三角函数恒等变换知识点总结
三角函数恒等变换知识点总结
三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ;(3)区间角的表示:①象限角:第一象限角: ;第三象限角: ; 第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。
来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,xyOxyOr 为圆的半径。
注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。
三角函数的恒等变换总结
三角函数的恒等变换总结三角函数的恒等变换,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变换成另一个与它等价的表达式.三角恒等变换是代数式恒等变换的推广和发展,进行三角恒等变换,除了要熟练运用代数恒等变换的各种方祛,还要抓住三角本身的特点,领会和掌握下列最基本最常见的变换:(1)公式变换三角公式是三角恒等变换的基础,必须深刻理解公式、抓住公式的特点,熟练地将三角公式正向、逆向、变形和综合使用。
①正确理解公式中和、差、倍的相对性例如单角可以看成是和角的差,又可以看成与角的和,可以看成是的半角,又可以看成是的倍角这样我们在三角恒等变换的过程中,就能整体地把握角之间的关系,灵活使用公式。
③抓住公式中角、函数、结构的特点.例如在公式中,角减半则函数次数翻倍.第一种变形便于和因式分解相联系,后两种变形直接地将用的余弦或正弦表示出。
又如在公式中,涉及到、的和与积,这个公式常常和韦达定理联用.③公式的正向使用要特别注意一个三角函数式的多种表达形式和几个三角公式的联用。
例如:④公式的逆向使用.如⑤公式的变形使用.如:,,,(2)角度变换角度变换是三角函数恒等变换的首选方法。
在进行三角恒等变换时,对角之间关系必须进行认真的分析。
①分析角之间的和、差、倍、分关系。
如,,,②在数值角的三角函数式化简中,要特别注意是否能够产生特殊角。
③熟悉两角互余、互补的各种形式,如,,正确使用诱导公式。
④引入辅助角进行角的变换。
如其中辅助角在哪个象限,由、的符号确定,的值由确定。
下列特殊情况必须熟记:;;;(3)函数变换函数变换是指“弦化切”法和“切化弦”法。
在同角三角函数变换中,弦切互化主要是应用公式;在非同角三角变换中,函数变换往往依赖于角度变换。
(4)1的变换。
如:,,,,,(5)幂的变换公式,常用来升幂和降幂,所便根据需要将三角函数式按一定方向进行变形。
三角恒等变换的基本题型三角恒等变换主要包括求值、化简、证明.(1)求值常见的有给用求值、给值求值、给值求角.①给角求值的关键是正确地分析角间关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;③给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.(2)化简化简有两种常见的形式①未指明答案的恒等变形,这时应把结果化为最简形式②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变换、函数变换等各种变换.(3)证明它包括无条件的恒等式和附加条件恒等式的证明.①无条件恒等式的证明.证明时要认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.③有附加条件的恒等式的证明/证明的关键是恰当地利用附加条件,要认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用证明这类恒等式时,还常常用到消元法和基本量方法.消元法即用代入加减、乘除、平方后相加减等手段消去某些量;基本量方法就是适当选择其中可以独立取值的量作为基本量,把其它的量都用基本量表示出来,从而将问题归结为研究这些量之间的关系.。
三角恒等变换与方程的应用知识点总结
三角恒等变换与方程的应用知识点总结在学习三角函数和方程的过程中,三角恒等变换和方程的应用是非常重要的知识点。
它们有助于我们在解题过程中简化计算和推导,同时也能帮助我们更好地理解三角函数的性质和应用。
一、三角恒等变换的基本概念三角恒等变换是指能够保持等式成立的三角函数等式或恒等式。
在三角恒等变换中,我们主要关注三角函数的和差角、倍角和半角等变换公式。
1. 和差角公式和差角公式主要包括正弦函数、余弦函数和正切函数的和差角公式。
其中,正弦函数的和差角公式为:sin(A ± B) = sinAcosB ± cosAsinB余弦函数的和差角公式为:cos(A ± B) = cosAcosB ∓ sinAsinB正切函数的和差角公式为:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)2. 倍角公式倍角公式是通过将和差角公式中的A和B设置为相等,从而得到的。
正弦函数的倍角公式为:sin2A = 2sinAcosA余弦函数的倍角公式为:cos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²A正切函数的倍角公式为:tan2A = (2tanA) / (1 - tan²A)3. 半角公式半角公式是通过将和差角公式中的A和B设置为相等,然后取A 为半角,从而得到的。
正弦函数的半角公式为:sin(A/2) = ±√[(1 - cosA) / 2]余弦函数的半角公式为:cos(A/2) = ±√[(1 + cosA) / 2]正切函数的半角公式为:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]二、方程的应用方程的应用是指通过建立三角函数方程,解决实际问题的过程。
在方程的应用中,我们主要关注利用三角函数的性质和恒等变换来建立和求解方程的方法。
三角恒等变换知识点总结详解
三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。
这些恒等变换在解决三角函数相关问题时非常有用。
下面是对一些常见的三角恒等变换进行总结和详解。
1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。
- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。
- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。
2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。
- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。
- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。
3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。
- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。
- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。
4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。
- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。
- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。
三角恒等变换高考数学中的关键知识点总结
三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
三角函数概念及三角恒等变换知识点总结-高三数学一轮复习
知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。
3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
三角恒等变换讲解
三角恒等变换讲解三角恒等变换是指在三角函数之间相互变换的一系列等式关系,常用于简化和证明三角函数的性质以及求解三角方程。
下面介绍一些常见的三角恒等变换:1. 基本恒等变换:-正弦与余弦的关系:sin²θ+ cos²θ= 1-正切与余切的关系:tanθ= sinθ/ cosθ,cotθ= cosθ/ sinθ-余割与正割的关系:cscθ= 1 / sinθ,secθ= 1 / cosθ2. 倍角恒等变换:-正弦的倍角公式:sin(2θ) = 2sinθcosθ-余弦的倍角公式:cos(2θ) = cos²θ- sin²θ= 2cos²θ- 1 = 1 - 2sin²θ-正切的倍角公式:tan(2θ) = (2tanθ) / (1 - tan²θ)3. 和差恒等变换:-正弦的和差公式:sin(A ±B) = sinAcosB ±cosAsinB-余弦的和差公式:cos(A ±B) = cosAcosB ∓sinAsinB-正切的和差公式:tan(A ±B) = (tanA ±tanB) / (1 ∓tanAtanB)4. 反函数恒等变换:-正弦的反函数:sin⁻¹(x) = θ,其中sinθ= x,-π/2 ≤θ≤π/2-余弦的反函数:cos⁻¹(x) = θ,其中cosθ= x,0 ≤θ≤π-正切的反函数:tan⁻¹(x) = θ,其中tanθ= x,-π/2 < θ< π/2注意,上述恒等变换只是一部分常见的例子,实际上还有许多其他的三角恒等变换。
在解题或证明过程中,根据需要,可以根据题目的要求和三角函数的关系,使用适当的三角恒等变换来简化计算或推导出所需的结果。
三角函数及恒等变换知识点总结
三角函数知识点总结1、任意角:正角: ;负角: ;零角: ;2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、 叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .7、弧度制与角度制的换算公式:8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S=9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:(1) ;(2) ;(3) 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限. 重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.(2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.公式的变形:()βαβαβαtan tan 1)tan(tan tan •±=±,2cos 12cosαα+±=;αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=辅助角公式()sin cos αααϕA +B =+,其中tan ϕB=A. 万能公式万能公式其实是二倍角公式的另外一种变形:2tan 12tan2sin 2ααα+=,2tan 12tan 1cos 22ααα+-=,2tan 12tan2tan 2ααα-=14、函数sin y x =的图象上所有点 得到函数()sin y x ωϕ=A +的图象.15.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x B ωϕ=A ++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.。
三角函数的恒等变换总结
三角函数的恒等变换总结三角函数是数学中的重要概念,涉及到三角学和解析几何等多个领域。
在解决各种数学问题和实际应用时,经常需要使用到三角函数的恒等变换。
三角函数的恒等变换指的是将一个三角函数表示为另外一个或多个三角函数的等价形式,这种变换可以简化问题的求解过程,扩展问题的应用范围。
本文将对常用的三角函数的恒等变换进行总结,以便读者了解和掌握。
1.正弦函数的恒等变换:-正弦函数的平方和余弦函数的平方等于1:sin²(x) + cos²(x) = 1-正弦函数的余角与余弦函数的关系:sin(π/2 - x) = cos(x)-正弦函数的反函数与余弦函数的关系:sin^(-1)(x) = arcsin(x) = π/2 - cos^(-1)(x)2.余弦函数的恒等变换:-余弦函数的平方和正弦函数的平方等于1:cos²(x) + sin²(x) = 1-余弦函数的补角与正弦函数的关系:cos(π/2 - x) = sin(x)-余弦函数的反函数与正弦函数的关系:cos^(-1)(x) = arccos(x) = π/2 - sin^(-1)(x)3.正切函数的恒等变换:-正切函数可以表示为正弦函数与余弦函数的比值:tan(x) = sin(x) / cos(x)-正切函数的平方与余切函数的平方等于1:tan²(x) + cot²(x) = 1-正切函数的倒数与余切函数的关系:tan^(-1)(x) = arctan(x) = π/4 - cot^(-1)(x) 4.余切函数的恒等变换:-余切函数可以表示为余弦函数与正弦函数的比值:cot(x) = cos(x) / sin(x)-余切函数的平方与正切函数的平方等于1:cot²(x) + tan²(x) = 1-余切函数的倒数与正切函数的关系:cot^(-1)(x) = arccot(x) = π/4 - tan^(-1)(x) 5.正割函数和余割函数的恒等变换:-正割函数可以表示为1与余弦函数的商:sec(x) = 1 / cos(x)-余割函数可以表示为1与正弦函数的商:csc(x) = 1 / sin(x)-正割函数和余割函数与正弦函数和余弦函数的关系:sec(x) = 1 / cos(x) = 1 / (1 / tan(x)) = cos^(-1)(x) /sin^(-1)(x)csc(x) = 1 / sin(x) = 1 / (1 / cot(x)) = sin^(-1)(x) /cos^(-1)(x)以上是常见的三角函数的恒等变换,可以应用于三角函数的化简、解方程、证明等各种数学问题的求解中。
高一数学上期三角函数恒等变换知识归纳与整理
《三角函数恒等变换》知识归纳与整理一、基本公式1、必须掌握的基本公式( 1)两角和与差的三角函数C() S() T ()CC SSSC CST T1 T T同名乘积的和与差异名乘积的和与差( 2)二倍角的三角函数S22S CC 2222C22C S1 1 2 S差点等于 1T 22T21 T ( 3)半角的三角函数S21C2C 21C 2T 21CT s i n1 c o s1C2 1 c o s s i n2、理解记忆的其他公式( 1)积化和差C C 1C(2[C())]同名相乘用余弦;S S1[C(C()]2- )异名相乘用正弦。
S C 1[S(S()]留首项,用加法;剩尾项,用减法。
2)C S 1[ S(S()] 2)( 2)和差化积S S2[S 2C 2]S S2[S 2C 2]正弦加减得异名;余弦加减得同名。
C C2[C2C2]加法得 2 倍首项;减法得 2 倍尾项。
C C2[S2 S2]( 3)万能公式(全部用正切来表示另外的三角函数称为万能公式)2T2S1T2221T C1T 2 2 2T 2T22 1T2( 4)辅助角公式22ba s i nxbc o sx a b s i nx( )其中: tan a常见的几种特殊辅助角公式:①sinx cos x 2 sin( x)4②sinx 3 cos x 2sin( x)3③3sinx cos x 2 sin( x)6④s i nx c o sx 2 s i nx()4⑤s i nx 3 c o sx 2s i nx()3⑥3s i nx c o sx 2s i nx()6二、理解证明1、两个基本公式的证明①C C C S S 的证明方法:()在单位圆内利用两点间的距离公式证明。
计算繁杂。
在化简中注意使用“221”sin cos②C()CC SS的证明方法:在单位圆内利用向量的数量积证明。
计算简便。
运用向量数量积与两向量的夹角关系来证明。
三角函数与三角恒等变换知识点
三角函数与三角恒等变换(知识点)1.⑴ 角度制与弧度制的互化:π弧度180=o ,1180π=o 弧度,1弧度180()π=o '5718≈o .⑵ 弧长公式:||l R α=;扇形面积公式:211||22S R Rl α==. 2.三角函数定义:⑴ 设α是一个任意角,终边与单位圆交于点P (x ,y ),那么y 叫作α的正弦,记作sin α;x 叫作α的余弦,记作cos α;yx叫作α的正切,记作tan α. ⑵ 角α中边上任意一点P 为(,)x y ,设||OP r =,则:sin ,cos ,y x r r αα==tan yxα=.三角函数符号规律:一全正,二正弦,三正切,四余弦. 3.三角函数线:正弦线:MP ; 余弦线:OM ; 正切线: AT . 4.诱导公式:六组诱导公式统一为“()2k Z α±∈”,记忆口诀:奇变偶不变,符号看象限. 5.同角三角函数基本关系:22sin cos 1αα+=(平方关系);sin tan cos ααα=(商数关系).6.两角和与差的正弦、余弦、正切:①sin()sin coscos sin αβαβαβ±=±;② cos()cos cos sin sin αβαβαβ±=m ; ③ tan tan tan()1tan tan αβαβαβ±±=m .7.二倍角公式:① sin22sin cos ααα=;② 2222cos2cos sin 2cos 112sin ααααα=-=-=-; ③ 22tan tan 21tan ααα=-. 变形:21cos2sin 2αα-=;21cos2cos 2αα+=. (降次公式)8.化一:sin cos )y a x b x x x =+)x ϕ+. 9. 物理意义:物理简谐运动sin(),[0,)y A x x ωϕ=+∈+∞,其中0,0A ω>>. 振幅为A ,表示物体离开平衡位置的最大距离;周期为2T πω=,表示物体往返运动一次所需的时间;频率为12f T ωπ==,表示物体在单位时间内往返运动的次数;x ωϕ+为相位;ϕ为初相.11. 正弦型函数sin()(0,0)y A x A ωϕω=+>>的性质及研究思路:① 最小正周期2T πω=,值域为[,]A A -.② 五点法图:把“x ωϕ+”看成一个整体,取30,,,,222x ππωϕππ+=时的五个自变量值,相应的函数值为0,,0,,0A A -,描出五个关键点,得到一个周期内的图象.③ 三角函数图象变换路线:sin y x =ϕ−−−−−→左移个单位sin()y x ϕ=+ ω−−−−−→1横坐标变为倍sin()y x ωϕ=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. 或:sin y x = ω−−−−−→1横坐标变为倍sin y x ω=ϕω−−−−−→左移个单位sin ()y x ϕωω=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. ④ 单调性:sin()(0,0)y A x A ωϕω=+>>的增区间,把“x ωϕ+”代入到sin y x =增区间[2,2]()22k k k Z ππππ-++∈,即求解22()22k x k k Z πππωϕπ-+≤+≤+∈.⑤ 整体思想:把“x ωϕ+”看成一个整体,代入sin y x =与tan y x =的性质中进行求解. 这种整体思想的运用,主要体现在求单调区间时,或取最大值与最小值时的自变量取值.。
三角恒等变换
三角恒等变换三角恒等变换是指一系列等效的三角函数表达式之间的变换关系。
这些变换关系对于解决三角函数的各种问题非常有用。
本文将介绍三角恒等变换的基本概念、常见的恒等变换公式以及应用案例。
一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数的表达式通过等效变换转化为另一个等价的表达式的过程。
三角函数包括正弦函数、余弦函数、正切函数、余切函数等。
恒等变换意味着两个表达式在任何实数取值范围内都成立,即两个表达式所代表的函数图像完全一致。
二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 余弦函数的平方与正弦函数平方的关系:cos^2θ + sin^2θ = 1。
- 余弦函数的两倍角公式:cos(2θ) = cos^2θ - sin^2θ。
- 余弦函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ。
2. 正弦函数的恒等变换:- 正弦函数的平方与余弦函数平方的关系:sin^2θ + cos^2θ = 1。
- 正弦函数的两倍角公式:sin(2θ) = 2sinθcosθ。
- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ。
3. 正切函数的恒等变换:- 正切函数的平方与余切函数平方的关系:tan^2θ + 1 = sec^2θ。
- 正切函数的两倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)。
- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)。
4. 余切函数的恒等变换:- 余切函数的平方与正切函数平方的关系:cot^2θ + 1 = cosec^2θ。
- 余切函数的两倍角公式:c ot(2θ) = (cot^2θ - 1) / 2cotθ。
- 余切函数的和差公式:cot(α ± β) = (cotαcotβ ± 1) / (cotβ ± cotα)。
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
高中数学三角恒等变换知识点归纳总结
高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。
2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。
《三角恒等变换》知识点及常见题型总结
简单的三角恒等变换一、考点、热点回顾模块一、两角和与差的三角函数要点一、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-要点二、三角函数的化简、计算、证明的恒等变形的基本思路①巧变角:()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等②三角函数名互化:切割化弦③公式变形使用:tan tan αβ±()()tan 1tan tan αβαβ=±, 1±sin2α=sin 2α+cos 2α±2sinα·cosα=(sinα±cosα)2 ④三角函数次数的降升:降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=;升幂公式:21cos 22cos αα+=,21cos 22sin αα-= ⑤常值变换主要指“1”的变换:221sin cos x x =+tan sin 42ππ===等模块二、简单的三角恒等变换 要点三、半角公式:sin α2=cos 2α= tan2α=sin 1cos 1cos sin αααα-=+ 要点四、三角函数的积化和差公式1sin cos [sin()sin()].2αβαβαβ=++-1cos sin [sin()sin()].2αβαβαβ=+--1cos cos [cos()cos()].2αβαβαβ=++-1sin sin [cos()cos()].2αβαβαβ=-+--记忆口诀:前角用和后角差,正余二分正弦和,余正二分正弦差,余余二分余弦和,正正负半余弦差。
三角恒等变换知识总结
三角恒等变换知识点总结一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1- tan αtan β),有时应用该公式比较方便。
2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 要熟悉余弦“倍角”与“二次”的关系(升角—降次,降角—升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。
3.辅助角公式:sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+.4.简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质。
(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。
(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。
(4)变换思路:明确变换目标,选择变换公式,设计变换途径。
5.常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+;(3)向量的数量积:cos ,a b a b a b =, 1212a b x x y y =+ ,12120a b x x y y ⊥⇔+= 1221//0a b x y x y ⇔-= ; 二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+ 的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 考点2二倍角的正弦、余弦、正切公式5、cos5πcos52π的值等于( ) (提示:构造分子分母) 6、cos 20cos 40cos60cos80= ( ) 7、 已知322A ππ<<,且3cos 5A =,那么sin 2A 等于( ) 考点3运用相关公式进行简单的三角恒等变换8、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于( ) 9、已知,31cos cos ,21sin sin =+=+βαβα则)cos(βα-值等于()10、函数22()cos ()sin ()11212f x x x ππ=-++-是( )(A )周期为2π的奇函数 (B )周期为2π的偶函数(C )周期为π的奇函数 (D )周期为π的偶函数4、常见题型及解题技巧(另外总结)(一)关于辅助角公式:()sin cos a x b x x ρ+=+.其中cos ϕϕ==)如:1.若方程sin x x c =有实数解,则c 的取值范围是____________. 2.2cos 3sin 2y x x =-+的最大值与最小值之和为_____________.7.若2tan(),45πα+=则tan α=________. (二)三角函数式的化简与求值[例1] 1.0000cos15sin15cos15sin15-+; 2.00sin50(1);3. 求tan 70tan 5070tan 50+ 值;4.△ABC 不是直角三角形,求证:C B A C B A tan tan tan tan tan tan ∙∙=++ (三)三角函数给值求值问题1. 已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是_____________;2. 已知54cos(),cos ,,135αββαβα+==均为锐角,求sin 的值。
三角函数的恒等变换知识点总结
三角函数的恒等变换知识点总结三角函数在数学中有着广泛的应用,并且存在许多恒等变换。
本文将对三角函数的恒等变换进行总结,以便读者更好地理解和应用这些知识点。
一、正弦函数的恒等变换1. 正弦函数的倒数关系:sin(x) = 1 / csc(x)csc(x) = 1 / sin(x)2. 正弦函数的平方关系:sin^2(x) + cos^2(x) = 11 - cos^2(x) = sin^2(x)1 - sin^2(x) = cos^2(x)3. 正弦函数的余切关系:cot(x) = cos(x) / sin(x)cot(x) = 1 / tan(x)二、余弦函数的恒等变换1. 余弦函数的倒数关系:cos(x) = 1 / sec(x)sec(x) = 1 / cos(x)2. 余弦函数的平方关系: cos^2(x) + sin^2(x) = 1 1 - sin^2(x) = cos^2(x) 1 - cos^2(x) = sin^2(x)3. 余弦函数的正切关系: tan(x) = sin(x) / cos(x)三、正切函数的恒等变换1. 正切函数的倒数关系: tan(x) = 1 / cot(x)cot(x) = 1 / tan(x)2. 正切函数的平方关系: tan^2(x) + 1 = sec^2(x) sec^2(x) - tan^2(x) = 13. 正切函数的正弦关系: tan(x) = sin(x) / cos(x)四、余切函数的恒等变换1. 余切函数的倒数关系: cot(x) = 1 / tan(x)tan(x) = 1 / cot(x)2. 余切函数的平方关系:cot^2(x) + 1 = csc^2(x)csc^2(x) - cot^2(x) = 13. 余切函数的余弦关系:cot(x) = cos(x) / sin(x)五、和差化积公式1. sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)2. cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)3. tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)tan(y))六、倍角公式1. sin(2x) = 2sin(x)cos(x)2. cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)3. tan(2x) = (2tan(x)) / (1 - tan^2(x))七、半角公式1. sin(x/2) = ±√[(1 - cos(x)) / 2]2. cos(x/2) = ±√[(1 + cos(x)) / 2]3. tan(x/2) = ±√[(1 - cos(x)) / (1 + cos(x))]以上是三角函数的一些常见恒等变换,掌握这些变换可以在解决三角函数相关问题时起到很大的帮助作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
三角函数 三角恒等变换知识点总结
一、角的概念和弧度制:
(1)在直角坐标系内讨论角:
角的顶点在原点,始边在 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
2.图像
3、图像的平移
对函数y=Asin(ωx+)+k(A>0,ω>0,≠0,k≠0),其图象的基本变换有:
(1)振幅变换(纵向伸缩变换):是由A的变化引起的.A>1,伸长;A<1,缩短.
(2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长.
(3)相位变换(横向平移变换):是由φ的变化引起的.>0,左移;<0,右移.
(3)同角三角函数的关系与诱导公式的运用:
①已知某角的一个三角函数值,求它的其余各三角函数值。
注意:用平方关系,有两个结果,一般可通过已知角所在的象限加以取舍,或分象限加以讨论。
②求任意角的三角函数值。
步骤:
③已知三角函数值求角:注意:所得的解不是唯一的,而是有无数多个.
步骤:①确定角 所在的象限;
如:角 的终边上一点 ,则 。注意r>0
(2)在图中画出角 的正弦线、余弦线、正切线;
比较 , , , 的大小关系:。
(3)特殊角的三角函数值:
0
sin
cos
三、同角三角函数的关系与诱导公式:
(1)同角三角函数的关系
作用:已知某角的一个三角函数值,求它的其余各三角函数值。
(2)诱导公式:
:,,;
:,,;
(4)上下平移(纵向平移变换):是由k的变化引起的.k>0,上移;k<0,下移
四、三角函数公式:
三倍角公式: ; ;
五、三角恒等变换:
三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:
(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一
已知角 的弧度数的绝对值 ,其中 为以角 作为圆心角时所对圆弧的长, 为圆的半径。注意钟表指针所转过的角是负角。
(7)弧长公式:;半径公式:;
扇形面积公式:;
二、任意角的三角函数:
(1)任意角的三角函数定义:
以角 的顶点为坐标原点,始边为 轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点 到原点的距离记为 ,则 ; ; ; ; ; ;
注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);
四、三角函数图像和性质
1.周期函数定义
定义对于函数 ,如果存在一个不为零的常数 ,使得当 取定义域内的每一个值时, 都成立,那么就把函数 叫做周期函数,不为零的常数 叫做这个函数的周期.
① 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍。
② ;问: ; ;
③ ;④ ;
⑤ ;等等
(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切、割为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有:
(2)①与 角终边相同的角的集合:
与 角终边在同一条直线上的角的集合:;
与 角终边关于 轴对称的角的集合:;
与 角终边关于 轴对称的角的集合:;
与 角终边关于 轴对称的角的集合:;
②一些特殊角集合的表示:
终边在坐标轴上角的集合:;
终边在一、三象限的平分线上角的集合:;
终边在二、四象限的平分线上角的集合:;
:,,;
:,,;
:,,;
:,,;
:,,;
:,,;
:,,;
诱导公式可用概括为:
2K ± ,- , ± , ± , ± 的三角函数奇变偶不变,符号看象限 的三角函数
作用:“去负——脱周——化锐”,是对三角函数式进行角变换的基本思路.即利用三角函数的奇偶性将负角的三角函数变为正角的三角函数——去负;利用三角函数的周期性将任意角的三角函数化为角度在区间[0o,360o)或[0o,180o)内的三角函数——脱周;利用诱导公式将上述三角函数化为锐角三角函数——化锐.
(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用降幂公式有:;。降幂并非绝对,有时需要升幂,如对无理式 常用升幂化换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。
如: ; ;
; ;
; ;
; ;
终边在四个象限的平分线上角的集合:;
(3)区间角的表示:
①象限角:第一象限角:;第三象限角:;
第一、三象限角:;
②写出图中所表示的区间角:
(4)正确理解角:
要正确理解“ 间的角”=;
“第一象限的角”=;“锐角”=;
“小于 的角”=;
(5)由 的终边所在的象限,通过来判断 所在的象限。
来判断 所在的象限
请你判断下列函数的周期
y=tanxy=tan|x|y=|tanx|
例求函数f(x)=3sin ( 的周期。并求最小的正整数k,使他的周期不大于1
注意理解函数周期这个概念,要注意不是所有的周期函数都有最小正周期,如常函数f(x)=c(c为常数)是周期函数,其周期是异于零的实数,但没有最小正周期.
结论:如函数 对于 ,那么函数f(x)的周期T=2k; 如函数 对于 ,那么函数f(x)的对称轴是
②如函数值为正,先求出对应的锐角 ;如函数值为负,先求出与其绝对值对
应的锐角 ;
③根据角 所在的象限,得出 间的角——如果适合已知条件的角在第二限;则它是 ;如果在第三或第四象限,则它是 或 ;
④如果要求适合条件的所有角,再利用终边相同的角的表达式写出适合条件的所有角的集合。
如 ,则 , ; ; _________。
;
=;
=;