管理统计学-第3章抽样分布与参数估计

合集下载

第三章 参数估计

第三章   参数估计

第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。

总体分布是总体中所有观测值所形成的分布。

总体参数是对总体特征的某个概括性的度量。

通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。

统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。

统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。

[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。

通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。

答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。

答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。

〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。

每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。

统计学第3章-概率、概率分布与抽样分布

统计学第3章-概率、概率分布与抽样分布
3-15
互斥事件及其概率
(例题分析)

解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6


合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率

第三讲 抽样分布和估计

第三讲 抽样分布和估计
Stat_istic
x
Proportion p
p
Variance Difference
2
-
12
s2
__ x -x
12
30
联合食品公司的案例
针对“联合食品公司”的案例(P.44 案例2-1), 我们假设调查的100个客户组成一个简单随机样 本。尝试回答下面的问题: 1)所有客户一次购买金额的平均值是多少?
第三讲
抽样分布和估计
1
概率论与统计学之间的关系
一个概率论的问题:
假定有一个大盒子中有 10,000个球,分布如下: 70%的黑球和 30%的白球
随机抽取100个球,得到60个黑球和40个白球的 概率是多少?
---- 给定一个总体(盒子中的所有小球)的已知 特征(70% 和30%),研究一个试验(抽取小球) 的可能的结果 (例如 60-40) 。
2
一个统计学的问题:
假定一个大盒子中有 10,000个小球(黑和白)。 随机抽取100个小球,发现其中有60个黑球和40个
白球。那么黑球在盒子中所占的比例是多少?
---- 观察到一个试验(抽取小球)的结果 (60-40), 推断出这个总体(盒子中的所有小球)的特征 (比例)
3
总体-样本理论 统计推断采用一个(有代表性的)子总体 (样本)来对总体的某些特征进行科学的 推断。
10 2 55 7.42
x 10.33 s 2 56.78 s 7.54
抽样分布
样本不同, x 值也不同。那么 x 取不同 值的可能性分别是什么? x 的概率分布称作它的抽样分布。 抽样分布在统计推断中的中心地位。 抽样分布取决于总体的分布(模型)以 及抽样的方式。
抽样方式 总体分布===== 抽样分布

抽样分布与参数估计

抽样分布与参数估计

三、t分布曲线下的面积分布规律
自由度为 的t分布曲线
t 分布曲线下 的整个面积为1, t 分布曲线下从a到b 的面积为t值分布 在此范围内的百分 比,即t值落在此 范围内的概率P。
双侧:由于t分布以0为中心对称,即 P(t≤- t, )= P(t≥ t, )= /2 于是有P(- t, ≤t≤ t, )=1-
sx
u X
X
t X =n-1
s X
u分布 t分布
二、t分布图形的特点
• 1. t分布是一簇曲线。 t分布有一个参数, 即自由度 ,与标准差的自由度一致。
• 2. t分布曲线以0为中心,左右对称; 越小, t变量值的离散程度越大,曲线越扁平。
• 3. t分布曲线较标准正态曲线要扁平些(高 峰低些,两尾部翘得高些), 逐渐增大, t分布曲线逐渐的逼近于标准正态曲线,若 =,则t分布曲线和标准正态曲线完全吻 合。
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
点值估计
参数估计
假设检验
区间估计
一、基本概念
➢ 参数估计:用样本统计量来估计总体参数。
点值估计:不计抽样误差,直接用样本均数来 估计μ。
区间估计:根据抽样误差的规律,按一定的概 率估计总体均数的所在范围。统计上习惯用95% 或99%可信区间表示总体均数可能所在范围。
第一节 均数的抽样误差 第二节 t分布 第三节 总体均数可信区间的估计
一、抽样研究:从总体中随机抽取部分 观察单位构成样本,用样本信息去 推断总体特征的研究方法。
统计推断的过程
总体

样本统计量

例如:样本均
值、比例
二、抽样误差:在抽样研究中,因抽样造 成的样本统计量与样本统计量、样本统计 量与总体参数的差值。

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

抽样分布与参数估计

抽样分布与参数估计
思考题:收视率估计
▪ 某电视台欲在95%的置信度水平下,对电
视节目的收视率作为有效的估计,试考 虑样本量应当为多少?
▪ 问题:若确定估计绝对误差为5%,则样
本为385户,是否可行?
▪ 若考虑估计相对误差为10%,则样本量应
当为多少?
统计学原理
其他样本量估计的情况
▪ 估计样本比例时样本量的确定 ▪ 估计两个总体均值之差时样本量的确定 ▪ 估计两个总体比例之差时样本量的确定 ▪ 以上问题,均可通过参数估计的公式进行
o 比例估计时,方差为:p(1-p) o 可知,p(1-p)的最大值为0.25。
统计学原理
比例估计时的样本量推算
在校园内估计学生拥有手机的比例,希 望在95%的置信水平下,估计的绝对误 差不超过5个百分点(5%),求样本量
n
1.962
0.052
2
, 取
2
Max
0.25
则有n 385
统计学原理
助记方法
统计学原理
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差已知;
o 或非正态总体,大样本,方差已知。
z x ~ N (0,1) X n
置信区间:
(
x
za
2
X
n
,
x
za
2
X
n
)
注意:Z取a/2的原因在于此时置信 区间是最小的。
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差未知
统计学原理
计算结果
▪ 计算样本平均数:X=39.5 ▪ 计算样本标准差:s=7.7736 ▪ 令:总体标准差=样本标准差,计算抽样误差为
1.2956

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

统计学 第三章抽样与抽样分布

统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取

统计学 抽样分布和理论分布

统计学  抽样分布和理论分布

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。

样本分布:样本中所有个体关于某个变量大的取值所形成的分布。

抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。

即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。

样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。

那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。

由样本平均数x 所构成的总体称为样本平均数的抽样总体。

它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。

统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。

但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。

于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。

样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。

相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。

2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。

第3章理论分布与抽样分布

第3章理论分布与抽样分布

P( x m) Pn (k m)
k m

k Cn
p q
m2
k
n k
5、P(m1 x m2 ) p n (m1 k m2 )
(m1<m2)
k m1

k Cn
p q
k
nk
(3 - 6 )
二项分布由n和p两个参数决定: 1、当p值较小且n不大时 ,分 布 是偏
1.2.2 泊松分布的概率计算及应用条件
例3- 4 食品店每小时光顾的顾客人数服从λ=3 的泊松分布,即x~p(3)分布。 (1)计算每小时恰有5名的顾客的概率;
(2)1小时顾客不超过5人的概率;
(3)1小时内顾客最少有6人的概率。
但是在大多数服从泊松分布的实
例中,分布参数λ往往是未知的,只能 从所观察的随机样本中计算出相应的 样本平均数作为 λ 的 估计值,将其代 替(3-10)式中的λ,计算出 k = 0,
内的任何实数。
如果表示试验结果的变量x,其可能取 值一一列出 ,且 以各种确定的概率取这些 不同的值 , 则 称 x 为 离 散 型 随 机 变 量 ( discrete random variable);
如果表示试验结果的变量x ,其可能取 值为某范围内的任何数值 ,且x在其取值范 围内的任一区间中取值时,其概率是确定 的,则称x为 连续 型 随 机 变 量 (continuous random variable)。
x表示可食用的罐头听数,则x的取值为0、1、
【例】 孵化一枚种蛋可能结果只有两 种,即“孵出小鸡”与“未孵出小鸡”。 若用变量x表示试验的两种结果,则可令 x=0表示“未孵出小鸡”,x=1表示“孵出 小鸡”。 【例】 测定某产品净重 ,表示测定 结

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

抽样分布和点估计

抽样分布和点估计

2. F—分布的分位点 对于:0<<1,
若存在F(n1, n2)>0,
满足
P{FF(n1, n2)}=, 则
称F(n1, n2)为 F(Байду номын сангаас1, n2)的 上侧分位点;
F (n1 , n2 )
注:
1 F1 (n1 , n2 ) F (n2 , n1 )
1 ~ F ( n2 , n1 ) F
X T ~ t ( n). Y /n
t(n)称为自由度为n的t—分布。
t(n) 的概率密度为 n 1 ( ) n 1 2 t 2 h(t ) (1 ) 2 , t n n n ( ) 2
2.基本性质:
(1) f(t)关于t=0(纵轴)对称。 (2) f(t)的极限为N(0,1)的密度函数,即
2
样本成数
样本方差 样本标准差
( x x )2
n 1
n 1 ]1 2
NEXT
( x x )2
(三)抽样误差
登记性误差
非抽样误差
调 查 误 差
非随机因素引起的系统性偏差 抽样误差:由于随机性带来的偶然的代表性误差 不能避免,但是可以计算和控制。主要有抽样相对 误差和抽样绝对误差。
一、简单随机抽样和抽样误差 二、统计量和抽样分布 三、参数估计的主要内容
统计推断的起点
样本和总体 • 1.总体(populations):又称全及总体、母体,指所 要研究对象的全体,由许多客观存在的具有某种 共同性质的单位构成。总体单位数用 N 表示。 • 2.样本(samples):又称子样,来自总体,是从总 体中按随机原则抽选出来的部分,由抽选的单位 构成。样本单位数用 n 表示。 • 3.总体是唯一的、确定的,而样本是不确定的、 可变的、随机的*。

抽样分布与参数估计总结

抽样分布与参数估计总结

总体参数的估计区间,称为置信区间。
统计学原理
置信度
如果将构造置信区间的步骤重复多次,置信区
间中包含总体真值的次数所占的比例称为置信 水平(Confidence Level)。
也称为置信度或置信系数 (Confidence Coefficient)。
统计学原理
置信度与置信区间的关系
统计学原理
两个总体参数—比例之差
比例之差:大样本下,服从正态分布。 在估计时使用样本标准差替代。
统计学原理
两个总体的方差比
样本方差比的抽样分布为F分布 其中 第一自由度为n1-1,第二自由度为n2-1
2 s12 2 2 ~ F n1 1, n2 1 2 s2 1
统计学原理
例题:关于扑克牌的游戏
从一副扑克牌(52张)中,有放回地抽
出30张,其平均点数的分布规律如何?
如果以点数来赌胜负,什么区间的胜率
是95%?
统计学原理
统计学原理
第二节 参数估计
主要讨论总体平均数的 参数估计
统计学原理
参数估计的一般问题
参数估计:用样本统计量去估计总体的参
数。
统计学原理
计算结果
计算样本平均数:X=39.5 计算样本标准差:s=7.7736 令:总体标准差=样本标准差,计算抽样误差为
1.2956 95%置信度对应的T值为1.96 得总体平均数的置信区间为:
o 上限:39.5+1.96×1.2956=42.04 o 下限:39.5-1.96×1.2956=36.96
N=200时的抽样分布
Std. Dev = 2.23 Mean = 46.24 N = 200.00

《管理统计学》第三章

《管理统计学》第三章

二、样本数据的位置特征: 对数据中心的描述
一、样本众数(Sample Mode)
1.样本众数定义
单一众数(大多数情况下)
2.样本众数种类 复众数(一般情况下)
无众数(极端情况下) 刻度级的样本数据
分组 不分组
3.样本众数的计算 顺序级的样本数据
名义级的样本数据
①单项数列
某商品的价格 2
单位:元
价格 9.93 9.94 9.95 9.96 9.97 9.98 9.99 10.00 10.01 10.02 10.03 10.04 10.05 10.06
第3章
样本数据特征的初步分析
频次与频率 计算
样本数据的基本特征
延伸
图形表示
累计频次与频率
对数据的集中描述 点状描述 样本数据的位置特征 对数据的 离散描述 区间描述
样本数据的综合特征描述——箱型图
样本数据的分布特征——峰度和偏度
3.1 样本数据结构的基本特征:频次与频率 一、频率、频次的含义 1.频次(Frequency) 2.频率(Percentage或Relative Frequency) 种类: 1.刻度级数据的频次与频率 2.顺序级数据的频次与频率 3.名义级数据的频次与频率
(99.8) (99.9) (100.1) (100.2)
0
1
Q1 的位置
3 Q2 的位置
2
4 Q3 的位置
n 1
②组距数列
2 f 刚好大于 4
的向上累计数所在的组
2 f S2 Q2 M e L2 4 d2 f2
f :中位数(四分位数)组的次数
s :中位数(四分位数)组前一组的
试计算平均月奖金,中位数和众数。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。

壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。

⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。

其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。

调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。

(2)绘制一张条形图,反映学历分布。

2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。

2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。

(2)用茎叶图将原始数据表现出来。

2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。

男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。

数理统计第3章 随机抽样与抽样分布

数理统计第3章 随机抽样与抽样分布

E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。

【数据分析师Level1】3.抽样分布及参数估计

【数据分析师Level1】3.抽样分布及参数估计

【数据分析师Level1】3.抽样分布及参数估计【数据分析师 Level 1 】3.抽样分布及参数估计1.随机实验随机实验是概率论的⼀个基本概念。

概括的讲,在概率论中把符合下⾯三个特点的试验叫做随机试验可以在相同的条件下重复的进⾏每次试验的可能结果不⽌⼀个,并且能事先明确试验的所有可能结果进⾏⼀次试验之前不能确定哪⼀个结果会出现随机事件在概率论中,随机事件(或简称事件)指的是⼀个被赋予⼏率的事物的集合,也就是样本空间中的⼀个⼦集。

简单来说,在⼀次随机试验中,某个特定时间可能会出现也可能不会出现;但是当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。

随机变量设随机试验的样本空间S=e,X=X(e)S = {e},X=X(e)S=e,X=X(e)是定义在样本空间S上的单值实值函数,称X为随机变量2.正态分布的图像形式既然介绍变量的分布情况,就要介绍⼀下正态分布。

⾸先,正态分布是关于均值左右对称的,呈钟形,如下图所⽰。

其次,正态分布的均值和标准差具有代表性,只要知道其均值和标准差,这个变量的分布情况就完全知道了。

在正态分布中,均值=中位数=众数3.中⼼极限定理从均值为 µ\muµ,⽅差为σ2\sigma^2σ2的⼀个任意总体中抽取容量为n的样本,当n充分⼤时,样本均值的抽样分布近似服从均值为 µ\muµ ,⽅差为σ2n\frac{\sigma^2}{n}nσ2的正态分布根据中⼼极限定理,我们知道如果做很多次抽样的话会得到很多个样本均值,⽽这些样本均值排列起来会形成正态分布,他们的平均数是µ\muµ,标准差是σn\frac{\sigma}{\sqrt{n}}nσ换句话说,有约68% 的样本均值会落在 µ±σn\mu \pm \frac{\sigma}{\sqrt{n}}µ±nσ之间,有约 95 %的样本均值会落在 µ±2σn\mu \pm 2\frac{\sigma}{\sqrt{n}}µ±2nσ有约 99.7 %的样本均值会落在 µ±3σn\mu \pm 3\frac{\sigma}{\sqrt{n}}µ±3n σ​把上述说法稍微转换⼀下就变成:有68 %的 x‾±σn\overline x \pm \frac{\sigma}{\sqrt{n}}x±nσ会包含着 µ\muµ有95 %的 x‾±2σn\overline x \pm 2\frac{\sigma}{\sqrt{n}}x±2nσ会包含着 µ\muµ有99.7 %的 x‾±3σn\overline x \pm 3\frac{\sigma}{\sqrt{n}}x±3nσ会包含着µ\muµ⽽这就是抽样和估计最根本的道理我们从全体之中以随机抽样⽅式抽取n个样本,取得样本观察值,计算它们的平均数 x‾\overline xx ,然后加减两倍的σn\frac{\sigma}{\sqrt{n}}nσ得到⼀组上下区间,然后说:我们有95 % 的信⼼,这个上下区间⼀定会包含着全体的平均数 µ\muµ。

统计学中的抽样分布与区间估计

统计学中的抽样分布与区间估计

统计学中的抽样分布与区间估计是一种重要的方法和理论,可供研究者利用有限样本数据对总体参数进行推断与估计。

抽样分布是指多次从总体中抽取样本得到的统计量的分布,它与总体的分布有关,并且可以用来计算参数的抽样分布,从而提供参数的区间估计。

首先,抽样分布是统计学研究中的基本概念。

在进行统计推断时,我们无法对整个总体做出观测和测量,只能通过对样本数据的分析和统计推断来了解总体的特征和属性。

因此,抽样分布的理论基础是从总体中随机抽取的样本可以代表总体。

其次,抽样分布的性质主要包括:无偏性、一致性和有效性。

无偏性是指样本统计量的数学期望等于总体参数的真实值,即抽样分布的期望与总体参数一致;一致性是指随着样本容量的增加,抽样分布会趋于聚集在总体参数附近;有效性是指样本统计量的方差最小,即抽样分布的方差相对较小。

区间估计是利用抽样分布来进行参数估计的一种方法。

在统计推断中,我们往往无法通过一个点估计量来完全确定参数的值,因此需要通过区间估计来给出一个范围,以包含参数的真实值。

区间估计的过程包括:选择合适的抽样分布、计算样本统计量的抽样分布、确定置信水平和临界值、计算置信区间。

置信水平是区间估计中一个重要的指标,它表示在多次抽样中,根据抽样分布的性质,可以包含参数真实值的概率。

一般常用的置信水平为95%,意味着在100次实验中,有95次或更多的结果将包含参数真实值。

根据抽样分布的性质和置信水平,可以确定相应的临界值,并利用样本统计量的抽样分布计算置信区间。

区间估计的应用非常广泛。

例如,在医学研究中,可以利用抽样分布和区间估计来估计新药的治疗效果;在市场调研中,可以利用抽样分布和区间估计来评估产品的市场份额与消费者偏好;在金融投资中,可以利用抽样分布和区间估计来预测股票收益与风险。

总之,统计学中的抽样分布与区间估计是一种基础的方法和理论,可用于对总体参数进行推断与估计。

抽样分布的性质决定了区间估计的精确性和可信度。

通过合适地选择抽样分布和确定置信水平,可以利用区间估计进行统计推断和决策,为研究者提供有限样本数据的有力支持和指导,进而推动学科的发展与进步。

统计学抽样分布

统计学抽样分布

1
2 3 4
1.0
1.5 2.0 2.5
1.5
2.0 2.5 3.0
2.0
2.5 3.0 3.5
2.5
3.0 3.5 4.0
.1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
样本均值的抽样分布
样本均值的分布与总体分布的比较
总体分布
.3
P(X)
抽样分布
.3 .2 .1 0
.2 .1 0
主要内容第一节抽样的概念与方法第二节简单随机样本的抽样分布第三节抽样其它组织形式及其分布特征一重置抽样的抽样分布一重置抽样的抽样分布二不重置抽样的抽样分布二不重置抽样的抽样分布样本统计量的分布就是抽样分布一样本均值的抽样分布容量相同的所有可能样本的样本均值的概率分布进行推断总体总体均值的理论基础例例设一个总体含有4个元素个体即总体单位总体的均值方差及分布如下总体分布1144223300现从总体中抽取现从总体中抽取nn22的简单随机样本的简单随机样本在重复抽在重复抽样条件下样条件下共有共有44221616个样本个样本
1
第二个观察值
1
1,1
2
1,2
3
1,3
4
1,4
2 3
4
2,1 3,1
4,1
2,2 3,2
4,2
2,3 3,3
4,3
2,4 3,4
4,4
样本均值的抽样分布
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
•16个样本的均值(x) 第一个 观察值
.3 .2 P (X )
第二个观察值
1 2 3 4
第一节 抽样的概念与方法
一、抽样的基本概念 二、简单随机抽样的方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 从一个给定的总体中抽取(不论是否有放回)容量 (或大小)为n的所有可能的样本,对于每一个样本, 计算出某个统计量(如样本均值或标准差)的值,不 同的样本得到的该统计量的值是不一样的,由此得到 这个统计量的分布,称之为抽样分布。
• 样本统计量是一个随机分布量。
第三章 抽样分布与参数估计
• 设由四个同学组成的总体, • 样本总体N=4。 • 随机变量X表示某个学生的年龄 • X的所在取值为18,20,22,24。
• (3)
P ( 7 . 2 X 7 . 5 ) P ( 7 . 2 7 X 7 7 . 5 7 ) P ( 0 . 5 Z 1 1 . 2 ) 0 8 . 2 0 . 39 0 . 39 0 . 39
第三章 抽样分布与参数估计
• 例:在北京一居室的房租平均为每月1500元, 房租的分布并不服从正态分布,随机抽取容量 为50的样本,样本的标准差是200元,请问样 本均值至少为1600元的概率是多少?
值,将其作为总体参数的估计值。
• 如用 x5去0估计
• 问题是不同的样本提供不同的估计值 • 样本越大,估计的性质越好,但成本也越高 • 了解估计的性质有多好
• 解决办法:以样本的抽样分布作为理论基础。
第三章 抽样分布与参数估计
抽样分布
• 从一个总体中随机抽出容量相同的各种样本,从这些 样本计算出的某统计量所有可能值的概率分布,称为 这个统计量的抽样分布。
• 总体均值和总体方差各为多少? 21 2.236
• 总体概率分布?
第三章 抽样分布与参数估计
• 所有样本容量为2的样本
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
总体分布与样本抽样分布的关系
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
50.00%
0
0.00%
6
7
8
9
10 其他
频率
累积
%
频率
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
第三章 抽样分布与参数估计
总体分布
正态分布
样本均值 分布(n=2)
样本均值 分布(n=10)
样本均值 分布(n=30)
指数分布
均匀分布
第三章 抽样分布与参数估计 中心极限定理的作用
第三章 抽样分布 与参数估计
第三章 抽样分布与参数估计
• 3.1 抽样分布 • 3.2 点估计 • 3.3 区间估计
第三章 抽样分布与参数估计
3.1 抽样分布
为什么要抽样? 为了收集必要的资料,对所研究对象(总体)的
全部元素逐一进行观测,往往不很现实。
元素多,搜集数据费
抽 样
时、费用大,不及时而 使所得的数据无意义
第三章 抽样分布与参数估计
• (1) P ( X 7 .5 ) P (X 7 7 .5 7 ) P (X 7 1 .2 ) 8 0 .1 0 .39 0 .390 .39

(2)
P (X 7 .2 ) P (X 7 7 .2 7 ) P (X 7 0 .5 ) 1 0 .6 0 .39 0 .390 .39
I 1 N
N
(XI X )2
2 I 1
N
• 总体比率(总体成数)
P N1 N
第三章 抽样分布与参数估计
• 样本平均数 • 样本方差 • 样本标准差
n
Xi
x i1 n
n
(Xi x)2
s2 i1 n 1
s
• 样本比率(样本成数)
p n1 n
第三章 抽样分布与参数估计
• 样本统计量经常被用作估计总体参数。 • 点估计就是运用样本数据值计算出一个样本统计量的
• 抽样 • 从所研究的对象中随机取出一部分进行观察,由此获 得有关总体的信息。
第三章 抽样分布与参数估计
• 抽样分为概率抽样与非概率抽样 • 其中概率抽样分为:
纯随机抽样、等距抽样、分层抽样、整群抽样
第三章 抽样分布与参数估计 常用的总体参数
• 总体平均数 • 总体方差 • 总体标准差
N
XI
• (1)计算样本均值大于7.5的概率, • (2)计算样本均值小于7.2的概率, • (3)计算样本均值在7.2和7.5之间的概率。
第三章 抽样分布与参数估计
• 样本容量大于30,由中心极限定理可知,样本均值 x的分
布近似均值为
7,标准 X = 差 n=23 .2= 10.39的正态分

X~N(7,0.392)
• 建立起 Z 值与样本均值之间的数值关系.
• 不论该总体服从何种分布,只要当样本容量足够大
( n 3)0 ,样本均值的分布都大致服从正态分布。
X ~ N(,2 )
n
第三章 抽样分布与参数估计
• 例:某高校在研究生入学体检后对所有结果进 行统计分析,得出其中某一项指标的均值是7, 标准差2.2。从这个总体中随机选取一个容量 为31的样本。
X
10
5
8
7
10
10
5
8
7
10
{10,10} 10
{5,10} 7.5
{8,10} 9
{7,10} 8.5
{10,10} 10
{10,5 } 7.5
{5,5} 5
{8,5} 6.5
{7,5} 6
{10,5} 7.5
{10,8} 9
{5,8} 6.5
{8,8} 8
{7,8} 7.5
{10,8} 9
{10,7} 8.5
总体庞大,难以对总 体的全部元素进行 研究


检查具有破坏性
炮弹、灯管、砖等
第三章 抽样分布与参数估计
统计学基本概念
• 总体 (全体) Population • 所有感兴趣的对象
• 样本Sample • 总体的一部分
• 总体参数Pa• 关于样本的概括性度量
{5,7} 6
{8,7} 7.5
{7,7} 7
{10,7} 8.5
{10,10} 10
{5,10} 7.5
{8,10} 9
{7,10} 8.5
{10,10} 10
第三章 抽样分布与参数估计
• 一个样本统计量的概率分布被称为该统计量的抽样分 布
样本均值抽样分布 直方图
10
150.00%
100.00% 5
第三章 抽样分布与参数估计 样本均值的抽样分布
• 一个总体10,5,8,7,10 ,
频率
3 2 1 0
5
直方图
150.00% 100.00% 50.00% 0.00% 7 9 11 其他 接收
频率 累积 %
第三章 抽样分布与参数估计
• 有放回(with replacement)抽样
{Xi, X j}
相关文档
最新文档