2018年必修一 《对数与对数运算》第二课时参考教案

合集下载

人教A版数学必修一《2.2.1对数与对数运算(二)》教案

人教A版数学必修一《2.2.1对数与对数运算(二)》教案

辽宁省沈阳市第十五中学高中数学《2.2.1对数与对数运算(二)》教案 新人教A 版必修1教学目标(一) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程;3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.一、复习引入:1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ),0(+∞∈N2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且)()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3.重要公式:⑴负数与零没有对数; ⑵01log =a ,1log =a a ⑶对数恒等式N a N a =log二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a 1,M > 0, N > 0 有:)()(2N log M log NM log 1N log M log (MN)log a a a a a a -=+= b n m b a m a n log log =(3) 2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x zxy a a . 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+ (3) .18lg 7lg 37lg214lg -+-例4.已知3010.02lg =,4771.03lg =, 求45lg例5.已知a =9log 18,518=b ,求45log 36 (备用题)。

高中数学 对数与运算2教学案 北师大版必修1

高中数学 对数与运算2教学案 北师大版必修1
.
复习2:幂的运算性质.
(1) ;(2) ;
(3) .
3对数运算性质
二师生互动
例1用 , , 表示下列各式:
(1) ;(2) .
例2计算:
(1) ;(2) ;
(3) ;(4)lg .
例3用 , , 表示出(1)(2)小题,并求出(3)、(4)小题的值.
(1) (2) (3) (4)
三巩固练习
1.下列等式成立的是()
A.
B.
C.
D.
2.如果lgx=lga+3lgb-5lgc,那么().
A.x=a+3b-cB.
C. D.x=a+b3-c3
3.若 ,那么().Leabharlann A. B.C. D.
4.计算:(1) ;
(2) .
5.计算: .
四课后反思
五课后巩固练习
1.计算:
(1) ;
(2) .
教案、学案用纸
年级高一
学科数学
课题
对数及运算性质2
授课时间
撰写人
学习重点
对数的运算性质
学习难点
正确使用对数的运算性质
学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用对数运算法则解决问题..
教学过程
一自主学习
复习1
(1)对数定义:如果 ,那么数x叫做,记作.
(2)指数式与对数式的互化:

高中数学必修一《对数与对数运算》优秀教学设计

高中数学必修一《对数与对数运算》优秀教学设计

人教A版必修1 第二章基本初等函数(Ⅰ)2.2.1 对数与对数运算一、教材分析:人教版普通高中数学课程标准实验教科书《必修①》中,本节课是在学生学习了指数函数及其性质之后学习的,其主要内容是对数概念及指对数互化、对数运算等。

教材采用欧拉提出的指对运算关系,通过实际问题直接引入对数概念,简明扼要地指出“对数”研究的必要性,揭示了对数与指数之间的内在关系,同时也很好地保持了“基本初等函数”这一章节的系统性。

本节学习内容蕴含转化化归数学思想,类比与对比等基本数学方法。

对数与指数的互化是对指数函数及其性质的巩固,也是后面学习对数函数的基础。

二、学情分析:学生在§2.1学习了指数以及指数函数的主要性质,对指数相关知识已很清晰;另外,在第一章学习了函数及其性质,对学习本课已具备前提条件。

尽管如此,对学生而言,“对数”毕竟是一种新的运算,它的表示及其运算规则都是之前所不熟悉的。

因此,接受起来还是比较困难,且不能很好的领悟其中的“算理”。

教材在“课后阅读与思考”中特别介绍了“对数的发明”,供学生了解对数的发展史。

但从实施情况来看,大部分学生并未给予应有的关注,而教师常常因为课时的限制未能将之纳入到课堂之内。

因此,对数这一在历史中近乎狂喜的发明也就被淹没了,学生体会不到其中的奥妙。

三、教学重难点:重点:对数概念的理解;对数与指数的互化.难点:对数概念的理解.四、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:(1)知识技能目标①理解对数的概念;②熟练地进行指数式与对数式互换;③掌握对数的运算性质,并应用运算性质解决相关问题;(2)过程与方法目标①经历对数发展历程,引出对数的定义与性质,掌握指数式与对数式互化方法.②在得出对数运算性质的过程中通过证明强调数学的严谨同时体会转化化归思想.(3)情感态度与价值观①通过指数式与对数式的互化,使学生感受对数式是指数式的另一种表达形式,进一步体会运用指数式探求对数的基本思路及方法,发展学生的数学表达能力和严谨有序的思维品质.②让学生探索、体会、感受对数概念的形成和发展过程;了解历史发展过程,数学家的奋斗精神;以此激发学生的学习兴趣,增强学生的成功感体验,帮助学生认识自我、建立自信.五、教学流程六、教学过程【算理演化】(3)结合给出的规律填表并利用表格计算以下问题:=⨯164=⨯=⨯5121283216【发现数表之妙】让学生自己发现规律例1。

高必修1第二章《对数与对数运算》第2课时平行班教案

高必修1第二章《对数与对数运算》第2课时平行班教案

2.2.1 对数与对数运算(2)(平行班)
【课题】:对数运算性质
【设计与执教者】:广州市第十七中学,肖洁
【学情分析】:
本节课从指数与对数的关系以及指数的运算法则入手,让学生从联系的观点探究对数的运算性质。

在尝试、思考、讨论、中巩固对数运算法则。

有利于培养学生的创造思维,渗透了类比思想以及归纳思想。

【教学目标】:
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能;
3.运用对数运算性质解决有关问题;
4.培养学生分析、综合解决问题的能力.
5. 培养学生数学应用的意识和科学分析问题的精神和态度.
【教学重点】:对数运算的性质与应用
【教学难点】:对数的运算性质的推导
【课前准备】:课件。

人教版高一数学必修1第二章《对数与对数运算》学案第二课时换底公式及对数的应用

人教版高一数学必修1第二章《对数与对数运算》学案第二课时换底公式及对数的应用

§2.2.1对数与对数运算3(换底公式及对数的应用)班级:高一( ) 姓名: 学号:学习目标:1、理解并掌握对数的换底公式2、运用对数运算性及公式质解决有关问题学习重点、难点:对数的换底公式,对数运算性质及公式的灵活应用自主预习:一、知识梳理:问题引入:数学史上,人们通过大量努力,制作了常用对数表、自然对数表,只要通过查表就可求出任意正数的常用对数或自然对数。

那么有没有方法把其他底的对数转换为以10或e 为底的对数呢?对数的底数能否随意转换?探究:设M b a =log (0>a 且 1≠a ,b>0)由对数的意义有,b a M =,显然M a >0,两边取常用对数得:_______________∵ 0>a ,∴M b a lg lg =•,又1≠a ,∴0lg ≠a ,∴M a b lg lg = ,即 【总结】更一般地,可得对数的换底公式:【归纳提升】1. 注意换底公式的结构特点:右边分子、分母所换的底必须是同一底,且为真数的对数除以底数的对数。

2. 当b ≠1且b >0时,存在倒数关系:二、自我检测1、计算下列各式的值 (1) log 98 log 3227 ; (2) 235111log log log 125323••三、学点探究探究1:对于底不同的对数的运算例1、 计算(1)32log 9log 38⨯ (2)a c c a log log •(3))2log 2(log )3log 3(log 9384+⋅+变式训练一:应用对数换底公式化简下列各式1、(1)16log 25log 9log 125274••(2))3log 3)(log 2log 2(log 8493++方法小结1:利用换底公式“化异为同”是解决有关对数问题的基本思想,在解题过程中应注意:1、针对具体问题,选择恰当的底数;2、注意换底公式与对数运算法则结合使用3、换底公式的正用与逆用探究2、对数换底公式的应用例2、已知518,9log 18==b a ,用a 、b 来表示45log 36变式训练二:1、30log ,53,2log 33表示、用b a a b ==2.已知32=x ,y =38log 4,则x+2y= .3.设p =3log 8,q =5log 3,则lg5= (用含p 、q 的式子表示) 课后作业:1、应用对数换底公式化简下列各式(1) 84log 27log 9; (2) log 225 log 34 log 59 ;2、 若0>a 且 1≠a ,x ,y ∈R 且xy >0则下列各式正确的是 : ① x x a a log 2log 2= ; ②||log 2log 2x x a a =; ③y x xy a a a log log )(log +=; ④||log ||log )(log y x xy a a a +=3、已知lg2=a,lg3=b ,用a,b 表示代数式log 2716=4、已知 lgN=alnN ; lnN=b lgN, 则a= , b=5、已知514,7log 14==b a ,求28log 356、设3a =4b =36,求21a b +的值7、已知m a =8log ,n a =5log ,请求n m a 2+的值.课后反思:。

高中数学人教版必修1教案2.2.1 对数与对数运算(2)

高中数学人教版必修1教案2.2.1 对数与对数运算(2)

第二课时一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度.2. 过程与方法①让学生经历并推理出对数的运算性质.②让学生归纳整理本节所学的知识.3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.二.教学重点、难点重点:对数运算的性质与对数知识的应用难点:正确使用对数的运算性质三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.教学用具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();m n m n mn n ma a a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?如:,,m n m n m n a a a M a N a +⋅===设。

于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =⇔==⇔=log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?(让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈ 证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= 又由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成立.l o g l o gn a a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a ax x =-(7)1log log n a a x x n= 例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)23log 8a x y (3)75log (42)z ⨯ (4)5lg 100 分析:利用对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)222333log log log log log log a a a a a a x y x y z x y z z =-=+-=112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)2552lg 100lg105== 点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.让学生完成P 68练习的第1,2,3题提出问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c b b a= 先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则 且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==又因为 所以:log log log c a c b b a = 小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2= 即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算 1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 68 练习4让学生自己阅读思考P 66~P 67的例5,例6的题目,教师点拨.3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论.4、作业(1)书面作业:P74 习题2.2 第3、4题 P 75 第11、12题2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。

对数与对数的运算教案

对数与对数的运算教案

对数与对数的运算教案教案标题:对数与对数的运算教案目标:1. 理解对数的概念和性质。

2. 掌握对数运算的基本规则。

3. 能够运用对数运算解决实际问题。

教案步骤:引入活动:1. 引导学生回顾指数的概念和运算规则,并提醒学生指数运算中可能遇到的困难。

2. 引出对数的概念,通过举例说明对数是指数的逆运算。

知识讲解:1. 解释对数的定义:如果a^x = b,那么x就是以a为底b的对数,记作log_a(b)。

2. 讲解对数的性质:a) log_a(a) = 1,任何数以自身为底的对数都等于1。

b) log_a(1) = 0,任何数以底为a的对数等于1。

c) log_a(a^x) = x,对数与指数运算互为逆运算。

d) log_a(b * c) = log_a(b) + log_a(c),对数运算中的乘法法则。

e) log_a(b / c) = log_a(b) - log_a(c),对数运算中的除法法则。

f) log_a(b^x) = x * log_a(b),对数运算中的幂运算法则。

示例练习:1. 给出一些简单的对数运算题目,让学生运用对数运算法则进行计算。

2. 提供一些实际问题,要求学生运用对数运算解决问题,如计算震级、pH值等。

拓展应用:1. 鼓励学生自主探索对数运算在科学、工程等领域的应用。

2. 分组讨论,让学生分享对数运算在日常生活中的应用案例。

总结回顾:1. 总结对数的定义和性质。

2. 强调对数运算的重要性和实际应用。

教学资源:1. 板书:对数的定义和性质,对数运算的基本规则。

2. 教材:提供相关的例题和练习题。

3. 计算器:用于计算较复杂的对数运算。

教学评估:1. 在课堂上进行小组讨论和问题解答,观察学生对对数和对数运算的理解程度。

2. 布置作业,包括计算题和应用题,检验学生对对数运算的掌握情况。

3. 批改作业,给予学生针对性的反馈和指导。

高中数学 2.2.1 对数与对数运算第二课时教案 新人教版必修1-新人教版高一必修1数学教案

高中数学 2.2.1 对数与对数运算第二课时教案 新人教版必修1-新人教版高一必修1数学教案

对数与对数运算(二)
(一)教学目标
1.知识与技能:理解对数的运算性质.
2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.
3.情感、态态与价值观
通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.
(二)教学重点、难点
1.教学重点:对数运算性质及其推导过程.
2.教学难点:对数的运算性质发现过程及其证明.
(三)教学方法
针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程。

高中数学对数与对数运算教案(二)新课标 人教版 必修1(B)

高中数学对数与对数运算教案(二)新课标 人教版 必修1(B)

高中数学对数与对数运算教案(二)新课标 人教版 必修1(B)三维目标 一、知识与技能掌握对数的运算性质,能较熟练地运用对数的运算性质解决有关对数式的化简、求值问题. 二、过程与方法1.通过师生之间、学生与学生之间互相交流,培养学生会与别人共同学习、共同研究探讨的能力.2.利用类比的方法,得出对数的运算性质,让学生体会到数学知识的前后连贯性,加深对公式内容及公式适用条件的记忆.3.通过探究、思考,培养学生理性思维能力、观察能力以及判断能力. 三、情感态度与价值观1.在教学过程中,通过学生的相互交流,来加深对对数运算性质的推导过程的理解,增强学生数学交流能力和数学地分析问题的能力.2.通过对数运算性质的学习,使学生明确数学概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性.3.通过计算器来探索对数的运算性质,使学生认识到现代信息技术是认识世界的有效手段和工具,激发学生学习数学的热情.教学重点1.掌握对数的运算性质.2.应用对数运算性质求值、化简. 教学难点对数运算性质的灵活运用. 教具准备多媒体课件、投影仪、打印好的作业. 教学过程一、复习回顾,引入新课师:上一节课我们学习了对数的概念、指数式与对数式的互化,我们知道,对数和指数都是一种运算,而且对数运算是指数运算的逆运算,指数有它自己的一套运算性质.从指数与对数的关系以及指数运算性质,能得出相应的对数运算性质吗?这就是本节课所要探究的知识.(引入课题,书写课题——对数的运算性质) 二、讲解新课(一)对数的运算性质的探索 师:指数幂运算有哪些性质? (生口答,师简单板书) 当a 、b >0,m 、n ∈R 时, a m ·a n =a m +n , a m ÷a n =a m -n , (a m )n =a mn ,mn a =amn.师:根据对数的定义可得:log a N =b a b =N (a >0,a ≠1,N >0),那么,对数运算也有相应的运算性质吗?如果有,它们的运算性质会与指数幂的运算性质之间有什么联系呢?(生思考)合作探究:由于a m ·a n =a m +n , 设M =a m ,N =a n ,于是MN =a m +n .由对数的定义得到log a M =m ,log a N =n ,log a (M ·N )=m +n .这样,我们就得到对数的一个运算性质:log a (M ·N )=log a M +log a N . 师:同样地,可以仿照上述过程,由a m ÷a n =a m -n和(a m )n =a mn ,得出对数运算的其他性质.(生板演)∵a m ÷a n =a m -n ,设M =a m ,N =a n , ∴NM =a m -n.∴由对数的定义得到 log a M =m ,log a N =n , log aNM=m -n . ∴log aNM=log a M -log a N . ∵(a m )n =a mn , 设M =a m ,∴M n =a mn . ∴由对数的定义得到 log a M =m , log a M n =mn , ∴log a M n =n log a M . (师组织生讨论得出) 对数的运算性质: log a (MN )=log a M +log a N , log aNM=log a M -log a N , log a M n =n log a M (n ∈R ), 其中,a >0,a ≠1,M >0,N >0.师:以上三个性质可归纳为:(1)积的对数等于各因式对数的和;(2)商的对数等于被除数的对数减除数的对数;(3)幂的对数等于指数乘以底数的对数.师:这几条运算性质会对我们进行对数运算带来哪些方便呢? (生交流探讨,得出如下结论)结论:利用以上性质,可以使两正数的积、商的对数运算问题转化为两正数各自的对数的和、差运算,大大的方便了对数式的化简、求值.(二)概念理解合作探究:利用对数运算性质时,各字母的取值范围有什么限制条件? (师组织,生交流探讨得出如下结论)底数a >0,且a ≠1,真数M >0,N >0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.师:性质能否进行推广? (生交流讨论)性质(1)可以推广到n 个正数的情形,即log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n (其中a >0,且a ≠1,M 1、M 2、M 3…M n >0). 知识拓展:当a >0,a ≠1,M >0时,还有log m a M n =mnlog a M . (三)运算性质的应用师:这样我们就可以心底坦然地使用这些性质了,请同学们完成以下训练. (投影显示如下练习,生完成,组织学生交流评析各自的训练成果) 【例1】 用log a x ,log a y ,log a z 表示下列各式: (1)log a z xy;(2)log a 32zy x .(生板演)【例2】 求下列各式的值: (1)log 2(47×25);(2)lg 5100. (生板演)【例3】 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值:(结果保留4位有效数字) (1)lg12;(2)lg1627. 方法引导:要用lg2≈0.3010,lg3≈0.4771这个已知条件来求以上各式的值,需先根据对数的运算性质将其化为含lg2、lg3的多项式进而求出结果.【例4】 计算: (1)lg14-2lg 37+lg7-lg18; (2)9lg 243lg ; (3)2.1lg 10lg 38lg 27lg -+.(1)解法一:lg14-2lg37+lg7-lg18 =lg (2×7)-2(lg7-lg3)+lg7-lg (32×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0. 解法二:lg14-2lg37+lg7-lg18=lg14-lg (37)2+lg7-lg18=lg 18)37(7142⨯⨯=lg1=0.(2)解:9lg 243lg =253lg 3lg =3lg 2351g =25. (3)解:2.1lg 10lg 38lg 27lg -+=1023lg10312lg )3lg(2213213⨯-+g =12213lg )12213(lg 23-+-+g g =23.方法引导:以上各题的解答,体现对数运算法则的综合运用,应注意掌握变形技巧,每题的各部分变形要化到最简形式,同时注意分子、分母的联系,要避免错用对数运算性质.(四)目标检测 课本P 79练习第1,2,3.答案:1.(1)lg (xyz )=lg x +lg y +lg z ;(2)lg zxy 2=lg (xy 2)-lg z=lg x +lg y 2-lg z =lg x +2lg y -lg z ; (3)lgzxy 3=lg (xy 3)-lg z=lg x +lg y 3-21lg z =lg x +3lg y -21lg z ; (4)lgzy x 2=lg x -lg (y 2z )=21lg x -lg y 2-lg z =21lg x -2lg y -lg z . 2.(1)7;(2)4;(3)-5;(4)0.56.3.(1)log 26-log 23=log 236=log 22=1; (2)lg5-lg2=lg 25; (3)log 53+log 531=log 53×31=log 51=0; (4)log 35-log 315=log 3155=log 331=log 33-1=-1. 补充练习:若a >0,a ≠1,且x >y >0,N ∈N ,则下列八个等式: ①(log a x )n =n log x ; ②(log a x )n =log a (x n ); ③-log a x =log a (x1); ④y x a a log log =log a (yx); ⑤n a x log =x1log a x ; ⑥n1log a x =log a n x ; ⑦anxa log =x n ;⑧log ay x y x +-=-log a yx yx -+.其中成立的有________个.(答案:4) 三、课堂小结 1.对数的运算性质.2.对数运算法则的综合运用,应掌握变形技巧:(1)各部分变形要化到最简形式,同时注意分子、分母的联系; (2)要避免错用对数运算性质. 3.对数和指数形式比较:式子a b =N log a N =b 名称a ——幂的底数b ——幂的指数 N ——幂值 a ——对数的底数 b ——以a 为底的N 的对数N ——真数运算性质a m ·a n =a m +na m ÷a n =a m-n(a m )n =a mn(a >0,且a ≠1,m 、n ∈R )log a (MN )=log a M +log a N log aNM=log a M -log a N log a M n =n log a M (n ∈R ) (a >0,且a ≠1,M >0,N >0)四、布置作业补充作业:1.(1)已知3a =2,用a 表示log 34-log 36; (2)已知log 32=a ,3b =5,用a 、b 表示log 330. 2.计算:(1)1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+;(2)2log 32-log 3932+log 38-53log 25; (3)lg (53++53-). 板书设计2.2.1 对数与对数运算(2)对数的运算性质 对数与指数的比较性质的应用(例题及学生练习) 例1 例2 例3 例4三、课堂小结与布置作业。

最新【高考必备】高一数学人教A版必修一第二章1对数与对数运算教案第二课时名师优秀教案

最新【高考必备】高一数学人教A版必修一第二章1对数与对数运算教案第二课时名师优秀教案

【高考必备】高一数学人教A版必修一第二章2.2.1对数与对数运算教案第二课时第2课时教学目标1(知识与技能(1)通过实例推导对数的运算性质,准确地运用对数的运算性质进行运算、求值、化简,并掌握化简求值的技能((2)运用对数的运算性质解决有关问题((3)培养学生分析、解决问题的能力(培养学生的数学应用意识和科学分析问题的精神和态度(2(过程与方法(1)让学生经历并推导出对数的运算性质(2)让学生归纳整理本节所学的知识( (3(情感态度与价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性( 重点难点重点:对数运算的性质与对数知识的应用(难点:正确使用对数的运算性质(教学过程导入新课思路1(上节课我们学习了以下内容:1(对数的定义(2(指数式与对数式的互化(ba,N?logN,b. a3(重要性质:logNa(1)负数与零没有对数;(2)log1,0,loga,1;(3)对数恒等式,N. aaa下面我们接着讲对数的运算性质〔教师板书课题:对数与对数运算(2)〕( 思路2.我们在学习指数的时候,知道指数有相应的运算法则,即指数运算法则:nmnm,nmnm,nmnmnnma?a,a;a?a,a;(a),a;a,.(a,0且a?1) ma从上节课我们还知道指数与对数都是一种运算,而且它们互为逆运算,对数是否也有和指数相类似的运算法则呢,答案是肯定的,这就是本堂课的主要内容,点出课题:对数与对数运算(2)(推进新课新知探究提出问题(1)在上节课中,我们知道,对数运算可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算的性质,得出相应的对数运算的性质吗,mnmnm,n(2)如我们知道a,M,a,N,a?a,a,那m,n如何表示,能用对数式运算吗, (3)在上述(2)的条件下,类比指数运算性质能得出其他对数运算性质吗, (4)你能否用最简练的语言描述上述结论,如果能,请描述. (5)上述运算性质中的字母的取值有什么限制吗,6)上述结论能否推广呢, ((7)学习这些性质能对我们进行对数运算带来哪些方便呢, 讨论结果:(1)通过问题(2)来说明(mnm,nmnm,nm(2)若a?a,a,M,a,N,a,于是MN,a,由对数的定义得到M,a?m,logM,N,anm,na?n,logN,MN,a?m,n,logMN,logMN,logM,logN. aaaaa 因此m,n可以用对数式表示(MMmnmnm,n(3)令M,a,N,a,则,a?a,a,所以m,n,log. aNNmn又由M,a,N,a,所以m,logM,n,logN. aaMM所以logM,logN,m,n,log,即log,logM,logN. aaaaaaNNmnmnmn设M,a,则M,(a),a.由对数的定义,nnn所以logM,m,logM,mn.所以logM,mn,nlogM,即logM,nlogM. aaaaaa这样我们得到对数的三个运算性质:如果a,0,a?1,M,0,N,0,则有log(MN),logM,logN;? aaaMlog,logM,logN;? aaaNnlogM,nlogM(n?R)(? aa(4)以上三个性质可以归纳为:性质?:两数积的对数,等于各数的对数的和;性质?:两数商的对数,等于被除数的对数减去除数的对数; 性质?:幂的对数等于幂指数乘以底数的对数((5)利用对数运算性质进行运算,所以要求a,0,a?1,M,0,N,0. (6)性质?可以推广到n个数的情形:即log(MMM…M),logM,logM,logM,…,logM(其中a,0,a?1,M,M,M,…,Ma123na1a2a3an123n均大于0)((7)纵观这三个性质我们知道,性质?的等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算( 性质?的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算(性质?从左往右仍然是降级运算(利用对数的性质??可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,方便了对数式的化简和求值(应用示例例1用logx,logy,logz表示下列各式: aaa2xyxy(1)log;(2)log. aaz3z活动:学生思考观察,教师巡视,检查学生解题情况,发现问题及时纠正( 利用对数的运算性质,把整体分解成部分(xy对(1)log,可先利用性质?,转化为两数对数的差,再利用性质?,把积的对数转化为两az数对数的和(2xy对(2)log,可先利用性质?,转化为两数对数的差,再利用性质?,把积的对数转化为a3z两数对数的和,最后利用性质?,转化为幂指数与底数的对数的积(xy解:(1)log,log(xy),logz,logx,logy,logz; aaaaaaz2xy23(2)log,log(xy),logz aaa3z1123,logx,logy,logz,2logx,logy,logz. aaaaaa23点评:对数的运算性质实质上是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算(变式训练1(若a,0,a?1,x,0,y,0,x,y,下列式子正确的个数为( ) ?logx?logy,log(x,y);?logx,logy,log(x,y); aaaaaax?log,logx?logy;?log(xy),logx?logy. aaaaaayA(0 B(1 C(2 D(3答案:A*2(若a,0,a?1,x,y,0,n?N,下列式子正确的个数为( )1nnn?(logx),nlogx;?(logx),logx;?logx,,log;aaaaaaxlogxx11ann?,log;?logx,logx;?logx,logx; aaaaalogyynna x,yx,yn?logx,nlogx;?log,,log. aaaax,yx,yA(3 B(4 C(5 D(6答案:B1log33例2求值:(1);(2)log. 3273x3log33,x解:(1)解法一:设,则(3),33,(3),所以x,3. 33解法二:. log33log33,,,,3311xx,3(2)解法一:令x,log,则3,,即3,3,所以x,,3. 327271,3解法二:log,log3,,3. 3327例3计算:7lg 243lg27,lg 8,3lg10(1)lg 14,2lg ,lg 7,lg 18;(2);(3). 3lg 9lg 1.272解:(1)解法一:lg 14,2lg,lg 7,lg 18,lg(2×7),2(lg 7,lg 3),lg7,lg(3×2)3,lg 2,lg 7,2lg 7,2lg 3,lg 7,2lg 3,lg 2,0.7714×7,,2解法二:lg 14,2lg,lg 7,lg 18,lg 14,lg,lg 7,lg 18,lg,lg 1,0. 3,3,7,,2×18,3,5lg 243lg 35lg 352(2),,,. lg 9lg 32lg 321133322(lg 3,2lg 2,1)lg27,lg 8,3lg1023lg(3)lg23lg(10),,(3),,,. 2lg 3,lg 1.22lg 2,1232,lg10点评:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系;(2)题要避免错用对数的运算性质(对数运算性质的灵活运用、运算性质的逆用常被学生所忽视( 3x,3x,22x,x例4设x,log3,求的值( 22,2活动:学生思考观察,教师引导,学生有困难及时提示并评价学生的思考过程(本题主要考x3x查对数的定义及其运算性质(先利用对数的定义求2,再求2,从而可求,或先化简再代入求值(1,,333x,3x,3,2,3,121191,,x,x22x,x解法一:由x,log3,得2,3,2,,所以,,3,3×,,. 232,213,3,93,33x,3xx,x2x,2x,,2)(2,1)122(2,2x,2x,xx,xx,x解法二:由x,log3,得2,3,2,,2,1,2,,所以22,232,2191,,2x22,3,1,,. ,3,9知能训练课本本节练习第1,2,3题(【补充练习】1(用logx,logy,logz,log(x,y),log(x,y)表示下列各式: aaaaa3,,21x3xy4z,,,222(1)log;(2)log;(3);(4)log; aaa32yz2x,yx?log()xyz,,ya x,yy,,,,3(5)log?y;(6)log. aax,yx(x,y),,,,3x11322解:(1)logx,logyz,logx,(2logy,logz),logx,2logy,logz; ,logaaaaaaaaayz333,,43z14z32,,2(2)log,logx,log,logx,(logz,logy) aaaaaa2y4x?,,y2313,logx,logy,logz,logx,logy,logz; aaaaaa4424122211,,(3),logx,,,logx,logy,logz; aaaa332223log()xyzlogylogzaaa xy2222(4)log,logxy,log(x,y),logx,logy,log(x,y)(x,y) aaaaaax,y,logx,logy,log(x,y),log(x,y); aaaax,xy,y,,(5)log?y,log,logy,log(x,y),log(x,y),logy;aaaaaa,x,y,x,yy,,3(6)log,3,3logy,3logx,3log(x,y)( aaaa,x(x,y),62(已知f(x),logx,则f(8)等于( ) 241A( B(8 C(18 D( 32113166解析:因为f(x),logx,x,0,令x,8,得,所以f(8),,.22622log2x,,2221166另解:因为f(x),logx,logx,所以f(x),logx. 222661113所以f(8),log8,log2,. 22662答案:D拓展提升111111,,,已知x,y,z,0,且lg x,lg y,lg z,0,求的值( lglglglglglgyzzxxyxyz,,活动:学生讨论、交流、思考,教师可以引导(大胆设想,运用对数的运算性质(由于所求的式子是三项积的形式,每一项都有指数,指数中又有对数,因此想到用对数的运算性质,如果能对所求式子取对数,那可能会好解决些,故想到用参数法,设所求式子的值为t.1111111111,,,,,,,解:令,则lg t,,lg x,,lg y,lglglglglglgyzzxxy,lg ylg z,,lg zlg x,xyzt,,,11lg xlg xlg ylg ylg zlg zlg x,lg zlg x,lg y,,,lg z,,,,,,,,,,lg xlg y,lg ylg zlg zlg xlg xlg ylg ylg zlg y,lg z,lg y,lg z,lg x1,3,,,,,3,所以t,10,即为所求( lg xlg ylg zlg x1 000课堂小结1(对数的运算性质(2(对数的运算性质的综合应用,特别是性质的逆向使用(3(对数与指数形式比较:b式子 a,N logN,b aa——幂的底数 a——对数的底数名称 b——幂的指数 b——以a为底的N的对数N——幂值 N——真数(MN),logM,logN; logaaamnm,na?a,a;Mmnm,n运算 a?a,a; log,logM,logN; aaaNmnmn性质 (a),a; nlogM,nlogM(n?R); aa(a,0,a?1,m,n?R) (a,0,a?1,M,0,N,0)作业课本习题2.2A组 3,4,5.。

人教课标版高中数学必修一《对数与对数运算(第2课时)》教案-新版

人教课标版高中数学必修一《对数与对数运算(第2课时)》教案-新版

2.2.2 对数与对数运算(第2课时)一、教学目标 (一)核心素养通过这节课学习,了解简单对数的运算以及简单对数式的化简,学好对数运算性质是学好对数函数的关键,增强学生的成就感,增强学生学习的积极性. (二)学习目标1.理解对数的运算性质;能熟练运用对数的运算性质进行化简、计算、证明. 2.让学生经历并推导出对数的运算性质并加以记忆; (三)学习重点掌握对数的运算性质及其推导过程,依据对数性质进行对数运算 (四)学习难点对数的运算性质及其推导过程 二、教学设计 (一)课前设计 1.预习任务读一读:阅读教材64-65页完成下列任务:(1)类比指数运算性质能得出其相应对数运算性质,并写出推导过程; (2)写出对数三条的运算性质及其各字母的取值范围并加以记忆. ①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 2.预习自测(1)25log 20lg 100+的值为( ) A.2 B.-2C.21D.21-答案:A. (2)8log 932log 2log 2333+-的值为( ) A.21 B.2 C.3D.31 答案:B.(3)已知,23=a 用a 表示6log 4log 33-为_________. 答案:1-a . (二)课堂设计 1.知识回顾),0,0()(),,0()(),,0(R r b a b a ab R s r a a a R s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+2.问题探究探究一 对数运算性质的探究●活动① 提出问题,对数与指数的关系及指数运算法则各是怎样的?N a b = ⇔ b N a =l o g (R b N a a ∈>≠>,0,1,0)【设计意图】引导学生根据指数的运算性质大胆尝试推导对数的运算性质,提高学生的建构能力和主动探究能力.●活动② 利用指数对数关系及指数的运算法则推导出对数的运算法则,以指数运算的第一个性质为例证明:q p a a a N a M q N p M ==∴==,log ,log 设MN q p a a a MN a q p q p log =+∴=∙=+MN N M a a a log log log =+【设计意图】规律总结,指出推导的关键是完成指数运算向对数运算的过渡. ●活动③ 理解并掌握对数的运算性质①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 引导学生判断下列式子是否正确①)5(log )3(log )]5()3[(log 222-+-=-⨯-(错误) ②10log 210log 10210=(正确) ③N M MN a a a log log )(log ∙=(错误) ④N M N M a a a log log )(log +=+(错误)【设计意图】巩固对数的运算性质,提高学生发散思维及分析问题的能力. 探究二●活动① 基础型例题 例1.求下列各式的值:(1)352log (24)⨯ (2)125log 5 (3)2.1lg 12lg 23lg -+(4)22log log 【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】(1)134log 534log 2log )42(log 25232532=+=+=⨯.(2)3555log 125log 53log 53===. (3)lg32lg 21lg3lg 41lg1.2lg1.2+-+-=lg1.21lg1.2==.(4)22log log2log =22log log 42===.【思路点拨】对数的运算性质.【答案】(1)13 ; (2)3 ; (3)1 ; (4)2.同类训练 求下列各式的值: (1)14log 501log 2log 235log 55215--+ (2)()2336618log 4log log 6+答案:(1)2;(2)1.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】21)145035(log 14log 50log 2log 35log 14log 501log 2log 235log )1(5552555215=-÷⨯=-+-=--+()()()()2366623666622236666266(2)原式log 2log 18log log 2(log 22log 3)log log 2log 2log 3log (log 3log 2)1=⋅+=⋅++=+⋅+=+=点拨:对数的运算性质.例2.计算(1)427125log 9log 25log 16⋅⋅(2)421938432log )2log 2)(log 3log 3(log -++答案:(1)98 ; (2)25.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】(1)原式985lg 32lg 43lg 35lg 22lg 23lg 2125lg 16lg 27lg 2514lg 9lg =⨯⨯=⨯⨯=g (2)原式=254523652log 45)2log 212(log )3log 313log 21(23322=+⨯=++⋅+.点拨:对数的运算性质.同类训练 已知b a ==7log ,3log 32, 用b a ,表示56log 42. 答案:31ab ab a +++.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】aa 12log ,3log 32=∴= 23334233333log (78)log 73log 3log 56log (237)log 2log 3log 711b ab a ab a b a+⨯++∴====⨯⨯++++++. 点拨:对数的运算性质. ●活动2 提升型例题 例3(1)1052==b a ,求ba 11+的值; (2)设3log 22=x ,求xx xx --+-222233的值.【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】,10log ,10log ,1052)1(52==∴==b a b a15lg 2lg 11=+=+∴ba. 22log 22log 3,log 2=()由得a Nxx x aN==∴=61331333133222233=+-=+-∴--xx x x . 【思路点拨】对数的运算性质. 答案:(1)1;(2)613. 同类训练 求下列各式的值:设410=a ,5lg =b ,求b a -210的值 . 答案:516. 解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】由5lg =b ,得510=b ,∴ 516102=-b a .点拨:对数的运算性质. ●活动3 探究型例题例4.对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围. 答案:(1))3,3(-;(2)),3[]3,(+∞--∞ . 解析:【知识点】对数的运算性质,二次函数的性质. 【数学思想】函数思想【解题过程】222233令()()u g x x ax x a a ==-+=-+-,(21030()对恒成立 的取值范围是min u x R u a x a >∈∴=->⇒<<∴(2)由u 21log 的值域为R ,即)(x g u =能取遍(0,+)∞的一切值.)(x g u = 的值域为),0(),3[2+∞⊇+∞-a ,∴ 命题等价于33032min ≥-≤⇒≤-=a a a u 或, ∴ a 的取值范围是),3[]3,(+∞--∞ . 点拨:对数的运算性质.同类训练 已知函数f(x)=x 2-2ax+3(1)若函数的定义域为),3()1,(+∞⋃-∞,求实数a 的值; (2)若函数的值域为]1,(--∞,求实数a 的值.答案:(1)2;(2)±1.解析:【知识点】对数的运算性质.【数学思想】数形结合思想,函数与方程思想. 【解题过程】由定义域的概念知,命题等价于 (1)不等式0322>+-ax x 的解集为{}31><x x 或,∴3,121==x x 是方程0322=+-ax x 的两根,2322121=∴⎩⎨⎧=⋅=+a x x a x x∴即a 的值为2.(2)函数的值域为]1,(--∞,即)(x g 的值域为),2[+∞, ∵)(x g 的值域是),3[2+∞-a ,∴命题等价于123)(2min ±=⇒=-=a a x g , 即a 的值为±1. 点拨:对数的运算性质 3.课堂总结 知识梳理①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 重难点归纳掌握对数的运算性质及其推导过程,依据对数性质进行对数运算 (三)课后作业 基础型 自主突破 1.(1)=-3log 6log 22______; (2)=-15log 5log 33______; (3)=+31log 75log 55_______; (4)=+-)32(log 32_______.答案:(1)1;(2)-1;(3)2;(4)-1. 解析:【知识点】对数的运算. 【数学思想】转换与化归思想.【解题过程】对数的运算性质的灵活运用. 点拨:对数的运算性质的灵活运用.2.若12010log 3=x ,则=+-x x 20102010( )A.310 B.6C.38D.316 答案:A.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】对数的运算性质的灵活运用.点拨:31020102010,3log ,12010log 20103=+∴=∴=-x x x x . 3.已知m>0,且,1lg )10lg(10mm x +=则x 等于________. 答案:0.解析:【知识点】对数的运算. 【数学思想】函数与方程思想 【解题过程】01011lg)10lg(=∴==+x mm x . 点拨:对数的运算性质的灵活运用. 4.计算3log 2333558log 932log 2log 2-+-的结果. 答案:-7.解析:【知识点】对数的运算. 【数学思想】转化与化归思想. 【解题过程】79)83294(log 3-=-⨯⨯=原式 点拨:对数的运算性质的灵活运用.5.计算:(1)18lg 7lg 37lg 214lg -+- (2)2lg 236.0lg 23lg 2lg 2+++答案:(1)0(2)21. 解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】(1)原式=01lg 18)37(714lg18lg 7lg )37lg(14lg 22==⨯⨯=-+- (2)原式=213lg 22lg 43lg 2lg 22lg 2236lg 23lg 2lg 2=++=+-++点拨:对数运算性质的灵活应用.6.若,ln ln a y x =-则33)2ln(2ln y x -⎪⎭⎫⎝⎛等于( )A.2aB.aC.23a D.a 3 答案:D.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】a y x y x 3)ln (ln 3)2ln(2ln 33=-=-⎪⎭⎫⎝⎛点拨:对数运算性质的灵活应用. 能力型 师生共研 7.设,52m b a ==且,211=+ba 则m 等于( ) A.10 B.10 C.20 D.100 答案:A.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】m b m a m b a 52log ,log ,52==∴==101025log 2log 112=∴=∴=+=+∴m m ba m m 点拨:对数运算性质的灵活应用.8. 若正数b a ,满足2362log 3log log ()a b a b +=+=+,则ba 11+的值为( ) A .36 B .72 C .108 D .721 答案:C.解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】设2362log 3log log ()=a b a b k +=+=+,所以有k k k b a b a 6,327,24=+==,所以b a ab k k k +==⨯=632108即10811=+ba . 点拨:对数运算性质的灵活应用,对数与指数的关系. 探究型 多维突破9.求值n n n 32log )3log ...27log 9log 3(log 92842++++ 答案:25. 解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】∵ 3l o g 3l o g 22=n n , ∴ 原式=252log 3log 32log 3log 532922==n n 点拨:对数运算性质的灵活应用.10.已知a lg 和b lg 是关于x 的方程02=+-m x x 的两个根,而关于x 的方程0)lg 1()(lg 2=+--a x a x 有两个相等的实数根,求实数b a ,和m 的值. 答案:6,1000,1001-===m b a 解析:【知识点】对数运算性质.【数学思想】函数与方程.【解题过程】由题意可知⎪⎩⎪⎨⎧=++=⋅=+0)lg 1(4)(lg lg lg 1lg lg 2a a m b a b a 6,1000,1001-===∴m b a 点拨:对数运算性质的灵活应用.自助餐1.已知y x 32=,则=y x ________. 答案:lg3lg 2. 解析:【知识点】对数运算性质.【数学思想】转化与化归思想. 【解题过程】2lg 3lg 3lg 2lg 3lg 2lg =∴=∴=y x y x y x . 点拨:对数运算性质的灵活应用.2.已知,lg x a =则=+3a ( )A.)3lg(xB.)3lg(x +C.3lg xD.)1000lg(x答案:D.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】由已知)1000lg(1000lg lg 3lg 3x x x a =+=+=+. 点拨:对数运算性质的灵活应用. 3.=---233)12(lg )150(lg ( )A.5lg 2B.0C.1-D.5lg 2-答案:B.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】由于,012lg ,0150lg <->-所以原式0)2lg 1(150lg =---= 点拨:对数运算性质的灵活应用.4.已知集合},2{},41{A x x y y B x x A ∈-==<<=,-==+2{ln }1x C x y x , 则集合=⋂C B ( ) A.}11{<<-x x B.}11{≤≤-x x C. }21{<<-x x D.{}21≤<-x x答案:A.解析:【知识点】对数运算性质.【数学思想】转化与化归思想. 【解题过程】由已知}21{},12{<<-=<<-=x x C y y B 所以}11{<<-=⋂x x C B .点拨:对数运算性质的灵活应用. 5.=----+3232)827()32(log ________. 答案:913-. 解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】因为32132+=-,所以1)32(log 32-=-+,所以原式=913- 点拨:对数运算性质的灵活应用.6.10054==b a 设,的值求)21(2ba +. 答案:2.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】对两边同时取以10为底的对数, 得2)21(25lg 2,4lg 225lg 4lg =+∴==∴==ba b a b a . 点拨:对数运算性质的灵活应用.。

2018高中数学必修1课件:2.2.1 对数与对数运算 第2课时 对数的运算 探究导学课型 精品

2018高中数学必修1课件:2.2.1 对数与对数运算 第2课时 对数的运算 探究导学课型 精品

【深度思考】 结合教材P65例4,你认为应怎样利用对数的运算性质 计算对数式的值? 第一步:_______________________________________ _______. 将积、商、幂、方根的对数直接运用运算性 第质二转步化:_________________________.
利用对数的性质化简、求值
logaMn=nlogaM
主题2:换底公式
1.假设 log25 =x,则log25=xlog23,即log25=log23x, 从而有3lxo=g52 3,将其化为对数式,进一步可得到什么
结论?
提示:由3x=5知x=log35,即log35= log2 5 . log 2 3
2.同样由 提示:由
log356 log3(23 7) 3log32 log37 3b a . log314 log3(27) log32 log37 a b
【规律总结】换底公式的应用技巧 (1)换底公式的作用是将不同底数的对数式转化成同 底数的对数式,将一般对数式转化成自然对数式或常 用对数式来运算.要注意换底公式的正用、逆用及变 形应用.
【规律总结】对数的运算性质在解题中的两种应用
提醒:对数的运算性质主要用于化简与求值,它只适 用于同底的对数的化简.
【巩固训练】(2016·长春高一检测)已知x,y,z都是 大于1的正数,m>0,m≠1,且logmx=24,logmy=40, logm(xyz)=80,则logmz的值为 ( )
A. 1
B.16
C. 200
D. 3
60
3
20
【解析】选B.由已知得logm(xyz)=logmx+logmy+ logmz=80, 而logmx=24,logmy=40,故logmz=80-2440=16.

人教A版数学必修一《对数与对数运算》(二)教案【精品教案】.doc

人教A版数学必修一《对数与对数运算》(二)教案【精品教案】.doc

河北武邑中学课堂教学设计备课人授课时间课题对数与对数运算(二)教知识与技能运用对数运算性质解决有关问题.准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.学目过程与方法启发引导,充分发挥学生的主体作用标情感态度价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点对数运算的性质难点正确使用对数的运算性质教学内容教学环节与活动设计1.设置情境复习:对数的定义及对数恒等式log a N =b o a‘ =N(a >0,且a Hl, N>0),指数的运算性质.a m-a n =a m+n;a m - a" =a m~n教学设____ n2.讲授新课探究:在上节课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道计a m-a n= a"'+n,那加+ n如何表示,能用对数式运算吗?如:a m-a n =a m+n, =a m,N = a n.于是MN = a m+n,由对数的定义得到M = a m o m = loga M, N = a" o n = log a NMN = a m+n o 加 + zz = loga MN教教学内容教学环节与活动设计学设计M⑵log。

亓= log°M—log^N(3) \og a M n = n\og a M (n e R)证明:(1)令M =a m,N = a nM贝ij:LL = a^^a n =a m'nN:.m-n = log a^又由M = a"1, N=a":.m = loga M ,n = loga NM即:log fl M -log a N = m-n = \og a—N(3) "HO 时,令N = log“M",则M=a〒bb =力loga M,则M = a nN b:.a n =a n:.N = bM即log。

人教A版数学必修一《对数与对数运算》2学案【精品教案】.doc

人教A版数学必修一《对数与对数运算》2学案【精品教案】.doc
5.已知lga, lgb是方程2x2—4x+l = 0的两个根,则(lg —)2的值
b
是()・
A. 4B. 3C. 2D. 1
6.若lg2.二a, lg3■二b,则lgV54 =・
7.已知log67 =«,log34 = Z?,求log127
【教学反思】
对数(-)答案
例一1卿625=4loga —=-6logl5.73=m32=95i25(丄)
6432
-4
例二x=^2x=2
16e
当堂达标:课本练习
拓展延伸:1、x=log— 64log5 -^==-—(—) *3=27/=64
4,/523
2、x=81x=5
4
精品资料,你值得拥有!
【教学重点】
对数运算性质和换底公式及其应用.
【教学难点】
对数的运算性质和换底公式发现过程及其证明
【课型】新授
【情境导入】
1、对数的定义及对数恒等式
2、指数的运算性质
【精讲点拨】
一、对数的运算性质
(一)对数的运算性质
如果a〉0,且aHl, M>0, N>0,那么
⑴logjM-N)=
⑵logfl^ = (3)logflMn=如何证明?
(二)换底公式
若a〉0,且aHl;c〉0,且cHl;b>0»则log。b =
如何证明?
二、典型例题
例1、用logflx,logay , log“ z表示下列各式
(1)logfl—(2)log。
ZMz
例2、求下列各式的值.
(1)log2(47x25)(2)lg^/100
3、已知lg2 = Q,lg3 = h则10&广5=o
山东省泰安市肥城市第三中学高中数学对数与对数运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1对数与对数运算
共三课时
教学目标:1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.
2.理解并掌握对数运算法则的内容及推导过程.
3.熟练运用对数的性质和对数运算法则解题.
4.对数的初步应用.
教学重点:对数定义、对数的性质和运算法则
教学难点:对数定义中涉及较多的难以记忆的名称,以及运算法则的推导
教学方法:学导式
教学过程设计
第二课时
师:在初中,我们学习了指数的运算法则,请大家回忆一下.
生:m n m n
a a a+
⋅= (m,n∈Z);()m n mn
a a
= (m,n∈Z);()n n n
ab a b
=⋅ (n∈Z),
师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)
(1)正因数积的对数等于同一底数各个因数的对数的和,即
log
a (MN)=log
a
M+log
a
N.
(请两个同学读法则(1),并给时间让学生讨论证明.)
师:我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.
师:(板书)设log
a M=p,log
a
N=q,由对数的定义可以写成M=a p,N=a q.所以
M·N=a p·a q=a p+q,
所以log
a (M·N)=p+q=log
a
M+log
a
N.
即log
a (MN)=log
a
M+log
a
N.
师:这个法则的适用条件是什么?
生:每个对数都有意义,即M>0,N>0;a>0且a≠1.
师:观察法则(1)的结构特点并加以记忆.
生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.师:非常好.例如,(板书)log
2
(32×64)=?
生:log
2(32×64)=log
2
32+log
2
64=5+6=11.
师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化.
师:(板书)log
62+log
6
3=?
生:log
62+log
6
3=log
6
(2×3)=1.
师:正确.由此例我们又得到什么启示?
生:这是法则从右往左的使用.是升级运算.
师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!
师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.
师:仿照研究法则(1)的四个步骤,自己学习.
(给学生三分钟讨论时间.)
生:(板书)设log
a M=p,log
a
N=q.根据对数的定义可以写成M=a p,N=a q.所

师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?
生:(板书)
师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难
为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.
师:法则(2)的适用条件是什么?
生:M>0,N>0;a>0且a≠1.
师:观察法则(2)的结构特点并加以记忆.
生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.
师:(板书)lg20-lg2=?
师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.师:(板书)
例1 计算:
(学生上黑板解,由学生判对错,并说明理由.):
(1)log
93+log
9
27=log
9
3×27=log
9
81=2;
(3)log
2(4+4)=log
2
4+log
2
4=4;
生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)
生:第(3)题错!法则(1)的内容是:
生:第(4)题错!法则(2)的内容是:
师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?
生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).
师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即
log
a (N)n=n·log
a
N.
师:请同学们自己证明(给几分钟时间)师:法则(3)的适用条件是什么?
生:a>0,a≠1;N>0.
师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.
师:例如,(板书)log
332=log
5
25=5log
5
2.练习计算(log
2
32)3.
(找一好一差两名学生板书.)
错解:(log
232)3=log
2
(25)3=log
2
215=15.
正确解:(log
232)3=(log
2
25)3=(5log
2
2)3=53=125.
(师再次提醒学生注意要准确记忆公式.)
师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即
师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.
师:法则(3)和法则(4)可以合在一起加以记忆.即log
a Nα=αlog
a
N(α
∈R).(师板书)
例2 用log
a x,log
a
y,log
a
z表示下列各式:
解:
(注意(3)的第二步不要丢掉小括号.)例3 计算:
解:(生板书)
(1)log
2(47×25)=log
2
47+log
2
25=7log
2
4+5log
2
2=7×2+5×1=19.
师:请大家在笔记本上小结这节课的主要内容.
小结:通过本节课,应使学生明确如何学习一种运算(从定义、记法、性质、法则等方面来研究);如何学习公式或法则(从公式推导,适用条件,结构特点和记忆以及公式作用四方面来研究).针对高中数学内容多、密度大、进度快的特点,应使学生尽早地掌握适应高中数学的学习方法.
练习:课本第79页练习第1、2、3题。

作业:课本第86页习题2.2A组题第3、4、5题。

相关文档
最新文档