土壤氮磷循环和环境效应环境土壤学张乃明专题培训课件

合集下载

土壤学第九章-土壤养分循环ppt课件

土壤学第九章-土壤养分循环ppt课件

土壤学
资源环境学院土地资源与农业化学系
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
反硝化的临界Eh约为334mv,最适pH为7.0~8.2, pH小于5.2~5.8的酸性土壤,或高于8.2~9.0的碱性 土壤,反硝化作用显著下降。
有机肥
养分资源


淋 洗
地下水
土壤学
资源环境学院土地资源与农业化学系
土壤养分的基本概念
土壤养分-指植物所必需的,主要是土壤来提供的营养元 素就叫做土壤养分。土壤养分是土壤肥力的物质基础,是土 壤肥力的重要组成因素。
有效养分-能够直接或经过转化被植物吸收利用的土壤养 分。
速效养分-在作物生长季节内,能够直接、迅速为植物吸 收利用的土壤养分,称速效养分。
(3)这种养料元素在植物的代谢过程中具有直接 的作用。
土壤学
资源环境学院土地资源与农业化学系
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
土壤养分循环是“土壤圈”物质循环的重 要组成部分,也是陆地生态系统中维持生物生 命周期的必要条件。
有机质C/N
>30
30~15
<15
氮的固定量>矿化量 固定量=矿化量 固定量<矿化量
补充化肥
补充有机质
(2)应用“激发效应”调节土壤有机质和氮素平 衡
有机质丰富的土壤,施用绿肥等新鲜有机肥 产生正激发效应。
有机质缺乏的土壤,施用富含木质素的粗有
机肥,产生负激发效应。

《环境土壤学》课件

《环境土壤学》课件
时维持土壤结构和肥力。
土壤结构包括土壤颗粒大小、孔隙度和团聚体等,影 响水分和空气的流动,以及养分的保持和传递。
土壤生态系统由土壤生物、土壤环境、土壤结 构和土壤养分等组成,具有物质循环、能量流 动和信息传递等功能。
土壤环境包括土壤温度、湿度、酸碱度、氧化还 原电位和土壤气体等,对土壤生物的生存和活动 产生影响。
交通运输
汽车尾气、轮胎磨损等 产生的有害物质进入土
壤。
土壤污染的类型
重金属污染
如铅、汞、镉等重金属元素在土壤中积累。
放射性污染
放射性核素在土壤中的富集。
有机物污染
如石油、农药、多环芳烃等有机化合物污染 土壤。
病原菌和寄生虫污染
污水灌溉和垃圾填埋等导致病原菌和寄生虫 在土壤中滋生。
土壤污染对环境和人体的影响
土壤生态保护与修复
通过生态工程和生物修复等技 术手段,恢复受损土壤生态功 能。
土地资源管理与规划
结合地理信息系统等技术,进 行土地资源调查、评价和规划

环境土壤学的发展历程
20世纪初
环境土壤学开始萌芽,主要关注土壤污染问题。
20世纪中叶
随着工业化和城市化加速,土壤污染和退化问题日益严重,环境土 壤学得到快速发展。
土壤生物的种类与分布
土壤生物包括微生物、植物和动物等,其中微 生物包括细菌、真菌、放线菌等,植物包括根 系和地衣等,动物包括蚯蚓、蚂蚁和蜘蛛等。
土壤生物的种类和分布受地理环境、气候条件 、植被类型和土壤类型等多种因素的影响,不 同地区的土壤生物群落存在差异。
土壤生物在土壤形成、物质循环和生态平衡等 方面发挥着重要作用,对人类生产和生活也有 重要影响。
特点
环境土壤学具有跨学科性,涉及环境 科学、土壤学、地理学、生态学等多 个领域;同时,环境土壤学强调实践 应用,旨在解决实际的环境问题。

《土壤氮素与氮肥》课件

《土壤氮素与氮肥》课件
《土壤氮素与氮肥》
本课件将重点介绍土壤氮素的来源和循环过程,不同种类的氮肥及其使用方 法,土壤氮素与氮肥的关系,氮素缺乏对作物的影响,氮肥过度使用的危害 以及合理使用氮肥的方法。
土壤氮素的来源及循环过程
土壤氮素主要来源于有机物分解和氮肥的施用,其循环过程包括氮固定、氮矿化、氮硝化和氮反硝化等。 了解土壤氮素的来源和循环过程能够帮助我们更好地管理土壤肥力。
氮肥的种类和使用方法
氮肥主要包括有机氮肥和无机氮肥。有机氮肥包括农家肥、畜禽粪便等,而 无机氮肥则包括铵态氮肥、硝态氮肥等。选择适当的氮肥种类和使用方法能 够提高作物产量和质量。
土壤氮素与氮肥的关系
土壤氮素和氮肥之间存在着密切的关系。土壤氮素的含量和形态影响着氮肥 的利用率和作物对氮肥的吸收能力。合理施用氮肥可以提高土壤氮素的利用 效率。
合理使用氮肥的方法包括选择适当的氮肥种类和使用时间,控制施肥量,结合有机肥使用,加强土壤管 理等。正确使用氮肥可以提高肥料利用率,减少对环境的影响。
结论和建议
通过学习土壤氮素与氮肥的相关知识,我们可以更好地掌握土壤肥力管理的 方法和技巧,提高农作物的产量和质量,促进可持续农业发展。
氮素缺乏对作物的影响
氮素缺乏会导致作物生长迟缓、叶片发黄、产量下降等问题。及时识别氮素缺乏的症状,并采取补充氮 肥的措施,可以有效改善作物的生长状况。
氮肥过度使用的危害
氮肥过度使用会导致土壤酸化、水体富营养化、生态环境破影响。
合理使用氮肥的方法

《土壤养分循环》课件

《土壤养分循环》课件

2
探讨钙、镁、铁等次要元素在土壤和植 物之间的循环过程。
主要营养元素的循环过程
详细描述氮、磷、钾等主要营养元素在 土壤和植物之间的循环过程。
土壤养分循环的因素
人为因素
探讨人为活动对土壤养分循环的影响,如施肥和农 业实践。
自然因素
分析自然环境对土壤养分循环的影响,如气候和土 壤类型。
土壤养分循环的方法
《土壤养分循环》PPT课 件
这是一份关于土壤养分循环的PPT课件,我们将深入探讨土壤养分的重要性、 循环的过程和方法,以及对环境保护和农业生产的意义。
土壤养分循环概述
1 土壤养分的重要性
了解土壤养分对植物生长的重要作用。
2 养分循环的定义
解释养分循环是指养分在土壤和植物之间的循环过程。
3 养分循环的作用
有机肥的应用
介绍有机肥如何改善土壤养 分循环。
化学肥的应用
解释化学肥如何提供养分补 给。
生物肥的应用
介绍生物肥如何促进土壤养 分循环。
土壤养分循环的意义
1 保护环境
阐述养分循环对水体污染和土壤侵蚀的控制作用。
2 增加农业生产
说明养分循环对农作物生长和产量的促进作用。
3 消费能源节约成本
解释养分循环对能源效率和减少成本的贡献。
结束语
展用于编写《土壤养分循环》PPT课件的参考文献列表。
探讨养分循环对生态系统的维持和农业可持续发展的重要性。
养分的来源
1 前人所学
总结前人研究土壤养分来源的成果。
2 新的认识
介绍最新的研究成果,揭示养分来源的新视角。
养分的种类
1 主要养分
列举主要的植物营养元素,如氮、磷和钾。
2 次要养分

《土壤氮素与环境》课件

《土壤氮素与环境》课件

土壤氮素的作用
土壤氮素是植物生长和发育的重要营养元素之一,对提高作物产量和品质具有重要作用。
土壤中的氮素可以促进植物的光合作用、蛋白质合成和其他生理生化过程,从而影响植物的生长和发 育。同时,土壤中的氮素也可以影响土壤微生物的活性、种群结构和功能,进而影响整个生态系统的 健康和稳定性。
02
土壤氮素循环
铵的转化
铵在土壤中的吸附、解吸、移动等过程。
土壤氮素的流失
径流流失
雨水或灌溉水携带土壤中的氮素通过地表径 流流失。
淋溶流失
土壤中的氮素通过渗滤作用进入地下水或河 流。
气态流失
土壤中的氮素以氨气、氮氧化物等形式挥发 到大气中。
03
土壤氮素与植物生长
土壤氮素对植物生长的影响
土壤氮素是植物生长的重要营养元素之一,对植物的生长、发育和产量具 有显著影响。
05
土壤氮素的管理与保护
提高土壤氮素利用效率的措施
合理施肥
根据作物需求和土壤养分状况,制定科学的施肥 计划,平衡氮、磷、钾等营养元素的施用。
推广缓控释肥料
缓控释肥料能够根据作物需求释放养分,提高养 分利用率,减少养分流失。
优化灌溉方式
合理安排灌溉时间和水量,避免过度灌溉导致养 分淋失。
控制土壤氮素流失的措施
土壤氮素的固定
固氮作用
大气中的游离态氮被微生物或植物吸收,转化为有机 氮的过程。
生物固氮
通过豆科植物、蓝绿藻等生物活动将氮气转化为氨的 过程。
非生物固氮
通过闪电、火山活动等自然现象将氮气转化为氨的过 程。
土壤氮素的转化
硝化作用
在土壤微生物的作用下,氨转化为硝酸盐的过 程。
反硝化作用
在缺氧条件下,硝酸盐被还原为氮气,释放到 大气中的过程。

《土壤学第7章》课件

《土壤学第7章》课件

土壤资源保护与可持续利用
土壤资源保护
采取一系列措施,防止土壤退化和侵蚀,保持土 壤的生产力和生态功能。
土地利用规划
合理规划土地利用方式,避免不合理的土地开发 。
植被覆盖保护
保护和恢复植被,防止水土流失。
土壤资源保护与可持续利用
农田水利建设
加强农田水利建设,提高抗旱抗涝能力。
土壤可持续利用
在满足当代人需求的同时,不损害未来世代满足需求的能力。
通过采取一系列措施,改善土壤的物 理、化学和生物性质,提高土壤肥力 和生产能力。
通过施加石灰、石膏等物质调节土壤 酸碱度,以满足不同作物的生长需求 。
土壤质地改良
通过施加有机肥、砂土改良剂等手段 改善土壤质地,提高土壤的保水保肥 能力。
土壤改良与修复
土壤结构改良
通过耕作、轮作等措施改善土壤 团粒结构,提高土壤的通气性和
采样方法
根据土壤类型和采样目的 ,选择合适的采样工具和 方法,确保采样的准确性 和代表性。
土壤分析方法
化学分析
测定土壤中的水分、有机质、氮、磷、钾等 化学成分的含量。
生物分析
测定土壤中的微生物数量、活性等生物指标 。
物理分析
测定土壤的质地、结构、孔隙度等物理性质 。
分析方法选择
根据研究目的和要求,选择合适的分析方法 ,确保数据的准确性和可靠性。
土壤质量括土 壤环境质量、生产能力等方面的
指标。
评价方法
选择合适的评价方法,如指数法、 权重法等,对土壤质量进行评价。
监测网络
建立土壤质量监测网络,定期对土 壤进行监测,及时发现和解决土壤 质量问题。
04
土壤学第7章应用与实践
土壤改良与修复

(土壤学讲义)第10章土壤养分循环

(土壤学讲义)第10章土壤养分循环

第十章土壤养分循环第一节土壤氮素循环第二节土壤磷和硫的循环第三节土壤中的钾钙镁第四节土壤中的微量元素循环第五节土壤养分平衡及有效性循环第一节土壤氮素一、陆地及土壤生态系统中的氮循环(一)陆地生态系统中的氮形态大气中氮以分子态氮(N2)和各种氮氧化物(NO2、NO、N2O)等形式存在。

其中N2占78% ,生物作用下转化为土壤和水体生物有效态(铵态氮和硝态氮)(二)氮素循环由两个重叠循环构成:一是大气层的气态氮循环几乎所有的气态氮对大多数高等植物无效,只有若干种微生物或少数与微生物共生的植物可以固定大气中的氮素,使它转化成为生物圈中的有效氮。

二是土壤氮的内循环1-矿化作用 2-生物固氮作用 3-铵的粘土矿物固定作用4-固定态铵的释放作用 5-硝化作用6-腐殖质形成作用 8-腐殖质稳定化作用7-氨和铵的化学固定作用二、土壤氮的获得和转化(一)土壤氮的获得1、大气中分子氮的生物固定2、雨水和灌溉水带入的氮3、施用有机肥和化学肥料(二)土壤中N的转化1、氮的形态---无机态氮和有机态氮(1)土壤无机态氮铵态氮(NH4+-N)硝态氮(NO3--N)(2)有机态氮 --主要存在形态,占全N的95%以上水溶性有机氮按溶解度大小分水解性有机氮非水解性有机氮2、土壤氮素的转化(1)有机氮的矿化矿化过程分两个阶段:第一阶段:氨基化阶段即复杂的含氮化合物(如氨基糖、蛋白质、核酸等)经微生物酶的系列作用下,逐渐分解而形成简单的氨基化合物。

第二阶段:氨化作用即在微生物作用下,各种简单的氨基化合物分解成氨的过程。

氨化作用于可在不同条件下进行:O2 RCOOH +NH3+CO2+QRCHNH2COOH + 2H---RCH2COOH +NH3+QH2O RCHOHCOOH+NH3+Q(2)铵的硝化硝化作用:是指土壤中大部分NH4+通过微生物作用氧化成亚硝酸盐和硝酸盐的过程。

2NH4++3O2-------2NO2-+2H2O+4H++Q2NO2-+O2-------2NO3-+Q(3)无机态氮的生物固定定义:矿化作用生成的铵态氮、硝态氨和某些简单的氨基态氮,通过微生物和植物的吸收同化,成为生物有机体组成部分,称为无机态N的生物固定(又称为生物固持)(4)铵离子的矿物固定定义:是指离子直径大小与2:1型粘土矿物晶架表面孔穴大小接近的铵离子,陷入晶架表面的孔穴内,暂时失去了它的生物有效性,转变为固定态铵的过程。

《土壤养分循环》课件

《土壤养分循环》课件

同位素示踪法
利用同位素标记法追踪土壤养分的来 源、转化和去向,揭示养分循环的详 细过程。
数学模型模拟
建立数学模型,模拟土壤养分循环过 程,预测未来变化趋势,为实际应用 提供理论依据。
土壤养分循环研究的发展趋势
综合研究
将土壤养分循环与气候变化、土地利用方式、植 被类型等多因素相结合,进行综合研究。
高新技术应用
植物通过根部吸收土 壤中的水分和养分, 以满足其生长和发育 的需求。
植物对养分的吸收受 到土壤质地、pH值 、温度和水分等因素 的影响。
养分吸收的方式包括 离子交换、主动运输 和被动运输等。
土壤微生物对养分的利用
土壤微生物是土壤养分循环的重要参 与者,它们通过分解有机物质,将有 机养分转化为可被植物吸收的无机养 分。
利用。
养分的释放速度和程度取决于 多种因素,包括土壤pH值、土 壤温度、土壤湿度等。
在一定的环境条件下,土壤微 生物的活动也可以促进养分的 释放。
03
土壤养分的转化与迁移
土壤养分的矿化与固定
矿化
有机物质通过微生物分解转化 为简单的无机物质。
固定
土壤中的无机物质与有机物质 结合,转化为难以被植物吸收 的形式。
3
养分的矿化与腐殖化
土壤中的有机物质通过微生物的分解作用转化为 无机养分,同时也会形成较为稳定的腐殖质,储 存养分。
02
土壤养分的来源与输入
土壤养分的自然来源
01
02
03
04
自然界的土壤养分主要来源于 岩石的分解、动植物残体的分
解和微生物的合成。
岩石的分解是土壤养分的主要 来源之一,包括风化作用和侵
蚀作用。
动植物残体的分解也是土壤养 分的重要来源,通过微生物分 解有机物质,释放出其中的养

土壤环境化学培训教材(ppt 63页)

土壤环境化学培训教材(ppt 63页)
次生矿物
由原生矿物经风化,形成的新矿物。 在土壤形成过程中,原生矿物以不同的数量与土壤中的次生矿物 混合存在,成为土壤矿物质。
25
土壤组成与性质--土壤原生矿物
(1)硅酸盐类矿物
长石类、云母类、辉石类和闪角石类等矿物,风化释放K、Na、 Ca、Fe、Mg和Al等元素可供植物吸收,可形成新的次生矿物。
规定土壤区中污染物的最高允许浓度限制值
21
土壤环境的质量
二级标准
Ⅱ类土壤区(一般农田、蔬菜地、茶园、果园、牧场等的土 壤),土壤质量应基本上对植物和环境不造成危害和污染。
规定土壤区:污染物的最高允许浓度限制值
三级标准
Ⅲ类土壤区(林地土壤及污染物容量较大的高背景值土壤和矿区 附近等地的农田土壤,蔬菜地除外)。
地的北部,塔里木盆地的外缘。 形成条件
气候比栗钙土地区更干,大陆性更强。年平均气温2~ 7℃,年降水量150~250毫米。
植被:荒漠草原和草原化荒漠。 特征
腐殖质的积累和腐殖质层厚度最少,土壤颜色以棕色 为主,土壤呈碱性反应,地面普遍多砾石和沙,逐渐向荒 漠土过渡。
14
中国土壤类型--黑垆土
分布地区 陕西北部、宁夏南部、甘肃东部等黄土高原。
27
土壤组成与性质--土壤有机质
来源:动植物残体 ,高等绿色植物。 土壤有机质 (1) 非特殊性的土壤有机质
动植物残体的组成部分以及有机质分解的中间产物(如蛋白质、 树脂、糖类、有机酸等,占土壤有机质总量的10~15%)。
(2) 土壤腐殖质
土壤特有的有机物质,占土壤有机质总量的85~90%,由动植物 残体通过微生物作用,发生复杂转化而成。
3
中国土壤类型--砖红壤
分布地区 海南岛、雷州半岛、西双版纳和台湾岛南部,大致位

土壤氮的形态培训课件

土壤氮的形态培训课件

土壤氮的形态培训课件土壤全氮量在底土中不足0.02%,而在泥炭土中却高达2.5%以上。

美国大多数耕地土壤表层的30厘米内全氮量通常介于0.03%~0∙4虬土壤氮一般可分为无机态和有机态。

表土中氮的95%或更多为有机氮。

一、无机氮化合物土壤无机氮包括钱(NH;)、亚硝态氮(No/)、硝态氮(NO3)>氧化亚氮(M)、氧化氮(NO)和单质氮(NJ。

单质氮呈惰性,只能被根瘤菌和其他固氮微生物所利用。

就土壤肥力而言,NH l∖N02∖和NOJ三种形态的氮最重要;因N2O和NO经反硝化作用而损失,从反面讲它们也重要。

钱态、亚硝态和硝态氮由土壤有机质的好气分解或施入的各种商品肥料而来,这三种形态的氮通常占土壤全氮的2%~5%。

二、有机氮化合物土壤有机氮包括固定态氨基酸(即蛋白质)、游离氨基酸、氨基糖和其他未确定的复合体。

最后一类包括以下物质:(a)钱和木质素反应的产物;(b)醍和氮化合物的聚合产物;(C)糖与胺的缩合产物。

这些形态的氮占土壤全氮的比例为:结合态氨基酸20%〜40%;氨基糖如己糖胺5%~10%;喋吟和暗淀的衍生物1%或更少。

其余50%左右有机氮的化学特性尚属未知。

蛋白质常与粘粒、木质素或其他物质相结合,一般认为这是其抗分解的原因之一,其存在可由酸性土壤的水解产物中有无氨基酸来推断。

可以设想,因氨基酸结合生成蛋白质,所以土壤中水解产物中若有氨基酸,则必有蛋白质。

现代分析技术可从土壤中分离出既不与肽链也不与高分子有机聚合物、粘粒或木质素相连的游离氨基酸。

这些底物易被生物氧化,说明其在土壤中数量不可能积累很多。

其易分解性还表明,它们比不溶性结合态氨基酸、氨基糖、木质素和腐殖质复合体中的氮更可能是硝化细菌的底物-NH;的重要来源。

较之其他形态的有机氮,游离氨基酸在土壤中数量很少。

第8章-土壤氮、磷循环与环境效应-环境土壤学(张乃明)

第8章-土壤氮、磷循环与环境效应-环境土壤学(张乃明)
主要为: 游离氨基酸、胺盐及酰胺类化合物; • 水解性有机氮50~70%,用酸碱或酶处理而得。
包括:蛋白质及肽类、核蛋白类、氨基糖类; • 非水解性有机氮30~50%,
主要可能是杂环态氮、缩胺类 。
2021/2/8
7
无机态氮
数量少、变化大,表土中占全氮 1~2% ,最多不超过5~8%。
• 铵态氮(NH4+ — N):可被土壤胶体吸附,一般不易流失, 但在旱田中,铵态氮很少,在水田中较多。
2021/2/8
22
施用氮肥的水体污染
➢ 施用化肥对水体环境影响多方面,如水体富营养化、NO3-和 NO2-污染等。一般来说,在封闭性湖泊和水库水中,氮(N) 浓度超过0.2 mg/L,磷(P)浓度达到0.015mg/L时就可能引 起“藻化”现象。从土壤学角度看,这两个浓度很易达到。
➢ 目前氮和磷是我国湖泊富营养化的主要诱因,五大淡水湖泊 (太湖、洪泽湖、鄱阳湖、洞庭湖和巢湖)水体中营养盐均 远超过氮磷富营养化发生浓度,尤其总氮浓度高达10倍以上。 我国几乎所有的江湖河海和局部的地下水都不同程度遭到了 氮和其化合物的污染 。
➢土壤有机磷化合物主要来自植物,也有相当 部分来自土壤生物,特别是微生物。
➢绝大部分土壤有机磷以单脂键与土壤腐殖质 结合,已知组分的有机磷化合物主要有3类: 植素类、核酸类、磷脂
Soil
Solution
P
Stable Inorg.P
Labile. Inorg.P
Complexed HPO4
Plant Residues/Manures
Soil
Microb es Labile
Org. P
Stable
OrgapnhiocspPholipi ds
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前肥料是农田土壤氮肥的主要来源。
2019/12/18
4
氮素是土壤中活跃营养元素,作物需求量大。和植物 需求相比,全世界大部分土壤缺氮,氮肥的应用有力 地促进农业生产的发展,开创了农业历史的新纪元。
土壤中氮可以通过一系列化学反应和物理过程以各种 形态进入大气和水体,对局部乃至全球环境产生种种 负面影响。围绕施用氮肥产生的效益与弊端的讨论一 直是土壤、肥料、地球物质循环、农产品品质、环境 科学等多个研究领域密切关注的问题。
在土壤里有三种存在方式:游离态、交换态、固定态。
• 硝态氮(NO3- — N) :移动性大;通气不良时易反硝化损失;
在土壤中主要以游离态存速在效。氮:土壤溶液中的铵、

亚硝态氮(NO2-

N):主交要换在性嫌铵气和性硝条态件氮下因才能有直可接能存在, 被植物根系所吸收,常被称
而且数量也极少。在土壤为里速主效要态以氮游。离态存在。
主要为: 游离氨基酸、胺盐及酰胺类化合物; • 水解性有机氮50~70%,用酸碱或酶处理而得。
包括:蛋白质及肽类、核蛋白类、氨基糖类; • 非水解性有机氮30~50%,
主要可能是杂环态氮、缩胺类 。
2019/12/18
7
无机态氮
数量少、变化大,表土中占全氮 1~2% ,最多不超过5~8%。
• 铵态氮(NH4+ — N):可被土壤胶体吸附,一般不易流失, 但在旱田中,铵态氮很少,在水田中较多。
土壤氮素损失 ——其他损失途径
• 粘粒矿物对铵的固定
北方的土壤中,能固铵的粘粒矿物较多,但其土壤中铵极少,而 南方水田的铵态较多,而能固定铵的粘土矿物不多。因此,铵的 粘土矿物固定在我国的意义不大。
• 生物固定
• 氮素的淋洗
硅铝片
NH4+ 硅铝片
2019/12/18
淋 洗
19
四. 土壤氮素流失与环境质量
第二步:硝化作用
硝化微生物
2NO2- + O2
速率:硝化作用>亚硝化作用>铵化作用。 因此,正常土壤中,很少有亚硝态氮和铵态 氮及氨的积累。
2NO3- + 40千卡
2019/12/18
14
硝化作用:NH4+或NH3经NO2-氧化为NO3-
2019/12/18
15
土壤氮素损失 ——反硝化(生物脱氮过程)
• 其他,氨态氮、氮气及气态氮氧化合物。
2019/12/18
8
几个概念
全氮:土壤中氮素的总量

有效氮:能被当季作物利用的
氮素,包括无机氮(<2%)和易分 解的有机氮
碱解氮:测得的有效氮。
速效氮:土壤溶液中的铵、交
换性铵和硝态氮因能直接被植物 根系所吸收,常被称为速效态氮 。



效 氮



2019/12/18
过程: NO3-
硝酸盐 还原酶
NO2-
硝酸盐 还原酶
氧化氮
氧化亚氮
NO
还原酶
N20
还原酶
N2
N2
+ 2H+ -2H2O
2NO
- 4H+
+2H2O
N2O
- H20
厌氧 微生物
HN03
厌氧微生物 +4H+ - 2H2O
2HNO2
+4H+ -2H2O
H2N2O2
2019/12/18
16
反硝化作用:硝酸盐等较复杂含氮化合物 转化为N2、NO、N2O
2019/12/18
17
土壤氮素损失 ——化学脱氮过程
主要是一些特殊环境条件下的化学反应,如:
a. 氨态氮挥发
NH4+ + OH- NH3 + H2O 在碱性条件下进行
b. 亚硝酸分解反应
3HNO2 HNO3 + 2NO + H2O 条件:酸性愈强,分解愈快。
2019/12/18
18
a. 水解:
水解
蛋白质 朊酶
水解
多肽 肽酶
氨基酸
b. 氨化:
氨化微生物
RCHNH2COOH + O2 酶
RCH2COOH + NH3 + 能量
2019/12/18
13
土壤氮素有效化 ——硝化过程:
定义:将土壤中的氨、胺、酰胺等微生物的作用下氧化
为硝酸的生物化学过程。
第一步:亚硝化作用
2HN4+ + 3O2 亚硝化微生物 2NO2- + 2H2O + 4H+ + 158千卡
2019/12/18
5
二. 土壤中氮素的形态
有机态氮
• 可溶性有机氮 < 5%; • 水解性有机氮50~70%; • 非水解性有机氮30~50%。
无机态氮
• 铵态氮(NH4+); • 硝态氮(NO3-); • 亚硝态氮(NO2-)。
2019/12/18
6
有机态氮
占全氮的绝大部分,95%以上。 • 可溶性有机氮 < 5%,
2019/12/18
3
一. 土壤氮素的含量及其来源
含量:
一般土壤含量范围:0.02%~0.50% 我国耕地含量:0.04%~0.35% 表层高,心、底土低
来源:
A 生物固氮:包括自生固氮 、共生固氮和联合固氮; B 降水:1.5-10.5 kg/hm2.a; C 灌水; D 施肥;有机肥、无机化肥
9
中国不同地区耕层土壤的全氮含量
2019/12/18
10
三. 土壤中氮素的转化
有 机 矿化作用 态 生物固定 氮
NH3
N2、NO、N2O
挥发损失
反硝化作用
硝化作用
铵态氮
硝态氮
硝酸还原作用
吸附固定
淋洗损失

生 物

固态 定氮
吸附态铵或 固定态铵
水体中的 硝态氮
2019/12/18
11
土壤氮素的有效化
氮肥生产效率趋于下降,农业环境污染则趋于加重 保障粮食安全和农产品供应,减少农业环境污染环境 降低农田中化肥氮损失、提高氮肥利用率 途径:
– 适宜施氮量,避免盲目过量施氮 – 氮肥深施、早作上表施氮肥(特别是尿素)立即适量灌
水、前氮后移 – 使用改性氮肥,延长肥效 – 利用作物与微生物共生固氮
……
Hale Waihona Puke 2019/12/18-土壤氮、磷循环和环境效应-环境土壤学 (张乃明)
主要内容
第一节. 土壤中氮素转化与环境质量 第二节. 土壤中磷素的转化与环境质量 第三节. 土壤中氮磷流失控制
2019/12/18
2
第一节. 土壤中氮素转化与环境质量
• 一. 土壤氮素的含量及其来源 • 二. 土壤中氮素的形态 • 三. 土壤中氮素的转化 • 四. 土壤氮素管理与环境质量
• 有机氮的矿化(有机氮水解;氨化) • 硝化(亚硝化;硝化)
土壤氮素的损失
• 反硝化——生物脱氮 • 化学脱氮(亚硝酸分解;氨挥发) • 粘粒对铵的固定 • 生物固定 • 氮素淋洗
2019/12/18
12
土壤氮素有效化 ——有机氮矿化:
定义:含氮的有机合化物,在多种微生物的作用下
降解为简单的氨态氮的过程。它包括:
相关文档
最新文档