万有引力知识点详细归纳(最新整理)
高中物理万有引力知识点总结
高中物理万有引力知识点总结1. 牛顿的万有引力定律:任何两个物体间都存在引力,这个引力与它们的质量成正比,与它们之间距离的平方成反比。
这就是牛顿的万有引力定律。
公式表示为:F=G(m1m2)/r^2,其中F是两个物体间的引力,m1和m2分别是两个物体的质量,r是它们之间的距离,G是万有引力常量。
2. 万有引力定律的应用:天体运动:万有引力定律为解释和预测天体运动提供了基础。
例如,行星绕太阳的运动,卫星绕地球的运动等。
重力加速度:在地球表面,万有引力定律可以用来解释重力加速度的存在。
重力加速度是由地球的质量产生的万有引力引起的。
3. 开普勒三定律:第一定律(轨道定律):所有行星绕太阳的轨道都是椭圆,太阳在其中一个焦点上。
第二定律(面积定律):对于任何行星,它与太阳的连线在相同的时间内扫过的面积相等。
第三定律(周期定律):所有行星绕太阳一周的周期的平方与它们轨道半长轴的立方之比是一个常数。
4. 万有引力定律与天体运动的关系:通过万有引力定律和牛顿第二定律(F=ma),我们可以推导出天体运动的规律。
例如,行星的轨道周期与其轨道半径的三次方和质量的二次方之间的关系,这就是开普勒第三定律的来源。
5. 人造卫星:人造卫星是利用万有引力定律进行设计和操作的。
通过调整卫星的轨道和速度,可以实现各种任务,如通信、气象观测、导航等。
6. 逃逸速度:逃逸速度是指一个物体从某天体表面发射出去,要逃离该天体的引力束缚所需要的最小速度。
逃逸速度的计算涉及到万有引力定律和动能定理。
以上就是高中物理中万有引力知识点的主要内容。
掌握这些知识,可以帮助我们更好地理解和预测天体运动,以及设计和操作人造卫星等任务。
万有引力定律知识点总结
万有引力定律知识点总结引力是自然界中一种普遍存在的力量,它负责维持着行星、恒星和其他天体之间的相互作用。
而万有引力定律则是描述了引力的基本规律,由英国科学家牛顿在17世纪提出。
万有引力定律可以简洁地表述为:任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
下面将详细介绍这个定律的几个重要知识点。
1. 引力的大小与质量成正比:根据万有引力定律,两个物体之间的引力与它们的质量成正比。
这意味着质量越大的物体之间的引力越强。
例如,地球的质量远远大于一个苹果的质量,因此地球对苹果的引力要比苹果对地球的引力大得多。
2. 引力的大小与距离的平方成反比:万有引力定律还指出,两个物体之间的引力与它们之间的距离的平方成反比。
这意味着物体之间的距离越近,它们之间的引力越强。
例如,当我们离地球表面更近时,我们能感受到的地球引力也更强。
3. 引力的方向:根据万有引力定律,引力的方向始终指向两个物体之间的中心。
例如,地球对一个物体的引力指向地球的中心,而物体对地球的引力也指向地球的中心。
这解释了为什么物体会朝着地球的中心下落。
4. 引力的公式:万有引力定律的数学表达式为F = G * (m1 * m2) / r^2,其中F表示引力的大小,G是一个常数,m1和m2分别表示两个物体的质量,r表示它们之间的距离。
这个公式可以用来计算任意两个物体之间的引力大小。
5. 引力的应用:万有引力定律不仅可以解释地球上物体的运动,还可以解释行星绕太阳的运动、卫星绕地球的运动等。
它是天体力学的基础,对于研究宇宙的结构和演化具有重要意义。
总结起来,万有引力定律是描述引力作用的基本规律,它告诉我们引力的大小与物体的质量成正比,与它们之间的距离的平方成反比。
这个定律的发现对于我们理解宇宙的运行机制和天体运动具有重要的意义。
通过应用这个定律,我们可以解释和预测天体的运动,深入探索宇宙的奥秘。
万有引力知识点(精华)
万有引力定律备注:在天文上的应用:(G 万有引力常量;M 中心天体质量;m 环绕天体质量;g 天体表面重力加速度;R :天体自身半径;r 表示卫星或行星的轨道半径;h 表示离地面或天体表面的高度 h R r +=)1、开普勒三定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴a 的三次方跟公转周期T 的二次方的比值都相等。
表达式为: k T a =23 ⎪⎭⎫ ⎝⎛=24πGM k 其中 只与中心天体质量有关与行星无关。
2 、万有引力公式:221r m m GF =万 (适用条件:只适用于质点间的相互作用)G 为万有引力常量:G = 6.67×10-11 N ·m 2 / kg 23、万有引力−−→−提供向心力ma 2r GMa =轨道半径越大,向心加速度越小=2r MmG rv m 2轨道半径越大,线速度越小 r m 2ω 轨道半径越大,角速度越小r T m 224π 轨道半径越大,周期越大4、中心天体质量MrGMv =GMr T 324π=3r GM =ω 结论:轨道半径r 大,除了周期T 大之外都小(1)由 r Tm r Mm G 2224π= 得 ,注意是被围绕天体(处于圆心处)的质量。
(2)由 mg R Mm G =2 得 GgR M 2= , R 为地球自身半径;g 为地球表面重力加速度。
5、黄金代换: mg RMmG=2 2gR GM =在不知地球质量的情况下可用其自身半径R 和表面的重力加速度g 来表示。
6、天体的平均密度:32332323344R GT r R GT r V M ⋅⋅===πππρ 特别地:若为近地卫星,即r=R 时:23GT πρ=7、天体的追击问题:最近 最近最远 最远最近 最远 最远 最近8、双星系统:对1m : 12212214r Tm Lm m G π= 对2m : 22222214r Tm Lm m G π=关系 : L r r =+219、宇宙速度:第一宇宙速度:s km v /9.71=人造卫星的最小发射速度;最大环绕速度:结论: 232214GTl m m π=+ 和 121221v v r r m m == 2324GT r M π=n t t ⋅=-πωω221)(1221-⋅=-n t t πωω 1m2mL2r(特点:角速度、周期相等;质量大的半径小)s km gR RGMv /9.71===3由 R vm R Mm G 212= 得 RGM v =1由 Rvm mg 21= 得 gR v =1第二宇宙速度:s km v /2.112=,使物体挣脱地球引力束缚的最小发射速度。
《认识万有引力定律》 知识清单
《认识万有引力定律》知识清单一、什么是万有引力定律万有引力定律是指任何两个物体之间都存在相互吸引的力,这个力的大小与这两个物体的质量成正比,与它们之间距离的平方成反比。
用公式表示就是:F = G (m1 m2) / r²,其中 F 表示两个物体之间的引力,G 是万有引力常量,约为 667×10⁻¹¹ N·m²/kg²,m1 和 m2 分别表示两个物体的质量,r 是两个物体质心之间的距离。
二、万有引力定律的发现者万有引力定律是由英国科学家艾萨克·牛顿发现的。
据说,牛顿是在看到苹果从树上落下时,开始思考物体下落的原因,并最终发现了万有引力定律。
这个故事虽然简单,但却生动地展示了牛顿敏锐的观察力和深刻的思考能力。
三、万有引力定律的意义1、解释天体运动万有引力定律成功地解释了天体的运动规律,包括行星绕太阳的运动、卫星绕行星的运动等。
它使得人们能够准确地预测天体的位置和运动轨迹,为天文学的发展奠定了坚实的基础。
2、统一了地上和天上的力学在牛顿之前,人们认为天上和地上的物体遵循不同的力学规律。
万有引力定律的发现表明,无论是地球上的物体还是天体,都受到相同的引力作用,从而统一了地上和天上的力学。
3、推动科学技术的发展万有引力定律在航天技术、卫星通信、导航等领域有着广泛的应用。
例如,在计算卫星的轨道、发射火箭时,都需要用到万有引力定律。
四、万有引力定律的适用范围1、宏观物体万有引力定律适用于宏观物体,对于微观粒子,由于量子力学效应的影响,万有引力定律不再适用。
2、弱引力场在强引力场中,如黑洞附近,万有引力定律需要进行修正,需要用到广义相对论。
五、万有引力常量的测量1、卡文迪许扭秤实验英国科学家亨利·卡文迪许通过巧妙的扭秤实验,成功地测量出了万有引力常量 G 的值。
他的实验设计非常精巧,利用了微小的引力作用产生的扭转力矩来测量引力的大小。
(完整)高中物理万有引力部分知识点总结,推荐文档
高中物理——万有引力与航天知识点总结一、开普勒行星运动定律(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2 .公式:F= Gm1m2/r A2 ,其中G= 6.67 X10 -11N m2/kg 2,称为万有引力常量。
3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离。
对于均匀的球体,球心间r 是两的距离。
三、万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:F= Gm1m2/r A2 = mv A2/r = m co2r = m(2冗仃)2「(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg = Gm1m2/rA2 , gR2 = GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)= m T2(4冗2)r,得出天体质量M = GT2(4 n2⑶.(1)若已知天体的半径R,则天体的密度p= V(M)=冗R3(4) = GT2R3(3 n r3)(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度p= GT2(3 n)可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星( 1 )研究人造卫星的基本方法看成匀速圆周运动,其所需的向心力由万有引力提4 2供.G「2(Mm)= m r(v2)= mr co2= m -^2 r A2 = ma 向.(2)卫星的线速度、角速度、周期与半径的关系①由GMm/rA2 = mvA2/r 得v = GM/r,故r 越大,v 越小②由GMm/rA2 = mr o2得o= GMm/"3 ,故r 越大,o 越小L 2 3*③由GMm/rA2 = m(4 n A2/TA2 )r 得T= J4仏M,故r 越大,T 越大(3)人造卫星的超重与失重①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。
高一物理万有引力知识点总结
高一物理万有引力知识点总结
一、引力
1、引力是指物体之间的相互之间的作用力。
2、引力的定义是:质点之间的相互作用力,由距离决定,两者
距离越近,作用力越大,质点距离越远,作用力越小。
3、引力法则:引力作用力是双向的,即两质点之间的引力是相
等的。
二、引力的类型
1、斥力:即两物体间的反作用力。
2、弹力:物体之间的弹力也可以理解为引力,如弹簧的弹力。
3、磁力:当有磁体存在时,它们之间会产生的磁力。
4、重力:重力也是一种引力,也是宇宙中最有名的引力,它是
引起物体的自由落体运动的主要原因。
三、引力的实验
1、布拉格实验:是实验物理学家布拉格(1887年)用来测量引力的实验,该实验就揭示了物质间的相互引力。
2、太阳引力实验:该实验是行星发射实验的一种,它使用火箭
向太阳系内的行星发射小卫星,测量其飞行到临近太阳时引力的变化。
四、引力的其他知识
1、引力的公式:引力公式为F=G×m1×m2/r2,其中F表示引力,G表示万有引力常数,m1、m2表示两个作用质点的质量,r表示两个质点之间的距离。
2、万有引力常数:万有引力常数是宇宙中最基本的常数,它的值大约为6.67×10-11 N·m2/kg2。
万有引力知识点解析精华版
【本讲主要内容】万有引力与航天 万有引力定律及万有引力在天文学上的应用 【知识点精析】一. 万有引力定律:1. 内容:宇宙间有质量的物体之间都是相互吸引的,两个物体之间的引力大小,跟它们质量的乘积成正比,跟它们距离的平方成反比。
公式:F =G ·m 1·m 2/r 2其中G =6. 67×10-11N ·m 2/kg 2 2. 条件:适用于质点,或可视为质点的均匀球体。
二. 重力和地球的万有引力:1. 地球对其表面物体的万有引力产生两个效果:(1)物体随地球自转的向心力:F 向=m ·R ·(2π/T 0)2,很小。
由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。
(2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m RGMm F F mg 22自向ω-=-=, 因地球自转角速度很小,R m RGMm 22自ω>>,所以2R GM g =。
地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重力大小相等。
如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。
如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。
在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g +=。
强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。
2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。
即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2三. 天体运动:1. 开普勒行星运动规律:(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
万有引力定律知识点总结
万有引力定律知识点总结万有引力定律一.开普勒运动定律 (1)开普勒第一定律:所有的行星绕太阳运动的轨道都是,太阳处在所有椭圆的一个上.相等.D.两个物体间的引力总是大小相等,方向相反的,是一对平衡力:三、万有引力和重力不考虑自转的情况下,F 万=mg(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的 (3)开普勒第三定律:所有行星的轨道的的比值都相等.四.天体表面重力加速度问题)例 1:火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(A.火星与木星公转周期相等 B.火星和木星绕太阳运行速度的大小始终相等 C.太阳位于木星运行椭圆轨道的某焦点上 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积设天体表面重力加速度为 g,天体半径为 R,由重力加速度的关系为g1 R22 M 1 ? ? g 2 R12 M 2得 g= GM ,由此推得两个不同天体表面 R2例3:据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的 6.4 倍,一个在地球表面重量为 600 N 的人在这个行星表面的重量将变为960 N,由此可推知该行星的半径与地球半径之比约为 A.0.5 B.2. C.3.2 D.4 五.天体质量和密度的计算二.万有引力定律 (1) 公式:F= ,其中 G ? 6.67 ? 10?11 N ? m 2 / kg 2 ,称为为有引力恒量。
间的相互作用,当两个物体间的距离远远大于物体本身间的距离.对于均匀的球体,r 是两1.只能求中心天体的质量2. 只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T,就可以算出天体的质量 M.若知道行星的半径则可得行星的密度 4? 2 3?r 2 4? 2 r 3 M mM M G 2 =m 2 r,由此可得:M= ;ρ = = = (R 为行星的半径) 2 4 3 GT 2 R 3 V GT T r ?R3(2) 适用条件:严格地说公式只适用于的大小时,公式也可近似使用,但此时 r 应为两物体间的距离对于质量为 m 1 和质量为 m 2 的两个物体间的万有引力的表达式 F=Gm1m2 r2例 2:下()例4:登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是 120.5 min,月球的半径是 1740 km,根据这组数据计算月球的质量和平均密度.土星 29.5列说法正确的是公转周期(年)水星 0.241金星 0.615地球 1.0火星 1.88木星 11.86A.公式中的 G 是引力常量,它是人为规定的 B.当两物体间的距离 r 趋于零时,万有引力趋于无穷大 C.两物体间的引力大小一定是相等的六、讨论天体运动规律的基本思路基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
万有引力物理公式总结
万有引力物理公式总结
1. 万有引力定律公式。
- F = G(m_1m_2)/(r^2)
- 其中F表示两个物体之间的万有引力,G是引力常量G = 6.67×10^-11N·m^2/kg^2,m_1和m_2分别是两个物体的质量,r是两个物体质心之间的距离。
2. 重力近似等于万有引力(在地球表面附近)
- mg = G(Mm)/(R^2)
- 这里m是物体质量,M是地球质量,R是地球半径,g是重力加速度。
由此公式可推导出g=(GM)/(R^2)。
3. 天体做圆周运动的向心力由万有引力提供。
- 对于卫星绕地球做匀速圆周运动(以地球为中心天体)
- frac{mv^2}{r}=G(Mm)/(r^2)(v是卫星的线速度),可推出v =
√(frac{GM){r}}。
- ω=(2π)/(T),mω^2r = G(Mm)/(r^2)(ω是卫星的角速度,T是卫星的周期),可推出ω=√(frac{GM){r^3}}和T = 2π√((r^3))/(GM)。
- ma = G(Mm)/(r^2)(a是卫星的向心加速度),可推出a=(GM)/(r^2)。
- 对于双星系统(两个天体质量分别为m_1、m_2,两者相距L,绕连线上某点O做匀速圆周运动)
- G(m_1m_2)/(L^2)=m_1ω^2r_1,G(m_1m_2)/(L^2)=m_2ω^2r_2(r_1、r_2分别是m_1、m_2到转动中心O的距离,且r_1 + r_2=L)。
- 可推出m_1r_1=m_2r_2(根据ω相同得到)。
万有引力与航天知识点归纳
万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。
2. 公式,其中,称为引力常量。
3. 适用条件适用于两个质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,为两球心间的距离。
二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。
若已知环绕天体的线速度和轨道半径,则。
若已知环绕天体的角速度和轨道半径,则。
若已知环绕天体的周期和轨道半径,则。
2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。
由,天体的体积。
当卫星绕天体表面运行时,则。
三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。
2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。
3. 卫星的角速度由可得,轨道半径越大,角速度越小。
4. 卫星的周期由可得,轨道半径越大,周期越大。
5. 地球同步卫星特点:周期,与地球自转周期相同。
轨道平面与赤道平面重合。
高度,线速度。
四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。
计算:由(为地球半径),可得。
这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。
2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。
3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。
五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。
2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。
万有引力知识点总结(必备3篇)
万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。
万有引力知识点总结
知识点一 万有引力应用两条线索(1)万有引力=向心力 (2)重力=向心力 G2RMm = mg ⇒GM=gR 2(黄金代换式) 1、(中心天体质量密度)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,则这颗行星的质量为A .GNmv 2B.GNmv4C .GmNv2D.GmNv4【解析】行星对卫星的万有引力提供其做匀速圆周运动的向心力,有Rv m R 22mGM '='① 行星对处于其表面物体的万有引力等于物体重力有,mg R =2GMm② 根据题意有N=mg ③,解以上三式可得GNmv 4M =,选项B 正确。
2、(多天体比较)假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A .R d -1 B .R d+1 C .2)(R d R - D .2)(dR R - 【答案】A【解析】在地面上质量为m 的物体根据万有引力定律有:mg RMm G =2 ,从而得R G R RG g πρπρ343423⋅⋅=⋅⋅=。
根据题意,球壳对其内部物体的引力为零,则矿井底部的物体m ′只受到其以下球体对它的万有引力同理有)(34)(2d R G d R M G g -=-'='πρ,式中3)(34d R M -='πρ。
两式相除化简R d R d R g g -=-='1。
答案A 。
3、(多天体比较)火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
假设火星探测器在火星表面附近圆形轨道运行周期为T ,神州飞船在地球表面附近圆形轨道运行周期为2T ,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则T 、2T 之比为222222224[8]2[9]4[10][11][12]Mm v G m m r m r r r Tv mgr m m r m rr Tπωπω======答案:D解析:设中心天体的质量为M ,半径为R ,当航天器在星球表面飞行时,由222M m G m R R T π⎛⎫= ⎪⎝⎭和343M V R ρρπ==,解得23GT πρ=,即T =又因为3343M M M V R R ρπ==∝,所以T ∝12T T =。
(完整版)万有引力与航天重点知识归纳
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
万有引力定律知识点总结
万有引力定律知识点总结1.定律表述2.牛顿的发现牛顿通过研究苹果掉落的问题,发现了地球对苹果的引力,进而猜测物体间存在一种普遍的引力现象,并开始研究重力的本质。
3.引力的普遍性4.引力的性质引力是一种吸引力,它的大小与物体的质量成正比,与距离的平方成反比。
质量越大,引力越大;距离越近,引力越大。
5.引力的作用对象引力的作用对象包括任何有质量的物体,从微观粒子到宇宙天体都受到引力的作用。
例如,地球对人和物体的引力可以使人和物体保持在地面上。
6.引力的无质量物体根据等效原理,无论物体的质量大小,无质量的物体受到的引力都是相同的。
也就是说,无论是一个质量为1kg的物体,还是一个质量为10kg的物体,它们在地球上受到的重力都相同,都是9.8N。
7.引力的矢量性质引力是一个矢量,具有大小、方向和作用点。
它的方向始终指向两物体之间的连线方向,作用点位于两物体连线上。
8.引力的非接触性引力不需要物体之间的接触就可以产生作用,即使物体之间存在遮挡,仍然可以相互吸引。
9.引力的远程性引力是一种远程相互作用力,两个物体之间即使距离很远,仍然可以相互产生引力作用。
10.引力的作用力对根据牛顿第三定律,如果物体1对物体2施加一定的引力,那么物体2对物体1也会施加相同大小、相反方向的引力,这称为引力的作用力对。
11.引力的宏观表现在宏观尺度上,引力主要表现为星体之间的相互吸引作用,例如行星公转、卫星绕地球运动等。
12.引力在宇宙中的作用引力在宇宙中起着至关重要的作用,控制了星系、星云的形成与演化,维持了银河系的稳定,也决定了宇宙的大尺度结构。
总结起来,万有引力定律是描述物质之间相互作用的力的定律,它展示了物体之间的普遍吸引现象。
引力的表达式为F=G×m1×m2/r^2,其中F为引力大小,G为万有引力常数,m1和m2为物体的质量,r为物体之间的距离。
这一定律对于解释行星运动、人造卫星轨道等有着重要的意义。
万有引力知识点
1.开普勒第三定律:32RT =K (K =GM 24π;T 为做圆周运动天体的周期,R 为天体做圆周运动的半经,M 为中心天体的质量;G 为常数,K 与中心天体的质量有关。
公式推导:行星做匀速圆周运动时:K r m GMR Tr R T R GMm ==−−−→−==2322422)(ππ时当)2.地球(天体)上的重力和重力加速度:(黄金代换:g =2RGM )(1):mg RG Mm ≈2⇒g =2R GM (g 为地球(天体)表面的重力加速度;R 为地球(天体)的半经;M 为地球(天体)的质量)(2):g ´=2)(H R G M+ (g ´为离地球(天体)表面H 高处的重力加速度;H 为离地球(天体)表面的高;M 为地球(天体)的质量;R 为地球(天体)的半经)(该公式适用于任何条件下)3.线速度V 、角速度ω、周期T :(1):V =R T R t Sωπ==2 (s 为弧长)(2):ω=ππθn R V Tt 22===; θ为转过的角度,即圆心角 n 为转速,其单位为:转/ 秒,即r/sω的单位为:弧度/秒,即rad/s ;600=3π弧度;3600= 2π弧度(3):T =fV R122==ωππ (f 为频率) (4):如下图,图1、2、3、4中的V 1=V 2;图5、6、7中的321ωωω==(熟记何时线速度相等,何时角速度相等)(5):地球卫星做匀速圆周运动的V 、ω、T 、R+H 的关系为: 四个物理量中,只要有一个量确定了,其它三个物理量也就确定了。
R+H 越大,V 、ω就越小,而T 越大(R 为地球半径)。
解答:卫星做匀速圆周运动时:2)(H R G Mm +=∙===mg r m ma T rmv 22)(2π向心(此时卫星和地球间的距离等于卫星做匀速圆周运动的轨道半径,R+H=r )⇒(1):V =HR gR gHR GM V R GM +=+=−−→−22(R+H 越大,V 就越小)(2):(3):2323)()(22gR H R gGMH R T T R GM+=+=−−→−=ππ4.第一(二、三)宇宙速度:(1):.第一宇宙速度V 1=RGM=gR =7.9km/s (环绕速度)①:公式推导:当卫星绕地球表面附近做匀速圆周运动时:RmV R GMm 22=;⇒RGM V =−−→−=2R GMg V=gR (R 为地球半径)②:第一宇宙速度的意义:卫星绕地球表面做匀速圆周运动的最大速度,也是发射卫星的最小速度。
物理万有引力知识点
物理万有引力知识点一、万有引力定律万有引力定律是由艾萨克·牛顿在1687年提出的。
它描述了两个物体之间的引力是如何作用的。
定律内容如下:1. 任何两个物体都会相互吸引。
2. 这种吸引力与两个物体的质量的乘积成正比。
3. 吸引力与两个物体之间的距离的平方成反比。
4. 吸引力沿着连接两个物体的直线作用。
数学表达式为:F = G * (m1 * m2) / r^2其中,F 代表万有引力,m1 和 m2 分别代表两个物体的质量,r 代表它们之间的距离,G 是万有引力常数。
二、万有引力常数万有引力常数(G)是一个物理常数,用于计算两个物体之间的引力。
G 的值约为6.67430 × 10^-11 N·(m/kg)^2。
三、引力与质量万有引力与物体的质量直接相关。
质量越大的物体,其引力也越大。
这也是为什么地球和太阳这样的大型天体能够对周围的物体产生显著的引力作用。
四、引力与距离万有引力与物体间距离的平方成反比。
这意味着,当两个物体之间的距离增加时,它们之间的引力会显著减少。
这也是为什么在宇宙尺度上,距离非常遥远的物体之间的引力作用可以忽略不计。
五、引力的方向万有引力总是沿着两个物体之间的直线方向作用。
这意味着,无论物体如何移动或旋转,引力总是指向对方。
六、引力在天体物理中的应用万有引力是天体物理学的基础。
它解释了行星围绕太阳运动的轨道,潮汐现象,以及恒星和星系的形成和演化。
七、引力与其他力的关系在宇宙的四个基本相互作用中,引力是最弱的一种。
然而,由于它的长程特性,即使在微观尺度上,引力也在起着作用,尽管在日常生活中通常被其他力(如电磁力)所掩盖。
八、引力场引力场是一个区域,其中包含一个物体的引力影响。
任何进入该区域的物体都会感受到引力的作用。
引力场的强度与物体的质量和距离有关。
九、引力波根据爱因斯坦的广义相对论,当质量较大的物体加速运动时,它们会在周围的时空中产生涟漪,称为引力波。
(完整版)万有引力知识点详细归纳
第五章:万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k T r =23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
2.万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
2r MmGF =(1687年) 2211/1067.6kg m NG ⋅⨯=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2EE R m m G mg =(式中R E 为地球半径或物体到地球球心间的距离),可得到G gR m EE 2=。
(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。
万有引力定律知识点总结
一、开普勒行星运动定律定律内容图示第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律(面积定律)对任意一个行星来说,他与太阳的连线在相等的时间内扫过相等的面积。
第三定律(周期定律)所有行星的轨道半径的半长轴的三次方跟它的公转周期的平方的比值都相等,a3/T2=k。
注意:1. 开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
2.比例系数k与中心天体质量有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k值不相同。
3. T为公转周期,不是自转周期。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
2.表达式:F=G221 r mm其中G=×10-11N•m2/kg2,称为为有引力恒量。
3.适用条件:用于计算引力大小的万有引力公式严格地说只适用于两质点间引力大小的计算,如果相互吸引的双方是质量分布均匀的球体,则可将其视为质量集中于球心的质点,此时r是两球心间的距离。
4.对万有引力定律的理解(1)普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物体之间的基本的相互作用之一,任何客观存在的两部分有质量的物体之间都存在着这种相互作用。
(2)相互性:两个物体相互作用的引力是一对作用力与反作用力.它们大小相等,方向相反,分别作用在两个物体上。
(3)宏观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的存在才有宏观物理意义。
二、重力加速度重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.1.若不计地球自转的影响,则物体在地球表面的重力等于地球对物体的万有引力,即2GMmmgR=, 则星球表面的重力加速度为:2GMgR=2.同理,若不计地球自转的影响,在距地球表面高h处的重力加速度为:2()hGMgR h=+3.若考虑地球自转的影响,(1)在赤道处,物体的万有引力分解为两个分力F向和mg刚好在一条直线上,则有F=F向+mg,所以mg=F一F向=2GMmR-mRω自2则赤道处重力加速度为:g=2GMR-Rω自2(而地球赤道处的向心加速度a n= Rω自2 =s2,因此一般不计其自转的影响;注意:当题目中出现地球自转时需要考虑此问题。
万有引力 知识要点
万有引力 知识要点一、万有引力定律: F =适用条件:两个质点间(质量均匀分布的球可以看作质量在球心的质点)二、万有引力定律的应用:(天体质量M , 天体半径R, 天体表面重力加速度g )1.万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h )中心天体的质量: 人造地球卫星的作圆周运动速度大小计算:r GM V r V m r Mm G =⇒=22GM r T Tr m r Mm G 22224ππ=⇒=322r GM r m r Mm G =⇒=ωω22r GM a ma r Mm G =⇒=2.重力=万有引力地面物体的重力加速度:mg = G Mm R 2g =黄金代换式:GM=gR 2高空物体的重力加速度:mg’ = G2)(h R Mm + g’ =3.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的.由mg = m V R 2或由R GM V R V m R Mm G =⇒=22 =gR =7.9km/s7.9×103m/s 称为第一宇宙速度;11.2×103m/s 称为第二宇宙速度;16.7×103m/s 称为第三宇宙速度。
4.通讯卫星(又称同步卫星)相对于地面静止不动,其圆轨道位于赤道上空,其周期与地球自转周期相同(一天),其轨道半径是一个定值。
5.卫星在发射时加速升高和返回减速的过程中,均发生超重现象,进入圆周运动轨道后,发生完全失重现象,一切在地面依靠重力才能完成的实验都无法做。
机械能和能源知识要点一、功和功率:1.功的计算公式:W=(条件:)2.做功的两个不可缺少的因素:(1);(2);功是标量、是过程量。
功的大小反映了力在使物体发生一段位移的过程中的总效果;同时功又是物理过程中能量转移或转化的量度。
注意:当= π时,W=0。
例如:线吊小球做圆周运动时,线的拉力不做功;当π/2<α≤π时,力对物体做负功,也说成物体克服这个力做了功(取正值)3.功率:定义式物理意义:___________________________;单位及换算:1kW= W其他计算公式:平均功率_____________________;瞬时功率_____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人造地球卫星。 这里特指绕地球做匀速圆周运动的人造卫星,实际上大多数卫星轨道是椭圆,而中学阶 段对做椭圆运动的卫星一般不作定量分析。 1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星 的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。 2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心 力,于是有
说明:由于地球自转的影响,从赤道到两极,重力的变化为千分之五;地面到地心的距 离每增加一千米,重力减少不到万分之三,所以,在近似的计算中,认为重力和万有引力相 等。
万有引力定律的应用: 基本方法:卫星或天体的运动看成匀速圆周运动, F 万=F 心(类似原子模型) 方法:轨道上正常转:
Mm G
m v2
而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。
这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向 心力为地球对它引力的一个分力 F1,而另一个分力 F2 的作用将使其运行轨道靠赤道,故此, 只有在赤道上空,同步卫星才可能在稳定的轨道上运行。
(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。 (3)同步卫星必位于赤道上方 h 处,且 h 是一定的.
r 度的增大而减小,即 gh=GM/(R+h)2,比较得 gh=( R h )2·g
设天体表面重力加速度为 g,天体半径为 R,由 mg= G Mm 得 g= G M ,由此推得两个不
R2
R2
同天体表面重力加速度的关系为
g 1
R2 2
M 1
g R2 M
2
1
2
(2)计算中心天体的质量
某星体 m 围绕中心天体 m 中做圆周运动的周期为 T,圆周运动的轨道半径为 r,则:
r3 T2
k
开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出 了行星运动的规律。
2.万有引力定律及其应用
(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成 积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
F
G
Mm r2
(1687
同样质量的卫星在不同高度轨道上的机械能不同。其中卫星的动能为 EK
GMm 2r
,由于
重力加速度 g 随高度增大而减小,所以重力势能不能再用 Ek=mgh 计算,而要用到公式
EP
GMm r
(以无穷远处引力势能为零,M
为地球质量,m
为卫星质量,r 为卫星轨道半径。
由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。)因此机械能为
速度越大
应该熟记常识:
地球公转周期 1 年, 自转周期 1 天=24 小时=86400s, 地球表面半径 6.4x103km 表 面重力加速度 g=9.8 m/s2 月球公转周期 30 天
4.宇宙速度及其意义 (1)三个宇宙速度的值分别为 第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度): 物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:
v1 7.9km/s
第一宇宙速度的计算. 方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.
G
mM
r h2
=m
v2
r
h
,v=
GM 。当 h↑,v↓,所以在地球表面附近卫星的速度是它运行 rh
的最大速度。其大小为 r>>h(地面附近)时,V1
GM
=7.9×103m/s
r
方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆 周运动的向心力.
ω N
O′ F心 m
O F引 mg
甲
在赤道处,物体的万有引力分解为两个分力 F 向和 m2g 刚好在一条直线上,则有 F=F 向+
m2g,所以
m2g=F
一
F
向=G
m1m2 r2
-m2Rω 自 2
。
物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体 受到的万有引力 F 引和支持力 N 是一对平衡力,此时物体的重力 mg=N=F 引。
由
G
m中m r2
m
2 T
2
r
得:
m中
4 2r 3 GT 2
例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。 可以注意到:环绕星体本身的质量在此是无法计算的。 (3)计算中心天体的密度
M M 3 r 2
ρ= =
=
V 4 R3 GT 2 R3
3
由上式可知,只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T,就可以算出 天体的质量 M.若知道行星的半径则可得行星的密度
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体 m,
有 mg
G
mE m RE 2
(式中
RE 为地球半径或物体到地球球心间的距离),可得到 mE
gRE 2 G
。
(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远 远大于物体本身的大小时,公式也可近似使用,但此时 r 应为两物体重心间的距离.对于均 匀的球体,r 是两球心间的距离.
当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公 式算出 F 近为无穷大。
注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之 一,式中引力恒量 G 的物理意义是:G 在数值上等于质量均为 1kg 的两个质点相距 1m 时相 互作用的万有引力.
(3) 地球自转对地表物体重力的影响。
重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心 力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,
如图所示,在纬度为 的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所
需的向心力 F 向=mRcos ·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是
G Mm m 2r r2
3
得 r
GM 2
故 h
r R 35800km
(4)地球同步卫星的线速度:环绕速度
由G
Mm
2 m
得v
GM 3.08km / s
r2
r
r
(5)运行方向一定自西向东运行 人造天体在运动过程中的能量关系 当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人 造天体却具有较小的动能。反之,如果人造天体在运动中动能减小,它的轨道半径将减小, 在这一过程中,因引力对其做正功,故导致其动能将增大。
E GMm 。同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大, 2r
发射越困难。
m 2 r m 4 2
r
r2
r
T2
Mm 地面附近:G R 2 = mg
GM=gR2 (黄金代换式)
(1)天体表面重力加速度问题
通常的计算中因重力和万有引力相差不大,而认为两者相等,即
m2g=
G
m1m2 R2
,
g=GM/R2 常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高
ω
F引 N o
Nω F引
o
乙
丙
综上所述 重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但 差别很小。 重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的 夹角很小。 由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,
GmM 在此基础上就有:地球表面处物体所受到的地球引力近似等于其重力,即 R 2 ≈mg
GmM ma m 2 m 2r m( 2 )2 r
r2
r
T
实际是牛顿第二定律的具体体现 3、表征卫星运动的物理量:线速度、角速度、周期等:
(1)向心加速度 a向 与 r 的平方成反比。
GM a向 = r 2 当 r 取其最小值时, a向 取得最大值。
GM a 向 max= R 2 =g=9.8m/s2
年)
G 6.67 1011 N m2 / kg 2 叫做引力常量,它在数值上等于两个质量都是 1kg 的物体
相距 1m 时的相互作用力,1798 年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤
实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助 于平面境将微小的运动效果放大)。
mg
m
v12
r h
.当
r>>h
时.gh≈g
所以 v1= gr =7.9×103m/s
第二宇宙速度(脱离速度):
如果卫生的速大于 7.9km/s 而小于 11.2km/s ,卫星将做椭圆运动。当卫星的速度等于 或大于11.2km/s 的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星, 或飞到其它行星上去,把 v2 11.2km/s 叫做第二宇宙速度,第二宇宙速度是挣脱地球引力
(2)线速度 v 与 r 的平方根成反比
GM
v=
∴当 h↑,v↓
r
当 r 取其最小值地球半径 R 时,v 取得最大值。 vmax=
GM
=
R
Rg =7.9km/s
(3)角速度 与 r 的三分之三次方成百比