2019年全国二卷理科数学Word版
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.1.2.3。
4.5。
6。
7.8。
9.10.11.12.二、填空题:本题共4小题,每题5分,共20分. 13。
14。
15.16。
三、(一)必考题:共60分17。
(12分)18。
(12分) 19.(12分)20。
(12分)21.(12分)二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.【选修4-4:坐标系与参数方程】(10分)23.【选修4—5:不等式选讲】(10分)参考答案:2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.1.2。
3. 4。
5。
6. 7. 8。
9. 10。
11。
12.故二、填空题:本题共4小题,每题5分,共20分. 13。
14。
15。
16。
三、(一)必考题:共60分17。
(12分)18.(12分),∵甲先发球,X=2,∴甲:乙为10:12或12:10时比赛结束.19。
(12分) 20.(12分)21.(12分),且,二)选考题:共10分.请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(10分)23.【选修4—5:不等式选讲】(10分)。
2019年高考全国2卷理科数学及答案(可编辑修改word版)
M 2M 1M 2 2M 13M 2 3M 1M 233M 1+= 绝密★启用前2019 年普通高等学校招生全国统一考试理科数学一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合 A ={x |x 2-5x +6>0},B ={ x |x -1<0},则 A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)2.设 z =-3+2i ,则在复平面内 z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知 =(2,3), =(3,t ), =1,则 =AB AC BC AB ⋅ BCA .-3B .-2C .2D .34.2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行.L 2 点是平衡点,位于地月连线的延长线上.设地球质量为 M 1,月球质量为 M 2,地月距离为 R ,L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1+M 2= (R + r ) M1 .=r(R + r )2r 2 R 333 + 34 +5≈3设,由于 的值很小,因此在近似计算中R(1+)23 ,则 r 的近似值为A.R B.R C.RD.R5.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数 B .平均数C .方差D .极差 6.若 a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7. 设 α,β 为两个平面,则 α∥β 的充要条件是A .α 内有无数条直线与 β 平行B .α 内有两条相交直线与 β 平行C .α,β 平行于同一条直线D .α,β 垂直于同一平面x28.若抛物线 y 2=2px (p >0)的焦点是椭圆y 2 1 的一个焦点,则 p =3 ppA .2B .3C .4D .89.下列函数中,以 π 为周期且在区间( π , π )单调递增的是 242A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │532 3 , ] , ] , ] , ] 10. 已知 α∈(0, π ),2sin 2α=cos 2α+1,则 sin α=2A .1 B . C . D .2 55535x 2 y 211. 设 F 为双曲线 C : - a 2 b 2 = 1(a > 0,b > 0) 的右焦点, O 为坐标原点,以OF 为直径的圆与圆x 2 + y 2 = a 2 交于 P ,Q 两点.若 PQ = OF ,则 C 的离心率为A.B .C .2D . 12. 设函数 f (x ) 的定义域为 R ,满足 f (x + 1) = 2 f (x ) ,且当 x ∈(0,1] 时, f (x ) = x (x -1) .若对任意x ∈(-∞, m ] ,都有 f (x ) ≥ - 8,则 m 的取值范围是9A . (-∞ 9 4B . (-∞ 7 3C . (-∞ 5 2D . (-∞ 83二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(完整版)2019年高考理科数学全国2卷(附答案)
n g 12B-SX-0000020绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内对应的点位于z A .第一象限B .第二象限C .第三象限D .第四象限3.已知=(2,3),=(3,t ),=1,则=ABAC BC AB BC A .-3 B .-2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离:- - - - - - - - 密封线 -n g e ts o12B-SX-0000020R ,点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的2L延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,点到月球2L 的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:.121223()()M M M R r R r r R +=++设,由于的值很小,因此在近似计算中,则r R α=α34532333(1)ααααα++≈+r 的近似值为A B CD 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数 B .平均数C .方差D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面221x y +=A .2B .3C .4D .89.下列函数中,以为周期且在区间(,)单调递增的是2π4π2πA .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,),2sin 2α=cos 2α+1,则sin α=2πA .B15C .D .11.设F 为双曲线C :的右焦点,为坐标原点,以22221(0,0)x y a b a b -=>>O 为直径的圆与圆交于P ,Q 两点.若,则C 的离OF 222x y a +=PQ OF =心率为A .B C .2D .12.设函数的定义域为R ,满足,且当()f x (1) 2 ()f x f x +=时,.若对任意,都有(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞,则m 的取值范围是8()9f x ≥-A .B .9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦n g a gs 12B-SX-0000020C .D .5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2019全国2卷理科数学试题及详解(可编辑修改word版)
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
【精品】2019年全国卷Ⅱ理数高考试题文档版附答案
( 2)由( 1)知, an bn
1 2n 1 , an bn
2n 1.
1
1
1
所以 an
2[( an bn ) (an bn)]
2n
n, 2
1
1
1
bn
[( an bn) (an 2
bn )]
2n
n. 2
20.解:( 1) f ( x)的定义域为( 0, 1),( 1, +∞)单调递增.
因为 f (e) =1 e 1 0 , f (e2 ) e1
点 G. ( i )证明: △ PQG 是直角三角形; ( ii )求 △ PQG 面积的最大值 .
(二)选考题:共 10 分.请考生在第 22、 23 题中任选一题作答。如果多做,则按所做的第一题计分. 22. [ 选修 4-4 :坐标系与参数方程 ] ( 10 分)
在极坐标系中, O为极点, 点 M ( 0, 0 )( 0 0) 在曲线 C :
D. α,β 垂直于同一平面
8.若抛物线 y2=2px( p>0) 的焦点是椭圆 x2
y2 1 的一个焦点,则 p=
3p p
A. 2 C. 4
B. 3 D. 8
9.下列函数中,以 为周期且在区间 ( , ) 单调递增的是
2
42
A. f ( x)= │cos 2 x│
B. f ( x)= │ sin 2 x│
x2 y2 a2交于 P, Q两点 . 若 PQ OF ,则 C的离心率为
A. 2
B. 3
C. 2
D. 5
12.设函数 f ( x) 的定义域为 R,满足 f (x 1) 2 f (x) ,且当 x (0,1] 时, f (x) x(x 1) . 若对任意
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
(完整版)2019年高考理科数学全国2卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB u u u r=(2,3),AC u u u r =(3,t ),BC u u u r =1,则AB BC ⋅u u u r u u u r = A .-3 B .-2 C .2D .3 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8 9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C.3D.511.设F 为双曲线C :22221(0,0)x ya b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为 ABC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C . 5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国2卷(附答案)(可编辑修改word版)
C.2
D. 5
12.设函数 f (x) 的定义域为 R,满足 f (x 1) 2 f (x) ,且当
x (0,1] 时, f (x) x(x 1) .若对任意 x (, m] ,都有
f (x) 8 9 ,则 m 的取值范围是
A.
,
9 4
B.
,
7 3
-4-
Hale Waihona Puke 12B-SX-0000020
M2 R A. M1
M2 R B. 2M1
3 3M 2 R C. M1
3 M2 R D. 3M1
5.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,
从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效
评分与 9 个原始评分相比,不变的数字特征是
延长线上.设地球质量为 M1,月球质量为 M2,地月距离为 R, L2 点到月球
的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:
M1 M2 (R r) M1
(R r)2 r2
R3 .
设
r R
,由于
3 3 3 4 5 的值很小,因此在近似计算中 (1 )2
3 3
,则
r 的近似值为
三、解答题:共 70 分。解答应写出文字说明、解答过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作 答。
(一)必考题:共 60 分。
14.已知 f (x) 是奇函数,且当 x 0 时, f (x) eax .若 f (ln 2) 8 ,则
C.
,
5 2
D.
,
8 3
2019年高考全国卷2理科数学及答案(word精校版可以编辑)(可编辑修改word版)
分。
解答应写出文字说明、证明过程或演算步骤。
第17~21
(1)证明:BE ⊥平面EB 1C 1;
(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.18.(12分)
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.
(1)求P (X =2);
(2)求事件“X =4且甲获胜”的概率.
19.(12分)
已知数列{a n }和{b n }满足a 1=1,b 1=0,
,.
1434n n n a a b +-=+1434n n n b b a +-=-(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.
20.(12分)
所以,的取值范围是.a [1,)。
2019年高考全国2卷理科数学真题及详解(word解析版)
普通高等学校招生全国统一考试(全国卷Ⅱ)理 科 数 学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=++i1i3 A.i 21+ B.i 21- C.i 2+ D.i 2- 2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A.{}1,3-B.{}1,0C.{}1,3D.{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.π90B.π63C.π42D.π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A.15-B.9-C.1D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A.12种 B.18种 C.24种 D.36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A.2 B.3 C.4 D.5开始输出S 否是K =K+1a=-a S =0,K =1S =S+a ⋅K K ≤6输入a 开始9.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C的离心率为A.2B.3C.2D.332 10.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为 A.23 B.515 C.510 D.33 11.若2-=x 是函数12)1()(--+=x eax x x f 的极值点,则)(x f 的极小值为A.1-B.32--eC.35-eD.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是 A.2- B.23-C.34- D.1- 二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为02.0,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到二等品件数,则=DX.14.函数])20[(43cos 3sin )(2π,∈-+=x x x x f 的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33=a ,104=S ,则=∑=nk kS 11. 16.已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知2sin 8)sin(2BC A =+. (1)求B cos ;(2)若6=+c a ,ABC ∆的面积为2,求b .18.(12分)M EDCBA P 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥ABCD P -中,侧面PAD 为等边三角形且垂直于地面ABCD ,AD BC AB 21==, 90=∠=∠ABC BAD ,E 是PD 的中点.(1)证明:直线PAB CE 平面∥;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为 45, 求二面角D AB M --的余弦值.20.(12分)箱产量<50kg箱产量≥50kg旧养殖法 新养殖法箱产量/kg 频率/组距7065605550454035旧养殖法0.0340.0320.0240.0140.0122530箱产量/kg频率/组距0.0400.02007065605550454035新养殖法设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3-=x 上,且1=⋅PQ OP . 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数x x ax ax x f ln )(2--=,且0)(≥x f . (1)求a ;(2)证明:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修44-:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16=⋅OP OM ,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为)32(π,,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修54-:不等式选讲](10分) 已知20033=+>>b a b a ,,.证明: (1)4))((55≥++b a b a ; (2)2≤+b a .2017年普通高等学校招生全国统一考试理 科 数 学 参 考 答 案1.解:===2﹣i ,故选 D .2.解:由{}1A B =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .3. 解:设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴381= 7(12)12a --=127a ,解得a =3,则这个塔顶层有3盏灯,故选B .4.解:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.解:x 、y 满足约束条件的可行域如图:z=2x+y 经过可行域的A 时,目标函数取得最小值, 由解得A (﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A .6.解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .7.解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩) →乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩, 故选:D .8.解:执行程序框图,有S =0,k =1,a =﹣1,代入循环, 第一次满足循环,S =﹣1,a =1,k =2;满足条件,第二次满足循环,S =1,a =﹣1,k =3; 满足条件,第三次满足循环,S =﹣2,a =1,k =4; 满足条件,第四次满足循环,S =2,a =﹣1,k =5; 满足条件,第五次满足循环,S =﹣3,a =1,k =6; 满足条件,第六次满足循环,S =3,a =﹣1,k =7; 7≤6不成立,退出循环输出,S =3; 故选:B .9.解:由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为22213d =-=,则点()2,0到直线0bx ay +=的距离为222023b a bd ca b +⨯===+, 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a ===.故选A .10. 解:如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点, 则AB 1、BC 1夹角为MN 和NP 夹角或其补角(因异面直线所成角为(0,]),可知MN=AB 1=,NP=BC 1=;作BC 中点Q ,则△PQM 为直角三角形;∵PQ=1,MQ=AC ,△ABC 中,由余弦定理得AC 2=AB 2+BC 2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7, ∴AC=, ∴MQ=; 在△MQP 中,MP==;在△PMN 中,由余弦定理得cos ∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB 1与BC 1所成角的余弦值为.故选C11. 解:由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e11f -=--=-,故选A .12. 解:建立如图所示的坐标系,以BC 中点为坐标原点,则A (0,),B (﹣1,0),C (1,0),设P (x ,y ),则=(﹣x ,﹣y ),=(﹣1﹣x ,﹣y ),=(1﹣x ,﹣y ),则•(+)=2x 2﹣2y +2y 2=2[x 2+(y ﹣)2﹣]∴当x =0,y =时,取得最小值2×(﹣)=﹣, 故选:B13.解:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.故答案为:1.96 14. 解: f (x )=sin 2x +cosx ﹣=1﹣cos 2x +cosx ﹣,令cosx =t 且t ∈[0,1], 则f (t )=﹣t 2+t +=﹣(t ﹣)2+1,当t =时,f (t )max =1,即f (x )的最大值为1,故答案为:115. 解:等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,S 4=2(a 2+a 3)=10, 可得a 2=2,数列的首项为1,公差为1, S n =,=,则 =2[1﹣++…+]=2(1﹣)=.故答案为:.16. 解:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.故答案为:617.(1)由B C A -=+π得2sin 8sin 2B B =,即2sin 42cos B B =, ∴412tan=B ,得158tan =B ,则有1715cos =B . (2)由(1)可知178sin =B ,则2sin 21==∆B ac S ABC ,得217=ac , 又417302)(cos 22222=--+=-+=ac ac c a B ac c a b ,则2=b . 18.(1)旧养殖法箱产量低于50kg 的频率为62.05)040.0034.0024.0014.0012.0(=⨯++++, 新养殖法箱产量不低于50kg 的频率为66.05)008.0010.0046.0068.0(=⨯+++,而两种箱产量相互独立,则4092.066.062.0)(=⨯=A P . (2)由频率分布直方图可得列联表则635.6705.1510496100100)38346662(20022>≈⨯⨯⨯⨯-⨯=K ,所以有99%的把握认为箱产量与养殖方法有关.(3)新养殖法箱产量低于50kg 的面积为5.034.05)044.0020.0004.0(<=⨯++, 产量低于55kg 的面积为5.068.05)068.0044.0020.0004.0(>=⨯+++, 所以新养殖法箱产量的中位数估计值为35.5250534.034.05.0≈+⨯⎪⎭⎫ ⎝⎛-(kg ).19.(1)取PA 中点F ,连结BF EF 、.因为E 为PD 中点,则AD EF 21∥.而由题可知AD BC 21∥,则BC EF ∥,即四边形BCEF 为平行四边形,所以FB EC ∥.又PAB FB PAB EC 面,面⊂⊄, 故PAB CE 面∥. (2)因为AD AB ⊥,则以A 为坐标原点,AD AB 、所在直线分别为y x 、轴建立空间直角坐标系xyz A -,如图所示.取1=AB ,设)10(<<=λλCP CM 则得)011()001()000(,,,,,,,,C B A ,)310(,,P ,则)301(,,-=CP ,)30(λλ,,-=CM ,可得点)311(λλ,,-M ,所以)31(λλ,,-=BM .取底面ABCD 的法向量为)100(,,=n ,则 45sin 313cos 22=++=〉〈λλλn BM ,,解得22=λ,则)26122(,,-=BM .因为)001(,,=AB ,设面MAB 的法向量为)(z y x m ,,=,由⎪⎩⎪⎨⎧=⋅=⋅00BM m AB m 得⎪⎩⎪⎨⎧=++-=026220z y x x ,取2=z 得)260(,,-=m ,则510 cos ==〉〈n m n m,.故二面角D AB M --的余弦值为510.20.(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m PF t OQ ---=-=,,,, )3( )(n t m PQ n m OP ---==,,,.由1=⋅OQ OP 得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m PF OQ ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(1))(x f 的定义域为)0(∞+,,则0)(≥x f 等价于0ln ≥--x a ax . 设x a ax x g ln )(--=,则x a x g 1)(-='.由题可知0>a ,则由0)(>'x g 解得ax 1>,所以)(x g 为)1(∞+,a 上的增函数,为)10(a ,上的减函数.则有==)1()(min ag x g0ln 1=+-a a ,解得1=a .(2)由(1)可知x x x x x f ln )(2--=,则x x x f ln 22)(--='. 设x x x h ln 22)(--=,则x x h 12)(-='.由0)(>'x h 解得21>x ,所以)(x h 为)21(∞+, 上的增函数,为)210(,上的减函数.又因为0)1(012ln )21(=<-=h h ,,则)(x h 在)210(,上存在唯一零点0x 使得0ln 2200=--x x ,即00ln 22x x =-,且)(x f 为)0(0x ,,)1(∞+,上的增函数,为)1 (0,x 上的减函数,则)(x f 极大值为41)1()(000<-=x x x f .而101)10(--≠∈e x e ,,,所以210)()(--=>e e f x f . 综上,2022)(--<<x f e .22.(1)设P 极坐标为)0)((>ρθρ,,M 极坐标为)0)((11>ρθρ,.则ρ=OP ,θρcos 41==OM .由16=⋅OP OM 得2C 的极坐标方程为)0(cos 4>=ρθρ.所以2C 的直角坐标方程为)0(4)2(22≠=+-x y x . (2)设B 极标为)0)((22>ρθρ,,由题可知αρcos 422==,OA ,则有3223)32sin(2)3sin(212+≤--=-⋅⋅=∆παπαρOA S OAB . 即当12πα-=时,OAB ∆面积的最大值为32+.23.(1)655655))((b b a ab a b a b a +++=++)(2)(4433233b a ab b a b a ++-+=222)(4b a ab -+=4≥(2)因为3223333)(b ab b a a b a +++=+ )(32b a ab ++=)(4)(322b a b a +++≤4)(323b a ++=,所以8)(3≤+b a ,解得2≤+b a .。
(完整版)2019年高考理科数学全国2卷(附答案)
学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2019年普通高等学校招生全国统一考试理科数学全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A ∩B=A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB uuu r=(2,3),AC uuu r =(3,t),BC uuu r =1,则AB BC uu u r uuu r =A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r rR.设r R,由于的值很小,因此在近似计算中34532333(1),则r 的近似值为A .21M RM B .212M RM C .2313M RM D .2313M RM 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.若a>b ,则A .ln(a-b)>0B .3a<3bC .a 3-b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px(p>0)的焦点是椭圆2231xypp的一个焦点,则p=A .2B .3C .4D .89.下列函数中,以2为周期且在区间(4,2)单调递增的是A .f(x)=│cos 2x │B .f(x)=│sin 2x │C .f(x)=cos │x │D .f(x)= sin │x │10.已知α∈(0,2),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x ya b ab的右焦点,O为坐标原点,以OF 为直径的圆与圆222xy a交于P ,Q 两点.若PQ OF,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1)2 ()f xf x ,且当(0,1]x时,()(1)f x x x .若对任意(,]x m ,都有8()9f x ,则m的取值范围是A .9,4B .7,3C .5,2D .8,3二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A={x│x2‒5x+6>0},B={x│x‒1<0},则A∩B=( A )A. (‒∞,1)B. (‒2,1)C. (‒3,‒1)D. (3,+∞)2.设z=‒3+2i,则在复平面z对应的点位于( C )A. 第一象限B.第二象限C.第三象限D.第四象限3.已知AB=(2,3),AC=(3,t),|BC|=1,则AB∙BC=( C )A.-3B.-2C. 2D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月拉格朗日L2点的轨道运行,L2点是平衡点,位于地月连线的延长线上,设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定理和万有引力定律,r满足方程:M1 (R+r)2+M2r2=(R+r)M1R3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为( D )A. M2M1R B. M22M1R C. 33M2M1R D. 3M23M1R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差6.若a>b,则( C )A. ln(a‒b)>0B.3a<3bC. a3‒b3>0D. |a|>|b|7.设α,β为两个平面,则α∥β的充要条件是( B )A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x23p+y2p=1的一个焦点,则p=( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A. f(x)=|cos2x|B. f(x)=|sin2x|C. f(x)=cos|x|D. f(x)=sin|x|10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B )A. 15B. 55C. 33D. 25511.设F为双曲线C:x 2a2‒y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为( A )A. 2B. 3C. 2D. 512.设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x‒1).若对任意x∈(‒∞,m],都有f(x)≥‒89,则m的取值范围是( B )A. (‒∞,94]B. (‒∞,73]C.(‒∞,52]D. (‒∞,83]二、填空题:本题共4小题,每题5分,共20分。
2019年高考真题——理科数学(全国卷)Word版含答案
2019年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1A =,{1,}B m =,AB A =,则m = (A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
(完整word版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
二、填空题:本题共4小题,每题5分,共20分。
14.
15.
16.
三、
(一)必考题:共60分17.(12分)
18.(12分)
19.(12分)
20.(12分)
21.(12分)
二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.【选修4-4:坐标系与参数方程】(10分)
23.【选修4-5:不等式选讲】(10分)
参考答案:2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.
2.
3.
4.
5. 6. 7. 8.
10.
11.
12.
故
二、填空题:本题共4小题,每题5分,共20分。
13.
14.
15.
16.
三、
(一)必考题:共60分17.(12分)
18.(12分)
,∵甲先发球,X=2,∴甲:乙为10:12或12:10时比赛结束。
19.(12分)
20.(12分)
21.(12分)
,
且,
二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.【选修4-4:坐标系与参数方程】(10分)
23.【选修4-5:不等式选讲】(10分)。
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
2019年高考数学II卷(理科)word版(含答案)
21.(12 分) 已知点 A(−2,0),B(2,0),动点 M(x,y)满足直线 AM 与 BM 的斜率之积为− 1 .记 M 的轨迹为曲线 C.
2 (1)求 C 的方程,并说明 C 是什么曲线; (2)过坐标原点的直线交 C 于 P,Q 两点,点 P 在第一象限,PE⊥x 轴,垂足为 E,连结 QE 并延长交 C 于点 G. (i)证明: △PQG 是直角三角形; (ii)求 △PQG 面积的最大值。
符合题目要求的。
1.已知集合 A={x|x2-5x+6>0},B={x|x-1<0},则 A∩B=
A.(-∞,1)
B.(-2,1)
C.(-3,1)
D.(3,+∞)
2.设 z=-3+2i),则在复平面内 z对应的点位于
A.第一象限
B.第二象限
C.第三象限
3.已知向量 AB 2,3,AC 3, t , BC 1 则 AB·BC
设平面EBC的法向量为n=(x,y,x),则
理科数学试题 B 第 8 页 共 8 页
CB n 0, x 0,
CE
n
0,
即
x
y
z
0,
所以可取n= (0, 1, 1) .
设平面 ECC1 的法向量为m=(x,y,z),则
CC1 m 0, CE m 0,
3
_________. 16.中国有悠久的金石文化,印信是金石文化的代表之一。印信的形状多为长方体、正方体或圆
柱体,但南北朝时期官员的独孤(gū)信的印信形状为“半正多面体”(图 1),半正多面体是 由两种或两种以上的正多边形围成的多面体,半正多面体体现了数学的对称美。图 2 是一个棱 数为 48 的半正多面体,它的所有的顶点都在一个正方体的表面上,且此正方体的棱长为 1, 则该半正多面体共有____个平面,其棱长为___________。(本题第一空为 2 分,第二空为 3 分)
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国Ⅱ卷理科数学真题
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A =*x|x 2−5x +6>0+,B =*x|x −1<0+,则A ∩B = ( )
A.(−∞ ,1)
B.(−2 ,1)
C.(−3 ,−1)
D.(3 ,+∞)
2.设z =−3+2i ),则在复平面内z ̿对应的点位于 ( )
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.已知向量AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t), |BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ = ( )
A.−3
B.−2
C.2
D.3
4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系,为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行,L 2是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定理和万有引力定理,r 满足的方程:
M 1(R:r)2+M 2r 2=(R +r)M 1R 3. 设α=r R ,由于α的值很小,因此在近似计算中3α3:3α4:α5
(1:α)2≈3α3,则r 的近似值
为 ( )
A.√M 2
M 1R B.√M 22M 1R C.√3M 2M 1R D.√M 23M 1R
5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分和9个原始评分相比,不变的数字特征是 ( )
A.中位数
B.平均数
C.方差
D.极差
6.设a >b ,则 ( )
A.ln (a −b)>0
B.3a <3b
C.a 3−b 3>0
D.|a |>|b |
7.设α,β为两个平面,则α//β的充要条件是 ( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α ,β平行与同一条直线
D.α,β垂直于同一平面
8.若抛物线y2=2px(p>0)的焦点是椭圆x2
3p +y2
p
=1的一个焦点,则p=()
A.2
B.3
C.4
D.8
9.下列函数中,以π
2为周期且在区间(π
4
,π
2
)单调递增的是()
A.f(x)=|cos2x|
B.f(x)=|sin2x|
C.f(x)=cos|x|
D.f(x)=sin|x|
10.已知α∈(0 ,π
2
),,2sin2α=cos2α+1,则sinα=()
A.1
5B.√5
5
C.√3
3
D.2√5
5
11.设F为双曲线C:x 2
a −y2
b
=1(a>0,b>0)的右焦点,O为坐标原点,以OF为
直径的圆与圆x2+y2=a2交于P ,Q两点。
若|PQ|=|OF|,则C的离心率为()
A.√2
B.√3
C.2
D.√5
10.设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x−1).
若对任意x∈(−∞,m],都有f(x)≥−8
9
,则m的取值范围是()
A.(−∞,9
4] B.(−∞,7
3
] C.(−∞,9
4
] D.(−∞,7
3
]
二、填空题:本题共4小题,每小题5分,共20分。
13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
14.已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a= .
15.ΔABC的内角A ,B ,C的对边分别为a ,b ,c.若b=6,a=2c,B=π
3
,则ΔABC的面积为 .
16.中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信得印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是棱数为48的半正多面体,它所有顶点都在同一个正方体的表面上,且次正方体的棱长为1.则该半正多面体共有个面,其棱长为 .(本题第一空2分,第二空3分)
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分
17.(12分)
如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,
点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E , ,求二面角B−EC−C1的正切值.
18.(12分)
11分制兵乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束,甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立,在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜的概率”
19.(12分)
已知数列*a n+和*b n+满足a1=1,b1=0,4a3:1=3a n−b n+4,4b3:1=3b n−a n−4.
(1)证明:*a n+b n+是等比数列,*a n−b n+是等差数列;
(2)求*a n+和*b n+的通项公式.
20.(12分)
.
已知函数f(x)=lnx−x:1
x;1
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.
21.(12分)
已知A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−1
,记
2
M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE并延长交C于点G.
(ⅰ)证明:ΔPQG是直角三角形;
(ⅱ)求ΔPQG面积的最大值.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.
时,求ρ0及l的极坐标方程;
(1)当θ0=π
3
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
23.[选修4-5:不等式选讲](10分)
已知f(x)=|x−a|x+|x−2|(x−a).
(1)当a=1时,求不等式f(x)<0的解集;
(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.。