重庆大学高数(工学下)期末试题九(含答案)
重庆大学高数(工学下)期末试题一(含答案)
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆大学高数(工学下)期末试题九(含答案)
重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:开卷闭卷其他考试时间: 120 分一、选择题(每小题3分,共18分) 1. 已知向量{}4,3,4a =-与向量{}2,2,1b =则a b ⋅=().(A) 6 (B) 6- (C) 1 (D) 3- 知识点:向量的内积;难度等级:1。
答案: (A).2. 设arctan ,4z xy π⎛⎫=+ ⎪⎝⎭则zx∂=∂().(A))4(1π++xy xy (B)2)4(11π+++xy x(C)22)4(1)4(sec ππ+++xy xy xy (D)2)4(1π++xy y知识点:多元函数偏导数;难度等级:1。
答案: (D). 3. 两个半径为R 的直交圆柱体所围立体的表面积是(). (A) 004Rdx dy ⎰ (B) 08Rdx ⎰(C) 04Rdx ⎰ (D) 016Rdx ⎰知识点:二重积分的应用;难度等级:2。
答案:(D)分析:可设两个圆柱面的方程为222222,.x y R x z R +=+=由对称性,为第一卦象的面积的8倍.又由对称性,在第一卦限两个曲面部分面积相等,故可取在第一卦限222x z R +=部分面积的16倍,而该面积为00,Rdx ⎰选D.4.设u =(1,0,1)()().rot gradu =(A)14(B)0 (C)(0,0,0) (D)(1,0,1)知识点:旋度定义;难度等级:1。
答案:(C)分析:经计算,对应的旋度场为无旋场,即任意一点处旋度为0,命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密选C.5. 微分方程231xy y e ''-=+的一个特解为().(A)313x y e =+ (B) 213x y e =+(C) 313x y e =- (D) 213xy e =- 知识点:二阶常系数非齐次线性微分方程;难度等级: 2。
重庆大学高等数学(工学类)中期试卷及参考答案
由于抛物线关于x轴对称,只讨论 的情形。在 上任取一点 ,由光的反射原理及几何知识知,设T为过P的切线与x轴的交点,只需证
过P的切线方程斜率为
切线方程为
令 得T的横坐标为
,
,
,即证。
(C)不可能取极值(D)不能确定是否取极值
二.填空题(每小题3分,共15分)
1.已知 且 ,则 的定义域为
2.若 ,则
。
3.已知当 时, 与 是等价无穷小,则常数
4.若 在 上连续,则
5.设 在点 处可导,且 ,则函数在 处的切线斜率为
三.判断并说明理由(每小题4分,共12分)。
1.设 在 的某个邻域内有定义,若 存在,则 在 处可导。
由题设 ,知 ,从而
6.应用题(7分)
汽车的前灯、探照灯、反射式的天文望远镜以及日常生活中使用的手电筒,它们的反光镜都是采用旋转抛物面,即抛物线绕对称轴旋转一周而成的曲面。这种反光镜有一个很好的光学特性,把光源放在抛物线的焦点处,经镜面反射后的光线变成了与对称轴平行的光束,请用导数的几何意义来证明这个性质。
重庆大学高等数学(工学)课程中期试卷n
20—20 学年 第 学期
开课学院:数学与统计课程号:
!
考试日期:
考试时间:120分钟
题 号
[
一
二
三
四
五
、
六
七
八
九
十
~
总 分
得 分
,
@
>
一.单项选择题(每小题3分,共15分)
1.设 ,则 【D】
(A) (B)
~
(C) (D)
2.若函数 有 ,则当 时,该函数在 处的微分 是【D】
重庆大学高数工学下期末试题五含答案
-- -XX 大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年第学期开课学院:数统学院课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分钟一、选择题(每小题3分,共18分)1. 如果,a b 为共线的单位向量,则它们的数量积().a b ⋅=(A)1 (B) 0 (C) 2- (D) cos(,)a b知识点:向量的数量积,难度等级:1. 答案:D分析:||||a b a b ⋅=cos(,)a b =cos(,).a b 2.微分方程21x y '=的通解是().(A) 1y C x =+(B) 1y C x=+ (C)1C y x =-+ (D) 1y xC =-+知识点:微分方程,难度等级:1. 答案:D分析:将方程改写为21,dy dx x =并积分,得通解1,y C x=-+故应选(D).3.设空间区域2222,x y z R Ω++≤:则().Ω=(A) 4R π(B)443R π;(C)4 32 R π(D)42 R π 知识点:三重积分计算,难度等级:2. 答案:A4.若L 是上半椭圆cos sin x a ty b t=⎧⎨=⎩取顺时针方向,则L ydx xdy -⎰的值为().(A)0 (B)2ab π(C)ab π (D)ab π-知识点:对坐标的曲线积分,难度等级:1. 答案: C分析:题中半椭圆面积为,2ab π要用格林公式,添有向线段1:0(:).L y x a a =-→112,0.DL L L dxdy ab π-+===⎰⎰⎰⎰故选C.命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 X X 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密5.设函数(),0f x x >连续,并对0x >的任意闭曲线,L 有34()0,Lx ydx xf x dy +=⎰且(1)2,f =则()f x =().(A)242412423-+-x x x (B)324122424x x x -+- (C)31x +(D)xx 13+知识点:对坐标的曲线积分,积分与路径无关,微分方程.难度等级:3.答案:D分析:由条件知,积分与路径无关,有3(4)(()).x y xf x y x ∂∂=∂∂即34()().x f x xf x '=+A,B 选项显然不满足方程,而C 含常数,也不能满足方程,故选D.验证D 满足,或用一阶线性微分方程求出为D. 6.曲面z =包含在柱面222x y x +=内部那部分面积().=(A) π(C)知识点:曲面面积,难度等级:2. 答案:B分析:在xOy 投影区域22:2,D x y x +≤化为二重积分为D,选B.二、填空题(每小题3分,共18分)7.级数12(2)!nn n n ∞=∑的和为__________.知识点:级数的和.难度等级:2. 答案:e分析:11121.(2)!!(1)!n n n n n n e n n n ∞∞∞======-∑∑∑8. 222()__________,c x y z ds ++=⎰其中c 为螺线cos ,sin ,(02).x a t y a t t a bt π=⎧⎪=≤≤⎨⎪=⎩的一段.知识点:对弧长的曲线积分,难度等级:1. 答案:2222(343a b ππ+ 解:弧长的微分为,ds =于是222222222202()()(343cx y z ds a b t dt a b πππ++=+=+⎰9. 过已知点A )1,2,1(-和B )7,2,5(-作一平面,使该平面与x 轴平行,则该平面方程为__________.知识点:平面方程,难度等级:2.答案:20.y -=分析:平面的法向量n AB ⊥,且n i ⊥,取606(0,6,0),100i j kn AB i =⨯=-=过点A (1,2,1),-平面方程为0(1)6(2)0(0)0,x y z ⋅-+⋅-+⋅-=即20.y -= 10. 函数zy u x =在点(1,2,1)-处沿(1,2,2)a =-方向的方向导数为______.知识点:函数的方向导数.难度等级:1 答案:1.6解:(1,2,2)a =-⇒122cos ,cos ,cos .333αβγ-===1(1,2,1)(1,2,1)1(1,2,1)(1,2,1)1;2ln 0;z z z y y z uy x x ux x zy y ------∂=⋅=∂∂=⋅=∂(1,2,1)(1,2,1)ln ln 0.zy z u x x y y z --∂=⋅=∂111.236u a ∂⇒=⨯=∂ 11.设∑为平面326x y ++=在第一卦限的部分的上侧,将⎰⎰∑++Qdzdx Pdydz Rdxdy 化为对面积的曲面积分的结果为__________.知识点:两种曲面积分之间的转换.难度等级:2. 答案:32().555P Q R dS ∑++⎰⎰ 分析:第二型曲面化为第一型曲面积分,只需求出有向曲面侧的单位法向量,与被积向量函数作内积即可,平面法向量为{,长度为5故得结果.12.设∑是圆锥面z =被圆柱面ax y x 222=+所截的下部分,则()xy yz zx dS ∑++⎰⎰__________.=知识:对面积的曲面积分,对称性.难度等级:3. 答案4. 分析:曲面关于x 轴对称,xy yz +为关于y 的奇函数,故只需算zx的积分值,2cos 3422cos .xya D zxdS d dr θππθθ-∑===⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 计算积分(2),c a y dx xdy -+⎰其中c 为摆线(sin ),(1cos )(02)x a t t y a t t π=-=-≤≤的一拱.知识点:对坐标的曲线积分,难度等级:2分析:已知了积分路径的参数方程,直接代入计算积分. 解:由题设(1cos ),sin .dx a t dt dy a tdt =-=于是{}20(2)[(2(1cos )](1cos )(sin )sin ca y dx xdy a a t a t a t t a t dt π-+=---+-⎰⎰[]2202202sin cos sin 2.a t tdt a t t t a πππ==--=-⎰14. 求32sin (2cos cos )0x d x x dx θθθθ+-+=的通解.知识点:微分方程,变量代换,一阶线性微分方程.难度等级:2 分析:sin cos d d θθθ=,若令cos z θ=,原方程可化为一阶线性方程.解:将原方程改写为2sin cos 2cos .x d dx dx xdx x θθθθ+-+= 令cos ,y xθ=则2sin cos .x d dxdy xθθθ+=-于是方程化为 2.dyxy x dx+= 这是一阶线性非齐次方程.由通解公式2221().2x x x y e xe dx C Ce --=+=+⎰ 故21cos .2x x Cxe θ-=+15. 计算,2222⎰⎰∑+++z y x dxdy z xdydz 其中∑是由曲面222R y x =+及平面,(0)z R z R R ==->所围成立体表面外侧.知识点:对坐标的曲面积分,高斯公式.难度等级:3 分析:利用高斯公式并注意对称性.解:利用高斯公式,并注意对称性,知22222222222()0.()z dxdy z x y dV x y z x y z ∑Ω+==++++⎰⎰⎰⎰⎰ 又dydz z R y R dydz z R y R z y x xdydz⎰⎰⎰⎰⎰⎰∑∑∑+--++-=++212222222222222212yzD RR RdzR z --==+⎰⎰⎰⎰2212[arctan ]2.2R R z R R R R ππ-=⋅=22222.2xdydz z dxdy R x y z π∑+⇒=++⎰⎰ 16. 计算第二类曲线积分222,Ly dx z dy x dz ++⎰其中L 为球面2222R z y x =++与柱面对)0,0(22>≥=+R z Rx y x 的交线,其方向是面对着正x 轴看去是反时针的.知识点:对坐标的曲线积分,斯托克斯公式,对称性.难度等级:3 分析:利用斯托克斯公式,合一投影,并注意对称性的使用.解:222222L dydz dzdx dxdy y dx z dy x dz x y z y z x ∑∂∂∂++=∂∂∂⎰⎰⎰dxdyy yx R xy x ydxdyxdzdx zdydz xyD ⎰⎰⎰⎰+--+-=++-=∑)(222222xyD xdxdy =-⎰⎰(∵xy D 关于x 轴对称,(,)f x y y 是关于y 的奇函数)⎰⎰--=22cos 02cos 2ππθθθR dr r d342034cos 3.4R d R πθθπ=-=-⎰四、解答题(每小题6分,共12分)17.判断级数111(1)nn e n∞=--∑的敛散性.知识点:级数敛散性的判断.难度等级:2 分析:取211n n ∞=∑用比较判别法的极限形式. 解: 1200211111limlim lim .122nx xn x x e e x e n x x n →∞→→-----===由于211n n∞=∑收敛,故级数111(1)n n e n ∞=--∑收敛.18.求函数2232z x y x =+-在闭域22(,)|194x y D x y ⎧⎫=+≤⎨⎬⎩⎭上的最大值和最小值.知识点:二元函数在闭区域上的最值.难度等级:2分析:先求函数的驻点,得到在区域内部可能的最值点,然后求边界上可能的最值点.解:由22060x yz x z y =-=⎧⎨==⎩得D 内驻点(1,0),且(1,0) 1.z =-在边界22194x y +=上()21121233.3z x x x =--+-≤≤1220.3z x '=--< 11(3)15(3) 3.z z -==比较后可知函数z 在点(1,0)取最小值(1,0)1z =-在点(3,0)-取最大值(3,0)15.z -=五、 证明题(每小题6分,共12分)19.设函数(,,)F x y z 具有一阶连续偏导数,且对任意实数t 有(,,)(,,)(k F tx ty tz t F x y z k=是自然数),试证曲面(,,)0F x y z =上任一点的切平面都通过一定点(设在任一点处,有2220.x y z F F F ++≠).知识点:齐次函数,切平面.难度等级:2 分析:曲面(,,)0F x y z =在一点000(,,)x y z 的切平面方程为000()()()0,x y z F x x F y y F z z ⋅-+⋅-+⋅-=求出此方程,可以发现坐标原点(0,0,0)满足方程.证明:由已知条件可得.x y z xF yF zF kF ++=曲面上点000(,,)x y z 处的切平面方程为000()()()0.x y z F x x F y y F z z ⋅-+⋅-+⋅-=即000000(,,)0.x y z x y z xF yF zF x F y F z F kF x y z ++=++==易知0,0,0x y z ===满足上述平面方程,所以曲面的任意切平面都通过定点()000,,.20. 设0,n P >n P 单调增,且11n nP ∞=∑收敛.证明:(1)12n nn u P P P =+++单调减.(2)21n n u ∞=∑收敛.知识点:级数敛散性的判断.难度等级:2证:(1)1121121n n n nn nu u P P P P P P +++-=-++++++1212112121(1)()()()()n n n n n P P P n P P P P P P P P P ++++++-+++=++++++121121210()()n n n n P P P nP P P P P P P +++++-=<++++++12n nnu P P P ∴=+++单调减.(2)2122222,n n n n n n u P P P nP P =≤=+++而11n nP ∞=∑收敛,由比较判别法,21n n u ∞=∑收敛.六、 应用题(每小题8分,共16分)21. 设在xoy 面上有一质量为M 的匀质半圆形薄片,占有平面闭域222,,0{()|},D x y x y R y =+≤≥过圆心O 垂直于薄片的直线上有一质量为m 的质点,P .OP a =求半圆形薄片对质点P 的引力.知识点:平面薄片对质点的引力,难度等级:3 分析:由引力公式,建立二重积分计算 解:设P 点的坐标为(0,0,.)a 薄片的面密度为222.12M MRR μππ== 设所求引力为,,().x y z F F F F =由于薄片关于y 轴对称,所以引力在x 轴上的分量0,x F =而2223/2()y Dm yF G d x y a μσ=++⎰⎰2223/2sin ()Rm G d d a πρθμθρρ=+⎰⎰2223/22223/2sin ()2()RRm G d d a m G d a πρμθθρρρμρρ=+=+⎰⎰⎰24(ln GmM R R a π= 2223/2()z Dm aF G d x y a μσ=-++⎰⎰2223/2()Rm Ga d d a πρμθρρ=-+⎰⎰2223/22()2(1Rm Ga d a GmM R ρπμρρ=-+=-⎰22.一质量为m 的船以速度0v 沿直线航行,在0t =时,推进器停止工作(动力关闭). 假设水的阻力正比于,n v 其中n 为一常数,v 为瞬时速度,求速度与滑行距离的函数关系.知识点:微分方程模型.难度等级:2分析:据牛顿第二定律建立微分方程.解:船所受的力=向前推力-水的阻力=0,n kv -加速度为.dvdtα=于是,由题设有 00,|.n t dvmkv v v dt==-= 设距离为()x x t =,则上述方程化为.n dv dv dx dvmm mv kv dt dx dt dx=⋅=⋅=- 故有1.n mv dv kdx -=-当2n ≠时,两边积分得,22.2nmv kx c n-=-+- 代入000|,|0,t t v v x ====得20.2n mv c n-=-故220.(2)n n k n v x v m---=-+ 当2n =时,同理可解得0.k x mv v e-=。
【经典期末卷】大学高数(下)期末测试题及答案
第 1 页 (共 10 页)班级(学生填写): 姓名: 学号: 命题: 审题: 审批: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)LQdx Pdy +⎰=( )dxdy )P dxdy x 二重积分的积分区域D 是221≤+x y π C .2π+⎰L Pdx Qdy在A.∂∂-=∂∂P Qy x第 2 页(共10 页)第 3 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)()Lx y ds +⎰= ()Lx y ds +⎰= Lydx xdy +⎰= 2sin y t =上对应22xy De dxdy --⎰⎰= 2.第 4 页 (共 10 页)三. 计算题(一)(每小题6分,共36分)1.计算:22xy De d σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。
2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。
3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.第 5 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。
2019最新高等数学(下册)期末考试试题(含答案)ACE
2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yz xf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程22222430u u ux x y y∂∂∂++=∂∂∂∂ 化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u u u u u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22uη∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂2.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧;(4)()()22d d Lx y x x y y x y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧;(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d Lx y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d Lx xy x y xy y -+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故 ()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t aa t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x=⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415Lx xy x y xy yx x x x x x x xx x x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰3.证明: 本章关于散度的基本性质(1)~(3). 解:略。
重庆大学高数(下)期末试题二(含答案)
重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。
高数下册期末考试题及答案
高数下册期末考试题及答案一、选择题(每题2分,共10分)1. 函数 \( f(x) = \ln(x^2 + 1) \) 的导数是:A. \( 2x/(x^2 + 1) \)B. \( 2x/x^2 + 1 \)C. \( 2x/(x^2 - 1) \)D. \( 2x/(x^2 + 1)^2 \)答案:A2. 已知 \( e^x \) 的泰勒展开式为 \( 1 + x + x^2/2! + x^3/3! + \cdots \),那么 \( e^{-x} \) 的泰勒展开式是:A. \( 1 - x + x^2/2! - x^3/3! + \cdots \)B. \( 1 + x - x^2/2! + x^3/3! - \cdots \)C. \( 1 - x - x^2/2! + x^3/3! - \cdots \)D. \( 1 + x + x^2/2! - x^3/3! + \cdots \)答案:A3. 若 \( \int_0^1 x^2 dx = \frac{1}{3} \),则 \( \int_0^1 x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{5} \)C. \( \frac{1}{6} \)D. \( \frac{1}{7} \)答案:A4. 曲线 \( y = x^3 - 3x^2 + 2x \) 在 \( x = 2 \) 处的切线斜率是:A. 0B. 1C. 2D. -1答案:B5. 若 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 等于:A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共15分)6. 若 \( f(x) = x^3 - 2x^2 + x \),则 \( f'(x) = \) ________。
重庆大学高数(下)期末试题11(含答案)
重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、 选择题(每小题3分,共18分)1. 设,yu xy x =+则22u x ∂=∂__________.答案:32.y x难度等级:1;知识点:偏导数.2. 已知级数1nn n a x ∞=∑满足11lim ,3n n na a +→∞=且lim 2,n n n ab →∞=则级数1n n n b x ∞=∑的收敛半径为__________.答案:3.难度等级:2;知识点:幂级数分析:1111111limlim 2, 3.233n n n n n n n n n n b b a a R b a a b +++→∞→∞+==⨯⨯== 3. 若曲线上任一点(,)x y 处的切线斜率等于(1),yx-+且过点(2,1),则该曲线方程是__________.答案:14.2y x x =-+难度等级:2;知识点:一阶线性微分方程4. 设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)__________.Lxy y dx x x dy -+-=⎰答案:18.π-难度等级:2;知识点:格林公式分析:利用格林公式可化为被积函数为2-的二重积分,而积分区域面积为9,π故得.5. 设()f t 具有连续导数, (0)0,(0)1,f f '=={}2222(,,)|,x y z x y z t Ω=++≤则1lim40I f d t t V π==⎰⎰⎰+Ω→__________. 答案:1.命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密难度等级:2;知识点:三重积分6. 求以向量23a m n =+和4b m n =-为边的平行四边形的面积为 ,其中,m n 是互相垂直的单位向量. 答案:11.难度等级:2;知识点:向量代数.分析:为了便于计算,令,m i n j ==,则23a i j =+,4b i j =-,230(0,0,11),140i j ka b ⨯==--平行四边形的面积为20011a b ⨯=+=二、填空题(每小题3分,共18分)7. 设非零向量,,a b c 满足条件0a b c ++=,则a b ⨯().=(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯ 答案:(B).难度等级:1;知识点:向量代数分析:在0a b c ++=的两边左乘以b得到()0,b a b c b ⨯++=⨯0,b a b b b c ⨯+⨯+⨯=即0.a b b c -⨯+⨯=于是.a b b c ⨯=⨯8. 设函数z f x y =(,)在点(,)x y 00处沿任何方向有方向导数,则z f x y =(,)在点(,)x y 00处().(A)偏导数存在(B)可微 (C)偏导数不一定存在 (D)偏导数连续 答案:(C).难度等级:2;知识点:偏导数与方向导数分析:函数z =(0,0)处沿任何方向的方向导数均为1,但偏导数不存在,所以应选(C).9. 微分方程22x y y '''=的通解是().(A)1221ln(1)C x y x C C -=--+ (B) 1211ln(1)C x x y C C C -=--+ (C)12211ln(1)C x x y C C C -=-+ (D) 12211ln(1)C x x y C C C -=--+ 答案: (D).难度等级:2;知识点:可降阶微分方程分析:方程为二阶非线性方程.令,u y '=则方程降为一阶方程22,x u u '=这是变量可分离方程.分离变量得22,du dxu x=积分得111.C u x =+将u y '=代入并积分可得12211,ln(1)C x x y C C C -=--+故应选(D).10.曲线2,x t y z t ===在点(4,8,16)处的法平面方程为().(A) 8132x y z --=- (B) 8140x y z ++= (C)x-y+8z=124 (D) 8116x y z +-=答案:(B).难度等级:1;知识点:多元微分学在几何上的应用 分析:法平面的法向量就是曲线的切向量,为(1,1,8),n =所以法平面方程为:(4)(8)8(16)0.x y z -+-+-=即 8140.x y z ++= 与(A)、(B)、(C)、(D)比较后知,应选B).11. 设有一分布非均匀的曲面,∑其面密度为(,,),x y z ρ则曲面∑对x 轴的转动惯量为().(A)xdS ∑⎰⎰ (B)(,,)x x y z dS ρ∑⎰⎰(C)2x dS ∑⎰⎰ (D)22()(,,)y z x y z dS ρ∑+⎰⎰答案:(D).难度等级:1;知识点:曲面积分的应用分析:A,C 明显不对,B 被积函数不对,D 是转动惯量. 12. 设流速场{0,0,1},v =则流过球面2222x y z R ++=的流量值为().(A)0 (B)24R π (C)334R π (D)1 答案:(A).难度等级:2;知识点:第二型曲面积分的应用.分析:通量00.dxdy dV ∑ΩΦ===⎰⎰⎰⎰⎰三、 计算题(每小题6分,共24分)13. 求微分方程3dy y dx x y =+的通解. 难度等级:2;知识点:一阶线性微分方程.分析 方程为一阶非线性方程,需变形为一阶线性方程求解.解 方程改写为21dx x y dy y-=, 这是关于()x x y =的一阶线性非齐次方程,故通解为2()dydyyyx ey edy C -⎰⎰=+⎰ 21()2y y C =+即32y x Cy =+.14. 设(,)z z x y =由方程(,)0f y x yz -=所确定,其中f 具有二阶连续偏导数,求22zx∂∂.难度等级:2;知识点:隐函数的高阶偏导数. 分析 由方程(,,)0F x y z =所确定的隐函数的偏导数xzFz x F ∂=-∂,求出zx∂∂后再对x 求偏导数即可得22z x ∂∂.解11221f f z x yf y f -∂=-=∂ 21112221221222()()1z zf yf f f yf f z x x x y f ∂∂-+--+∂∂∂=⋅∂ 211121221232222f f f f fyf yf yf=-+-15.将函数()ln(f x x =+展成关于x 的幂级数. 难度等级:2;知识点:函数展开成幂级数分析:有对数,反三角函数需要求导后展开,然后逐项积分解:()f x '====0(21)!!(1).(2)!!n nn n x n ∞=-=-∑20(21)!!(),.(2)!!n n n f x x x R n ∞=-'⇒==∈∑ 21(21)!!()(1),.(2)!!21n knn n x f x dx x R n n +∞=-'⇒=-∈+∑⎰21(21)!!()(1),.(21)(2)!!nn n n f x x x R n n ∞+=-⇒=-∈+∑16. 计算2232(()(2),xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰其中∑为上半球体0z ≤≤表面的外侧.难度等级:2;知识点:高斯公式分析:题设曲面为封闭曲面,利用高斯公式,再用球面坐标化为三次积分.解: 2232(()(2)xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰222205sin 2.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17. 设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求函数),(y x z z =的极值点和极值.难度等级:3;知识点:多元函数极值解:方程0182106222=+--+-z yz y xy x 两边分别对,x y 求偏导数得到26220,(1)6202220.(2)x x y y x y yz zz x y z yz zz ---=⎧⎪⎨-+---=⎪⎩令00x yz z =⎧⎪⎨=⎪⎩得260,62020x y x y z -=⎧⎨-+-=⎩即3.x yz y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x 得 3.y =±因此有两个驻点(9,3),(9,3).--相应的函数值为3, 3.-方程(1),(2)两边再次分别对,x y 求偏导数得到22222()20(3)622220(4)20422()20.(5)xx x xxx xy y x xy y yy y yy yz z zz z yz z z zz z yz z zz ⎧---=⎪⎪-----=⎨⎪----=⎪⎩将9,3,3,0,0x y x y z z z =====代入(3),(4),(5)得到21150,,,0.623xx xy yy A z B z C z AC B ==>==-==->故点(9,3)是(,)z z x y =的极小值点,极小值(9,3) 3.z = 同样将9,3,3,0,0x y x y z z z =-=-=-==代入(3),(4),(5)得到 21150,,,0.623xx xy yy A z B z C z AC B ==-<====--> 故点(9,3)--是(,)z z x y =的极大值点,极大值(9,3) 3.z --=-18. 计算23,ydx xzdy yz dz Γ-+⎰其中Γ为圆周222, 2.x y z z +==若从z 轴的正向看去,这圆周是取逆时针方向.难度等级:2,知识点:斯托克斯公式,曲面积分的概念,二重积分的性质分析:曲线的参数方程不易写出,积分路径为闭,用斯托克斯公式化为对面积的曲面积分.解:取∑为平面2z =被Γ所围成的部分的上侧,∑的法线向量为(0,0,1),n =其方向余弦为(cos ,cos ,cos )(0,0,1).αβγ=于是23ydx xzdy yz dz Γ-+⎰2cos cos cos 3(3)dS x y z yxzyzz dSαβγ∑∑∂∂∂=∂∂∂-=--⎰⎰⎰⎰ 2245520.x y dSdxdy π∑+≤=-=-=-⎰⎰⎰⎰五、证明题(每小题6分,共12分)19. 证明下列第二类曲线积分的估计式: .L xdx ydy LM +≤⎰其中L 为积分路径L 的弧长,M 为函数22y x +在L 上最大值.难度等级:3;知识点:第二类曲线积分分析:将题设积分转化为对弧长的积分,再进行估值,并注意将被积函数表成向量的点积.证明:设路径L 上的单位切向量为(cos ,sin ).αα利用两类曲线积分的联系可得(cos sin )LL xdx ydyx y dsαα+=+⎰⎰cos sin {,}{cos ,sin }LLx y ds x y dsαααα≤+=⋅⎰⎰.LMdsML =≤=⎰⎰20. 设函数)(0x f 在),(+∞-∞内连续,10()(),1,2,.xn n f x f t dt n -==⎰证明:(1)1001()()(),1,2,;(1)!xn n f x f t x t dt n n -=-=-⎰ (2)对于区间),(+∞-∞内的任意固定的,x 级数()∑∞=1n n x f 绝对收敛.难度等级:3;知识点:无穷级数 证明:(1)由函数)(0x f 在),(+∞-∞内连续,1011000()(),1,2,()();(0)lim ()0,,(0)0(2).xn n nn xk x f x f t dt n f x f x f f t dt f k --→=='=⎧⎪⇒⎨===≥⎪⎩⎰⎰11()()(1)!xn f t x t dt n -⇒--⎰ 1101()()(1)!xn x t df t n -=--⎰ 1110102101(()()()())(1)!1()()(2)!xn x n xn x t f t f t d x t n f t x t dt n ---=----=--⎰⎰().n f x ==(2) 函数0()f t 在t x ≤上连续,⇒存在0()0,,()().M x t x f t M x >∀≤≤由(1),1001001()()()(1)!1()()()(1)!xn n xn n f x f t x t dt n f x f t x t dt n --=--⇒=--⎰⎰10()()()().(1)!!n xn n M x x M x f x x t dt n n -⇒≤-=-⎰ 由于0()!nn M x x n ∞=∑收敛,故级数()∑∞=1n n x f 绝对收敛.六、应用题 (每小题8分,共16分)21. 设均匀柱体密度为,ρ占有闭区域222,,{()|,0,}x y z x y R z h Ω=+≤≤≤ 求它对于位于点00,0(),)(M a a h >处单位质量的质点的引力. 分析:由空间物体引力公式和对称性,利用直角坐标计算即可 解:由柱体的对称性可知, 沿x 轴与y 轴方向的分力互相抵消, 故0,x y F F ==而 2223/2[()]z z aF G dv x y z a ρΩ-=++-⎰⎰⎰2222223/20()[()]hx y R dxdyG z a dzx y z a ρ+≤=-++-⎰⎰⎰ 2223/2000()[()]hRrdrG z a dz d r z a πρθ=-+-⎰⎰⎰012()[hG z a dz a z πρ=--⎰2[G h πρ=-22. 按P.F.Verhulst 人口增长规律:当人口数充分大时,大致按有机增长规律随时间成正比例增长(设比例系数为a ).如考虑到疾病和其它原因,有一个与人口数的平方成反比的的负增长率(设比例系数为b ).已知0t =时,人口数为0,x 求在时刻t 时的人口数(),x t 并问当t →∞时人口数如何?难度等级:3;知识点:常微分方程模型,可分离变量的微分方程的初值问题.分析:只需将二阶导数表示出来就可证之. 解:据题意可得如下初始值问题200.t dx ax bxdtx x =⎧=-⎪⎨⎪=⎩ 将方程分离变量,积分得020,xt x dxdt ax bx =-⎰⎰ 即有 00()1ln.()x a bx t ax a bx -=-解出x 得000.atatax e x a bx bx e=-+ 而且,当t →∞时,.a x b→。
重庆大学高等数学(工学类)课程试卷
2.若2lim ()x x a x x a xe dx x a
+∞-→+∞-=+⎰,求a 的值。
3、设函数()y y x =由方程322
2221y y xy x -+-=所确定,试求()y y x =的驻点,并判断它是否是极值点。
4. 计算
22(tan 1)x e x dx +⎰。
5. 设12
01()()1x f x xe f x dx x =-+⎰,求(),()f x f x '。
6. 已知1(2),(2)02
f f '==及20()1f x dx =⎰,求120(2)x f x dx ''⎰。
四、证明题(每小题9分,本题共18分)
1、证明方程0ln x x e π=
-⎰在区间(0,)+∞内有且仅有两个不同的实根。
2、设()f x 在[0,]π上连续,在(0,)π内可微,且0()sin 0f x xdx π
=⎰,0()cos 0f x xdx π
=⎰。
证明:在(0,)π内至少存在一点ξ,使得()0f ξ'=。
五、应用题(本题共10分)用自重200N 的抓斗将井深30米内开始时重2000N 的污泥提升到井口,已知铁链每米重50N ,提升速度为每秒3米,提升过程中污泥以每秒20N 的速度从抓斗的漏孔中漏掉,问克服重力作功多少焦耳?。
高数期末考试题及答案下册
高数期末考试题及答案下册一、选择题(每题2分,共20分)1. 若函数f(x)在点x=a处连续,则下列说法正确的是:A. f(a)存在B. 左极限lim(x→a-) f(x)存在C. 右极限lim(x→a+) f(x)存在D. 所有选项都正确答案:D2. 函数f(x)=x^2在区间[-1,1]上是:A. 单调递增函数B. 单调递减函数C. 有增有减函数D. 常数函数答案:C3. 若f(x)=sin(x),则f'(x)是:A. cos(x)B. -sin(x)C. x*cos(x)D. x*sin(x)答案:A4. 函数f(x)=x^3-6x^2+11x-6的零点个数为:A. 0B. 1C. 2D. 3答案:D5. 曲线y=x^2与直线y=4x在第一象限的交点坐标为:A. (1,1)B. (2,8)C. (4,16)D. (0,0)答案:B6. 若∫(0,1) f(x)dx = 2,则∫(0,1) x*f(x)dx的值为:A. 0B. 1C. 2D. 无法确定答案:B7. 函数f(x)=ln(x)的泰勒展开式在x=0处的前两项为:A. 1-xB. x-x^2/2C. -x^2/2D. -1-x答案:D8. 若函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在该区间内是:A. 单调递减函数B. 单调递增函数C. 有增有减函数D. 常数函数答案:B9. 函数f(x)=e^x的无穷级数展开式为:A. 1+x+x^2/2!+x^3/3!+...B. 1-x+x^2-x^3+...C. 1+x-x^2+x^3-...D. 1-x-x^2+x^3-...答案:A10. 若函数f(x)在区间[a,b]上连续,则∫(a,b) f(x)dx:A. 一定存在B. 可能不存在C. 等于0D. 等于f(a)-f(b)答案:A二、填空题(每题2分,共20分)1. 若函数f(x)在点x=a处可导,则f'(a)表示______。
重庆大学高数(工学下)期末试题七(含答案)
答案:
分析:设动点的坐标为 根据题意得到 两边平方化简得到
9.设 交换积分次序后,
知识点:交换积分顺序;难度等级:2。.
答案:
10.设 则
知识点:一阶偏微分计算;难度等级:1。答案:
11.设 为取正向的圆周 则曲线积分
知识点:曲线对坐标的积分计算,格林公式;难度等级:1.答案:
分析:先求出对应的齐次线性方程的通解,再定出相应的特解形式.
解:对应的齐次方程的特征方程为: 故可得特征根为
原方程右端的函数 其中
方程 的一个特解为
方程 的一个特解为
利用叠加原理,得原方程的特解
故方程的通解为
15.计算曲面积分 其中 为曲面 的上侧.
知识点:对坐标曲面积分计算,高斯公式;难度等级:2.
(A)
(B)
(C)
(D)
知识点:对坐标曲面积分计算,高斯公式;难度等级:1。答案:B
分析:A中右边被积函数错误,B正确,C符号错误,D被积函数错误.
二、填空题(每小题3分,共18分)
7.微分方程 的通解为
知识点:齐次微分方程;难度等级:1。答案:
8.平面 与一动点的距离等于动点与原点间的距离,动点的轨迹表达式为
证明:令
显然 在正方形域 上连续,且
由连续函数的介值定理知 在 上至少有一个零点,即方程 在 上至少有一组解.
20.设曲面 证明:
知识点:对面积的曲面积分,对称性,轮换性;难度等级:3。
分析:据题目的特点,注意对称性的使用
证明: 关于 面对称, 为连续的奇函数,故
由轮换性对称性知 于是
在八个卦限中都是以边长为 的等边三角形,其面积为 故
高数下学期期末试题(含答案)3套
高等数学期末考试试卷1一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D 为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。
2、求过曲线上一点(1,2,0)的切平面方程。
3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。
25、求级数的和。
四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。
五、证明题 (6分)设收敛,证明级数绝对收敛。
一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x 轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)4解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。
高等数学下期末试题(七套附答案)
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D.(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dv Ω⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
重大高数期末试题及答案
重大高数期末试题及答案第一章:微分学1. 求函数$f(x)=3x^2-2x+5$的导数。
解答:对于函数$f(x)=3x^2-2x+5$,利用导数的定义可以求得其导数为$f'(x)=6x-2$。
2. 计算曲线$y=e^x$在点$(0,1)$处的切线方程。
解答:首先求得曲线$y=e^x$的导数为$y'=e^x$。
然后通过点斜式切线方程的公式$y-y_1=y'(x-x_1)$,代入点$(0,1)$和导数$y'=e^x$,可得切线方程为$y-1=e^x(x-0)$。
第二章:积分学1. 计算定积分$\int_0^1 (2x^3-3x^2+4x-1)dx$。
解答:对于多项式函数$2x^3-3x^2+4x-1$,我们可以按照幂次递减的顺序进行积分。
首先对$x^3$进行积分可得$\frac{1}{4}x^4$,对$x^2$进行积分可得$\frac{1}{3}x^3$,对$x$进行积分可得$2x$,对常数$-1$进行积分可得$-x$。
将这些结果依次代入积分的上下限进行计算,最终得到定积分的结果为$\int_0^1 (2x^3-3x^2+4x-1)dx=\frac{1}{4}-\frac{1}{3}+2-1=\frac{5}{12}$。
2. 求解微分方程$\frac{dy}{dx}=2x$,其中$y(0)=3$。
解答:对于微分方程$\frac{dy}{dx}=2x$,我们可以通过直接积分的方法求解。
对方程两边同时进行积分可得$y=x^2+C$,其中$C$为常数。
由于已知$y(0)=3$,代入初始条件可得$3=0^2+C$,解得$C=3$。
于是原微分方程的解为$y=x^2+3$。
第三章:级数1. 判断级数$\sum_{n=1}^\infty \frac{1}{n^2}$的收敛性。
解答:对于级数$\sum_{n=1}^\infty \frac{1}{n^2}$,我们可以利用比较判别法来判断其收敛性。
高等数学(工科类)期末试卷含答案
学年第 学期《高等数学(工科类)》课程期末考试试题(A 卷) 适用班级:专科 考试类别:闭卷笔试 命题教师: 审题教师:_ _ ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬(答题时间100分钟,满分100分)一、 判断题(对的打“∨”,错的打“×”,每小题2分,共30分)。
1.x y 3sin =不是基本初等函数。
( )2.若)(x f 在o x 无定义,则)(x f y =在o x 处不连续。
( )3.无穷大的倒数为无穷小。
( )4.只有基本初等函数在定义区间内连续。
( )5.若)0()0(+=-o o x f x f ,则)(x f 在o x 处连续。
( )6.无穷小的和必为无穷小 。
( )7.连续函数的导数存在。
( )8.x y sin =的二阶导数x y sin -=''。
( )9.函数的微分是可导函数在一点处改变量的线性主部。
( )10.函数)(x f y =在点o x 处连续,则)(x f 在点o x 处可导。
( )11.若)(x f 在][b a ,上可导,且)()(a f b f =,则至少存在一点),(b a ∈ξ,使0)(=ξf 。
( )12.若)(o x f '=0,则o x x =为函数)(x f 的极值点。
( )13.函数xy 1=在定义域内既无最大值又无最小值。
( )14.极值点必为拐点。
( )15.函数)(x f 的不定积分是其全体原函数。
( )二、 选择题(每小题3分,共15分)。
1.下列说法中不正确的是 。
A . )(lim x f x +∞→及)(lim x f x -∞→均存在但不相等,则)(lim x f x ∞→不存在;B .若)(x f 在点o x 有定义,则)(lim x f o x x →存在; C .若)(lim x f x ∞→不存在; ,则)0()0(+=-o o x f xf ; D .当0>x 时,2ln )(x x f =与x xg ln 2)(=是相同函数。
重庆高数期末真题答案解析
重庆高数期末真题答案解析1. 引言高等数学是大多数理工科专业学生的必修课,对于学生来说,期末考试是一个重要的评判学习成绩的机会。
而本文将为您解析重庆地区某高校的高等数学期末试卷答案,希望能够帮助广大学生更好地理解和掌握相关知识。
2. 解析第一题第一题是一道极限题,考察学生对极限概念的理解和运用能力。
题目要求求极限lim(n->∞)(sqrt(n^2+3n)-n)。
解答过程中,可以先对根式内进行化简,得到sqrt(n^2(1+3/n)-n)。
然后利用极限的性质进行进一步的运算,即sqrt(n^2(1+3/n)-n)=sqrt(n^2(1+3/n))-sqrt(n)=n(sqrt(1+3/n))-sqrt(n)。
由于n趋向于无穷大,所以sqrt(1+3/n)趋向于1,故极限值为lim(n->∞)(n-sqrt(n))=0。
3. 解析第二题第二题是一道求解方程的题目,考察学生对方程的处理和解法的掌握。
题目要求解方程sec^2x+2tanx=0。
解答过程中,可以首先化简方程,得到1+tan^2x+2tanx=0。
然后利用tanx=t/sqrt(1-t^2)的关系进行替换,得到1+(t/sqrt(1-t^2))^2+2(t/sqrt(1-t^2))=0。
接着整理方程并化简,得到1+t^2+2t=0。
求解该二次方程,可得t=-1或t=-2。
再利用tanx=t/sqrt(1-t^2)的关系,求出对应的角度值。
最终,得到方程的解为x=arctan(-1)和x=arctan(-2)。
4. 解析第三题第三题是一道求曲线长度的题目,考察学生对曲线长度的计算方法的理解和运用能力。
题目给出曲线y=e^(-x)在x=0到x=1之间的一段弧,要求求出该曲线段的长度。
解答过程中,可以利用曲线长度公式进行计算,即L=∫(0->1)sqrt(1+(dy/dx)^2)dx。
首先求出dy/dx,即dy/dx=-e^(-x)。
重庆高等数学试题及答案
重庆高等数学试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 4 \)的最小值是()。
A. 0B. 1C. 3D. 42. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值为()。
A. 0B. 1C. -1D. 23. 函数\( y = e^x \)的导数是()。
A. \( e^x \)B. \( -e^x \)C. \( \ln e^x \)D. \( \frac{1}{e^x} \)4. 曲线\( y = x^3 - 3x^2 + 2 \)的拐点坐标是()。
A. (0,2)B. (1,0)C. (2,-2)D. (3,6)5. 定积分\( \int_{0}^{1} x^2 dx \)的值为()。
A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{5} \)6. 微分方程\( y'' + 4y' + 4y = 0 \)的特征方程是()。
A. \( r^2 + 4r + 4 = 0 \)B. \( r^2 - 4r + 4 = 0 \)C. \( r^2 + 4r - 4 = 0 \)D. \( r^2 - 4r - 4 = 0 \)7. 函数\( f(x) = \ln(x+1) \)的不定积分是()。
A. \( x\ln(x+1) - x + C \)B. \( x\ln(x+1) + x + C \)C. \( x\ln(x+1) + \ln(x+1) + C \)D. \( x\ln(x+1) - \ln(x+1) + C \)8. 级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是()。
A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C. \( \frac{\pi^2}{3} \)D. \( \frac{\pi^2}{2} \)9. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是()。
重庆大学高数(下)期末试题十五(含答案)
重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、选择题(每小题3分,共18分)1. 向量3124a i j k=-+r r r r在向量(2)(34)b i k i j k =-⨯+-r r r r r r上的投影为().(A) -67 (B) 76 (C) 67 (D) -67难度等级:2;知识点:向量代数 答案:(C).分析:102(6,2,3),134i j k b =-=-rr r r 6Prj .7||b a b a b ⋅==r r rr 2. 设()f u 具有连续导数,若L 为221,x y +=则必有().(A)22()()0L f x y xdx ydy ++=⎰Ñ (B)22()()0L f x y xdy ydx ++=⎰Ñ (C)22()()0L f x y dx ydy ++=⎰Ñ ()D 22()()0L f x y xdx dy ++=⎰Ñ难度等级:2;知识点:格林公式 答案: (B).分析:22221,()(1),x y f x y f +=+=积分值为0.积分与路径无关,只有B 满足.3. 若1(),y x ϕ=2()y x ϕ=是一阶非齐次线性微分方程的两个不同特解,则该方程的通解为().(A)12()()x x ϕϕ- (B)12()()x x ϕϕ+ (C)121(()())()C x x x ϕϕϕ-+ (D)12()()C x x ϕϕ+ 难度等级:1;知识点:微分方程答案: C.分析:由一阶非齐次线性微分方程通解的结构知,其通解应是对应的齐次方程的通解与原各的一个特解之和.而12ϕϕ-是齐次方程的解,因此齐次方程的通解应为12().y C ϕϕ=-因此非命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密齐次方程的通解应是121()y C ϕϕϕ=-+或122().y C ϕϕϕ=-+故应选(C).4. 设222: (1)1,x y z Ω++-≤则2(3)().x xyz dV Ω+-=⎰⎰⎰(A)0 (B)3π (C)3π- (D)4π- 难度等级:2;知识点:三重积分 答案:(D).分析:积分区域关于yoz 面对称,2x xyz +为关于x 的奇函数,积分值为0,余下为3-倍体积,球体体积为4/3,π故选D.5. 曲线x t y t z t ===,,42在点(,,)4816处的法平面方程为( ).(A) x y z --=-8132 (B) x y z ++=8140 (C)x -y +8z =124 (D) x y z +-=8116答:(B )难度等级:1;知识点:曲线的法平面.分析 法平面的法向量就是曲线的切向量,为(1,1,8)n =r,所以法平面方程为:(4)(8)8(16)0x y z -+-+-= 即 x y z ++=8140 与(A)、(B)、(C)、(D)比较后知,应选(B).6. 设22()x f x x e =,则(16)(0)f =______(A)17!(B) 16! (C) 16!7! (D) 7!16!答案:(C)难度等级2; 知识点:幂级数分析:因为22220()!n x n x f x x e x n ∞===∑的16x 的系数为17!,即(16)(0)116!7!f =,故 (16)16!(0)7!f =二、填空题(每小题3分,共18分)7. 已知sin(21),xy u e x y =++则__________.du = 难度等级1; 知识点:全微分答案: ([sin(21)][2cos(21)].xy xy ye y dx xe x y dy +++++8. 已知幂级数1nn n a x ∞=∑的收敛半径为2,则213nn n n a x ∞=∑的收敛半径为__________.难度等级2; 知识点:幂级数 答案:R =分析:由1nn n a x ∞=∑的收敛半径为2,故 2.x <即223x x <⇒<9.设向量场()()(23)32,A z y i x z j y x k =-+-+-v v v v则旋度_______.v rotA =难度等级1; 知识点:旋度答案:234.vv v i j k ++10. 若某个二阶常系数线性齐次微分方程的通解为12,y C C x =+其中12,C C 为独立的任意常数,则该方程为__________.答案:0.y ''=分析:由通解可得特征方程为20,λ=其对应的二阶线性常系数齐次微分方程0.y ''=11.设:0,D y x a ≤≤≤≤则__________.D=难度等级2; 知识点:二重积分答案:316a π分析:由几何意义知,该积分为顶为z =底为坐标面的四分之一园面曲顶柱体体积,即为一半径为a 的球体的八分之一,得结果. 12. 函数0()0x x f x x πππ-<≤⎧=⎨<≤⎩在[],ππ-上的傅立叶级数的系数__________.n b =答案:21(1).n n n-- 分析:1()sin n b f x nxdx πππ-=⎰ 00000021(sin sin )11(cos cos )111((1)1)cos cos 1(1)1((1)1)sin 21(1).n n nn nxdx x nxdx nx xd nx n n x nx nxdx n n n nx n n n n nππππππππππππππ-----=+=--=---+-=--++=--⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛?难度等级2; 知识点:级数的敛散性解:由11lim lim ln(1)lim ln(1)10,nn n n n n u n n n →∞→∞→∞=+=+=>知级数1n n u ∞=∑发散.--------3分又111||ln(1)ln(1)||,1n n u u n n +=+>+=+1lim ||lim ln(1)0.n n n u n→∞→∞=+=故所给级数收敛且条件收敛.---3分14. 方程组01xu yv yu xv -=⎧⎨+=⎩确定隐函数(,),(,),u u x y v v x y ==求2,u x y ∂∂∂2.v x y ∂∂∂ 难度等级2; 知识点:隐函数的偏导数 分析:用,x y 解出,,u v 再求偏导数.解: 2222,;y xu v x y x y==++222222222,;()()u xy v y xx x y x x y ∂∂-=-=∂+∂+ 22222222232232(3)2(),.()()u x y x v y x y x x y x y x y ∂-∂-==∂+∂∂+ 15. 计算二重积分cos(),Dx x y d σ+⎰⎰其中D 是顶点分别为0,0,()(),0π和(),ππ的三角形闭区域难度等级2; 知识点:二重积分解 :积分区域可表示为:0,0.D x y x π≤≤≤≤ 于是cos()Dx x y d σ+⎰⎰00cos()xxdx x y dy π=+⎰⎰ []00sin()xx x y dx π=+⎰(sin 2sin )x x x dx π=-⎰01(cos 2cos )2xd x x π=--⎰1(cos 2cos )|2x x x π=--+01(cos 2cos )2x x dx π-⎰3.2π=- 16.计算222222()()(),y z dx z x dy x y dz Γ+++++⎰其中Γ是球面x z y x 4222=++与柱面x y x 422=+的交线,从Oz 轴正方向看进去为逆时针(0).z ≥难度等级2; 知识点:第二类曲线积分分析:用斯托克斯公式化为对坐标的曲面积分,并计算此曲面积分.解: 222222()()()L y z dx z x dy x y dz +++++⎰ 2()()()y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰2()2xyxyD D x y dxdy xdxdy =-=⎰⎰⎰⎰4cos 22022cos d r dr πθπθθ-=⎰⎰342224cos 16.3d ππθθπ-⨯==⎰或解:22cos 2sin 020x ty tt z π=+⎧⎪=≤≤⎨⎪=⎩222222()()()y z dx z x dy x y dzΓ+++++⎰23208[sin (1cos )cos ]16t t t dt ππ=-++=⎰四、解答题(每小题6分,共12分)17. 设函数()x ϕ为已知的一阶导数连续的函数,求微分方程()()()dy d x d x y x dx dx dxϕϕϕ+=的通解. 难度等级2; 知识点:一阶非齐次线性微分方程分析: 因为()x ϕ是已知函数,故方程为一阶非齐次线性微分方程. 解: 由通解公式可得()()(()())x x y e x x e dx C ϕϕϕϕ-'=+⎰()()(()())x x e x e d x C ϕϕϕϕ-=+⎰()()()(())x x x e x e e C ϕϕϕϕ-=-+即()()1.x y x Ce ϕϕ-=-+18. 函数z z x y =(,)由方程F x z yy z x(,)++=0所确定,其中F 有连续的一阶偏导数,计算: z z x yx y∂∂+∂∂难度等级:2,知识点:多元隐函数的偏导数、复合函数的偏导数.分析 由方程(,)zz F x y y x++=(,,)0G x y z =确定的隐函数z z x y =(,)的偏导数x zG zx G ∂=-∂,y zG zy G ∂=-∂,求出,,x y z G G G 后可得,z z x y ∂∂∂∂,代入z zx y x y∂∂+∂∂即可得到结论.解12212221()1yF zF yF zF zx xxF F x-++∂=-=∂112211F F zx y F F x -∂=-=-∂1212yF zF yF z z xy z x y F +-∂∂+==∂∂五、 证明题 (每小题6分,共12分)19. 设向量(1,1,1)a =-r,(3,4,5)b =-r ,x a b λ=+r r r ,λ为实数,试证:其模最小的向量x r垂直于向量b r .难度等级:2;知识点:向量代数.分析 先计算出x a b λ=+r r r ,再求出它的模x r ,何时x r达到最小值?证 设x a b λ=+r r r ,于是22222()x a b a b λλ=++⋅r r r r r ,将a b r r 、的坐标代入得,222633245050().2525x λλλ=++=++r当256-=λ时,模x r 最小,这时6715(1,1,1)()(3,4,5)(,,).25252525x ---=-+-=r且有0x b ⋅=rr .故结论正确.20. 验证曲线积分(2,3)(0,1)()()x y dx x y dy ++-⎰的被积表达式为某二元函数的全微分,并计算该曲线积分. 难度等级:2;知识点:第二类曲线积分.2分析:可利用曲线积分与路径无关找被积函数的原函数. 证:显然,()()x y dx x y dy ++- ()()xdx ydy ydx xdy =-++2222()2().2x y d d xy x y d xy -=+-=+是全微分.于是(2,3)22(2,3)(0,1)(0,1)()() 4.2x y x y dx x y dy xy ⎡⎤-++-=+=⎢⎥⎣⎦⎰六、应用题 (每小题8分,共16分)21.求抛物面224y x z ++=的切平面,π使得π与该抛物面间并介于柱面1)1(22=+-y x 内部的部分的体积为最小.难度等级3; 知识点:综合题,多元函数的几何应用、二重积分和多元函数的极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:开卷闭卷其他考试时间: 120 分一、选择题(每小题3分,共18分)1. 已知向量{}4,3,4a =-v 与向量{}2,2,1b =v则a b ⋅=v v ().(A) 6 (B) 6- (C) 1 (D) 3- 知识点:向量的内积;难度等级:1。
答案: (A).2. 设arctan ,4z xy π⎛⎫=+ ⎪⎝⎭则z x∂=∂().(A))4(1π++xy xy (B)2)4(11π+++xy x(C)22)4(1)4(sec ππ+++xy xy xy (D)2)4(1π++xy y知识点:多元函数偏导数;难度等级:1。
答案: (D). 3. 两个半径为R 的直交圆柱体所围立体的表面积是().(A) 004Rdx ⎰ (B) 08Rdx ⎰(C) 04Rdx ⎰ (D) 016Rdx dy ⎰知识点:二重积分的应用;难度等级:2。
答案:(D)分析:可设两个圆柱面的方程为222222,.x y R x z R +=+=由对称性,为第一卦象的面积的8倍.又由对称性,在第一卦限两个曲面部分面积相等,故可取在第一卦限222x z R +=部分面积的16倍,而该面积为00,Rdx ⎰选D. 4.设u =(1,0,1)()().rot gradu =vv(A)14(B)0 (C)(0,0,0) (D)(1,0,1)知识点:旋度定义;难度等级:1。
答案:(C)分析:经计算,对应的旋度场为无旋场,即任意一点处旋度为0,命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密选C.5. 微分方程231xy y e ''-=+的一个特解为().(A)313x y e =+ (B) 213x y e =+(C) 313x y e =- (D) 213xy e =- 知识点:二阶常系数非齐次线性微分方程;难度等级: 2。
答案: D分析:原方程的特解为方程31y y ''-=与方程23xy y e ''-=的特解之和,而方程31y y ''-=的特解为11,3y =- 方程23xy y e ''-=的特解为22.x y e =因此原方程的特解为2121.3x y y y e =+=-故应选(D). 6. 设()f u 具有连续导数,∑是曲面22z x y +=与228z x y --=所围成立体表面之外侧,则zdxdy dzdx yxf x dydz y x f y ++⎰⎰)(1)(1=( ) (A)16π (B)16π-(C)8π- (D)因()f u 未知,故无法确定.知识点:对坐标曲面积分的计算 ,高斯公式;难度等级:2。
答案:(A)分析:利用高斯公式可得积分为所围成立体体积:48416,yyD D V dy dxdz dy dxdz π=+=⎰⎰⎰⎰⎰⎰选A.二、填空题(每小题3分,共18分)7. 微分方程2y x '=的通解为___________.知识点:可分离变量微分方程;难度等级:1。
答案:2.y x C =+8. 级数221(1)nn x x n ∞=++∑的收敛区间是___________. 知识点:函数项级数的敛散性;难度等级:2。
答案:10.x -≤≤分析:因为幂级数∑∞=1n 2nny 的收敛域为11,y -≤≤故原级数的收敛域为112++≤-x x 1,≤解此不等式组得10.x -≤≤9. 已知曲线弧:L (01),y x =≤≤则2___________.L x yds =⎰ 知识点:曲线对弧长的积分;难度等级:1。
答案:1.3分析:1201.3Lx yds x ==⎰⎰ 10. 设曲线x t y t z t =+=-=+2131223,,在t =-1对应点处的法平面为,S 则点(,,)-241到S 的距离___________.d =知识点:曲线的切线与法平面、点到平面的距离;难度等级:2。
答案:2.分析:先求S 的方程.法平面的法向量即切线的方向向量:2(2,6(1),3(1))(2,6,3).n =⨯-⨯-=-r切点为(1,2,1).-所以法平面方程为2(1)6(2)3(1)0.x y z +--+-=即263110.x y z -++=故点(,,)-241到S 的距离2.d ===11.设L 为圆周224x y +=沿逆时针方向一周,则22Ly xdy x ydx -⎰Ñ___________.= 知识点:曲线对坐标的积分,格林公式;难度等级:2。
答案:8.π 分析: 利用格林公式,积分化为22222()8.Dx y d d r rdr πσθπ+=⋅=⎰⎰⎰⎰ 12. 设∑是球面2222x y z R ++=在第二卦限部分,则2__________.x dS ∑=⎰⎰ 知识点:曲面对坐标的积分,对称性;难度等级:2。
答案:4.6Rπ分析: 222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅= 三、计算题(每小题6分,共24分)13. 将函数)1ln()(32x x x x f +++=展开成x 的幂级数.知识点:幂级数间接展开;难度等级:2。
解:22()ln[(1)(1)]ln(1)ln(1),f x x x x x =++=+++Q11(1)ln(1),(1,1],n nn u u u n -∞=-+=∈-∑ ∴11211(1)(1)(),(1,1].n n n nn n f x x x x n n --∞∞==--=+∈-∑∑11(1)(1),(1,1].n nn n x x x n-∞=-=+∈-∑14. 设Ω是由曲线202x y z =⎧⎨=⎩绕z 轴旋转一周而成的曲面与平面4z =所围成的空间区域,求22()d .x y z V Ω++⎰⎰⎰知识点:三重积分计算,旋转曲面方程;难度等级:2。
分析:旋转体横截面为圆,整个落在一圆柱体内,可用柱坐标计算解:由曲线202x y z=⎧⎨=⎩绕z 轴旋转一周所成的曲面为222.x y z +=2224x y zz ⎧+=⇒⎨=⎩ 22:8.D x y +≤ 22()d x y z V Ω++⎰⎰⎰224202d d ()d z z πρθρρρ=+⎰⎰242320021d d 2z z πρθρρρ⎤⎛⎫⎥=+ ⎪⎢⎥⎝⎭⎣⎦⎰ 256.3π= 15.计算22()x y dS ∑+⎰⎰,其中∑是锥面()2223z x y =+被平面0z =和3z =截得的部分.知识点:对面积曲面积分;难度等级1. 分析 投影到xoy 坐标面用极坐标进行计算解 ∑在xoy 的投影为22:3xy D x y +≤2=2222220()()229xyD x y dS x y dxdy d rdr πθπ∑+=+==⎰⎰⎰⎰⎰.16. 计算333(2),x x dydz y dzdx z dxdy ∑+++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:高斯公式,三重积分;难度等级:2.分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333(2)x x dydz y dzdx z dxdy ∑+++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰+2dxdydz Ω⎰⎰⎰22230005343sin 23128.53ad d r r dr a a a ππθϕϕπππ=⋅+⋅=+⎰⎰⎰四、解答题(每小题6分,共12分)17.求级数∑∞=++--11212)2()1(n n nn x 的收敛域.知识点:幂级数的收敛域;难度等级2. 解:令2.x t -=考虑级数211(1).21n nn t n +∞=-+∑ Θ2322123lim ,21n n n t nt t n ++→∞+=+ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散; 当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛;当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛. ∴级数的半径为1,R =收敛域为[1,3].18.求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值. 知识点:多元函数极值;难度等级:2.解:由⎪⎩⎪⎨⎧=--==-+--='0)24(0)1()4(22y x x f xy y x xy f y x 得D 内的驻点为),1,2(0M 且(2,1) 4.f =又(0,)0,(,0)0,f y f x ==而当0,0,6≥≥=+y x y x 时,32(,)212(06).f x y x x x =-≤≤令32(212)0,x x '-=得120, 4.x x ==于是相应2,621==y y 且.64)2,4(,0)6,0(-==f f所以(,)f x y 在D 上的最大值为(2,1)4,f =最小值为.64)2,4(-=f五、证明题(每小题6分,共12分)19.求函数1()xd e dx x-的关于x 的幂级数的展开式,并由此证明1 1.(1)!n nn ∞==+∑ 知识点:幂级数的展开和求和;难度等级:2 。
分析:本题首先应用间接展开法把函数展开成x 的幂级数,然后再把x 取定特殊的值便可得到所求的和.证明:因为 011,!!n n xn n x x e n n ∞∞====+∑∑所以111.!x n n e x x n -∞=-=∑从而 1()x d e dx x -11!n n d x dx n -∞=⎡⎤=⎢⎥⎣⎦∑∑∑∞=--∞=+=-=1122)!1(!)1(k k n n k kx n x n (+∞<<∞-x ). 又因为 1()x d e dx x -21,x x xe e x -+=所以 )!1(11+-∞=∑n nx n n 21x e xe x x +-=(+∞<<∞-x ). 令1,x =得 11.(1)!n nn ∞==+∑20. 设()f x 为恒大于零的连续函数,222()22()()(),()t D t f x y z dv F t f x y d σΩ++=+⎰⎰⎰⎰⎰22()2()(),()D t ttf x y d G t f x dxσ-+=⎰⎰⎰其中2222(){(,,)|},t x y z x y z t Ω=++≤222(){(,)|}.D t x y x y t=+≤证明 (1)()F t在区间(0.)+∞内单调递增.(2)当0t>时,2 ()().F tG tπ>知识点:重积分计算,,变限函数求导,导数性质;难度等级:3。