桥梁工程抗震设计课件
重大社2023《建筑结构抗震设计(第3版)》教学课件2
![重大社2023《建筑结构抗震设计(第3版)》教学课件2](https://img.taocdn.com/s3/m/2c9d3bed85254b35eefdc8d376eeaeaad1f3169e.png)
地球介质 (含场地)
工程结构
地震 地面运动
结构 地震响应
Acc.(m/s2)
400 300 200 100
0 -100 -200 -300
0
5
10
15
20
25
30
35
40
t(sec.)
(1)描述地震动的物理量有加速度、速度和位移。
汶川地震什邡八角站记录的NS方向加速度时程
(2)地震动包括两个水平分量和一个竖向分量。
a (t ) (m/s2)
10.0 5.0 0.0 -5.0 -10.0
0 10.0 5.0
10.0 东西分量
5.0
南北分量
a (t ) (m/s2)
地震动是一个具有随机性的不规则0.0 时间历程 -5.0
-10.0
20
40
60
80 t (s) 100
120
140
160
0
20
40
60
80 t (s) 100
与临界阻尼比ζ=1相应的阻尼系数 为cr=2wm,称为临界阻尼系数
一般工程结构均为欠阻尼, (ζ=0.01~0.1)
2023年9月6日
2.4.1 单自由度弹性体系的地震反应分析
确定系数c1、c2
x(t) (c1 cos't c2 sin 't)et
考虑初始条件: x0 x(0), x0 x(0)
xg
•
质点所受冲击力为:P
m 0
xg
0 dt dt
dt
•
质点在0~dt时间内的加速度为:
抗震设计中如何把握地震动的 特性?如何保证所考虑地震动 的合理性?
2.2 地震动特性
桥梁工程中桥梁抗震设计
![桥梁工程中桥梁抗震设计](https://img.taocdn.com/s3/m/6fd060f4ac51f01dc281e53a580216fc700a53b2.png)
路桥科技169 桥梁工程中桥梁抗震设计鲍 伟(安徽省公路桥梁工程有限公司,安徽 合肥 230031)摘要:近年来,我国社会经济快速发展,桥梁工程的建设速度也不断加快。
桥梁的抗震设计也成为一个重要的话题,尤其是处于地震带的区域,更要在桥梁工程的设计时考虑好抗震设计,确保桥梁在使用过程中的安全性与可靠性,满足我国社会经济的发展需求。
基于此,本文将对桥梁工程中桥梁抗震设计进行分析。
关键词:桥梁工程;桥梁抗震设计;桥梁设计1 桥梁震害分析 在城市现代化发展进程中,城市人口形成了聚集状态,加快了区域内经济发展进程。
交通网络应用在城市命脉主体中,旨在全面提升城市抗震性能,加强桥梁抗震效果设计。
依据最近几十年实际发生的地震灾害事件,桥梁工程在地震灾害中极易遭受破坏,作为抗震防灾的关键环节。
桥梁工程在发生破坏时,将会阻断受灾区的交通线路,提升灾区救援困难,使地震引起的关联灾害持续深化,增加了救灾、灾后建设等工作的难度。
与此同时,桥梁在社会组织作为交通性基础设施,在建设时投入大量资金,极具公共性,灾后运维管理存在多重阻碍。
为此,加强桥梁抗震设计,尽可能地减少桥梁在地震中产生的损失问题,保障公共区域的基本安全。
结合往期地震中桥梁震害的具体情况,大致分为四种破坏类型:第一种桥梁工程震害为上部结构破坏,第二种为支座破坏,第三种为下部结构破坏,第四种基础结构破坏。
具体表现为:(1)会对地基产生破坏。
当地震发生后,地基是最先遭受冲击的部分,如果桥梁工程的地基土质松软,对地基的破坏力会更大。
(2)会对桥墩产生破坏。
在发生地震后,桥墩会在地震波的影响下出现偏移,这时就会剪断支座锚栓,极有可能造成桥段断裂或者桥梁坍塌。
(3)会对桥梁支座产生破坏。
当地震发生时,地震的破坏力会得到支座的阻挡与消除,虽然支座能对桥梁主体进行保护,但支座被破坏后,也会发生落梁的问题。
所以,需要做好抗震设计,降低地震产生的破坏。
2 桥梁工程中桥梁抗震设计 地震灾害所导致的桥梁垮塌、墩柱破坏、支座位移过大等震害将直接影响路网畅通甚至造成严重生命和财产损失,这引发了建设行业对抗震设计理念和设计方法的重视。
城市桥梁抗震设计规范(CJJ 166-2011)宣贯讲义(同济 李建中)
![城市桥梁抗震设计规范(CJJ 166-2011)宣贯讲义(同济 李建中)](https://img.taocdn.com/s3/m/c22b110b844769eae109ed05.png)
抗剪强度不足:横向箍筋配置不足; (剪切破坏)
能力保护设计
1 桥梁地震桥梁震害与抗震设计
基础破坏
土破坏: 断裂通过 基础移位、沉降 避让 沙土液化 防液化措施
桩身破坏: 能力保护设计
2 89规范局限性与新规范编写要点
2.1 89规范局限性
采用的设防水准均为50年基准期10%超越概率,重要结构物的设防 等级用重要性系数来体现。 单一水准设防,采用基于强度一阶段设计;弹性地震力采 用综合影响系数折减考虑结构进入塑性性能
的连接构件
1.0
5
3 柱式桥墩或薄壁墩与基础之间的连接构件
1.0
注:对于C、D类桥,其基础设计力的修正系数取为R=1,或采用能力保护方法计 算基础设计力;在计算 桥墩的剪力设计值时,修正系数R=1或采用能力保护方法计算剪力设计值。
2 89规范局限性与新规范编写要点
2.2新规范编写要点
适用于抗震设防烈度为6度、7度、8度和9度地区的城市桥梁抗 震设计。抗震设防烈度大于9度地区的桥梁和有特殊要求的大 跨径或特殊桥梁,其抗震设计应作专门研究,按有关专门规定 执行。
力
力
_
F_e Fu
Fu Fe
Fu= CzFe
y
u
位移
力 Fe
_ Fu
=
Fu CzFe
y
u
位移
y
u
Fu= CzFe 位移
2 89规范局限性与新规范编写要点
采用综合影响系数考虑结构进入塑性(延性),但塑性铰保证延性 的细节构造不明确,综合影响系数取值模糊并且明显不合理。
对于墩柱抗剪、基础抗震计算和验算没有规定,实际应用时存在错 误。没有引入能力保护设计思想;
桥梁结构抗震设计PPT120页
![桥梁结构抗震设计PPT120页](https://img.taocdn.com/s3/m/4db8fa700029bd64793e2c39.png)
图中的横坐标为结构自振周期T(以秒为单位)
根据设计反应谱计算的单质点地震作用为:
FE CiCzkhG CiCz1G(5 3)
kh | xg |max / g
G mg
| xg x* |max / | xg |max (5 4)
1 kh
式中,水平地震系数Kh和动力放大系数β的乘积即为 水平地震作用影响系数α1 (无量纲);
i 1
i 1
第i个质点的地震作用Fi为
Fi CiCzkH 11Gi Hi / H (5 10)
5.2
桥桥梁梁按按反反应应谱谱理理论论的的计计算算方方法法
四. 桥梁构件截面抗震验算--按反应谱方法
1、抗震荷载效应组合下截面验算设计表示式:
Sd b Rd
Sd Sd g Gk ; q Qdk ;
H≤12米时 整个结构采用 1 H>12米时 随结构高度而变,底面
1,墩台顶面及顶面以上 2 ;中间任一点处的 I 1 Hi / H0
式中H对于桥墩为墩顶面至基底(即基础底面)的高 度(以米计),对于桥台则自桥台道碴槽顶面至基底 的高度。
Hi为验算截面以上任一质量的重心至墩台底(即基础 底面)的高度(以米计)。
桥梁按反应谱理论的计算方法
表5—2 综合影响系数Cz
桥梁和墩、台类型
桥墩计算高度H (米)
H 10≤H< 20≤H<
<10 20
30
柔性 柱式桥墩、排架桩墩、薄 墩 壁桥墩
梁
实体 墩
天然基础和沉井基础上实 体桥墩
桥
多排桩基础上的桥墩
0.3 0
0.2 0
0.2 5
0.33 0.25 0.30
0.35 0.30 0.35
桥梁抗震设计示例
![桥梁抗震设计示例](https://img.taocdn.com/s3/m/103a37c42b160b4e767fcfea.png)
M R 5998 kN.m M
可见,墩柱截面的抗弯强度不满足要求,必须增加截面纵筋。在截面上下缘各增加一
排 1025 钢筋,如图 7.5 所示。根据计算,该截面的抗弯强度为:
M R 7641 kN.m M
图7.5 截面配筋修改图
桥梁抗震
7.2.3 固定墩的延性能力检算
1 固定墩的延性需求确定 Cz 0.3
7.2.1 设计地震力计算
ms
P CiCz (KhGs id Ri )
K
图7.4 自振特性计算简图
桥梁抗震
K
2
3EI l3
3 3.0 1.35 1.53
2
12 73
1.99 105 kN / m
(I 偏安全考虑,不折减)
体系的自振周期为:
反应谱值:
T 2
ms 2 K
3899 .5 1.99 105
设计
• 减隔震概念设计 • 两种对策比较
桥梁抗震
7.1 基本设计资料
图7.1 某一联高架桥立面图(单位:cm)
中墩每一立柱顶设置一个固 定盆式支座,其它立柱顶设 置单向活动盆式支座。
桥梁上部结构的质量为:
图7.2 某一联高架桥横断面图(单位:cm)
ms (0.618 2.5 0.13 18 2.5 2.6) 110 35.45 110 3899 .5t
0.00427
比
f’l2 /f’பைடு நூலகம்
co
对于矩形截面,有效约束系数K e 可取为 0.75,则:
f 'lx / f 'c K e x f yh / f 'c 0.75 0.00427 340 /(30 0.85) 0.0427
桥梁工程抗震设计课件
![桥梁工程抗震设计课件](https://img.taocdn.com/s3/m/82d9ecfa1b37f111f18583d049649b6648d709a8.png)
桥梁工程抗震设计
桥梁工程抗震设计
桥梁工程抗震设计
5.3.7 限制条件
• 受功能要求、路线走向以及桥址地质条件等因素的制约,
桥梁结构体系的选择受到很大的限制。
(1)路线走向
• 对桥梁抗震结构体系的要求常常与路线走向相矛盾。从抗
震角度来说,理想的桥梁结构应是越简单、越规则越好。 因此,希望桥梁是直的,各跨分布均匀,各墩的高度基本 相同。但这通常难于做到,例如在城市桥梁中,为了适应 路线走向,大量采用弯、坡、斜桥和立交桥。
对场地进行处理,以降低液化的可能性。
• 在结构布局上,一种是采用简支梁,并通过构造措施连接
在一起,以防落梁。这种方法在过去的地震中并没有特别 成功。
• 另一种替代的方案是确保上部结构与桥墩完全固结,并使
桩基础穿过易液化土层直达坚硬的土层里。这种方案可以 避免由于液化导致地基失效的可能性。
桥梁工程抗震设计
• 结构抗震性能:木结构、钢结构的抗震性能较优,钢
筋混凝土结构次之,砖、石及素混凝土结构最差。
• 预期采用新一代建筑材料建造的结构抗震性能优良。
桥梁工程抗震设计
一、无约束混凝土(普通混凝土)
• 从试验中发现,各种反复荷载(变形)下无约束混凝土的
包络线都与单调加载的全曲线十分接近;
• 而且,由包络线上的峰值点给出的抗压强度和峰值应变也
否则,应采取措施增强基础抗侧移的刚度和 加大基础埋置深度;对于小桥,可在两桥台基 础之间设置支撑梁或采用浆砌片(块)石满铺河 床。
桥梁工程抗震设计
(3)在软弱粘性土层、液化土层或严重不均匀土 层上建桥时,还应根据具体情况采取下列措施:
① 换土或采用砂桩。换土方法适用于软弱粘性土 层或液化土层较薄、埋藏较浅的情况,先将软弱 粘性土层或可液化土挖去,然后分层回填非液化 土,并逐层夯实。
城镇桥梁抗震设计规范讲座
![城镇桥梁抗震设计规范讲座](https://img.taocdn.com/s3/m/e1812322240c844768eaeed0.png)
容 规镇
讨 范桥 论梁 稿抗 主震 要设
1
桥梁是生命线系统工程中的重要组成部分,在抗震救灾中,公路交通运输网更是 抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节。
1998年3月1日《中华人民共和国防震减灾法》颁布实施,对我国的防震减灾工作 提出了更为明确的要求和相应的具体规定。
表 3.3.3 桥梁抗震设计方法选用
地震烈度
乙
丙
丁
6度
B
C
C
7 度、8 度和 9 度地区
A
A
B
8
3.4 桥梁抗震体系 3.4.1 桥梁结构抗震体系应满足以下要求:
1 有可靠和稳定传递地震作用到地基的途径; 2 有效的位移约束,能可靠地控制结构地震位移, 避免发生落梁破坏; 3 有明确、可靠的地震能量耗散部位; 4 应避免因部分结构构件的破坏而导致整个结构 丧失抗震能力或对重力荷载的承载能力。 3.4.2 采用 A 类抗震设计方法的桥梁,可采用的抗震体 系有以下二种类型: 1 类型Ⅰ:地震作用下,桥梁的弹塑性变形、耗能部位 位于桥墩,如图 3.4.2 所示;上部结构、上下部结构连接 构件(支座)以及桥梁基础,不受损伤,在弹性范围。 2 类型Ⅱ:地震作用下,桥梁的耗能部位位于桥梁上、 下部连接构件(支座、耗能装置);上部结构、桥墩和 基础不受损伤、在弹性范围。
3
城市桥梁抗震设计规范(讨论稿)
3.1.2 本规范采用两级抗震设防,在E1和E2地震作用下,根据本规范第 3.1.1条的重要性分类,各类桥梁抗震设防目标见表3.1.2。
桥梁 类别 甲
乙
丙 丁
表3.1.2 城市桥梁抗震设防目标
E1地震作用
E2地震作用
震后使用要求
桥梁抗震设计
![桥梁抗震设计](https://img.taocdn.com/s3/m/eb7fdabc0342a8956bec0975f46527d3240ca6c9.png)
桥梁抗震设计桥梁作为城市交通的重要组成部分,承担着连接两岸的重要任务。
然而,在地震频发的地区,桥梁的抗震性能显得尤为重要。
本文将探讨桥梁抗震设计的关键要素,以及现代技术在提升桥梁抗震性能方面的应用。
一、地震对桥梁的影响地震是自然界中一种不可预知的自然灾害,它给桥梁结构带来了巨大的挑战。
地震力的作用下,桥梁结构可能发生严重的破坏,甚至导致垮塌,给交通运输带来严重影响。
因此,桥梁抗震设计显得尤为重要。
二、桥梁抗震设计要素1. 结构设计:桥梁结构设计是抗震设计的基础,其中包括桥梁的布局、材料选择和连接方式等。
合理的结构设计能够提升桥梁的抗震性能,降低破坏风险。
2. 地震动力学参数:在桥梁抗震设计中,需要考虑到地震动力学参数,如地震波的峰值加速度、频谱特征等。
这些参数可以通过历史地震数据和地震模拟计算获得。
3. 桥墩设计:桥墩是桥梁结构中承受地震荷载的重要部分。
在桥墩设计中,需要考虑墩身的尺寸、形状和材料等因素,以提高桥梁的抗震性能。
4. 受力分析:通过受力分析,可以确定桥梁各部分在地震作用下的应力分布情况。
合理的受力分析可以指导桥梁设计过程中的结构优化。
5. 抗震设计指标:抗震设计指标是评估桥梁抗震性能的重要依据,常用的指标包括破坏概率、损伤指标和位移响应等。
通过合理选择抗震设计指标,可以有效提升桥梁的安全性能。
三、现代技术在桥梁抗震设计中的应用1. 桥梁模型试验:桥梁模型试验是评估桥梁抗震性能的有效手段。
通过搭建桥梁模型,并对其进行地震模拟测试,可以获取桥梁在地震作用下的响应情况,从而指导实际工程中的设计与施工。
2. 数值模拟分析:借助计算机技术,可以对桥梁结构进行数值模拟分析。
通过建立桥梁的有限元模型,结合地震动力学参数,可以模拟桥梁在地震中的响应情况,并对其进行优化设计。
3. 新材料应用:新材料的应用对桥梁抗震性能具有重要影响。
例如,高性能混凝土、钢材以及纤维增强复合材料等,都可以提升桥梁的抗震能力。
地震作用下桥梁结构的抗震设计
![地震作用下桥梁结构的抗震设计](https://img.taocdn.com/s3/m/e946b6dfed3a87c24028915f804d2b160b4e86f7.png)
地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
第4章 桥梁墩台的抗震计算1
![第4章 桥梁墩台的抗震计算1](https://img.taocdn.com/s3/m/8a43e02abd64783e09122be0.png)
主要内容第四章桥梁抗震设计
《铁路工程抗震设计规范》的适用范围:
位于常水位水深超过5m的桥墩,应计入地震动水压力对抗震检算内容及方法抗震验算规定
3)建筑材料容许应力的修正系数,应符合下表的规定。
桥墩地震作用计算
图中,
h——基础底面位于地面以下或一般冲刷线以下的深度(m)。
(二)地震力计算公式
β——
根据场地类别和地震动参数区划确定的地震动反应谱特
桥梁抗震设计实例
桥梁抗震设计实例
桥梁抗震设计实例
185.1261.8418.990.6261.8418.990.62
⎡⎢⎢
=⎢⎢⎣桥梁抗震设计实例
桥梁抗震设计实例
地基变形引起的各质点水平位移
桥梁抗震设计实例桥梁抗震设计实例。
地震对桥梁建造的影响与抗震设计
![地震对桥梁建造的影响与抗震设计](https://img.taocdn.com/s3/m/15b5e1a9534de518964bcf84b9d528ea81c72fea.png)
地震动的频谱特性与桥梁结构的自振 频率相互作用,影响结构的振动幅度 和破坏程度。
桥梁结构的振动响应
地震波引起的地面运动使桥梁结构产 生振动,包括水平、垂直和扭转振动 。
地震引起的桥梁破坏形式
01
02
03
支座破坏
地震作用下,桥梁支座可 能出现位移、剪切破坏或 脱落等现象。
桥墩破坏
桥墩是桥梁的主要承重构 件,在地震中可能因弯曲 、剪切或扭转而破坏。
未来发展趋势与挑战
智能化抗震设计
利用人工智能、大数据等技术,实现桥梁抗震设 计的智能化和精细化,提高设计效率和准确性。
减震隔震技术创新
发展新型减震隔震技术,如摩擦摆隔震支座、金 属耗能装置等,降低地震对桥梁结构的破坏力。
高性能材料应用
研发和应用高性能材料,如超高性能混凝土、碳 纤维复合材料等,提高桥梁结构的抗震性能和耐 久性。
旧金山-奥克兰海湾大桥
该桥在1989年洛马普列塔地震中受损,但经过抗震加固和 改造,成功抵御了后续地震,展现了先进的抗震设计理念 和工程技术。
日本东名高速公路
在多次地震中,该高速公路的桥梁结构表现稳定,得益于 其采用的隔震支座和耗能装置等先进技术,有效降低了地 震对桥梁的破坏。
中国港珠澳大桥
作为世界最长的跨海大桥,港珠澳大桥在设计中充分考虑 了地震因素,采用了高性能混凝土、纤维增强塑料等先进 材料,提高了桥梁的抗震性能。
03
桥梁结构抗震措施
基础隔震技术
隔震沟和隔震槽
在桥梁墩台下方设置隔震沟或隔 震槽,通过阻断地震波的传播路 径来减小地震力对桥梁结构的影
响。
隔震支座
采用特殊设计的隔震支座,如橡 胶隔震支座、滑动隔震支座等, 以延长桥梁结构的自振周期,降
抗震结构设计 桥梁结构的抗震设计PPT课件
![抗震结构设计 桥梁结构的抗震设计PPT课件](https://img.taocdn.com/s3/m/d8292cd5763231126fdb11c1.png)
桥梁抗震分析可采用的计算方法
地震作用
桥梁分类
E1 E2
B类
规则
非规则
SM/MM SM/MM
MM/TH THC类规则非则SM/MM SM/MM
MM/TH TH
D类
规则 非规则
SM/MM
MM
-
-
注:TH为线性或非线性时程计算方法;SM为单振型反应谱或功率谱方法;MM 为多振型反应谱或功率谱方法。
第18页/共49页
第3页/共49页
4.桥梁基础震害 桥梁基础震害原因主要:地基失效(如地基滑移和地基液化)。 桩基础的震害除了地基失效外,也有上部结构传下来的惯性力而引起的桩基剪切 和弯曲破坏,更有由于桩基设计存在缺陷而导致的,如桩基深入稳定土层的长度不 能满足要求,或桩基顶与承台连接强度不够等。 桩基能越过可液化土层,比无桩基础的抗震能力要强。桩基础的震害具有一定的 隐蔽性,不容易被发现,当发现上部结构被破坏时,可能桩基础的破坏已相当严重 了。
桥梁抗震 设防类别
A类 B类
C类 D类
各设防类别桥梁的抗震设防目标
设防目标
E1地震作用
E2地震作用
可发生局部轻微损伤,不需修复或经简单修复可继续使用
一般不受损 坏或不需修 复可继续使
用
应保证不致倒塌或产生严重结构损伤,经临时加固后可供维持应急 交通使用
应保证不致倒塌或产生严重结构损伤,经临时加固后可供维持应急 交通使用
图8-3 7度及7度以上地区常规桥梁结构构件抗震设计流程
第15页/共49页
结点配筋构造
二、抗震概念设计
根据震害和工程的抗震经验等,总结出来的基本抗震设计思想和原则,并能 够正确适用地解决结构的整体设计方案、细部构造和材料使用,以达到合理的 抗震设计。
新规范桥梁抗震设计详解
![新规范桥梁抗震设计详解](https://img.taocdn.com/s3/m/dfb1dcec08a1284ac8504394.png)
5
二、桥梁场地概况
该桥位于某7度区二级公路上,水平向基本地震加速度值 0.15g。按《中国地震动反应谱特征周期区划图》查的场 地特征周期为:0.4s。经现场勘察测得场地土质和剪切波 速如下:
6
三、基本参数确定
1、判别桥梁类型:
二级公路大桥,故该桥为B类桥梁。
7
三、基本参数确定
2、确定设防烈度:
预应力
钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa
25
空间动力分析模型的建立
----参见规范6.3
边界条件:各个连接构件(支座、伸
缩缝)及地基刚度的正确模拟。 支座: 普通板式橡胶支座:弹性连接输入刚度。 固定盆式支座:主从约束或弹性连接。 活动盆式支座:理想弹塑性连接单元。 滑板支座:双线性连接单元。 摩擦摆隔震支座、钢阻尼器、液体 阻尼器:程序专门的模拟单元。
2、根据 M 曲线确定屈服弯矩 、屈服曲率 一般采用几何作图法(包括等能量法、通 用屈服弯矩法等)将确定的 M 曲线近视简 化为双折线型或三折线型骨架模型,规范 7.4.4推荐的是几何作图法中的等能量法将 M 曲线转换为双折线骨架模型。
40
MM法
y 4.2、civil程序计算 M y 、
41
《桥梁抗震课件》PPT课件
![《桥梁抗震课件》PPT课件](https://img.taocdn.com/s3/m/ec71e6f0227916888586d797.png)
• 在列车制动和行车移动荷 载作用下,天兴洲大桥主
梁纵向振动响应混合控制
结果。从图中可见,天兴
洲大桥因列车制动和行车
移动荷载所引起的主梁纵
向最大振动位移响应由控 制前的149.2mm下降至 控制后的28.7 mm,控 制效果明显优于液体粘滞
阻尼器的控制效果,且保
证了天兴洲大桥的正常运 行和平安。
• 2000 次循环风荷载下的疲劳往复测试,取最大风荷载下的最大速度。
相比之下
• 列车制动引起的主梁 的纵向振动响应具有 位移大、速度很小的 特点,这就使得在需 要液体粘滞阻尼器产 生较大控制力以抑制 主梁纵向振动位移的 时候它却因纵向振动 速度太小而无法发挥 其应有的作用,从而 无法有效抑制列车制 动引起的主梁的纵向 振动响应。
主梁纵向最大振动位移 响应仅由控制前的149 .2 mm下降至控制后 的129.9 mm。可以 看出,液体粘滞阻尼 器对天兴洲大桥的纵 向列车制动及行车移 动荷载引起的主梁纵 向振动响应的控制作 用是十分有限的。
赖特的构思
• 基地上表土24m厚度以下是18~21m的软土,这层土壤似 乎是上天的恩赐--它是减弱冲击波的最正确减震器。
• 那么为什么不将房屋浮在它上面呢?为什么不采取象军舰
浮在海面上那样,以软而薄的非常轻的构造来取代以尽可
能增加重量的方法所取得的刚度呢?而且为什么不把房屋
造成象双手相合手心向内手指穿插那样来顺应运动呢,以
一。柔性的框架构造:墙倒框架不倒
• 中国的传统木构造,具有框架 构造的种种优越性,如“墙倒 屋不塌〞的成效,但其柔性的 连接,又使得它具有相当的弹 性和一定程度的自我恢复能力。
二。整体浮筏式根底、斗栱、榫卯:隔震消能的关键构件
• 斗栱能起到“减震器〞的作用,而且被各 种水平构件连接起来的斗栱群能够形成一 个整体性很强的“刚盘〞,按照“能者多 劳〞的原那么把地震力传递给有抗震能力 的柱子,大大提高了整个构造的平安性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 桥梁加固技术主要可分为两大类,一种是传统的 针对缺陷构件通过加固提高其强度、变形能力的 加固技术;
• 另一种是减隔震技术,是通过整体降低地震对结 构构件的抗震需求使当前构件能够承担给定的地 震需求。
• 对于具体的桥梁加固,宜经过详细分析比较来决 定选取这两种方法的一种或二者结合的加固方法。
桥梁工程抗震设计
桥梁抗震加固参考以下规范 • 《公路桥梁加固设计规范》 • 《公路桥梁加固施工技术规范》
桥梁工程抗震设计
5.5.1 桥梁场地加固
• 危险的场地条件在地震作用下对任何桥梁结构都 会产生很大的力或相对位移。这样的场地条件包 括临近活动断层、不稳定的陡坡和可能液化的砂 土或淤泥砂土。
• 对于这些条件的加固技术措施是很少的,且很少 能够得到现场证实。
9 承台倾覆抗力的提高可通过扩大承台的平面尺寸、增加 抗拉桩(桩数)、直接锚固到地基或基岩等措施实现。
桥梁工程抗震设计
5.5.3 桥台加固
1 当桥台的破坏影响重要桥梁的使用功能时,宜考 虑对桥台进行加固。
• 桥台破坏很少导致桥梁结构倒塌的,除非是发生 液化破坏。桥台挡土的侧向移动可能影响桥梁的 使用功能,这对于特别重要的桥梁可能是不允许 的。
桥梁工程抗震设计
桥梁工程抗震设计
5.5.4 墩柱的加固
既有桥梁的钢筋混凝土桥墩、柱弯曲强度、延性变形能力 和剪切强度的抗震能力的加固可采用钢管外包加固方法、 复合材料加固方法、加大截面方法等一些加固技术进行。 • 钢管外包技术:最初是针对圆柱桥墩提出。采用两块半
圆形的钢管现场沿竖向接缝焊接,钢管内径比桥墩直径 略大,空隙中灌注添加微膨胀剂的水泥沙浆,钢管的下 端与承台顶面有3-5cm 的间隙,防止桥墩在地震作用下 弯曲时因钢管的受压而增加截面的弯曲强度。 • 钢管提供有效的被动约束应力,这种力来自于混凝土受 压而引起的膨胀受到钢管环向强度和刚度的限制。
桥梁工程抗震设计
• 桥台水平位移可影响桥梁结构的使用功能。可采 用各种可能的锚固方式进行改善,常用的有两种 锚固方式,一种是直接锚固在桥台后的填土;
• 另一种是重力式锚固,包括设置在上部结构或桥 台的拉杆和锚固块。重力式锚杆就是上部结构或 桥台与锚固物之间的连系杆,锚固物可能是钻孔 内浇筑的柱体,或者是距桥台后面一段距离的重 量很大的梁。
桥梁工程抗震设计
桥梁工程抗震设计
பைடு நூலகம்
3 通过增加承台的厚度将增加截面的抗弯高度,从而提高 了承台正弯矩区的抗弯强度。如果还不够,还可通过加 宽承台,并需在底部增设钢筋。
4 如果暗销的抗拉能力不足以满足加固要求,可采用扩大 承台并在承台周边的整个厚度内设置箍筋来代替暗销。
5 可以通过设置预应力筋来提高承台的正、负弯矩区的抗 弯强度。
桥梁工程抗震设计
• 复合材料加固方法:通过外包组合纤维/环氧树 脂套管来实现约束,效果已经通过试验的研究得 到证实。通过水泥浆加压到1.7Mpa,可以达到一 定的主动约束效果。
• 该技术试验研究表明可有效提高圆形桥墩的弯曲 延性能力和抗剪强度。现场安装和耐久性等因素 是否能满足要求是该项技术能否应用的关键。
2 提高承台的弯曲强度可以通过在既有承台表面覆盖一层 钢筋混凝土,并通过暗销与原有承台连接起来。顶部钢 筋应主要布置在一倍的加固承台厚度范围内,承台表面 在浇注混凝土前应凿毛表面以利于剪力的传递,承台新、 旧混凝土之间应设置足够的暗销以保证之间的剪力传递。 如果暗销还用于承受剪力,则暗销应穿过原有承台的厚 度,并应可靠锚固。
桥梁工程抗震设计
1 桥梁穿过断层或很接近断层时,应尽可能通过加固提高 结构的位移能力,应对下部结构塑性铰区增加额外的箍 筋以提高延性变形能力。
2 在每个桥墩、桥台处可用弹性支座替换原有支座支撑上 部结构,这些支座允许发生很大变形且具有一定的自复位 能力。
3 对于预计可能发生液化的桥址场地,一是清除或改进有 液化可能的场地条件,二是提高结构承受大位移的能力, 通过这两方面来提高结构的抗震性能。
• 此外,在桥台支座处设置限制相对变形的约束装 置可能会增大桥台的受力。因此,如果这些情况 存在,则桥台应该进行加固。
桥梁工程抗震设计
2 可通过设置桥台搭板,改善因填土破坏或桥台破坏导致 的桥台过分沉降。
3 为了减少震后桥台的不连续性,搭板至少长3 米,搭板应 按简支跨计算,钢筋混凝土板应跨越全长。
设计桥台搭板目的是改善因桥台填土沉降造成的上部结构 与桥台的不连续性。搭板应该与桥台连接。下图给出加利 福尼亚形式和新西兰形式的沉降板。
桥梁工程抗震设计
桥梁工程抗震设计
4 桥台平行于或垂直于桥台面的位移可通过设置锚杆得到
改善。由于台后填土在地震作用下可能会移动,锚杆应 延伸到台后足够深度,以避免台后填土移动而使锚固失 效。设计的锚固方式提供的极限能力应该大于或等于地 震作用下上部结构传给桥台的剪力或桥台背后的土力。
桥梁工程抗震设计
桥梁工程抗震设计
• 对于矩形桥墩,为了提供类似于圆柱桥墩的连续的约束 效果,建议加固时采用椭圆形的钢管,较大空隙可灌注 与原桥墩(柱)同标号的混凝土。加固后的矩形桥墩具 有很好的弯曲和抗剪能力。
• 矩形钢管对提高桥墩、柱的抗剪能力是有效的。但桥墩 进行抗剪加固时必须保证足够的弯曲延性能力,但矩形 钢管提供的延性能力很差。
桥梁工程抗震设计
6 通过增加承台厚度、穿过承台的竖向钢筋或预应力筋、 水平向穿过承台的预应力筋等来提高承台的抗剪能力。
桥梁工程抗震设计
7 承台/墩柱节点区的剪切强度加固,可采用与承台剪切强 度不足所使用的加固方法相同,加固的有效性宜通过试 验来验证。
8 墩、柱纵筋锚固不足的加固,可采用将承台直接锚固到 地基或增加承台中的抗拉桩,但加固的有效性需要通过 试验验证。
桥梁工程抗震设计
4 当桥址场地的稳定性存在问题时,可采用以下几种加固 方法进行加固:
• 降低地下水位; • 通过振捣压实、振动替换使土壤密实; • 压浆。
桥梁工程抗震设计
5.5.2 基础加固
1 当进行基础构件的加固时,应特别注意考虑土的特性, 基础构件的分析和设计应考虑土的强度和各种可能的破 坏模式。