离散数学 ppt课件
合集下载
离散数学ppt课件
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
离散数学PPT课件
定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学课件ppt课件
联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
离散数学(精选优秀)PPT
二、命题的表示法
1、命题标识符:表示命题的符号称为命题标识符。在数理逻辑中,使 用大写字母,或带下标的大写字母,或用方括号括起的数字表示命题。
例:P: 今天下雨。 “今天下雨”是一个命题,P是命题标识符。
它形成于七十年代初期,是一门新兴的工具性学科。
离散数学的应用
◆关系型数据库的设计(关系代数) ◆表达式解析(树) ◆编译技术、程序设计语言(代数结构) ◆人工智能、自动推理、机器证明(数理逻辑) ◆网络路由算法(图论) ◆游戏中的人工智能算法(图论、树、博弈论) ◆专家系统(集合论、数理逻辑—知识和推理规则的计算机表达) ◆软件工程—团队开发—时间和分工的优化(图论—网络、划分) ◆(各种)算法的构造、正确性的证明和效率的评估(离散数学的
第一章 命题逻辑
目标语言:就是表达判断的一些语言的汇集。 目标语言和一些符号公式构成了数理逻辑的形式 符号体系。
1-1 命题及其表示法
一、命题
1、定义 能表达判断的陈述句,称作命题(Proposition)。 例:判断下列语句是否为命题: (陈1)述地句球:外述存说在一智件事慧情生的物句。子,句末用句号。 (祈2)使1+句1:=要10求。或者希望别人做什么事或者不做什么事时用的 (句3)子今,天句下末雨用。句号或感叹号。 (疑4)问你句今:年提暑出假问去题的旅句行子吗,?句(末疑用问问号句。) (感5)叹克句里:特带岛有人浓说厚感:情“的克句里子特,岛句末人用是感说叹谎号话。者”。 悖(:相悖反论。)悖论:自相矛盾的陈述。
各分支)
教材
左孝凌,李为鉴,刘永才编著.离散数学.上海: 上海科学技术文献出版社,1982 主要参考教材: 孙吉贵,杨凤杰,欧阳丹彤,李占山编著.离散数 学.高等教育出版社,2002
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
精品课程《离散数学》PPT课件(全)
言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)
(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。
数学离散数学PPT课件
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
离散数学课件ppt
随机性与概率
随机性表示试验结果的不 确定性,概率则表示随机 事件发生的可能性大小。
统计数据的收集和整理
数据来源
数据质量
数据可以来源于调查、实验、观测、 查阅文献等多种途径。
数据质量包括数据的准确性、可靠性 、完整性等方面,是数据分析的前提 和基础。
数据整理
数据整理包括数据的分类、排序、分 组、编码等步骤,以便更好地进行数 据分析。
必然事件
概率值为1的事件。
03
04
不可能事件
概率值为0的事件。
互斥事件
两个或多个事件不能同时发生 。
概率的加法原理和乘法原理
加法原理
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
乘法原理
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率和独立性
要点一
条件概率
离散数学课件
目录 CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 离散统计学基础 • 离散数学中的问题求解方法
01
离散数学简介
离散数学的起源
19世纪初
集合论的提出为离散数学的起源 奠定了基础。
20世纪中叶
随着计算机科学的兴起,离散数 学逐渐受到重视和应用。
子集、超集和补集
总结词
子集、超集和补集是集合论中的重要概念,它们描述了集合之间的关系。
详细描述
子集是指一个集合中的所有元素都属于另一个集合,超集是指一个集合包含另一 个集合的所有元素,补集是指属于某个集合但不属于其子集的元素组成的集合。
集合的运算性质
总结词
集合的运算性质包括并集、交集、差集等,这些运算描述了 集合之间的组合关系。
离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5 对偶与范式
▪ 对偶式与对偶原理 ▪ 析取范式与合取范式 ▪ 主析取范式与主合取范式
1
对偶式和对偶原理
定义 在仅含有联结词, ∧,∨的命题公式A 中,将∨换成∧, ∧换成∨,若A中含有0 或1,就将0换成1,1换成0,所得命题公 式称为A的对偶式,记为A*.
从定义不难看出,(A*)* 还原成A
5
析取范式与合取范式
文字:命题变项及其否定的总称 如 p, q 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, …
注意:一个命题变元或其否定既可以是简单合取 式,也可是简单析取式,如p,q等。
6
析取范式与合取范式
对偶式; (2)表明,命题变元否定的公式等价于对 偶式之否定。
3
对偶式和对偶原理
定理(对偶原理)设A,B为两个命题公式, 若A B,则A* B*. 有了等值式、代入规则、替换规则和对偶
定理,便可以得到更多的永真式,证明 更多的等值式,使化简命题公式更为方 便。
4
判定问题
真值表 等值演算 范式
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
显然,A也是A*的对偶式。可见A与A*互为 对偶式。
2
对偶式和对偶原理
定理 设A和A*互为对偶式,p1,p2,…,pn是出现在A和 A*中的全部命题变项,将A和A*写成n元函数形式, 则 (1) A(p1,p2,…,pn) A* ( p1, p2,…, pn)
(2) A( p1, p2,…, pn) A* (p1,p2,…,pn) (1)表明,公式A的否定等价于其命题变元否定的
例如,两个命题变元p和q,其构成的小项有pq, pq,pq和pq;而三个命题变元p、q和r,其构 成的小项有pqr,pqr,pqr,pqr, pqr ,pqr,pqr,pqr。
13
极小项与极大项
定义 在含有n个命题变项的简单合取式(简单析取式)中, 若每个命题变项均以文字的形式在其中出现且仅出现一 次,而且第i(1in)个文字出现在左起第i位上,称这样 的简单合取式(简单析取式)为极小项(极大项).
由p, q, r三个命题变项形成的极小项与极大项
极小项
公式
成真
赋值
p q r 0 0 0
p q r 0 0 1
p q r 0 1 0
p q r 0 1 1
p q r 1 0 0
p q r 1 0 1
p q r 1 1 0
p q r 1 1 1
名称
m0 m1 m2 m3 m4 m5 m6 m7
公式的范式存在,但不惟一,这是它的局限性
10
求公式的范式举例
例 求下列公式的析取范式与合取范式 (1) A=(pq)r 解 (pq)r
(pq)r (消去) pqr (结合律) 这既是A的析取范式(由3个简单合取式组成的析 取式),又是A的合取范式(由一个简单析取式 组成的合取式)
11
求公式的范式举例(续)
(2) B=(pq)r
解 (pq)r
(pq)r (消去第一个)
(pq)r (消去第二个)
(pq)r
(否定号内移——德摩根律)
这一步已为析取范式(两个简单合取式构成)
继续: (pq)r
(pr)(qr) (对分配律)
这一步得到合取范式(由两个简单析取式构成)
12
极小项与极大项
定义 在含有n个命题变项的简单合取式(简单析取式)中, 若每个命题变项均以文字的形式在其中出现且仅出现一 次,而且第i(1in)个文字出现在左起第i位上,称这样 的简单合取式(简单析取式)为极小项(极大项).
9
命题公式的范式
定理 任何命题公式都存在着与之等值的析取范式
与合取范式.
求公式A的范式的步骤: (1) 消去A中的, (若存在)(消去公式中除 、和以外公式中出现的所有联结词) (2) 否定联结词的内移或消去(使用(P)P 和德·摩根律) (3) 使用分配律 对分配(析取范式) 对分配(合取范式)
A1A2Ar, 其中A1,A2,,Ar是简单合取式 合取范式:由有限个简单析取式组成的合取式
A1A2Ar , 其中A1,A2,,Ar是简单析取式
8
析取范式与合取范式(续)
范式:析取范式与合取范式的总称 公式A的析取范式: 与A等值的析取范式 公式A的合取范式: 与A等值的合取范式 说明: 单个文字既是简单析取式,又是简单合取式 形如 pqr, pqr 的公式既是析取范式, 又是合取范式 (为什么?)
15
极小项与极大项(续)
由p, q两个命题变项形成的极小项与极大项
极小项 公式 成真赋值 名称
极大项 公式 成假赋值 名称
p q 0 0 m0 p q
0 0 M0
பைடு நூலகம்
p q
0 1 m1 p q 0 1 M1
p q 1 0 m2 p q
1 0 M2
pq
1 1 m3 p q 1 1 M3
16
例如,由两个命题变元p和q,构成大项有pq,pq, pq,pq;三个命题变元p,q和r,构成pqr, pqr , pqr , pqr , pqr , pqr , pqr,pqr。
14
极小项与极大项
说明:n个命题变项产生2n个极小项和2n个极大项 2n个极小项(极大项)均互不等值 用mi表示第i个极小项,其中i是该极小项成真赋值的十 进制表示. (将命题变元按字典序排列,并且把命题变 元与1对应,命题变元的否定与0对应,则可对2n个小项 依二进制数编码) 用Mi表示第i个极大项,其中i是该极大项成假赋值的十 进制表示。(将n个命题变元排序,并且把命题变元与 0对应,命题变元的否定与1对应,则可对2n个大项按 二进制数编码) mi(Mi)称为极小项(极大项)的名称. mi与Mi的关系: mi Mi , Mi mi
定理: 简单合取式为永假式的充要条件是:它 同时含有某个命题变元及其否定。
定理: 简单析取式为永真式的充要条件是:它 同时含有某个命题变元及其否定。
7
析取范式与合取范式
简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, … 析取范式:由有限个简单合取式组成的析取式
▪ 对偶式与对偶原理 ▪ 析取范式与合取范式 ▪ 主析取范式与主合取范式
1
对偶式和对偶原理
定义 在仅含有联结词, ∧,∨的命题公式A 中,将∨换成∧, ∧换成∨,若A中含有0 或1,就将0换成1,1换成0,所得命题公 式称为A的对偶式,记为A*.
从定义不难看出,(A*)* 还原成A
5
析取范式与合取范式
文字:命题变项及其否定的总称 如 p, q 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, …
注意:一个命题变元或其否定既可以是简单合取 式,也可是简单析取式,如p,q等。
6
析取范式与合取范式
对偶式; (2)表明,命题变元否定的公式等价于对 偶式之否定。
3
对偶式和对偶原理
定理(对偶原理)设A,B为两个命题公式, 若A B,则A* B*. 有了等值式、代入规则、替换规则和对偶
定理,便可以得到更多的永真式,证明 更多的等值式,使化简命题公式更为方 便。
4
判定问题
真值表 等值演算 范式
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
显然,A也是A*的对偶式。可见A与A*互为 对偶式。
2
对偶式和对偶原理
定理 设A和A*互为对偶式,p1,p2,…,pn是出现在A和 A*中的全部命题变项,将A和A*写成n元函数形式, 则 (1) A(p1,p2,…,pn) A* ( p1, p2,…, pn)
(2) A( p1, p2,…, pn) A* (p1,p2,…,pn) (1)表明,公式A的否定等价于其命题变元否定的
例如,两个命题变元p和q,其构成的小项有pq, pq,pq和pq;而三个命题变元p、q和r,其构 成的小项有pqr,pqr,pqr,pqr, pqr ,pqr,pqr,pqr。
13
极小项与极大项
定义 在含有n个命题变项的简单合取式(简单析取式)中, 若每个命题变项均以文字的形式在其中出现且仅出现一 次,而且第i(1in)个文字出现在左起第i位上,称这样 的简单合取式(简单析取式)为极小项(极大项).
由p, q, r三个命题变项形成的极小项与极大项
极小项
公式
成真
赋值
p q r 0 0 0
p q r 0 0 1
p q r 0 1 0
p q r 0 1 1
p q r 1 0 0
p q r 1 0 1
p q r 1 1 0
p q r 1 1 1
名称
m0 m1 m2 m3 m4 m5 m6 m7
公式的范式存在,但不惟一,这是它的局限性
10
求公式的范式举例
例 求下列公式的析取范式与合取范式 (1) A=(pq)r 解 (pq)r
(pq)r (消去) pqr (结合律) 这既是A的析取范式(由3个简单合取式组成的析 取式),又是A的合取范式(由一个简单析取式 组成的合取式)
11
求公式的范式举例(续)
(2) B=(pq)r
解 (pq)r
(pq)r (消去第一个)
(pq)r (消去第二个)
(pq)r
(否定号内移——德摩根律)
这一步已为析取范式(两个简单合取式构成)
继续: (pq)r
(pr)(qr) (对分配律)
这一步得到合取范式(由两个简单析取式构成)
12
极小项与极大项
定义 在含有n个命题变项的简单合取式(简单析取式)中, 若每个命题变项均以文字的形式在其中出现且仅出现一 次,而且第i(1in)个文字出现在左起第i位上,称这样 的简单合取式(简单析取式)为极小项(极大项).
9
命题公式的范式
定理 任何命题公式都存在着与之等值的析取范式
与合取范式.
求公式A的范式的步骤: (1) 消去A中的, (若存在)(消去公式中除 、和以外公式中出现的所有联结词) (2) 否定联结词的内移或消去(使用(P)P 和德·摩根律) (3) 使用分配律 对分配(析取范式) 对分配(合取范式)
A1A2Ar, 其中A1,A2,,Ar是简单合取式 合取范式:由有限个简单析取式组成的合取式
A1A2Ar , 其中A1,A2,,Ar是简单析取式
8
析取范式与合取范式(续)
范式:析取范式与合取范式的总称 公式A的析取范式: 与A等值的析取范式 公式A的合取范式: 与A等值的合取范式 说明: 单个文字既是简单析取式,又是简单合取式 形如 pqr, pqr 的公式既是析取范式, 又是合取范式 (为什么?)
15
极小项与极大项(续)
由p, q两个命题变项形成的极小项与极大项
极小项 公式 成真赋值 名称
极大项 公式 成假赋值 名称
p q 0 0 m0 p q
0 0 M0
பைடு நூலகம்
p q
0 1 m1 p q 0 1 M1
p q 1 0 m2 p q
1 0 M2
pq
1 1 m3 p q 1 1 M3
16
例如,由两个命题变元p和q,构成大项有pq,pq, pq,pq;三个命题变元p,q和r,构成pqr, pqr , pqr , pqr , pqr , pqr , pqr,pqr。
14
极小项与极大项
说明:n个命题变项产生2n个极小项和2n个极大项 2n个极小项(极大项)均互不等值 用mi表示第i个极小项,其中i是该极小项成真赋值的十 进制表示. (将命题变元按字典序排列,并且把命题变 元与1对应,命题变元的否定与0对应,则可对2n个小项 依二进制数编码) 用Mi表示第i个极大项,其中i是该极大项成假赋值的十 进制表示。(将n个命题变元排序,并且把命题变元与 0对应,命题变元的否定与1对应,则可对2n个大项按 二进制数编码) mi(Mi)称为极小项(极大项)的名称. mi与Mi的关系: mi Mi , Mi mi
定理: 简单合取式为永假式的充要条件是:它 同时含有某个命题变元及其否定。
定理: 简单析取式为永真式的充要条件是:它 同时含有某个命题变元及其否定。
7
析取范式与合取范式
简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, … 析取范式:由有限个简单合取式组成的析取式