(完整版)三角函数诱导公式总结
诱导公式总结大全

v1.0 可编辑可修改诱导公式1诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。
“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
三角函数诱导公式大全

三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。
sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。
sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。
tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。
cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。
诱导公式总结大全

tan3am(3tan—tan八3(a))/(1-3ta门八2(a))
sin3 om sin(2(+a msin2acos+cos2asina
m2sinacosA2(+)1—2sin八2(a))sina
m2sina—2si门八3(a+sin—2sin八3(a)
=3sina—4si门八3(a)
tan( a+ B)=(tan+tanB)/(1—tana •tanB)
tan( a— B) =(tan—tanB)/(1+tana •tanB)
二倍角的正弦、余弦和正切公式
sin2a2sinacosa
cos2aCOSA2(a—SinA2(a¥2COSA2(a—1a1—2sinA2(a)
tan2a2tana/(1—tan八2(a))
变”是指正弦变余弦,正切变余切。(反之亦然成立)符号看象限”的含
义是:把角a看做锐角,不考虑a角所在象限,看n•(n/2)是第几象限角, 从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都
是+”第二象限内只有正弦是+”其余全部是第三象限内只有
sin—sin#2cos((r B)/2)•sin((帥/2)
cosa+cosB=2cos((rB)/2)•cos— B)/2) cosa—cosB=—2sin((+B)/2)•sin— B)/2)
三角函数的积化和差公式
sina・cosBsin(+ B +sin(— B)]
cosa・si牛Bsin(+ B —sin(— B)]
完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数公式及求导公式

一、诱导公式口诀:(分子)奇变偶不变,符号看象限。
1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。
三角函数诱导公式全集

三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数的诱导公式【六公式】

)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
(完整版)诱导公式总结大全

e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系 tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。
(完整word)三角函数诱导公式大全,推荐文档

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。
也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。
2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。
也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。
这个公式同样也可以帮助我们计算负角的余弦值。
3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。
也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。
这个公式在计算负角的正切值时非常有用。
4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。
也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。
这个公式同样也可以帮助我们计算负角的余切值。
5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。
6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。
这个公式在计算三角形中的未知边长时非常有用。
7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。
这个公式同样也可以帮助我们计算三角形中的未知边长。
8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。
三角函数诱导公式大全

三角函数诱导公式大全三角函数诱导公式三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)2诱导公式作用及用法一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。
12个诱导公式

12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。
以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。
在解题时,可以根据需要选择合适的诱导公式进行转化。
例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。
除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。
这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。
三角函数-高中数学诱导公式大全

常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
三角函数诱导公式及记忆口诀

诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。
接下来给大家分享三角函数常用的诱导公式及记忆口诀。
三角函数的诱导公式诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαcot(π-α)=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotα三角函数诱导公式记忆口诀奇变偶不变,符号看象限。
三角函数诱导公式大全

三角函数诱导公式大全(1).正弦定理:a²=b²+c²–2bc·cosAb²=a²+c²–2ac·cosBc²=a²+b²–2ab·cosC(2).余弦定理:a/cosA=b/cosB=c/cosC(3).正切定理:a·tanA=b·tanB=c·tanC(4).正弦函数诱导公式:sin(A+B)=sinA·cosB+cosA·sinBsin(A-B)=sinA·cosB-cosA·sinBsin(2A)=2sinA·cosAsin(-A)=-sinAcos(A+B)=cosA·cosB-sinA·sinBcos(A-B)=cosA·cosB+sinA·sinBcos(2A)=cos²A-sin²Acos(-A)=cosA(5).余弦函数诱导公式:cos(A+B)=cosA·cosB-sinA·sinBcos(A-B)=cosA·cosB+sinA·sinBcos(2A)=cos²A-sin²Acos(-A)=cosAsin(A+B)=sinA·cosB+cosA·sinBsin(A-B)=sinA·cosB-cosA·sinBsi n(2A)=2sinA·cosAsin(-A)=-sinA(6).正切函数诱导公式:tan(A+B)= (tanA+tanB)(1–tanA·tanB) tan(A-B)= (tanA–tanB)(1+tanA·tanB) tan(2A)=2tanA/(1–tan²A)tan(-A)=-tanA(7).反正弦函数诱导公式:arcsinX=arcsinpx+2nπarccosX=π/2+arcsinpx+2nπarctanX=arctanpx+2nπ(8).反余弦函数诱导公式:arcsinX=π/2-arccosXarccosX=arccospx+2nπarctanX=π/2+arccospx+2nπ(9).反正切函数诱导公式:arcsinX=arctanX+2nπarccosX=π/2-arctanX+2nπarctanX=arctanpx+2nπ(10).双曲正弦函数诱导公式:sinhA=sinhpA+2nπcoshA=coshpA+2nπtanhA=tanhpA+2nπ(11).反双曲正弦函数诱导公式:arcsinhX=arcsinhpX+2nπarccoshX=arccoshpX+2nπ。
诱导公式总结大全

诱导公式1所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。
公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二: 设α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三: 任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一与公式三可以得到2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α得三角函数值之间得关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号瞧象限。
“奇、偶”指得就是整数n得奇偶,“变与不变”指得就是三角函数得名称得变化:“变”就是指正弦变余弦,正切变余切。
(反之亦然成立)“符号瞧象限”得含义就是:把角α瞧做锐角,不考虑α角所在象限,瞧n·(π/2)±α就是第几象限角,从而得到等式右边就是正号还就是负号。
一全正;二正弦;三两切;四余弦这十二字口诀得意思就就是说: 第一象限内任何一个角得四种三角函数值都就是“+”; 第二象限内只有正弦就是“+”,其余全部就是“-”; 第三象限内只有正切与余切就是“+”,其余全部就是“-”; 第四象限内只有余弦就是“+”,其余全部就是“-”。
高1数学-三角函数-诱导公式

高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数诱导公式与同角的三角函数【知识点1】诱导公式及其应用公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-)公式五: sin(2π-α) = cos α; cos(2π-α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π+α) =- sin α.公式七: sin(32π-α)=- cos α; cos(32π-α) = -sin α.公式八: sin(32π+α) = -cos α; cos(32π+α) = sin α.公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___. (3)16sin()3π-= __________.的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2例4、下列各式不正确的是【 】A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .32m例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】A .5B .-5C .6D .-6例7、试判断sin(2)cos()(9tan (5)2αππααπαπα-+⎛⎫+- ⎪⎝⎭··cos 为第三象限角)符号 例8、化简3sin(3)cos()cos(4)25tan(3)cos()sin()22πααππαπαπααπ-⋅-⋅+-⋅+⋅-例9、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π例10、若1sin()3πθ-=,求[]cos()cos(2)33cos()1cos sin()cos()sin()22πθθππθθθπθπθπ+-+--⋅-⋅--+的值.提示:先化简,再将1sin 3θ=代入化简式即可.例11、若α例12、设)(x f 满足(sin )3(sin )4sin cos ,(||)2f x f x x x x π-+=⋅≤,求)(x f 的表达式.例13、设222sin()cos()cos()()31sin cos()sin ()22f παπαπααπαπαα+--+=+++-+,1sin 2α≠-,求23()6f π-的值.【知识点2】同角的三角函数的基本关系式 同角三角函数的基本关系式有两个: ①平方关系: sin 2α + cos 2α= ②商数关系:=ααcos sin 例14、化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得【 】A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α 例15、若cos(π6-α)=m (|m |≤1),则sin(23π-α)的值为【 】A .-mB .-m 2 C.m2 D .m例16、1+2sin (π-3)cos (π+3)化简的结果是【 】A .sin3-cos3B .cos3-sin3C .±(sin3-cos3)D .以上都不对 例17、tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为【 】A .m +1m -1 B.m -1m +1C .-1D .1 例18、已知)1(,sin <=m m α,παπ<<2,那么=αtan 【 】A 21m m- B 21m m-- C 21mm-± D m m 21-±例19、若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于【 】 A 2 B 2- C 2-或2 D 0例20、已知3tan =α,23παπ<<,那么ααsin cos -的值是【 】 A 231+-B 231+-C 231-D 231+ 例21、已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则1g sin A 的值为【 】A .m +1nB .12(m -n )C.12(m +1n ) D.12(m -1n)例22、已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为【 】 A .21 B .21-C .23-D .23 例23、(2011年高考江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-552,则y= . 例24、已知)0(32cos sin πθαα<<=+,求θtan 精选试题1、以下四个命题中,正确的是【 】A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2、sin34π·cos 625π·tan 45π的值是【 】A .-43B .43C .-43D .433、已知()21sin -=+πα,则()πα7cos 1+的值为【 】A .332 B . -2 C . 332- D . 332± 4、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π【 】 A 、21-B 、21C 、23-D 、235、若(),2,53cos παππα<≤=+则()πα2sin --的值是【 】 A . 53 B . 53- C . 54 D . 54-6、已知cos78°约等于0.20,那么sin66°约等于【 】A .0.92 B.0.85 C.0.88 D.0.957、已知343tan ,,2,cos 2322πππααπα+=∈+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且则的值是【 】A .35-B .35C .45D .45-8、22222sin 1sin 2sin 3sin 89sin 90︒+︒+︒++︒+︒=9、已知3cos()5πα+=-,322παπ<<,则tan()2πα-=10、若1sin()22πα-=-,则tan(2)πα-=________. 11、已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan =.12、 已知cos()63πα-=25cos()sin ()66ππαα+--的值.提示:把56πα+化成()6ππα--,进而利用诱导公式求解.。