等比数列专题(有答案)百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题

1.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112

3

3n n n a b a ++=+,11344

n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5

B .7

C .9

D .11

2.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078

a a a a +=+( ) A

1

B

1

C

.3-

D

.3+3.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45

B .54

C .99

D .81

4.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40

B .81

C .121

D .242

5.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2

B .4

C .8

D .16

6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .681a a >

B .01q <<

C .n S 的最大值为7S

D .n T 的最大值为7T

7.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989

B .46656

C .216

D .36

8.设数列{}n a 的前n 项和为n S ,且()*

2n n S a n n N =+∈,则3

a

=( )

A .7-

B .3-

C .3

D .7

9.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记

{}n a 的前n 项积为n

T

,则下列选项错误的是( ) A .01q <<

B .61a >

C .121T >

D .131T >

10.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方

法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有

大吕

=大吕

=

太簇.据此,可得

正项等比数列{}n a 中,k a =( )

A

.n -

B

.n -C

D

..题目文件丢失!

12.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3

分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于

9

10

,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)

A .4

B .5

C .6

D .7

13..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2

B .2或2-

C .2-

D

14.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31

B .32

C .63

D .64

15.设数列{}n a ,下列判断一定正确的是( )

A .若对任意正整数n ,都有24n

n a =成立,则{}n a 为等比数列

B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列

C .若对任意正整数m ,n ,都有2m n

m n a a +⋅=成立,则{}n a 为等比数列

D .若对任意正整数n ,都有

312

11

n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列

16.数列{}n a 满足1192110

21119n n n n a n --⎧≤≤=⎨≤≤⎩,,

,则该数列从第5项到第15项的和为( )

A .2016

B .1528

C .1504

D .992

17.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏

B .9盏

C .27盏

D .81盏

相关文档
最新文档