专题_解析几何中的动点轨迹问题

合集下载

高三解析几何:动点轨迹方程

高三解析几何:动点轨迹方程

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数:3 学员姓名: 辅导科目:数学 学科教师:授课类型 T (动点轨迹方程) C (求解轨迹方法) T (轨迹求解提高)授课日期及时段教学内容一、同步知识梳理知识点1: 曲线的方程和方程的曲线:一般地,如果某曲线C 与方程(,)0F x y =之间有以下两个关系: ① 曲线C 上的点的坐标都方程(,)0F x y =的解;② 以(,)0F x y =方程的解为坐标的点都是曲线C 上的点,此时,把方程(,)0F x y =; 叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线.知识点2:求轨迹方程的一般步骤:(以提问为主,让学生回答)① 建立适当的直角坐标系(如果已给出,本步骤省略); ② 设曲线上任意一点的坐标为(),x y ; ③ 根据曲线上点所适合的条件,写出等式; ④ 用坐标,x y 表示这个等式(方程),并化简;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点(在沪教版中,这一步不作要求).【上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。

】 知识点3:求曲线的方程的常用方法:(老师引导,让学生回答)① 直接法:直接根据动点满足的几何条件或等量关系列出等式,整理化简后即得动点的轨迹方程,0AC BC ⋅=,求动点AB 的垂直平分线为轴,建立平面直角坐标系,则A 的坐标分别为是轨迹上任意一点,则有(AC x =+(BC x =-0AC BC ⋅=,可得.整理得22x y +=(通过典型例题的讲解,让学生总结和掌握利用直接法求解曲线的轨迹方程的5个步骤,同时强调那一步最重要,及每步需注意的问题例2:若直角三角形解:以线段AB 轴,建立平面直角坐标系,则A ,分别为(2,0-(AC x =+(BC x =-0AC BC ⋅=,即)2±.(强调求解曲线的轨迹方程时,一定要结合实际意义和题目的已知条件写出自变量的取值范围.) 题型3:代入法求曲线方程例1:已知ABC ∆|1MP =,所以1.通过练习让学生理解和掌握什么条件下用代入法求轨迹方程,及用代入法求曲线的轨迹方程的方法和步骤OP mOA nOB =+,可得2,所以()(222x y y +-【现在的大多数孩子对于字母不敏感,更甚者对于字母多的题目产生畏惧,在含参数较多的题目中,要让孩子明①-②可得12121212()()()()042x x x x y y y y -+-++=而(1,1)P 为线段AB 的中点,故有12122,2x x y y +=+=所以12121212()2()210422x x y y y y x x -⨯-⨯-+=⇒=--,即12AB k =-所以所求直线方程为11(1)2y x -=--化简可得230x y +-= 三、课堂达标检测1、平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

高考动点轨迹问题专题讲解

高考动点轨迹问题专题讲解

高考动点轨迹问题专题讲解一.专题内容:求动点的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式(, )P x y ,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >)9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 .10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF AE =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=. ∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k++=--+, ∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±.5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0M N A F =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得k =. 故存在直线l:3y x =±+,使得四边形OAPB 是矩形.8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02x x y -⨯+-⨯-=, 即所求点P 的轨迹方程为24x y =.(2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x t y t y t y y t y y =++=+++ 2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线5y x =和5y x =-上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -.∵OP OA OB =+,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(y x =) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:||1010AB =⇒=,又11y x =,22y x =,则1221)y y x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d,已知||2PF =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ① 设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +b k0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k 3>或1k 2<,且k≠0. ∴k的取值范围是113(,(,0)(0,)(,)22-∞-+∞.…………………14分17.已知向量OA =(2,0),OC ==(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EF E F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 点评:这是一道重要的数学问题,几乎是高考数学每年的必考内容之一,此类问题一定要“大胆假设,细心求解”,根据题目要求先将题目所涉及的未知量都可以设出来,然后根据题目把所有的条件都变成等式,一定可以求出来,当然求的过程中,采取适当的小技巧,例如化简或适当分类讨论,可以大为简化过程,而且会尽量多多得分,同时这一类题目也需要很强的计算能力.。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

解析几何中的轨迹问题

解析几何中的轨迹问题

解析几何中的轨迹问题求轨迹方程的一般方法:1、待定系数法(定义法):如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线、圆、直线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2、直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3、代入法(相关点轨迹法):如果动点(,)P x y 的运动是由另外某一点'00(,)P x y 的运动引发的,而点'00(,)P x y 的运动规律已知,(该点坐标满足某已知曲线方程),则用动点(,)P x y 表示出相关点'00(,)P x y 的坐标,然后把'00(,)P x y 的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

4、几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

5、参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

6、交轨法(两条动曲线交点的轨迹):在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

课前练习:1、已知两点M (-2,0)、N (2,0),点P 坐标平面内的动点,满足0MN MP MN MP ⋅+⋅=uuu r uuu r uuu r uuu r,则动点P的轨迹方程为( )A 、28y x = B 、28y x =- C 、24y x = D 、24y x =-2、 P 是椭圆5922y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )A 、159422=+y xB 、154922=+y xC 、120922=+y x D 、53622y x +3、圆心在抛物线)0(22>=y x y 上,且与抛物线的准线及x 轴都相切的圆的方程是( )A 、041222=---+y x y xB 、01222=+-++y x y xC 、01222=+--+y x y xD 、041222=+--+y x y x 4、一动圆M 与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:( )A 、抛物线B 、圆C 、椭圆D 、双曲线一支5、在平面直角坐标系中,A (3,1)、B (-1,3),若点C 满足12OC OA OB λλ=+uuu r uu r uu u r ,其中1λ、2λ是实数,且1λ+21λ=,则点C 的轨迹方程是典型例题:例1、(1)已知ABC ∆的顶点A 、B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+则点C 的轨迹方程(2)△ABC 的顶点为A(5-,0)、B(5,0),△ABC 的内切圆圆心在直线3=x 上, 则顶点C 的轨迹方程是( )A 、116922=-y x B 、191622=-y x C 、116922=-y x )3(>x D 、191622=-y x )4(>x 例2、过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

专题01 解析几何中的轨迹方程问题(原卷版)

专题01 解析几何中的轨迹方程问题(原卷版)

专题01 解析几何中的轨迹方程问题常见考点考点一 直接法典例1.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M 的轨迹为曲线C . (1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .变式1-1.在直角坐标系xOy 中,已知动点P 与平面上两定点(1,0)M -,(1,0)N 连线的斜率的积为定值4-,设点P 的轨迹为C .(1)求出曲线C 的方程;(2)设直线1y kx =+与C 交于A ,B 两点,若OA OB ⊥,求k 的值.变式1-2.若点(),M x y 到直线40x +=的距离比它到点()1,0N 的距离大3. (1)求点M 的轨迹方程;(2)过点N 的直线1l 与点M 的轨迹曲线交于A ,B 两点,过点N 的直线2l 与点M 的轨迹曲线交于C ,D 两点,若12l l ⊥,求11AB CD +的值.变式1-3.在平面直角坐标系中,动点P 到点()2,0F 的距离和它到直线9:2l x =的距离之比为23.动点P 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么图形;(2)已知曲线C 与x 轴的交点分别为,A B ,点M 是曲线C 上异于,A B 的一点,直线MA 的斜率为1k ,直线MB 的斜率为2k ,求证:12k k 为定值.考点二 相关点法典例2.已知圆()222:0O x y r r +=>与直线y x =+(1)求圆O 的标准方程;(2)若线段AB 的端点A 在圆O 上运动,端点B 的坐标是()6,0,求线段AB 的中点M 的轨迹方程.变式2-1.已知圆M 经过原点和点()3,1-,且它的圆心M 在直线250x y +-=上. (1)求圆M 的方程;(2)若点D 为圆M 上的动点,定点()2,0C ,求线段CD 的中点P 的轨迹方程.变式2-2.已知抛物线24C y x =: 的焦点为F . 点A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程.变式2-3.已知圆()2221:0C x y r r +=>与直线01:2l y x =相切,点A 为圆1C 上一动点,AN x ⊥轴于点N ,且动点M 满足()2222OM AM ON +=-,设动点M 的轨迹为曲线C ,求动点M 的轨迹曲线C 的方程.考点三 定义法典例3.设圆222150x y x ++-=的圆心为1C ﹐直线l 过点()21,0C 且与x 轴不重合,直线l 交圆1C 于A ,B 两点.过2C 作1AC 的平行线交1BC 于点P . (1)求点P 的轨迹方程;(2)设点P 的轨迹为曲线E ,直线l 交E 于M ,N 两点,C 在线段MN 上运动,原点O 关于C 的对称点为Q ,求四边形OMQN 面积的取值范围;变式3-1.已知在平面直角坐标系中,圆A :22570x y ++-=的圆心为A ,过点B ,0)任作直线l 交圆A 于点C 、D ,过点B 作与AD 平行的直线交AC 于点E . (1)求动点E 的轨迹方程;(2)设动点E 的轨迹与y 轴正半轴交于点P ,过点P 且斜率为k 1,k 2的两直线交动点E 的轨迹于M 、N 两点(异于点P ),若126k k +=,证明:直线MN 过定点.变式3-2.已知P 为圆22:2150M x y x +--=上一动点,点()1,0N -,线段PN 的垂直平分线交线段PM 于点Q .(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点N 作曲线C 的两条互相垂直的弦,两条弦的中点分別为E ,F ,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,说明理由.变式3-3.在平面直角坐标系xOy 中,动圆P 与圆221:28C x y x ++=内切,与圆222:20C x y x +-=外切.(1)求动圆圆心P 的轨迹方程E ;(2)若直线(1)x t t =≠与轨迹E 交于A ,B 两点,直线2BC 交轨迹E 于另一个点M ,连接AM 交x 轴于点N ,试探究;是否存在t ,使得2MC N 的面积等于94?若存在,求出全部的t 值;若不存在,请说明理由.考点四 消参法与交轨法典例4.如图所示,过双曲线C :2213y x -=的左焦点F 作直线l 与双曲线交于P 、Q ,以OP 、OQ为邻边作平行四边形OPMQ ,求点M 的轨迹方程.变式4-1.已知椭圆22184x y +=,点A ,B 分别是它的左、右顶点,一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,求直线AP 与直线BQ 的交点M 的轨迹方程.变式4-2.已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --= (1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.变式4-3.已知A ( -3,0),B (3,0),四边形AMBN 的对角线交于点D (1,0),kMA 与kMB 的等比中项为13,直线AM ,NB 相交于点P . (1)求点M 的轨迹C 的方程;(2)若点N 也在C 上,点P 是否在定直线上?如果是,求出该直线,如果不是,请说明理由.巩固练习练习一 直接法1.在平面直角坐标系xOy 中,A (2,0),B (-2,0). (1)若|P A |=|PB |,求点P 的轨迹方程;(2)若2|P A |=|PB |,且对于任意的点P ,Q ,均有OQ =λOP ,记点Q 的轨迹方程为C ,若C 与x 轴有一个交点为A ,求λ的值.2.已知动点P 到点(0,1)的距离与到直线y =2的距离的比值为2,动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线y =kx +1与曲线C 交于A ,B 两点,点M (0,2),证明:直线MA ,MB 的斜率之和为0.3.已知点A ,B 的坐标分别为()2,0-,()2,0,直线AM ,BM 相交于点M ,且它们的斜率之积是34-,求点M 的轨迹方程.4.设动点M 到定点(3,0)F 的距离与它到直线4:3l x =的距离之比为32,求点M 的轨迹方程.练习二 相关点法5.已知圆C 经过点A (3,1)、B (-1,3),且它的圆心在直线320x y --=上. (1)求圆C 的标准方程;(2)若点D 为圆C 上任意一点,且点E (3,0),求线段ED 中点M 的轨迹方程.6.已知Rt ABC 的斜边为AB ,且(1,0),(3,0)A B -.求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.7.在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足2PD MD =,动点M 形成的轨迹为曲线C .求曲线C 的方程.8.圆O :x 2+y 2=9上的动点P 在x 轴、y 轴上的射影分别是P 1,P 2,点M 满足122133OM OP OP =+. (1)求点M 的轨迹C 的方程;(2)点A (0,1),B (0,﹣3),过点B 的直线与轨迹C 交于点S ,N ,且直线AS 、AN 的斜率k AS ,k AN 存在,求证:k AS •k AN 为常数.练习三 定义法9.在平面直角坐标系xOy 中,点P 是圆1F :22(16x y +=上的动点,定点2F ,线段2PF 的垂直平分线交1PF 于Q ,记Q 点的轨迹为E . (Ⅰ)求轨迹E 的方程;(Ⅰ)若动直线l :(0)y kx m k =+≠与轨迹E 交于不同的两点M 、N ,点A 在轨迹E 上,且四边形OMAN 为平行四边形.证明:四边形OMAN 的面积为定值.10.已知圆A :(x +1)2+y 2=16,圆C 过点B (1,0)且与圆A 相切,设圆心C 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅰ)过点B 作两条互相垂直的直线l 1,l 2,直线l 1与E 交于M ,N 两点,直线l 2与圆A 交于P ,Q 两点,求MN PQ的取值范围.11.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.12.在直角坐标系xOy 中,动圆P 与圆Q :22(2)1x y -+=外切,且圆P 与直线1x =-相切,记动圆圆心P 的轨迹为曲线C .求曲线C 的轨迹方程.练习四 消参法与交轨法13.设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于点A ,B ,O 是坐标原点,点P 满足()12OP OA OB =+,点N 的坐标为11,22⎛⎫⎪⎝⎭,当l 绕点M 旋转时,求:(1)动点P 的轨迹方程; (2)NP 的最小值与最大值.14.已知椭圆C :2222x y a b +=1(a >b >0)经过点1),且离心率为2.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为12-.若动点P 满足2OP OM ON =+,求点P 的轨迹方程.15.已知抛物线C :212y x =,过点()1,1Q 的动直线与抛物线C 交于不同的两点A 、B ,分别以A 、B 为切点作抛物线的切线1l 、2l ,直线1l 、2l 交于点P . (1)求动点P 的轨迹方程;(2)求PAB △面积的最小值,并求出此时直线AB 的方程.16.设M 是椭圆C :221124x y +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N为椭圆C 上异于M 的另一点,且MN ⅠMQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.。

动点轨迹求法(六部分全)

动点轨迹求法(六部分全)

动点轨迹求法一考点分析解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等.二命题趋势解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一.三知识网络四考点对接1 直接法:用直接法求轨迹方程的步骤:(1)恰当地建立直角坐标系(如已经建立,此步可以省略);(2)设动点P(x,y)为轨迹上任意一点;(3)用动点坐标P(x,y)表示问题中的几何关系,列出等式关系;(4)化简并整理得轨迹方程。

注意:如果含有参数,则必须进行讨论。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题学大苏分教研中心 周坤轨迹方程的探求是解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。

解答这类问题,需要善于揭示问题的内部规律及知识之间的相互联系。

本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。

OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。

()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩, 2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即:22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =,设长为2的线段AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,, ()()131113QM x y QB t t =--=+-+-,,,, ////PM PAQM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA P A N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x ay y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -= 22221112221y x x a b a a-∴=-= 2212221y b x a a=- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,224M x y y +=-当圆与定圆内切时,,224M x y y +=+当圆与定圆内切时, 224x y y ∴+=±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC r MC r ⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r⎧=-⎪⎨=-⎪⎩ 12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义, ()()()()2222113004530045AF BF =--+-==-+-=,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,2422213a c AB a c b ======,,,,,()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

解析几何(动点轨迹求法)

解析几何(动点轨迹求法)

动点轨迹的求法从近年高考题说起:1、(15年广东理科)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线:(4)L y k x 与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1)由22650x y x +-+=得()2234x y -+=,∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥,∴ 11C M AB k k ⋅=-即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且5,33E ⎛ ⎝⎭,5,33F ⎛- ⎝⎭,又直线L :(y k x =-当直线L 与圆C 32=得34k =±上图可知当3325,,447k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦时,直线L :y k =2、(2013上海)已知抛物线24C y x =: 的焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程。

解:设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,. 即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax xy y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.3、(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 解:由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12|x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=动点轨迹常用求法:一、待定系数法它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

微专题19 立体几何中的动点及其轨迹问题

微专题19 立体几何中的动点及其轨迹问题

微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。

解析几何动点问题

解析几何动点问题

解析几何动点问题解析几何中的动点问题,就像是一场在坐标平面上的奇妙冒险。

你看啊,动点就像是一个调皮的小精灵,在平面里自由自在地跑来跑去。

那这个小精灵的轨迹是啥呢?这可就像猜谜语一样有趣又烧脑。

比如说,咱们有个点在一个圆上动,那这个圆就像是小精灵的游乐场,它被限制在这个圆的范围内活动。

这时候,咱们可能就会想,这个动点和圆上其他的元素,像是圆心啊,半径啊,会有什么样的关系呢?这就好比在游乐场里,小精灵和游乐设施之间的互动一样。

再说说直线上的动点吧。

一条直线就像一条长长的轨道,动点在这条轨道上滑行。

如果又有其他的几何图形和这条直线相关联,那就像在轨道旁边又建了些建筑啥的。

这个动点在滑动的时候,和这些建筑之间的距离啊,角度啊,就会产生各种各样的变化。

这多像生活里的场景啊,就好比你在马路上骑自行车,路边有各种店铺,你和店铺之间的距离、你看店铺的角度,都会随着你骑车的位置改变而改变。

当遇到动点问题的时候,咱们得学会用方程来描述这个调皮的小精灵的运动轨迹。

这方程啊,就像是小精灵的行动指南。

要是动点在椭圆里动,椭圆的方程就像是这个特殊游乐场的入场规则一样。

我们通过这个方程,就能知道这个动点在不同位置的坐标关系。

这就像你知道了游乐场里每个游乐设施的位置坐标,你就能准确地找到小精灵可能出现的位置。

有时候啊,我们还得求动点到某个定点或者定直线的距离最值。

这就像是小精灵在它的活动范围内,离某个特定的地方最远或者最近是在哪里。

比如说,在一个矩形区域里有个动点,你要找它离矩形某个角最远的地方,这就需要我们仔细地分析动点的运动趋势和这个角的位置关系。

这就好比你在一个房间里找一个东西放在哪里离门最远,你得考虑房间的形状和门的位置。

而且啊,动点问题常常会涉及到向量。

向量就像是小精灵的运动方向和力量大小的指示牌。

如果有个动点是按照某个向量的方向运动的,那这个向量就会给我们很多关于动点运动的信息。

这就像你在风里放风筝,风的方向和大小就像是向量,风筝就是那个动点,风决定了风筝怎么飞,向量决定了动点怎么动。

立体几何中动点轨迹问题的几种解题方法_柳双生

立体几何中动点轨迹问题的几种解题方法_柳双生

六、 试用猜想证明法求解
猜想 证 明 法 也 是 解 决 空 间 轨 迹 问 题 的 一 种 可 以 尝试着使用的 方 法 , 这 往 往 是 以 立 体 几 何 的 定 理 及 空间图形的定义为依据 , 大胆猜想 , 然后通过验证 , 以
z ∩

P O y α
α , 过 点 P 且 与 直 线 l 成 30o 角 的
三、 应用坐标法求解
用代数方法研究几何问题是解析几何的本质 , 通 过 建 立 直 角 坐 标 系,设 出 动 点 坐 标,将 几 何 问 题 转 化 成代数问题来解决 , 这是探求空间图形中的轨迹问题 常用的一种方法 . 例 3. 正方体 ABCD-A1B1C1D1 的 棱 长 为 1 , 点 P 是 平 面 ABCD 上 的 动 点 , 且 动 点 P 到 直 线 A1D1 的 距 离与动点 P 到直线 AB 的 距 离 的 平 方 和 为 2 , 则 动 点 的轨迹是 ( )

A. 一条线段
M
D1 A1
B. 椭圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
分 析 : 在 平 面 A1B1C1D1 中 , 过 点 P 作 PM ⊥A1D1, 垂 足 为 点 M, 在 平 面 ADD1A1 中 过 点 M 作 MN ∥AA1, 交 AD 于 点 N , 又 因 为 PN=PB ,MN=BB1, 所 以 △ PMN
直线交面 α 于点 M , 若点 M 的轨 迹为一圆锥曲线 , 求其离心率 .
M x
达到解决的目的 . 例 6. 在正四棱锥 S-ABCD 中 ,E 是 BC 的 中 点 , 点 P 在侧面 △SCD 内及 其 边 界 上 运 动 , 并 且 总 是 保 持 PE⊥AC , 则动点 P 的轨迹是 ( )

专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程及答案

专题26  求动点轨迹方程  微点2  定义法求动点的轨迹方程及答案

专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程 【微点综述】在解析几何教学中,求动点的轨迹方程历来是教学重要专题之一,而曲线的定义反映了曲线的本质属性,它是相应标准方程和几何性质的“源”,也是解题的重要工具,如果能在求动点的轨迹方程中充分利用曲线的定义,常常会达到言简意明、异曲同工的效果.下面就其应用作一些举例介绍. 一、求轨迹方程——定义法若某动点的轨迹符合某一基本轨迹如直线、圆、圆锥曲线的定义,则可以利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义等直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 二、常见情形1.到线段两端点相等的点的轨迹是该线段的垂直平分线. 2.到角的两边相等的点的轨迹是该角的平分线及外角平分线.3.平面内到一定点的距离等于定长的点的轨迹是圆,定点为圆心,定长为圆的半径. 4.平面内一个动点P 到两个定点12,F F 的距离之和等于常数(12122,PF PF a F F a +=>为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为长轴长的椭圆. 5.平面内一个动点P 到两个定点12,F F 的距离之差的绝对值等于常数(12122,PF PF a F F a -=<为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为实轴长的双曲线.6.平面内与一定点F 和一条定直线l (l 不经过点F )距离之比对于常数()0e e >的动点的轨迹是圆锥曲线.当01e <<时为椭圆;当1e >时为双曲线;当1e =时为抛物线.其中,定点F 叫做圆锥曲线的焦点,定直线l 叫做圆锥曲线的准线. 三、应用举例1.利用圆的定义求轨迹方程 例11.一条定长为2a 的线段AB ,点A 在x 轴上,点B 在y 轴上滑动.求线段AB 的中点P的轨迹方程.2.利用椭圆的定义求轨迹方程 例2(2022·黑龙江·哈尔滨三中二模)2.已知圆1C :22(3)1x y ++=,2C :22(3)81x y -+=,动圆C 与圆1C ,2C 都相切,则动圆C 的圆心轨迹E 的方程为________________l 与曲线E 仅有三个公共点,依次为P ,Q ,R ,则||PR 的值为________. 例3(2019年高考江苏卷17(1))3.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.3.利用双曲线的定义求轨迹方程 例4(2021年新高考I 卷21(1))4.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.例55.如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.4.利用抛物线的定义求轨迹方程 例6(2014年高考福建文21)6.已知曲线Γ上的点到点(0,1)F 的距离比它到直线=3y -的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 例7(2013年高考全国II 理11)7.设抛物线2:2(0)C y px p =>的焦点为 F ,点M 在 C 上,5MF =,若以 MF 为直径的圆过点(0,2),则C 的方程为 A .24y x =或 28y x = B .22y x =或 28y x = C .24y x =或 216y x = D .22y x =或 216y x =5.解析几何与立体几何交汇轨迹问题例8(2022·全国·模拟预测)8.如图,正方体1111ABCD A B C D -的棱长为点Q 为棱1AA 上一点,点P 在底面ABCD上,且PQ =M 为线段PQ 的中点,则线段1C M 长度的最小值是( )A .2B .6C .2D .6例9(2022·新疆·二模)9.在棱长为6的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足+=PA PB PD 的最大值为____________. 小结:定义是事物本质属性的概括和反映,圆锥曲线的几乎每个性质和问题都是由定义派生出来.对于这些常见的圆锥曲线问题,领悟定义优先的思想,把定量的计算和定性的分析有机地结合起来,往往能准确判断、简化运算,灵活解题.我们解决问题,总是希望寻找到最简单又不失本质的原理与方法,从以上案例中,不难发现解决圆锥曲线问题的首选策略是回归定义,优先考虑定义是求解圆锥曲线有关问题的第一思路,运用定义往往能使问题快捷求解. 【强化训练】(2022·四川凉山·三模)10.已知抛物线2:4C y x =,焦点为F ,点M 是抛物线C 上的动点,过点F 作直线()1210a x y a -+-+=的垂线,垂足为P ,则MFMP +的最小值为( )A B C .5D .3(2022·浙江·慈溪中学模拟预测)11.在直角坐标系xOy 中,已知点A ,B 分别是定直线y kx =和(0)=->y kx k 上的动点,若AOB 的面积为定值S ,则线段AB 的中点的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线(2022·上海青浦·三模)12.如图,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD APB ∠的最大值为__________.(2022·山西晋城·三模)13.如图,正方体1111ABCD A B C D -的棱长为4,点M 是棱AB 的中点,点P 是底面ABCD 内的动点,且P 到平面11ADD A 的距离等于线段PM 的长度,则线段1B P 长度的最小值为______.(2022·江苏·南京市宁海中学模拟预测)14.已知平面上一动点P 到定点()1,0F 的距离与它到定直线=1x -的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.(2022·广东·模拟预测)15.平面直角坐标系内有一定点(1,0)F -,定直线:5l x =-,设动点P 到定直线的距离为d ,且满足||PF d =(1)求动点P 的轨迹方程;(2)直线:3m y kx =-过定点Q ,与动点P 的轨迹交于不同的两点M ,N ,动点P 的轨迹与y 的负半轴交于A 点,直线,AM AN 分别交直线=3y -于点H 、K ,若||||35QH QK +≤,求k 的取值范围.(2022·云南师大附中高三月考)16.已知定圆()221:11F x y ++=,圆()222:125F x y -+=,动圆M 与定圆1F 外切,与定圆2F 内切.(1)求动圆圆心M 的轨迹方程E ;(2)直线l 的方向向量()1,2a =-,直线l 与曲线E 交于A 、B 两点,若AOB ∠为锐角(其中O 为坐标原点),求直线l 纵截距m 的取值范围.17.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. (2018年高考江苏卷18(1))18.在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;①直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程. 19.已知点()0,2F ,过点()02P ,-且与y 轴垂直的直线为1l ,2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点1122(,),(,)A x y B x y ,且2211x x m =-+ (m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC的面积是否为定值.若为定值,求出ABC 的面积;若不是定值,说明理由.参考答案:1.222x y a +=【分析】设AB 的中点坐标为(,)x y ,当A 、B 均不与原点重合时,由直角三角形斜边的中线等于斜边的一半可得AB 中点轨迹,验证A 、B 有一点与原点重合时成立得答案. 【详解】当OA OB ⊥时,12OP AB =,即,OP a P =∴的轨迹是以原点为圆心,a 为半径的圆,∴方程是222x y a +=(0x ≠且0y ≠).当A 点为原点时,()0,B a 或()0,B a -,当B 点在原点时,()0A a ,或(),0A a -,P ∴点的轨迹方程是222x y a +=.2. 2212516x y +=,221167x y += 6011 【分析】根据动圆C 与圆1C ,2C 的位置关系,分情况讨论可知动圆C 的圆心轨迹为椭圆,然后计算,,a b c 即可,然后假设直线方程,根据直线于曲线E 的位置关系以及弦长公式,可得结果.【详解】设动圆C 的半径为R 由题可知:当动圆C 与圆1C 外切,与圆2C 内切时 则112122=+11069CC R CC CC C C CC R ⎧⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以210=5,3=⇒=a a c ,故22216b a c =-=所以动圆C 的圆心轨迹E 的方程为2212516x y +=当动圆C 与圆1C 内切,与圆2C 内切时 则112122=1869CC R CC CC C C CC R ⎧-⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以28=4,3=⇒=a a c ,故2227b a c =-= 所以动圆C 的圆心轨迹E 的方程为221167x y +=所以动圆C的圆心轨迹E的方程为2212516x y+=,221167x y+=设直线l方程为y m=+,()()1122,,,P x y R x y由直线l与曲线E仅有三个公共点则直线l与221167x y+=相切于点Q,与2212516x y+=相交于点P,R所以2222139161120167x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩则()()22243916112039∆=-⨯⨯-=⇒=b b22221662540002516x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩212122540066-+==bx x x x则PR则PR239=b代入可得6011=PR故答案为:2212516x y+=,221167x y+=;6011【点睛】本题考查椭圆的定义,以及弦长公式,考验分析问题能力以及计算能力,属中档题. 3.(1)22143x y+=;(2)3(1,)2E--.【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2①x轴,所以DF232=,因此2a=DF1+DF2=4,从而a=2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=. (2)解法一:由(1)知,椭圆C :22143x y +=,a =2, 因为AF 2①x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2. 由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得=1x -或137x =. 又因为E 是线段BF 2与椭圆的交点,所以=1x -.将=1x -代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而①BF 1E =①B .因为F 2A =F 2B ,所以①A =①B , 所以①A =①BF 1E ,从而EF 1①F 2A . 因为AF 2①x 轴,所以EF 1①x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 4.(1)()221116y x x -=≥;(2)0.【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥. (2)[方法一] 【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩, 化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x -=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=. [方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩, 联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==, 同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆. 设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得: []2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=, 其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.5.(1)1C 的方程为:2213y x -=;2C 的方程为22132y x+= (2)不存在,证明见解析【分析】(1)根据以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形得 121,1a c ==,分别将P 的坐标代入双曲线和椭圆方程,可求出双曲线和椭圆方程;(2)当直线l 垂直于x 轴时,求出,A B 的坐标,可以验证OA OB AB +≠;当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,代入双曲线方程,由韦达定理得到,A B 两个点的横坐标、纵坐标之间的关系,代入椭圆方程,根据判别式得到2223k m =-,利用韦达定理推出0OA OB ⋅≠,从而可推出OA OB AB +≠.(1)设2C 的焦距为22c ,因为1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.所以2122,22c a ==,从而121,1a c ==,因为点P ⎫⎪⎝⎭在双曲线22211y x b -=上,所以22121113b b -=⇒=⎝⎭, 所以1C 的方程为:2213y x -=.因为点P ⎫⎪⎝⎭在222222222:1(0)y x C a b a b +=>>上,所以22221314a b +=, 因为222222221b a c a =-=-,所以22221413(1)a a +=-,解得223a =,所以222b =, 所以2C 的方程为22132y x+=. (2)不存在符合题设条件的直线,证明如下:当直线l 垂直于x 轴时,因为l 与2C只有一个公共点,所以直线的方程为x =或x =当x,,AB所以22,23OA OB AB +==此时OA OB AB +≠,当x =OA OB AB +≠.当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,由 2213y kx my x =+⎧⎪⎨-=⎪⎩可得()2223230k x kmx m ----=,当l 与1C 相交于,A B 两点时,230k -≠,222(2)4(3)(3)0km k m ∆=-+-+>,即2230m k +->,设()()1122,,,A x y B x y ,则212122223,33km m x x x x k k ++==--, 于是()22222221212121222(3)2()()33k m k m y y kx m kx m k x x km x x m m k k+=++=+++=++-- 222333k m k -=-, 由22132y kx m y x =+⎧⎪⎨+=⎪⎩可得()222234260k x kmx m +++-=, 因为直线l 与2C 只有一个公共点,所以()()2222016423260k m k m ∆=⇒-+-=,化简可得2223k m =-,因此22222212122222333332303333m k m k m k OA OB x x y y k k k k +-+---⋅=+=+==≠----, 于是222222OA OB OA OB OA OB OA OB ++⋅≠+-⋅, 即22OA OB OA OB +≠-,所以OA OB AB +≠, 综上所述:OA OB AB +≠,所以不存在符合题目条件的直线l .6.(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析. 【详解】试题分析:(1)思路一:设(,)S x y 为曲线Γ上任意一点, 依题意可知曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 得到曲线Γ的方程为24x y =.思路二:设(,)S x y 为曲线Γ上任意一点,由(3)2y --==,化简即得.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,得20014y x =, 应用导数的几何意义,确定切线的斜率,进一步得切线l 的方程为2001124y x x x =-. 由20011240y x x x y ⎧=-⎪⎨⎪=⎩,得01(,0)2A x . 由20011243y x x x y ⎧=-⎪⎨⎪=⎩,得0016(,3)2M x x +. 根据(0,3)N ,得圆心0013(,3)4C x x +,半径0011324r MN x x ==+,由弦长,半径及圆心到直线的距离之关系,确定AB 试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点, 依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线,所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,则20014y x =, 由12y x '=,得切线l 的斜率001|2x x k y x =='=, 所以切线l 的方程为0001()2y y x x x -=-,即2001124y x x x =-. 由20011{240y x x x y =-=,得01(,0)2A x .由20011{243y x x x y =-=,得016(,3)2M x x +. 又(0,3)N ,所以圆心0013(,3)4C x x +,半径0011324r MN x x ==+,AB ===所以点P 在曲线Γ上运动时,线段AB 的长度不变.解法二:(1)设(,)S x y 为曲线Γ上任意一点,则(3)2y --==,依题意,点(,)S x y 只能在直线=3y -的上方,所以3y >-,1y =+,化简得,曲线Γ的方程为24x y =.(2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系. 7.C【详解】①抛物线C 方程为22(0)y px p =>,①焦点(,0)2pF ,设(,)M x y ,由抛物线性质52p MF x =+=,可得52p x =-,因为圆心是MF 的中点,所以根据中点坐标公式可得,圆心横坐标为52,由已知圆半径也为52,据此可知该圆与y 轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4, 即(5,4)2pM -,代入抛物线方程得210160p p -+=,所以p=2或p=8. 所以抛物线C 的方程为24y x =或216y x =. 故答案C.【点睛】本题主要考查了抛物线的定义与简单几何性质,圆的性质和解直角三角形等知识,属于中档题,本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),故将圆心的坐标表示出来,半径求出来之后再代入到抛物线中即可求出p 的值,从而求出抛物线的方程,因此正确运用圆的性质和抛物线的简单几何性质是解题的关键. 8.B【分析】根据给定条件,确定点M 所在的轨形迹图,再利用该图形的性质即可求解作答.【详解】依题意,正方体1111ABCD A B C D -,当点P 与A 不重合时,AQ AP ⊥,如图,因点M 为线段PQ 的中点,则12AM PQ ==P 与A 重合时,12AM PQ ==即无论点P ,Q 如何运动,总有AM M 在以点A 18球面上,而16AC ==,所以线段1C M 长度的最小值是16AC = 故选:B【点睛】结论点睛:球面一点与球面上的点间距离最小值等于这一点与球心距离减球半径;球面一点与球面上的点间距离最大值等于这一点与球心距离加球半径,9.【分析】先由+=PA PB P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,得到PD =)P θθ,求出PE 最大值,进而得到PD 的最大值.【详解】取AB 的中点O ,连接OC ,以AB 为x 轴,OC 为y 轴,建立直角坐标系,则点P 在以A ,B 为焦点的椭圆上,且3==a c ,①23b =,即椭圆方程为221123x y +=,易知点D 在底面ABC 上的射影恰为短轴端点E ,DE ==①==PD设)P θθ,由E ,则2222112cos 3sin 6sin 39sin 163⎛⎫=+-+=-++ ⎪⎝⎭PE θθθθ,①()2max16=PE,当1sin 3θ=-取得,①max ||==PD故答案为:【点睛】本题关键点在于确定点P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,将PD 的最大值转化为PE 最大值,再借助椭圆的参数方程求出PE 最大值即可. 10.A【分析】由条件确定点P 的轨迹,结合抛物线的定义,圆的性质求MF MP +的最小值. 【详解】① 抛物线C 的方程为24y x =, ① (1,0)F ,抛物线C 的准线方程为=1x -,① 方程()1210a x y a -+-+=可化为()1(1)2y a x -=--, ①()1210a x y a -+-+=过定点(2,1)B ,设(,)P x y ,设,F B 的中点为A ,则31,22A ⎛⎫⎪⎝⎭,因为FP BP ⊥,P 为垂足,①122PA FB ==,所以22311222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即点P 的轨迹为以A 过点M 作准线=1x -的垂线,垂足为1M ,则1MM MF =,① 1=MF MP MM MP ++,,又MP MA ≥,当且仅当,,M P A 三点共线且P 在,M A 之间时等号成立,① 1MF MP MM MA +≥+, 过点A 作准线=1x -的垂线,垂足为1A ,则115=2MM MA AA +≥,当且仅当1,,A M A 三点共线时等号成立,① MF MP +≥1,,,A M P A 四点共线且P 在,M A 之间时等号成立,所以MF MP +故选:A.11.C【分析】设()()1122,,,-A x kx B x kx ,由于AOB 的面积为定值,可得出12x x 为定值,设12=x x T ,设线段AB 的中点为M,因为()22224M M y x T k ⎛⎫-=± ⎪⎝⎭,即可得出线段AB 的中点的轨迹为双曲线.【详解】设()()1122,,,-A x kx B x kx ,则12||,||==OA OB .由于AOB 的面积为定值且sin AOB ∠为定值,从而12x x 为定值,设12=x x T . 设线段AB 的中点为M ,则122M x x x +=,()122-=M k x x y , 故()()()22221212122244⎛⎫-=+--==± ⎪⎝⎭M M y x x x x x x x T k 为定值, 从而线段AB 的中点的轨迹为双曲线. 故选:C. 12.3π 【分析】由题意,可知P 的椭圆轨迹,即可知当PA PB =,即P 在椭圆短轴的顶点上时APB ∠最大,即可求最大值.【详解】由题设,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD①P 是以CD 为轴,α相交的椭圆轨迹上,即以D 为中心,A B 为焦点,2b =24a ==为长轴长的椭圆上,如下图示,①由椭圆的性质知:当且仅当PA PB =,即P 在椭圆短轴的端点上时,APB ∠最大有3APB π∠=.故答案为:3π. 【点睛】关键点点睛:根据题设,确定P 在圆柱体在平面α的交线上,以D 为中心,A B 为焦点, 4为长轴长的椭圆.13.【分析】根据抛物线的定义,可知点P 是以M 为焦点,以AD 为准线的抛物线,然后根据空间中两点的距离来求解.【详解】由P 到平面11ADD A 的距离等于线段PM 的长度,可知点P 是以M 为焦点,以AD 为准线的抛物线.以AM 中点为坐标原点,建立如图所示的空间直角坐标系.()1,0,0M ()13,0,4B ,设(),0P x y ,点P 的方程为:()24,03y x x =≤≤1B P 当1x =时,1B P 长度最小为故答案为: 14.(1)24y x =;(2)λ的取值范围为(--.【分析】(1)根据曲线轨迹方程的定义求解;(2)设切线BP 的方程为12y k x +=(﹣)BQ 的方程为22y k x +=(﹣)12k k += 212284r k k r =--,再求出122y y t +==-,即得解.(1) 设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在,设切线BP 的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ 的方程为22y k x -+=()同理可得22222480r k r -++()﹣=, 所以12kk ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k +﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.【点睛】求取值范围常用的方法有:(1)函数法;(2)导数法;(3)基本不等式法;(4)基本不等式法. 要根据已知条件灵活选择方法求解. 15.(1)动点P 的轨迹方程为椭圆22154x y +=(2)[7,1)(1,7]--【分析】(1)设动点P 的坐标为(,)x y ,根据题意列式再化简方程求解即可;(2)设()()1122,,,M x y N x y ,再根据,AM AN 的直线方程得出,K H x x ,联立直线MN 与椭圆的方程,得出韦达定理与判别式中k 的范围,进而将韦达定理代入||||QH QK +化简可得||7k ≤,结合判别式中k 的范围即可得(1)设动点P 的坐标为(,)x y,因为||PF d ==2225(1)|5|x y x ⎡⎤++=+⎣⎦,整理得22154x y +=.所以动点P 的轨迹方程为椭圆22154x y +=. (2)设()()1122,,,M x y N x y ,由(1)可得A 的坐标为(0,2)-, 故直线112:2y AM y x x +=-,令=3y -,则112H xx y =-+,同理222K x x y =-+.直线:3MN y kx =-,由2234520y kx x y =-⎧⎨+=⎩,消去y 得()224530250k x kx +-+=, 故()22Δ900100450k k =-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >, 又1212||||22H K x xQH QK x x y y +=+=+++ ()()22121212222121212225030245455||253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --+++=+===---++-+++, ①||||35QH QK +≤, 故5||35k ≤,即||7k ≤, 综上,71k -≤<-或17k <≤. 所以k 的取值范围是[7,1)(1,7]--.16.(1)22198x y ;(2)⎛-⋃ ⎝⎭⎝. 【分析】(1)设动圆M 的半径为r ,分析得出1262MF MF +=>,利用椭圆的定义可知点M的轨迹为椭圆,确定该椭圆的焦点,求出a 、b 、c 的值,即可得出轨迹E 的方程; (2)设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,将直线l 的方程与椭圆的方程联立,列出韦达定理,由已知条件得出0OA OB ⋅>,结合0∆>可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)设动圆M 的半径为r ,由图可知,圆1F 内含于圆2F ,圆1F 的半径为1,圆2F 的半径为5.动圆M 与定圆1F 外切,则11MF r =+,动圆M 与定圆2F 内切,则25MF r =-, 由题意知:()()121562MF MF r r +=++-=>,根据椭圆定义,圆心M 的轨迹是以原点为中心,1F 、2F 为焦点,长半轴长3a =,半焦距1c =的椭圆,2228b a c ∴=-=,E ∴的方程为22198x y ;(2)直线l 的方向向量为()1,2a =-,所以直线l 的斜率为2-. 设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,由222198y x m x y =-+⎧⎪⎨+=⎪⎩得2244369720x mx m -+-=.直线l 与椭圆E 有两个交点,所以,()()22223644498288440m m m ∆=-⨯⨯-=->,解得m -<<由韦达定理可得12911m x x +=,21297244m x x -=,AOB ∠为锐角,()()1212121222OA OB x x y y x x x m x m ∴⋅=+=+-+-+()()22212122597223652401444736044m m m x x m x x m m m -==-⨯⋅-++-+=>,m ∴>m <综上,直线l 的纵截距m 的取值范围为⎛-⋃ ⎝⎭⎝. 【点睛】方法点睛:圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.17.(①)答案见解析;(①)⎡⎣.【详解】试题分析:(①)利用椭圆定义求方程;(①)把面积表示为关于斜率k 的函数,再求最值.试题解析:(①)因为,,故,所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为:().(①)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为()12,83.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.【考点】圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.18.(1)2214x y +=,223x y +=;(2)①;①y =+【分析】(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a ,b ,即得椭圆方程;(2)方法一:①先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标;①先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 【详解】(1)因为椭圆C 的焦点为()12,F F ,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12⎫⎪⎭在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎨=⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=. (2)[方法一]:【通性通法】代数法硬算①设直线l 与圆O 相切于()0000,(0,0)P x y x y >>,则22003x y +=,所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+. 由22000143x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=(*),因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=.因为00,0x y >,所以001x y =,因此,点P的坐标为. ①因为三角形OAB,所以12AB OP ⋅=,从而AB = 设()()1122,,,A x y B x y ,由(*)得1,20024x x y =+所以()()2221212AB x x y y =-+-()()222000222200048214y x x y x y -⎛⎫=+⋅ ⎪⎝⎭+. 因为22003x y +=,所以()()2202216232491x AB x-==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为⎝⎭. 综上,直线l的方程为y =+[方法二]: 圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭.因为原点到直线cos sin x y αα+=d r ==,所以与圆O 切于点P 的直线l的方程为cos sin x y αα+=由22cos sin 1,4x y x y αα⎧+=⎪⎨+=⎪⎩消去y ,得()()22213cos )124sin 0x x ααα+-+-=. ①因为直线l 与椭圆相切,所以()()22Δ16cos 23cos 20αα=-⋅--=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故cos α=,sin α=.所以,P点坐标为.①因为直线:cos sin l x y αα+=O 相切,所以OAB 中边ABr =,因为OAB,所以||AB = 设()()1122,,,A x y B x y ,由①知22121222124sin 84cos 13cos 13cos x x x x αααα-++===++||AB ==, 即64218cos 153cos 235cos 1000ααα-+-=,即()()()2226cos 5cos 13cos 200ααα---=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故25cos 6α=,所以cos αα==所以直线l的方程为y =+.[方法三]:直线参数方程与圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭,则与圆O 切于点P 的直线l 的参数方程为:πcos2πsin2x ty tαααα⎧⎛⎫=++⎪⎪⎪⎝⎭⎨⎛⎫⎪=++⎪⎪⎝⎭⎩(t为参数),即sincosx ty tαααα⎧=-⎪⎨=+⎪⎩(t为参数).代入2214xy+=,得关于t的一元二次方程()()22213cos cos)89cos0t tαααα+++-=.①因为直线l与椭圆相切,所以,()()222Δcos)413cos89cos0αααα=-+-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos(0,1)α∈,故cosα=,sinα=.所以,P点坐标为.①同方法二,略.【整体点评】(2)方法一:①直接利用直线与圆的位置关系,直线与椭圆的位置关系代数法硬算,即可解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标,是该题的通性通法;方法二:①利用圆的参数方程设出点)αα,进而表示出直线方程,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标;方法三:①利用圆的参数方程设出点)αα,将直线的参数方程表示出来,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标.19.(1)28x y=(2)是定值,23(1)64m+【分析】(1)由题意得FM MN=,结合抛物线的定义即可求得点M的轨迹方程;(2)设出直线AB的方程,联立抛物线求得AB的中点Q坐标,再联立切线与抛物线求出切点坐标,得到CQ x⊥轴,结合2211x x m=-+以及1212ABCCS Q x x=⋅-求得23(1)64ABCmS+=即可求解.(1)。

轨迹问题

轨迹问题

解析几何中的轨迹问题 一、定义法:1.已知M 是直线l :x =−1上的动点,点F 的坐标是(1,0),过M 的直线l′与l 垂直,并且l′与线段MF 的垂直平分线相交于点N . (Ⅰ)求点N 的轨迹C 的方程; 试题解析:(Ⅰ)依题意,|NM|=|NF|,即曲线C 为抛物线,其焦点为F(1,0),准线方程为l :x =−1,所以曲线C 的方程为y 2=4x .2.已知圆()22:11M x y ++=,圆()22:19N x y -+=,动圆ρ与圆M 外切并与圆N 内切,圆心ρ的轨迹为曲线C . (1)求C 的方程;试题解析:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =,设圆ρ的圆心为(),P x y ,半径为R .(1)因为圆ρ与圆M 外切并且与圆N 内切,所以由椭圆的定义可知,曲线C 是以,M N 为左、右焦点,长半轴长为2,短半轴长为顶点除外)……5分 3.动圆N 过点且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;试题解析: (1所以圆内切于圆,所以点的轨迹为椭圆,,所以1b =,所以轨迹的方程为 4.已知点M(-2,0),N(2,0),动点P 满足条件|PM|-|PN|=P 的轨迹为W . ⑴求W 的方程; 【解析】 试题分析:(1)利用双曲线的定义,可求W 的方程;(2)设点的坐标,利用向量的数量积公式,N M N E试题解析:(1)P 的轨迹是以M,N 为焦点的双曲线的右支,实半轴长,半焦距2c =,故徐半轴长W5.已知圆()22:116E x y ++=,点()1,0,F P 是圆E 上任意一点,线段PE 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹P 的方程; 【解析】试题分析:(1)利用定义法求椭圆方程;(2)通过设而不求法,列方程,解得2λ=.试题解析:(1)连结,故动点Q 的轨迹Γ是以,E F 为焦点,长轴长为4的椭圆可知2,1a c ==,则所以点Q 的轨迹Γ的方程为 6.已知椭圆的左、右焦点分别为21F F 、,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点. (1)求点的轨迹的方程;试题解析:解:(1)∵,∴点到定直线:的距离等于它到定点的距离,∴点的轨迹是以为准线,为焦点的抛物线. ∴点的轨迹的方程为.7.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点QF 1C 1F x 1l 2l 1l P 2PF 2l M M 2C ||||2MF MP =M 1l 2-=x )0,2(2F M 2C 1l 2F M 2C x y 82=()1,0A 和AP 上的点M ,满足0,2MQ AP AP AM ==.(1)当点P 在圆上运动时,求点Q 的轨迹方程; (1)由题意知MQ 中线段AP 的垂直平分线,所以,所以点Q 的轨迹是以点,CA 为焦点,焦距为28.在平面直角坐标系xOy 中,动点P 到点()1,0F的距离比它到轴的距离多1. (Ⅰ)求点的轨迹的方程;试题解析:(Ⅰ)依题意,点P 到点()1,0F 的距离与它到直线1x =-的距离相等,∴点P 的轨迹E 是以F 为焦点,以直线1x =-为准线的抛物线,∴E 的方程为24yx =;9、已知点M(-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相较于点P ,则P 点轨迹方程是 。

2014届高三数学解析几何难点专练:轨迹问题

2014届高三数学解析几何难点专练:轨迹问题

轨迹问题1.若动点P 到定点F (1,-1)的距离与到直线l :x -1=0的距离相等,则动点P 的轨迹是( D )A .椭圆B .双曲线C .抛物线D .直线解析:因为定点F (1,-1)在直线l :x -1=0上,所以轨迹为过F (1,-1)与直线l 垂直的一条直线,故选D.2.实数变量m ,n 满足m 2+n 2=1,则坐标(m +n ,mn )表示的点的轨迹是( D )A .抛物线B .椭圆C .双曲线的一支D .抛物线的一部分解析:设x =m +n ,y =mn ,则x 2=(m +n )2=m 2+n 2+2mn =1+2y ,且由于m ,n 的取值都有限制,因此变量x 的取值也有限制,所以点(m +n ,n )的轨迹为抛物线的一部分,故选D.3.一圆形纸片的圆心为点O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点.把纸片折叠使点A 与Q 重合,然后展平纸片,折痕与OA 交于P 点.当点A 运动时点P 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线解析:由条件知|PA |=|PQ |,则|PO |+|PQ |=|PO |+|PA |=R (R >|OQ |),所以点P 的轨迹是椭圆,故选B.4.已知点A (-1,0)和圆x 2+y 2=2上一动点P ,动点M 满足2MA →=AP →,则点M 的轨迹方程是( C )A .(x -3)2+y 2=1B .(x -32)2+y 2=1 C .(x -32)2+y 2=12 D .x 2+(y -32)2=12解析:设M (x ,y ),P (x 0,y 0),由2MA →=AP →,则2(-1-x,0-y )=(x 0+1,y 0-0),即(-2-2x ,-2y )=(x 0+1,y 0),所以⎩⎪⎨⎪⎧ x 0=-2x -3y 0=-2y .又点P (x 0,y 0)在圆x 2+y 2=2上,所以x 20+y 20=2,即(-2x -3)2+(-2y )2=2,化简得(x -32)2+y 2=12,故选C. 5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹方程为 x +2y -5=0 .解析:设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3).因为OC →=λ1OA →+λ2OB →,所以⎩⎪⎨⎪⎧ x =3λ1-λ2y =λ1+3λ2. 又λ1+λ2=1,所以x +2y -5=0.6.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q与点P 关于y 轴对称,O 为坐标原点.若BP →=2PA →,且OQ →·AB →=1,则点P 的轨迹方程是 32x 2+3y 2=1(x >0,y >0) .解析:设A (a,0),B (0,b ),a >0,b >0,由BP →=2PA →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0. 因为点Q 与点P 关于y 轴对称,所以点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入上式得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0). 7.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是 (x -2)2+(y +1)2=1 .解析:设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎪⎨⎪⎧ x =x 1+42y =y 1-22,即⎩⎪⎨⎪⎧ x 1=2x -4y 1=2y +2, 代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.8.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过点P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.解析:(1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎪⎨⎪⎧ a -c =1a +c =7,解得⎩⎪⎨⎪⎧a =4c =3,所以b 2=7, 所以椭圆C 的方程为x 216+y 27=1. (2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2. 而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112, 所以点M 的轨迹方程为y =±473(-4≤x ≤4),轨迹是两条平行于x 轴的线段. 9.已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹方程为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.解析:(1)两圆半径都为1,两圆心分别为C 1(0,-4)、C 2(0,2),由题意得CC 1=CC 2, 可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率等于零,故圆心C的轨迹是线段C1C2的垂直平分线,其方程为y=-1,即圆C的圆心轨迹L的方程为y=-1.(2)因为m=n,所以M(x,y)到直线y=-1的距离与到点F(0,1)的距离相等,故点M 的轨迹Q是以y=-1为准线,点F(0,1)为焦点,顶点在原点的抛物线,而p2=1,即p=2,所以,轨迹Q的方程是x2=4y.。

中考专题- 瓜豆原理中动点轨迹直线型最值问题以及逆向构造(解析版)

中考专题- 瓜豆原理中动点轨迹直线型最值问题以及逆向构造(解析版)

专题01 瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。

很多考生碰到此类试题常常无所适从,不知该从何下手。

动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.其实初中阶段如遇求轨迹长度仅有2种类型:“直线型”和“圆弧型”(两种类型中还会涉及点往返探究“往返型”),对于两大类型该如何断定,通常老师会让学生画图寻找3处以上的点来确定轨迹类型进而求出答案,对于填空选择题而言不外乎是个好方法,但如果要进行说理很多考生难以解释清楚。

瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.只要满足:1.两“动”,一“定”;2.两动点与定点的连线夹角是定角3.两动点到定点的距离比值是定值。

【引例】(选讲)如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠P AQ(当∠P AQ≤90°时,∠P AQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)如图,D、E是边长为4的等边三角形ABC上的中点,P为中线AD上的动点,把线段PC绕C点逆时针旋转60°,得到P’,EP’的最小值【分析】结合这个例题我们再来熟悉一下瓜豆模型第一层:点P’运动的轨迹是直线吗?答:是直线,可以通过P在A,D时,即始末位置时P’对应的位置得到直线轨迹,对于选填题,可找出从动点的始末位置,从而快速定位轨迹,若要说理则需要构造手拉手证明.第二层:点P’的运动长度和点P的运动长度相同吗?答:因为点P’与点P到定点C的距离相等,则有运动路径长度相等,若要说理则同样需要构造手拉手结构,通过全等证明.第三层:手拉手模型怎么构造?答:以旋转中心C为顶点进行构造,其实只要再找一组对应的主从点即可,简单来说就是从P点的轨迹即线段AD中再找一个点进行与P点类似的的旋转,比如把线段AD中的点A绕C点逆时针旋转60°,即为点B,连接BP’即可得到一组手拉手模型,虽然前面说是任意点,但一般来说我们选择一个特殊位置的点进行旋转后的点位置也是比较容易确定的,比如说点D进行旋转也是比较方便的.P'末P'第四层:分析∠CAP 和∠CBP ’答:由全等可知∠CAP =∠CBP ’,因为B 为定点,所以得到P ’轨迹为直线BP ’第五层:点P 和点P ’轨迹的夹角和旋转角的关系答:不难得出本题主动点与从动点轨迹的夹角等于旋转角,要注意的是如果旋转角是钝角,那么主动点与从动点轨迹的夹角等于旋转角的补角,这个在后面的例题中会出现.P'D'P'P'大气层:前面提到,如果是选填题,可以通过找从动点的始末位置快速定位轨迹线段,或者通过构造手拉手,通过全等或相似得出相等角然后得出轨迹,这两种方法都是先找出从动点P ’的轨迹,再作垂线段并求出垂线段的长得到最小值,那么还有其他方法吗?答:还可以对关键点进行旋转来构造手拉手模型,从而代换所求线段,构造如下.将点EC 绕点C 顺时针旋转60°,构造手拉手模型(SAS 全等型),从而得到P ’E =PG ,最小值即为点G 到AD 的距离.要注意的是因为要代换P ’E ,所以E 点的旋转方式应该是从P ’ P ,所以是顺时针旋转,求轨迹时的旋转方式则是P P ’,注意区分.策略一:找从动点轨迹 连接BP ’,由旋转可得,CP =C P’,∠P’CP =60°, ∵△ABC 是等边三角形, ∴AC =BC ,∠ACB =60°,P'∴∠ACB =∠PC P’, ∴△ACP ≌△BC P’(SAS ), ∴∠CBP ’=∠CAP ,∵边长为4的等边三角形ABC 中,P 是对称轴AD 上的一个动点, ∴∠CAP =30°,BD =2, ∴∠CB P’=30°,即点P’的运动轨迹为直线B P’, ∴当D P’⊥B P’时,EP’最短, 此时,EP’=12BD +ED =122 +2=3∴EP’的最小值是3策略二:代换所求线段将点E 绕C 点顺时针旋转60°得到点G ,连接PG ,CG ,EP ’由旋转可得EC = CG , CP =CP ’,∠P ’CP =60°,∠ECG =60°, ∴△ECG 是等边三角形,EG =2 ∵∠PCP ’=∠ECG ∴∠PCG =∠EC P ’ ∴△GCP ≌△ECP ’(SAS ), ∴EP ’=GP ,过点G 作AD 的垂线GH 垂足为H ,GH 即为所求.∵∠GEC=∠ACD∴HE∥DC∵∠GHD=∠ADC∴HG∥DC故G,E,H三点共线,则有HE∥DC又E是AC中点,分线段成比例可知H是AD中点∴HE=11 2DC='=21=3EP GP HE EG==++∴EP’的最小值是3总共提到了3种处理方式:1.找始末,定轨迹2.在轨迹上找一点旋转,构造手拉手模型,再通过角度相等得到从动点轨迹.3.反向旋转相关定点,构造手拉手模型,代换所求线段,即逆向构造.那么什么具体选择什么方法更合适呢?我们再看一道例题【例题2 宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】现在,我们分别用上面提到的3种策略来处理这个题目策略一:找始末,定轨迹我们分别以BE ,AE 为边,按题目要求构造等边三角形得到G 1与G 2,连接G 1与G 2得到点G 的轨迹,再作垂线CH 得到最小值.前面提到过从动点轨迹和主动点轨迹的夹角与旋转角有关,我们可以调用这个结论,得到∠AMG 1=60°,进一步得到△MBG 1为等腰三角形后,求CH 就不难了,可得5=2CHEBDAF2EBC2EBC2EBCM 2ECN2EC2EC策略二:在点F 轨迹上找一点进行旋转.我们分别对A ,B 顺时针旋转60°,构造手拉手模型,再通过角度相等得到从动点轨迹, 对A 点旋转会得到一个正切值为14的角,即1tan tan 4∠GME=∠AFE=,然后进一步算出最值或【简证】311202EM AE EN NEC IC ==⇒=︒⇒=∠,则5=2CH 对B 点旋转得到∠EMG =∠FBE =90°,相对来说要容易一些.策略三:反向旋转相关定点,构造手拉手模型,代换所求线段.讲点C 逆时针旋转60°,得到点H ,易证△CGE ≌△HFE ,则有CG =HF ,作MH ⊥AB 于M ,HM 即为所求.相比之下,先求轨迹后再求垂线段时,比较麻烦,而反向旋转代换所求线段感觉清爽很多.EBADFEBADEBA DFEBA DFEBADF NF如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连策略一:反向构造+伸缩如图从主动点F到从动点G可以理解为,将线段FE绕定点E顺时针旋转了45,反向构造则需要把CE绕点E逆时针旋转45°,倍,得到EH,显然△ECH为等腰直角三角形,进一步得到FEH GEC△△∽,所以=2CG FH .策略二:求轨迹——以BE为底向上作等腰Rt△BHE,易得G点轨迹所在直线为BD,故CG最小值为E主动点HEHEE E如图,正方形ABCD 的边长为4,E 为BC 上一点,F 为AB 边上一点,连接EF ,以EF 为底 【分析】虽然是双动点,仍可以操作操作策略一:代换所求线段 ,取AH =AF ,易知FG HFE △A △∽,则有=2AG HE策略二:求轨迹,以BE 为底向上作等腰直角三角形BHE ,显然H 点在对角线BD 上,由相似可知∠EHG =90°,故G 点轨迹为BD , 其本质还是旋转相似.其他方法:对角互补+邻边相等可得全等,显然MG =NE ,故BG 平分∠ABC ,则点G 轨迹对应直线B D .HEHEEEN M E如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动【分析】解法一:求轨迹在CD的下方作等边△CDT,作射线TQ.证明△CDP≌△TDQ(SAS),推出∠DCP=∠DTQ=90°,推出∠CTQ=30°,推出点Q在射线TQ上运动,当CQ⊥TQ时,CQ的值最小.解法二:反向构造代换所求线段在CD的上方,作等边△CDM,连接PM,过点M作MH⊥CB于H.利用全等三角形的性质解决问题即可.解:解法一:如图在CD的下方作等边△CDT,作射线TQ.∵∠CDT=∠QDP=60°,DP=DQ,DC=DT,∴∠CDP =∠QDT , 在△CDP 和△TDQ 中,⎩⎪⎨⎪⎧DP =DQ∠CDP =∠TDQ DC =DT, ∴△CDP ≌△TDQ (SAS ), ∴∠DCP =∠DTQ =90°, ∵∠CTD =60°, ∴∠CTQ =30°,∴点Q 在射线TQ 上运动(点T 是定点,∠CTQ 是定值), 当CQ ⊥TQ 时,CQ 的值最小,最小值=12CT =12CD =14BC =1,解法二:如图,CD 的上方,作等边△CDM ,连接PM ,过点M 作MH ⊥CB 于H .∵△DPQ ,△DCM 都是等边三角形, ∴∠CDM =∠PDQ =60°, ∵DP =DQ ,DM =DC , ∴△DPM ≌△DQC (SAS ), ∴PM =CQ ,∴PM 的值最小时,CQ 的值最小,当PM ⊥MH 时,PM 的最小值=CH =12CD =1,∴CQ 的最小值为1.如图,在矩形ABCD 中,AB =5,BC =53,点P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )【分析】法1:以AB 为边向右作等边△ABF ,作射线FQ 交AD 于点E ,过点D 作DH ⊥QE 于H .利用全等三角形的性质证明∠AFQ =90°,推出∠AEF =60°,推出点Q 在射线FE 上运动,求出DH ,可得结论. 法2:逆向构造,以AD 为边向右作等边△ADF 法1:如图,以AB 为边向右作等边△ABF ,作射线FQ 交AD 于点E ,过点D 作DH ⊥QE 于H .∵四边形ABCD 是矩形, ∴∠ABP =∠BAD =90°,∵△ABF ,△APQ 都是等边三角形,∴∠BAF =∠PAQ =60°,BA =FA ,PA =QA , ∴∠BAP =∠FAQ , 在△BAP 和△FAQ 中,⎩⎪⎨⎪⎧BA =FA∠BAP =∠FAQ PA =QA, P∴△BAP ≌△FAQ (SAS ), ∴∠ABP =∠AFQ =90°, ∵∠FAE =90°-60°=30°, ∴∠AEF =90°-30°=60°, ∵AB =AF =5,AE =AF ÷cos 30°=10 33, ∴点Q 在射线FE 上运动, ∵AD =BC =53,∴DE =AD -AE =5 33,∵DH ⊥EF ,∠DEH =∠AEF =60°, ∴DH =DE ﹒sin 60°=5 33× 32=52,根据垂线段最短可知,当点Q 与H 重合时,DQ 的值最小,最小值为52,法2:反向构造代换所求线段,将点D 绕A 点逆时针旋转 60°,得到点F ,故△AQD ≌△APF ,52DQ PF =≥3、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺旋转相似:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.∵DG⊥PG,DH⊥AC,∴∠DGP =∠DHA , ∵∠DPG =∠DAH , ∴△ADH ∽△PDG ,∴AD DP =DHDG ,∠ADH =∠PDG , ∴∠ADP =∠HDG , ∴△ADP ∽△DHG , ∴∠DHG =∠DAP =定值, ∴点G 在射线HF 上运动, ∴当CG ⊥HF 时,CG 的值最小, ∵四边形ABCD 是矩形, ∴∠ADC =90°,∴∠ADH +∠HDF =90°, ∵∠DAH +∠ADH =90°, ∴∠HDF =∠DAH =∠DHF , ∴FD =FH ,∵∠FCH +∠CDH =90°,∠FHC +∠FHD =90°, ∴∠FHC =∠FCH , ∴FH =FC =DF =1.5,在Rt △ADC 中,∵∠ADC =90°,AD =4,CD =3, ∴AC =32+42=5,DH =A D ﹒DC AC =125,∴CH =CD 2-DH 2=95, ∴EH =DH ﹒CH CD =3625,∵∠CFG =∠HFE ,∠CGF =∠HEF =90°,CF =HF , ∴△CGF ≌△HEF (AAS ), ∴CG =HE =3625, ∴CG 的最小值为3625, 故答案为3625.。

动点轨迹问题

动点轨迹问题

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(3)16x y ++=内一点(3, 0)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G .∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠.5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r , ∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得4k =±. 故存在直线l:3y x =+,使得四边形OAPB 是矩形.8.如图,平面内的定点F 到定直线l 的距离为2,定点E满足:||EF uuu r=2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA Θ841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA Θ又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-u u u r u u u r,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2y PF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204y x -+=,即动点N24y x =.(2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u u r u u u r,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、 (, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r ,∴ 14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r 点P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r , ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=)提示:||1010AB =⇒=,又113y x =-,223y x =, 则1221)3y y x x +=-,2112)3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d,已知||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=u u u r u u u r ,求向量OP uuu r 与OF u u u r 的夹角;(3)如图所示,若点G 满足2GF FC =u u u r u u u r,点M 满足3MP PF =u u u r u u u r,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ① 设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,)(,0)(0,))3223-∞--+∞U U U .…………………14分17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r-d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=o,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=,∴0022000022211214(1)(1)2E F EF E F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o 当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 点评:这是一道重要的数学问题,几乎是高考数学每年的必考内容之一,此类问题一定要“大胆假设,细心求解”,根据题目要求先将题目所涉及的未知量都可以设出来,然后根据题目把所有的条件都变成等式,一定可以求出来,当然求的过程中,采取适当的小技巧,例如化简或适当分类讨论,可以大为简化过程,而且会尽量多多得分,同时这一类题目也需要很强的计算能力.20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M满足关系式EM EB EB '=+u u u u r u u u r u u u r .(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:解析几何中的动点轨迹问题学大分教研中心 周坤轨迹方程的探解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。

解答这类问题,需要善于揭示问题的部规律及知识之间的相互联系。

本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。

OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。

()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩,2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即: 22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,,()()131113QM x y QB t t =--=+-+-,,,,////PM PA QM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA PA N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x a y y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -=22221112221y x x a b a a -∴=-= 2212221y b x a a =- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,4M y =-当圆,4M y =+当圆4y =±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC rMC r⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r ⎧=-⎪⎨=-⎪⎩12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义,1155AF BF ====,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程 ()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,242221a c AB a c b ======,,,, ()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

过程是“建系设点,列出几何等式,坐标代换,化简整理”,主要用于动点具有的几何条件比较明显时。

例1 已知动点M 到定点A (1,04,求动点M 的轨迹方程,并说明轨迹是什么曲线?解 设M (x,y )是轨迹上任意一点,作MN ⊥L 于由 |MA |+|MN |=4,得|3|22)1(-++-x y x 当x ≧3时上式化简为 y 2=-12(x-4) 当x ≦3时上式化简为 y 2=4x所以点M 的轨迹方程为 y 2=-12(x-4) (3≦x ≦4) 和y 2=4x (0≦x ≦3). 其轨迹是两条抛物线弧。

例2 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设M (x ,y ),直线MN 切圆C 于N ,则有 λ=MQMN,即λ=-MQ ONMO 22,λ=+--+2222)2(1yx y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.若1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线;若λ≠1,方程化为2222222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122-+λλ为半径的圆.二、定义法圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。

此法一般用于求圆锥曲线的方程,在高考中常填空题的形式出现. 例3 在相距离1400米的A 、B 两哨所上,哨兵听到炮弹爆炸声的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上?解 因为炮弹爆炸点到A 、B 两哨所的距离差为3×340=1020米,若以A 、B 两点所在直线为x 轴,AB 的中垂线为y 轴,建立直角坐标系,由双曲线的定义知炮弹爆炸点在双曲线 125102700225102=--y x 上.例4 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是_____________________解 设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为焦点,直线x=4为准线的抛物线,并且p=6,顶点是(1,0),开口向左,所以方程是)1(122--=x y例5 一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为( )(A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆 解 设动圆圆心为M ,半径为r ,则有 1,2MO r MC r =+=+ 所以1MC MO -=动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).三、转移法(重中之重)若轨迹点P (x ,y )依赖于某一已知曲线上的动点Q (x 0, y 0),则可先列出关于x 、y, x 0、y 0的方程组,利用x 、y 表示出x 0、y 0,把x 0、y 0 代入已知曲线方程便得动点P 的轨迹方程。

一般用于两个或两个以上动点的情况。

例6 已知P 是以F 1、F 2为焦点的双曲线192162=-y x 上的动点,求ΔF 1F 2P 的重心G的轨迹方程。

相关文档
最新文档