等比数列专题(有答案)百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112
3
3n n n a b a ++=+,11344
n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5
B .7
C .9
D .11
2.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078
a a a a +=+( ) A
1
B
1
C
.3-
D
.3+3.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45
B .54
C .99
D .81
4.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
5.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2
B .4
C .8
D .16
6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .681a a >
B .01q <<
C .n S 的最大值为7S
D .n T 的最大值为7T
7.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989
B .46656
C .216
D .36
8.设数列{}n a 的前n 项和为n S ,且()*
2n n S a n n N =+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7
9.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q <<
B .61a >
C .121T >
D .131T >
10.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方
法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕
=大吕
=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A
.n -
B
.n -C
.
D
..题目文件丢失!
12.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
13..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2
B .2或2-
C .2-
D
14.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31
B .32
C .63
D .64
15.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有
312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
16.数列{}n a 满足1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩,,
,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
17.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏
B .9盏
C .27盏
D .81盏