻热过大,焊芯和药皮的温升过高,将引起许多不良的后果。
如飞溅增加,药皮开裂或脱落,药皮丧失冶金作用,焊缝成形变坏,甚至产生气孔等缺陷.用不锈钢焊条焊接时,这种现象更为突出.因此,手工电弧焊时,应严格限制焊芯和药皮的加热温度。
2.焊条金属的平均熔化速度:在单位时间内熔化的焊芯质量或长度称为焊条金属的平均熔化速度。
试验表明,在正常的焊接工艺参数范围内,焊条金属的平均熔化速度与焊接电流成正比。
在焊接过程中并非所有熔化的焊条金属都进入了熔池形成焊缝,而是有一部分损失。
通常把单位时间内真正进入焊缝金属的那一部分金属的质量叫平均熔敷速度。
在焊接过程中由于飞溅、氧化和蒸发损失的那一部分金属质量与熔化的焊芯质量之比,称为损失系数。
熔敷系数是真正反映焊接生产率的指标。
3.焊条金属熔滴及其过渡特性:在电弧热的作用下,焊条端部熔化形成的滴状液态金属称为熔滴。
(l)熔滴过渡的形式:用药皮焊条焊接时,主要有三种过渡形式:短路过渡、颗粒状过渡和附壁过渡。
短路过渡的过程是:在短弧焊时焊条端部的熔滴长大到一定的尺寸就与熔池发生接触,形成短路,于是电弧熄灭.同时在各种力的作用下熔滴过渡到熔池中,电弧重新引燃.如此重复这一过程,形成稳定的短路过渡过程。
颗粒状过渡过程是;当电弧的长度足够长时,焊条端部的熔滴长大到较大的尺寸,然后在各种力的作用下,以颗粒状落入熔池,此时不发生短路,接着进行下一个过渡周期。
附壁过渡是指熔滴沿着焊条端部的药皮套简壁向熔池过渡的形式。
溶滴的过渡形式、尺寸和过渡频率取决于药皮的成分与厚度、焊芯直径、焊接电流和极性等因素。
一般讲,碱性焊条在较大的焊接电流范围内主要是短路过渡和大颗粒状过渡。
用酸性焊条焊接时为细颗粒状过渡和附壁过渡。
(2)熔滴的比表面积和相互作用时间:焊接时金属与熔渣和气体的相互作用属于高温多相反应,因此熔滴的比表面积和它与周围介质相互作用的时间,对熔滴阶段的冶金反应有很大的影响。
熔滴越细其比表面积越大。
因此,凡是能使熔滴变细的因素,如增大焊接电流或在药皮中加入表面活性物质等,都能使熔滴的比表面积增大,从而有利于加强冶金反应。
(3)熔滴的温度:熔滴的温度是研究熔滴阶段各种物理化学反应时不可缺少的重要参数。
试验表明,熔滴的平均温度随焊接电流的增加而升高,随焊丝直径的增加而降低。
最后应指出,药皮熔化后形成的熔渣也向熔池过渡,有两种过渡形式:一是以薄膜的形式包在熔滴外面或夹在熔滴内同熔滴一起落入熔池;二是直接从焊条端部流入熔池或以滴状落入熔池。
当药皮厚度大时才会出现第二种过渡形式。
(二)熔池的形成:熔焊时,在热源的作用下焊条熔化的同时被焊金属也发生局部熔化。
母材上由熔化的焊条金属与局部熔化的母材所组成的具有一定几何形状的液体金属叫熔池。
如焊接时不填充金属,则熔池仅由局部熔化的母材组成。
1.熔池的形状和尺寸:熔池的形成需要一定的时间,这段时间叫作过渡时期。
经过过渡时期以后就进入准稳定时期,这时熔池的形状、尺寸和质量不再变化,只取决子母材的种类和焊接工艺条件,并随热源作同步运动。
熔池的宽度和深度是沿X 轴连续变化的.在一般情况下,随着电流的增加熔池的最大宽度B减小,而最大深度H增大;随着电弧电压的增加,B增大,H减小。