(完整版):平面直角坐标系经典例题解析

合集下载

平面直角坐标系例题讲解及答案

平面直角坐标系例题讲解及答案

平面直角坐标系一. 重点、难点:1. 重点:认识并画出平面直角坐标系;建立适当的直角坐标系,描述物体的位置,能根据点的位置写出坐标,根据坐标描出点的位置。

2. 难点:根据具体问题建立合适的平面直角坐标系,确定点的位置或描述点的坐标。

二. 教学知识要点:1. 平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,这样就组成了平面直角坐标系。

说明:一般把一条画成水平的,取向右的方向为正方向,称它为x 轴或横轴。

一条画成铅直的且取向上的方向为正方向,称它为y 轴或纵轴。

2. 坐标轴上的点及各种对称点的坐标特征。

(1)坐标轴上的点的坐标特征:x 轴上的点,纵坐标为0,可记为(x ,0)y 轴上的点,横坐标为0,可记为(0,y )原点O 的坐标为(0,0)(2)对称点的坐标特征:点P (a ,b )关于x 轴的对称点坐标为P 1(a ,-b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,-b )(3)平行于坐标轴的直线的坐标特征:平行于x 轴的直线上的任意两点,纵坐标相同。

平行于y 轴的直线上的任意两点,横坐标相同。

3. 坐标平面内的点与有序实数对的一一对应关系有序实数对(x ,y )与平面内的点构成一一对应的关系。

4. 坐标平移公式若M 点的坐标为(x ,y ),将M 点平移到M'点的坐标为(x',y'),则 其中,当a >0时,M 点向右平移a 个单位到M'当a <0时,M 点向左平移|a|个单位到M'当b >0时,M 点向上平移b 个单位到M'当b <0时,M 点向下平移|b|个单位到M'【典型例题】例1. 已知两点A (0,2),B (4,1),点P 是x 轴上一点,求PA +PB 的最小值。

解:如图1,作B 点关于x 轴的对称点B',连AB',交x 轴于点P ,又作B'C ⊥y 轴于Cx x a y y b ''=+=+⎧⎨⎩图1 图2 图3由平面几何知识知,这时PA +PB 最小,且等于AB'的长度∵B 与B'关于x 轴对称∴B'的坐标为(4,-1)∴PA +PB 的最小值为5说明:若在Rt △ABC 中,两直角边长为a ,b ,斜边长为c ,则有c 2=a 2+b 2。

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。

人教版七年级数学下册平面直角坐标系(基础)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册平面直角坐标系(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】平面直角坐标系(基础)知识讲解责编:杜少波【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)【答案】D.3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).【答案与解析】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.所以,点A、B、C、D在直角坐标系的位置如图所示.【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征4.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?【思路点拨】(1)利用第四象限点的坐标性质得出答案;(2)利用第二、四象限点的坐标性质得出答案;(3)利用第三、四象限和纵轴点的坐标性质得出答案.【答案与解析】解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.【总结升华】本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.举一反三:【变式】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.5.(2016春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【:第一讲平面直角坐标系1 369934练习4(5)】【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P 的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。

(完整版)八年级数学《平面直角坐标系》经典例题

(完整版)八年级数学《平面直角坐标系》经典例题

考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

考点3:考对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。

2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。

人教版初中数学平面直角坐标系典型例题及答题技巧

人教版初中数学平面直角坐标系典型例题及答题技巧

人教版初中数学平面直角坐标系典型例题及答题技巧单选题1、在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)答案:D解析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意故选:D小提示:本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.3、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.4、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.5、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.6、在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)答案:B解析:解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(-2,3)、(-2,-3)、(2,-3)中只有(-2,3)在第二象限.故选:B.7、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.8、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.填空题9、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.10、在平面直角坐标系中,将点A(−1,−2)向右平移7个单位长度,得到点B,则点B的坐标为__________.答案:(6,-2)解析:根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B的坐标为(-1+7,-2),进而可得答案.解:将点A(-1,-2)向右平移了7个单位长度得到点B,则点B的坐标为(-1+7,-2),即(6,-2),所以答案是:(6,-2).小提示:此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.11、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.12、若点A(m+3,m−3)在x轴上,则m=__________.答案:3解析:由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.∵点A(m+3,m−3)在x轴上,∴m-3=0,∴m=3.所以答案是:3.小提示:本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.13、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).解答题14、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.15、如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.答案:(1)答案见解析;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).解析:(1)根据点B(-1,0),判断x轴经过点B,且B右侧的点就是原点,建立坐标系即可;(2)分情形求解即可.(1)∵点B(-1,0),∴x轴经过点B,且B右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A(3,3),B(-1,0),∴AB=√(3−(−1))2+(3−0)2=5,当AB为等腰三角形的腰时,(1)以B为圆心,以BA=5为半径画弧,角x轴于两点,原点左边的C1,右边为C2,∵AB=5,点B(-1,0),∴C1(-6,0),C2(4,0);(2)以A为圆心,以AB=5为半径画弧,角x轴于一点,原点的右边为C3,∵AB=5,点A到x轴的距离为3,(-1,0),∴等腰三角形AB C3的底边长为2√52−32=8,∴C3(7,0);综上所述,存在,点C的坐标(-6,0)或(4,0)或(7,0).小提示:本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.。

平面直角坐标系复习讲义(知识点+典型例题)

平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为

(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )

【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于

专题03 平面直角坐标系(解析版)

专题03 平面直角坐标系(解析版)

专题03 平面直角坐标系学校:___________姓名:___________班级:___________考号:___________一、单选题1.小明坐在第5行第6列,简记为(5,6),小刚坐在第7行第4列,应记为( ) A .(7,4)B .(4,7)C .(7,5)D .(7,6)【答案】A【解析】解:∵小明坐在教室的第5行第6列,简记为:(5,6).∴小刚坐在第7行第4列,应记为(7,4).故答案为A .2.已知(),P x y 在第四象限,则(3,2)Q x y ---+在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵(),P x y 在第四象限,∴0x >,0y <,∴0x -<,0y ->, ∴30x --<,20y -+>,∴Q 在第二象限;故答案选B .3.如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B 相对港口A 的位置,那么港口A 相对货船B 的位置可描述为( )A .(南偏西50°,35海里)B .(北偏西40°,35海里)C .(北偏东50°,35海里)D .(北偏东40°,35海里)【答案】D 【解析】解:过点B 作BD ∥AC ,∴∠1=∠A=40°∴港口A 相对货船B 的位置可描述为(北偏东40°,35海里),故选:D .4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②一个三角形被截成两个三角形,每个三角形的内角和是90度;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题; ②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题; ③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B .5.在平面直角坐标系中,将点()2,24P n n -+向右平移m 个单位长度后得到点的坐标为()4,6,则m 的值为( )A .1B .3C .5D .14 【答案】C【解析】解:∵点P (n -2,2n+4),∴向右平移m 个单位长度可得()2,24P n +m n '-+,∵P′(4,6),∴n -2+m =4,2n+4=6,,解得:n=1,m=5故选:C .6.若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ).A .()2,2B .()2,2--C .()2,2或()2,2--D .()2,2-或()2,2-【答案】C【解析】解:点M 在第一、三象限的角平分线上,所以,横纵坐标相同,点M 到x 轴的距离为2,点M 的纵坐标为±2,点M 的坐标为()2,2或()2,2--, 故选:C .7.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是( )A .(1,4)B .(4,3)C .(2,4)D .(4,1)【答案】D 【解析】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+=,故是第2018次碰到正方形的点的坐标为(4,1). 8.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点1A (0,1),2A (1,1), 3A (1,0), 4A (2,0),…那么点A 4n+1(n 为自然数)的坐标为( )A .(2n,0)B .(2n,1)C .(4n,0)D .(4n,1)【答案】B 【解析】详解:由图可知,n=1时,4×1+1=5,点A 5的坐标为(2,1),n=2时,4×2+1=9,点A 9的坐标为(4,1)n=1时,4×1+1=5,点A 5的坐标为(6,1)所以点A 4n+1的坐标为(2n ,1)故选:B.二、填空题9.在平面直角坐标系中,将点A (﹣2,1)先向右平移3个单位长度、再向上平移2个单位长度得点B ,则点B 坐标为_____.【答案】(1,3)【解析】解:由题知:A B →:(-2+3,1+2)=(1,3),故答案为:(1,3).10.在平面直角坐标系中,A 点的坐标为(2,1-),若线段AB ∥x 轴,且3AB =,则点B 的坐标为_______.【答案】(5,1-)或(1-,1-)【解析】解:∵AB ∥x 轴,∴点B 纵坐标与点A 纵坐标相同,为−1,∵AB =3,∴当点B 在点A 的右边时,点B 的横坐标为2+3=5;当点B 在点A 的左边时,点B 的横坐标为2−3=−1;∴B 点坐标为(5,−1),(−1,−1).故答案为:(5,−1),(−1,−1).11.点()1,2A a b +-在第二象限,则点(),1B a b -+在第___________象限.【答案】一【解析】解:由A (a+1,b -2)在第二象限,得a+1<0,b -2>0.解得-a >1,b+1>3,点B (-a ,b+1)在第一象限,故答案为:一.12.如图,将周长为16的三角形ABC 沿BC 方向平移3个单位得到三角形DEF ,则四边形ABFD 的周长等于______.【答案】22【解析】解:∵△ABC 沿BC 方向平移3个单位得△DEF ,∴AD=CF=3,AC=DF . ∵△ABC 的周长等于16,∴AB+BC+AC=16,∴四边形ABFD 的周长=AB+BF+DF+AD =AB+BC+CF+AC+AD=16+3+3=22.故答案为22.13.某公园有A ,B ,C 三个标志性建筑物,A ,B ,C 相对于公园门口O 的位置如图所示,建筑物A 在公园门口O 的北偏东15°方向上,建筑物C 在公园门口O 的北偏西40°方向上,AOC AOB ∠=∠,则建筑物B 在公园门口O 的北偏东______°的方向上.【答案】70【解析】∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC= 40°+ 15°= 55°∵∠AOC=∠AOB∴∠AOB= 55°,15° + 55°= 70°,OB的方向是北偏东70°.故答案为:70.14.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,x k=x k﹣1+1﹣5([15k-]﹣[25k-]),y k=y k﹣1+[15k-]﹣[25k-],[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,则第2019棵树种植点的坐标为_____.【答案】(4,404)【解析】解:根据题意,x1=1x2﹣x1=1﹣5[15]+5[5],x3﹣x2=1﹣5[25]+5[15],x4﹣x3=1﹣5[35]+5[25]…x k﹣x k﹣1=1﹣5[15k-]+[25k-]∴x1+(x2﹣x1)+(x3﹣x2)+(x4﹣x3)+…+(x k﹣x k﹣1)=1+1﹣5[15]+5[5]+1﹣5[25]+5[15]+1﹣5[35]+5[25]+…+1﹣5[15k-]+[25k-]∴x k=k﹣5[1 5k-]当k=2019时,x2019=2019﹣5[20185]=2019﹣5×403=4y1=1,y2﹣y1=[15]﹣[5],y3﹣y2=[25]﹣[15],y4﹣y3=[35]﹣[25]…y k﹣y k﹣1=[15k-]﹣[25k-]∴y k=1+[15k-]当k=2019时,y2019=1+[20185]=1+403=404∴第2019棵树种植点的坐标为(4,404).故答案为:(4,404).三、解答题15.已知点P(m+3,m﹣2),根据下列条件填空.(Ⅰ)点P在y轴上,求点P的坐标是;(Ⅰ)点P在过点A(﹣2,﹣3)且与x轴平行的直线上,求AP的长.【答案】(Ⅰ)(0,-5);(Ⅰ)AP=4【解析】解:(Ⅰ)由题意,m+3=0,解得m=﹣3,∴P (0,﹣5).故答案为:(0,﹣5).(Ⅰ)∵点P 在过点 A (﹣2,﹣3)且与 x 轴平行的直线上,∴m ﹣2=﹣3,∴m =﹣1,∴P (2,﹣3),∴AP =2+2=4.16.如图,在平面直角坐标系中,三角形ABC 的三个顶点分别是(1,6)A -,(4,3)B -,(1,4)C .将三角形ABC 先向右平移4个单位,再向下平移3个单位,得到三角形'''A B C . (1)请在图中画出平移后的三角形'''A B C ;(2)三角形'''A B C 的面积是 .【答案】(1)见解析;(2)6【解析】(1)如图,∴三角形A B C '''为所求.(2)三角形 A B C '''的面积是:11135-33-22-15=6222⨯⨯⨯⨯⨯⨯⨯故答案为:6.17.在平面直角坐标系中,已知点(6,510)-+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A -且与y 轴平行的直线上,求点M 的坐标.【答案】(1)6a =;(2)点M 的坐标为(7,5)-或(9,5)--;(3)点M 的坐标为(2,50)【解析】(1)∵M 点在y 轴上,∴a -6=0∴a=6;(2)∵M 点到x 轴的距离为5∴|5a+10|=5∴5a+10=±5解得:a=-3或a=-1故M 点坐标为(-9,-5)或(-7,5);(3)∵M 点在过点A(2,-4)且与y 轴平行的直线上∴a -6=2∴a=8∴M 点坐标为(2,50).18.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D→(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.【答案】(1)+3,+4;+2,0;+1,-2;(2)见解析【解析】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4); B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..19.综合与探究.如图1,在平面直角坐标系中,点O ,A 的坐标分别为()0,0,()02,,将线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点C 的坐标为3,0,连接AB .点P 是y 轴上一动点.(1)请你直接写出点B 的坐标____________.(2)如图1,当点P 在线段OA 上时(不与点O 、A 重合),分别连接BP ,CP .猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.(3)①如图2,当点P 在点A 上方时,猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.②如图3,当点P 在y 轴的负半轴上时,请你直接写出BPC ∠,ABP ∠,OCP ∠之间的数量关系.【答案】(1)()3,2;(2)BPC ABP OCP ∠=∠+∠,理由见解析;(3)(3)①BPC OCP ABP ∠=∠-∠,理由见解析;②BPC ABP OCP ∠=∠-∠.解:(1)∵线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点为C 坐标为(3,0), ∴点A (0,2)的对应点B 的坐标为(3,2),故答案为:()3,2;(2)BPC ABP OCP ∠=∠+∠,理由如下:如图1,过点P 作//PD AB , ∴BPD ABP ∠=∠,由平移可知,//AB OC ,又//PD AB ,∴//PD OC ,∴CPD PCO ∠=∠,∴BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;(3)①BPC OCP ABP ∠=∠-∠,理由如下:如图2,过点P 作//PE AB , ∴BPE ABP ∠=∠,又∵//AB OC ,∴//PE OC ,∴EPC OCP ∠=∠,∴BPC EPC EPB OCP ABP ∠=∠-∠=∠-∠.②BPC ABP OCP ∠=∠-∠,理由如下:如图3,过点P 作//PF AB ,∴BPF ABP ∠=∠,又∵//AB OC ,∴//PF OC ,∴FPC OCP ∠=∠,∴BPC FPB FPC ABP OCP ∠=∠-∠=∠-∠.20.如图,在平面直角坐标系中,点A (0,a )、C (b ,0+|b ﹣2|=0. (1)求点A 、点C 的坐标;(2)已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发向左以1单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度向上移动,点D (1,2)是线段AC 上一点,设运动时间为t (t >0)秒,当S △ODQ =2S △ODP 时,此时是否存在点M (m ,6),使得S △ODM =3S △ODQ ,若存在,求出点M 的坐标;若不存在,请说明理由; (3)点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连接OG ,使得∠AOG =∠AOF ,点E 是线段OA 上一动点,连接CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,直接写出OHC ACE OEC∠+∠∠的值.【答案】(1)A (0,4),C (2,0);(2)存在,M (7,6)、M (-1,6)、M (15,6)或M (-9,6);(3)2.【解析】(1+|b ﹣2|=0∴a -2b=0,b -2=0.求得:a=4,b=2,∴A (0,4),C (2,0).故答案为A (0,4),C (2,0).(2)当点P 在线段OC 上时,由题意:()211122222t t ⨯⨯=⨯⨯-⨯,解得t=43. 当点P 在CO 的延长线上时,由题意:()212211222t t ⨯⨯=⨯⨯-⨯,解得t=4. 故当t=43或4时,S △ODQ =2S △ODP .如图,当点P 在线段OC 上时,P (23,0),Q (0,83), ∵S △ODM =3S △ODQ ,∴666141112224m m m -⨯⨯-⨯⨯-⨯⨯=, 或者()()()11141264216122m m m --⨯-⨯-⨯⨯-⨯-⨯= 解得:m=7,m=-1∴M (7,6)或M (-1,6).如图,当点P 在CO 的延长线上时,P (-2,0),Q (0,8),此时,()()()616124112111222m m m --⨯⨯--⨯⨯-⨯⨯-=, 或者()11164162112222m m m -⨯⨯+-⨯⨯-⨯⨯= 解得:m=-9,m=15∴M (-9,6)或M (15,6).综上所述:存在点M (7,6)、M (-1,6)、M (15,6)或M (-9,6)使得条件成立. (3)∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO ,∴∠GOC+∠ACO=180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4, ∴()214124421414OHC ACE OEC ∠+∠∠+∠∠+∠+∠+∠===∠∠+∠∠+∠. 故答案为:OHC ACE OEC ∠+∠∠=2.。

(完整版)八年级数学《平面直角坐标系》经典例题.doc

(完整版)八年级数学《平面直角坐标系》经典例题.doc

考点 1:考点的坐标与象限的关系知识解析: 各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限. )1、在面直角坐标中,点 M - , 3) 在( )( 2A .第一象限B .第二象限C .第三象限 D.第四象限、在平面直角坐标系中,点 P - , 2 + 1) 所在的象限是() 2 ( 2 xA .第一象限B .第二象限C .第三象限D .第四象限、若点 P ( a , a )在第四象限,则 a 的取值范围是( ).3 -2A .-2 < a <B. < a <2 C.a >2 D. a <4、点 P ( m , 1)在第二象限内,则点 Q ( -m ,0)在()A . x 轴正半轴上B .x 轴负半轴上C . y 轴正半轴上D .y 轴负半轴上 5、若点 P (a ,b )在第四象限,则点 M ( b - a , a - b )在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,点 A( x 1,2 x) 在第四象限,则实数 x 的取值范围是 .7、对任意实数 x ,点 P( x , x 2 2x) 一定不在 ()..A .第一象限B .第二象限C .第三象限D .第四象限8、如果 a -b <0, 且 ab < 0, 那么点 (a ,b) 在( )A 、第一象限B 、第二象限C 、第三象限 ,D 、第四象限 .考点 2:点在坐标轴上的特点x 轴上的点纵坐标为 0,y轴上的点横坐标为 0. 坐标原点( 0, 0)1、点 P ( m+3,m+1)在 x 轴上,则 P 点坐标为()A .(0,-2 )B .(2, 0)C .( 4, 0)D .( 0, -4 )、已知点 P m , m - 1) 在 y 轴上,则 P 点的坐标是 。

2 (2考点 3:考对称点的坐标知识解析:、关于 x 轴对称: A ( a ,b )关于 x 轴对称的点的坐标为( a , b )。

七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。

平面直角坐标系50题含解析.pdf

平面直角坐标系50题含解析.pdf

一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于()A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)5.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序非负实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A .1B .2C .3D .46.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A .(﹣1,1)B .(﹣2,﹣1)C .(﹣3,1)D .(1,﹣2)7.点M (﹣3,4)离原点的距离是多少单位长度()A .3B .4C .5D .78.如图,点M (﹣3,4)到原点的距离是()A.3B.4C.5D.79.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.1210.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.211.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.312.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S△ABC=()A.1B.2C.3D.413.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=024.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,﹣1)D.(3,1)28.在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个B.2个C.4个D.6个29.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1B.1C.﹣1或3D.330.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)31.我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x1=1,y1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A.401B.402C.2009D.201032.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为()A.(5,2009)B.(6,2010)C.(3,401)D.(4,402)33.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E 的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)二.填空题34.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.35.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.36.如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.37.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是.38.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.39.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿OB折叠,使点A落在Aʹ的位置上.若OB=,,求点Aʹ的坐标为.40.点A(﹣6,8)到x轴的距离为,到y轴的距离为,到原点的距离为.41.在某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,长度单位为100km.地震监测部门预报该地区将有一次地震发生,震中位置为(﹣1,2),影响范围的半径为300km,则下列主干线沿线的6个城市在地震影响范围内有个.主干线沿线的6个城市为:A(0,﹣1),B(0,2.5),C(1.24,0),D(﹣0.5,0),E(1.2,0),F(﹣3.22,0)参考数据:.42.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).43.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.44.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.45.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.46.如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.47.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.48.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.49.如图,已知A1(0,1),,,A4(0,2),,,A7(0,3),A8(,﹣),…则点A2010的坐标是.三.解答题50.已知如图,在平面直角坐标系中有四点,坐标分别为A(﹣4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标.(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围.一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点M (﹣2,1)在第二象限.故选:B .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)考点:点的坐标.分析:根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度,解答即可.解答:解:∵点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的横坐标为2或﹣2,纵坐标是1或﹣1,∴点M 的坐标为(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D .点评:本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)考点:坐标与图形性质.分析:由点M 和M ʹ在同一条平行于x 轴的直线上,可得点M ʹ的纵坐标;由“M ʹ到y 轴的距离等于4”可得,M ʹ的横坐标为4或﹣4,即可确定M ʹ的坐标.解答:解:∵M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,∴M ʹ的纵坐标y=﹣2,∵“M ʹ到y 轴的距离等于4”,∴M ʹ的横坐标为4或﹣4.所以点M ʹ的坐标为(4,﹣2)或(﹣4,﹣2),故选B .点评:本题考查了点的坐标的确定,注意:由于没具体说出M ʹ所在的象限,所以其坐标有两解,注意不要漏解.4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)考点:点的坐标.专题:压轴题;新定义.分析:由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.解答:解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了什么.5.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4考点:点的坐标.专题:压轴题;新定义.分析:若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据定义,“距离坐标”是(1,2)的点,说明M到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.解答:解:因为平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个.故选D.点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)考点:坐标确定位置.专题:压轴题.分析:根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.解答:解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.7.点M(﹣3,4)离原点的距离是多少单位长度()A.3B.4C.5D.7考点:两点间的距离公式.专题:计算题.分析:根据两点间的距离公式即可直接求解.解答:解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.8.如图,点M(﹣3,4)到原点的距离是()A.3B.4C.5D.7考点:两点间的距离公式.分析:根据点在平面直角坐标系中的坐标的几何意义,及两点间的距离公式便可解答.解答:解:∵点M的坐标为(﹣3,4),∴点M离原点的距离是=5.故选C.点评:本题主要考查了坐标到原点的距离与横纵坐标之间的关系及两点间的距离公式.9.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.12考点:两点间的距离公式.分析:点的横纵坐标的绝对值和这点到原点的距离组成一个直角三角形,利用勾股定理求解即可.解答:解:点P(6,8)到原点的距离为:=10,故选A.点评:本题考查了两点间的距离公式,用到的知识点为:点到原点的距离是此点的横纵坐标的绝对值为两直角边的直角三角形的斜边.10.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.2考点:两点间的距离公式.分析:点到原点的距离为点横坐标与纵坐标的平方和的平方根.解答:解:∵()2+(﹣1)2=4∴点P到原点的距离为=2.故选D.点评:本题考查点的特征,关键是牢记点到原点距离的计算公式.11.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.3考点:两点间的距离公式.专题:压轴题;新定义.分析:对于①若点C在线段AB上,设C点坐标为(x0,y0)然后代入验证显然|AC|+|CB|=|AB|成立.成立故正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,用坐标表示|AC|+|CB|然后根据绝对值不等式可得到大于|AB|不成立,故可得到答案.解答:解:对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:|AB|=|x2﹣x1|+|y2﹣y1|.对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|=|x2﹣x1|+|y2﹣y1|=|AB|成立,故①正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|≥|(x0﹣x1)+(x2﹣x0)|+|(y0﹣y1)+(y2﹣y0)|=|x2﹣x1|+|y2﹣y1|=|AB|.③不一定成立∴命题①成立,故选:B.点评:此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.本题的易错点在于不等式:|a|+|b|≥|a+b|忘记等号也可以成立.12.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,=()则S△ABCA.1B.2C.3D.4考点:坐标与图形性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.专题:压轴题;数形结合.分析:本题可先根据直线的方程求出A、B两点的坐标,再根据角相等可得出三角形相似,的大小.最后通过相似比即可得出S△ABC解答:解:∵直线y=﹣2x+4与x轴,y轴分别相交于A,B两点∴OA=2,OB=4又∵∠1=∠2∴∠BAO=∠OCA∴△OAC∽△OAB则OC:OA=OA:OB=1:2∴OC=1,BC=3,=×2×3=3∴S△ABC故选C.点评:主要考查了一次函数图象上点的特征和点的坐标的意义以及与相似三角形相结合的具体运用.要把点的坐标有机地和图形结合起来求解.13.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)考点:坐标与图形性质;垂线段最短;等腰直角三角形.专题:计算题.分析:线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.解答:解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.点评:动手操作很关键.本题用到的知识点为:垂线段最短.14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化考点:坐标与图形性质;反比例函数系数k的几何意义;关于原点对称的点的坐标.分析:设P的坐标为(m,n),因为点P关于原点的对称点为Pʹ,Pʹ的坐标为(﹣m,﹣n);因为P与A关于x轴对称,故A的坐标为(m,﹣n);而mn=4,则△PAPʹ的面积为•PA•PʹA=2mn=8.解答:解:设P的坐标为(m,n),∵P是函数在第一象限的图象上任意一点,∴n=,∴m•n=4.∵点P关于原点的对称点为Pʹ,∴P'的坐标为(﹣m,﹣n);∵P与A关于x轴对称,∴A的坐标为(m,﹣n);∴△PAP'的面积=•PA•PʹA=2mn=8.故选C.点评:本题结合反比例函数的性质考查了关于原点对称的点的坐标变化规律和关于x、y轴对称的点的性质,要注意二者的区别.15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断考点:坐标与图形性质;圆的认识.专题:动点型.分析:计算△DEA的面积,关键是确定底和高,在△DEA中,EA是半径,EA=|b|,点D在半圆EF上运动,点D与AE的距离最大值是|b|,故S△DEA的最大值为:×|b|×|b|=.解答:解:∵在△DEA中,当D运动于DA⊥AE时,此时DA作为高是最大的,DA=|b|∵EA=|b|,∴S△DEA的最大值为:×|b|×|b|=.故选A点评:本题考查了三角形面积的求法,要合理地确定底和高,底一定时,高最大,面积就最大.16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或考点:坐标与图形性质;待定系数法求一次函数解析式.专题:计算题.分析:求出直线解析式后再求与坐标轴交点坐标,进一步求解.解答:解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选C.点评:主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.考点:坐标与图形性质;解直角三角形.分析:本题本题可先根据三角函数求出AC和BC的值,由此即可得出B点的坐标.解答:解:∵∠BAC=60°,∠BCA=90°,AB=a,则AC=AB×cos60°=a,BC=AB×sin60°=a,∴点B的横坐标为a﹣2,纵坐标为a.故选D.点评:本题主要考查了三角函数的应用.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标确定位置.分析:因为m2>0,m﹣n>0,所以根据平面坐标系中点的坐标特点即可确定点在第一象限.解答:解:∵mn<0,m>0,∴n<0,∵m2>0,m﹣n>0,∴点P位于第一象限,故选A.点评:此题考查了坐标系中各象限中点的坐标特点,准确记忆是关键.19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)考点:坐标确定位置.专题:压轴题.分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)考点:坐标确定位置.分析:由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.解答:解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.点评:由已知条件正确确定坐标轴的位置是解决本题的关键.21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排考点:坐标确定位置.分析:根据题目信息,有序数对的第一个数表示排数,第二个数表示号数,以及电影院的座位排列规则解答.解答:解:∵座位按“×排×号”编排,∴小明在8排6号,小菲在8排12号,∴小明与小菲都在第8排,是同一排,中间有8号、10号间隔两人.故选A.点评:本题考查了坐标位置的确定,明确有序数对的实际意义是解题的关键,另外,还要了解电影院的座位,同一排的偶数号与偶数号相邻,奇数号与奇数号相邻.22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个考点:坐标确定位置.分析:根据图形明确所建的平面直角坐标系,然后判断各点的位置.解答:解:①实验楼的坐标是(3,3),原描述错误;②实验楼的坐标是(3,3),正确;③实验楼的坐标为(4,4),坐标位置错误;④实验楼在校门的东北方向上,距校门200米,正确.有两个说法正确,故选B.点评:本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=0考点:坐标与图形性质.分析:根据角平分线上的点到角的两边的距离相等可得第二四象限角平分线上的点的横坐标与纵坐标互为相反数,再根据相反数的定义解答.解答:解:∵点P(a,b)在第二、四象限的角平分线上,∴a、b互为相反数,∴a+b=0.故选D.点评:本题考查了坐标与图形性质,熟记平面直角坐标系的特征是解题的关键.24.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)考点:坐标与图形性质;勾股定理;正方形的性质;翻折变换(折叠问题).专题:压轴题.分析:过点Bʹ作BʹD⊥OC,因为∠CPB=60°,CBʹ=OC=OA=4,所以∠BʹCD=30°,BʹD=2,根据勾股定理得DC=2,故OD=4﹣2,即Bʹ点的坐标为(2,).解答:解:过点Bʹ作BʹD⊥OC∵∠CPB=60°,CBʹ=OC=OA=4∴∠BʹCD=30°,BʹD=2根据勾股定理得DC=2∴OD=4﹣2,即Bʹ点的坐标为(2,)故选C.点评:主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)考点:坐标与图形性质.分析:先写出点A的坐标为(﹣4,6),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.解答:解:点A变化前的坐标为(﹣4,6),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(﹣4,3).故选A.点评:本题考查了坐标与图形性质的知识,属于基础题,比较简单.26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()。

平面直角坐标系(详解版)

平面直角坐标系(详解版)

1(2(3(4(5(②③④ C.①④ D.①②③④坐标系基础>题型:坐标系内坐标的特征6(街与大道的十字路口,点表示街与大道的十字路口,如果用表示由到的一条路径,那么你能用同样的方式写出由到7(8(9(10(∵,轴,∴点在直线上,由垂线段最短,可得,线段的最小值为,此时点综合类问题>最短路径问题>题型:垂线段最短11(12(13(14(人玩的一盘棋,若白的位置是,黑的位置是∵白的位置是,黑的位置是15(>平面直角坐标系>坐标系综合>.如图所示:,即为所求.级16(17(点坐标的对称规律:关于哪个轴对称,哪个值不变,另一个变成相反数.18(19(20(21(22(四点的位置,并顺次连接、、、;;(直接写出结果)>平面直角坐标系>坐标系综合>题型:坐标系中的平移四边形的面积是:故答案为:.B. C. D.(分)如图,在直角坐标系中,、两点的坐标分别为23..题型:坐标系内坐标的特征24(是平面内一动点,且的面积为25已知:26(27(.28(函数>平面直角坐标系D.(29点的竖线为对称轴,以正方形的竖对称轴分别做对称各一个格点三角形.(分)在平面直角坐标系中,一个智能机器人接到如下命令:从原点出发,按向右,向上,向右,向下的方向依次不断移动,每次移动,其行走路线如图所示,第次移动到,第次移动,…,第次移动到3031(32(33(。

平面直角坐标系典型例题

平面直角坐标系典型例题

平面直角坐标系典型例题例1已知点P(x, y+1)在第二象限,则点Q(-x+2, 2y+3)在第_________ 限.解因为点P(x,y+1)在第二象限,所以x v 0且y+1>0,因此-x+2>0且2y+3=2(y+1)+1 >0.从而知Q(- x+2, 2y+3)在第一象限.点评学习平面直角坐标系首先要掌握不同位置的点的坐标特征•点P坐标为(a, b), P点在x轴上,则b=0;P点在y轴上,则a=0. P点在第一象限,则a>0且b>0;P点在第二象限,则a v 0且b>0;P点在第三象限,则a v0且b v0;P点在第四象限,则a>0且b v 0•若P点在第一、三象限的角平分线上可设为P(a, a);若P点在第二、四象限的角平分线上可设为P(a, -a).例2已知点A(3a-1 , 2-b)、B(2 a-4 , 2b+5).若A与B关于x轴对称,则a= ____ , b= _ ;若A与B关于y轴对称,则a= ____ , b= __ ;若A与B关于原点对称,贝U a= , b= ______ .- 1 =- 4解若A与B关于渤对称,则口L ' 即12-b = -(2b +5),a=-3, b=-7 .3a - 1 = - (2a - 4)2 - b - 2b + 5,a=1, b=1.若A与B关于原点对称,则J;1[[即12 - b = -(2b + J.Ia=1, b=7.点评平面上不同的两点P(x i, y)、Q(X2, y2).若x i=X2且屮予,贝U P、Q关于x轴对称;若x=-X2且y i=y2,贝U P、Q关于y轴对称;若x=-X2且y i=-y2,贝U p、Q 关于原点中心对称.点P(a, b)关于直线y=x( —、三象限角平分线)对称点的坐标为若A与B关于y轴对称,则Q(b, a).点P(a, b)关于直线y=-x(二、四象限角平分线)对称点的坐标为Q (- b,- a).例3设P(m,m+2)是坐标平面内某一象限的整点(横纵坐标皆为整数的点), 已知点P到x轴的距离与它到y轴的距离之差为2m+2,求点P关于y轴对称的点的坐标.解根据题意知|m+2|-| m|=2m+2. (1)当m>0时,(1)式变为m+2-m=2m+2,得m=0与m>0矛盾,无解.当m v-2时,⑴式变为-m~2-(- m)=2m+2得m=-2与m v-2矛盾,无解.当-2 v m v 0 时(1)式变为m+2-(- m)=2 m+2,即2m+2=2m+2 成立.因为m 为整数得m=-1 .所以P(-1 , 1)关于y轴对称的点的坐标为Q(1 , 1).点评首先要认真审题,仔细阅读原题.P(m, m+2)是坐标平面内某一象限的整点,它的含义是m H 0且m+2工0且m为整数.另外P点到x轴的距离应是| m+2|,同理P点到y轴的距离应是| m|,不能写成m+2与m.同时解题时要进行分类讨论.因为| m+2|与| m|因m不确定而无法去掉绝对值符号进行运算,所以必须分类讨论.如何分类则根据m+2与m的正负来划分讨论区域;m>0, -2 v m v0, m v-2 .分类要做到不重不漏.例4如图13—1,已知ABCD是平行四边形,△ DCE是等边三角形,A 5 0),B (症,0), D(0. 3),求E点的坐标・解根据题意知E点有两种可能,一是在CD的上方,或在CD的下方.坐标为Q(b, a) •点P(a, b)关于直线y=-x(二、四象限角平分线)对称点的坐标为Q(- b,-a).所以若E点在CD的上方,则E 2尿 3 + —X473 即Eg仅9).若E点在CD的下方,则爲厂,3- —X4 即E(2占,-3).点评弄清题意,以CD为一边可向两边作等边三角形.另外要加强基础知识的积累,如等边三角形的边长为a,那么高为舟乳面积为爭外接圆半径为£弘内切圆半径为纟盒等要2 43 6牢固拿握.。

(完整)平面直角坐标系中三角形面积的求法(例题及对应练习)

(完整)平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧。

现举例说明如下。

一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y 轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解。

解:因为B(0,3),C(0,—1),所以BC=3—(—1)=4。

因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(—1)=5,所以=。

三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,—3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法。

根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行。

这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积。

解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(—3,—1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5。

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积类型一、直接用公式求面积例1.如图,在平面直角坐标系中,点()0,4A b 为y 轴正半轴上一点,点()3,0B b 是x 轴正半轴上一点,其中b 满足()316b +=.(1)求点A ,B 的坐标.(2)点C 为x 轴上一点,且ABC 的面积为12,求C 点的坐标.【答案】(1)()0,4A ,()3,0B ;(2)点C 的坐标为()3,0-或()9,0【解析】(1)由()316b +=得1b =,∴()04A ,,()30B ,.(2)设点C 的坐标为()0x ,,则3BC x =-,由1()可知4OA =,∴1432ABC S x =⨯⨯-= 12,解得:9x =或3-.∴点C 的坐标为()30-,或()90,.【变式训练1】在平面直角坐标系中,已知点(),0A a ,(),0B b ,a 、b 满足方程组24a b a b +=-⎧⎨-=-⎩,(1)求A 、B 两点的坐标;(2)C 为y 轴正半轴上一点,且6ABC S = ,请求出C 的坐标.【答案】(1)A (-3,0),B (1,0);(2)C (0,3)【解析】(1)解方程组24a b a b +=-⎧⎨-=-⎩,解得:31a b =-⎧⎨=⎩,∴A (-3,0),B (1,0);(2)由(1)可知:AB =4,∵S △ABC =12AB •OC =6,∴12×4×OC =6,解得OC =3,∴C (0,3).故答案为:(1)A (-3,0),B (1,0);(2)C (0,3)类型二、割补法求面积例1.如图,三角形ABC 的面积等于()A .12B .1122C .13D .1132【答案】D【解析】过点A 作AD x ⊥轴于D ,如图所示:由题意可得,3BO =,3OC =,6AD =,3CD =,∴6OD =,∴ABC BOC ACDBODA S S S S ∆∆∆=--梯形111()222BO AD OD BO OC CD AD=+⋅-⋅⋅-⋅⋅111(36)63336222=+⨯-⨯⨯-⨯⨯54918222=--272=,即272ABC S ∆=,故选:D .【变式训练1】如图,连接AB 、BC 、AC ,则△ABC 的面积是()A .312B .3C .212D .2【答案】C【解析】长方形AGDE 的面积为:3×2=6,AGC 的面积:3×1÷2=1.5,CDB △的面积:2×1÷2=1,ABE △的面积:2×1÷2=1,故ABC 的面积为:6-1.5-1-1=2.5,故答案为:C ;【变式训练2】如图,三角形ABO 中,()2,3A --,()2,1B -,A B O ''' 是ABO 平移之后得到的图形,并且O 的对应点O '的坐标为()5,4.(1)作出ABO 平移之后的图形A B O ''' ,并写出A '、B '两点的坐标分别为A '______,B '_____;(2)()00,P x y 为ABO 中任意一点,则平移后对应点P 的坐标为______.(3)求ABO 的面积;【解析】(1)如图,△A 'B 'O '即为所求,A '、B '两点的坐标分别(3,1),(7,3).故答案为:(3,1),(7,3).(2)点P '的坐标为(x 0+5,y 0+4).故答案为:(x 0+5,y 0+4).(3)S △ABO =3×4-12×2×3-12×1×2-12×4×2=4.【变式训练3】在平面直角坐标系xoy 中,△ABC 的位置如图所示,点A ,B ,C 都在格点上.(1)分别写出下列顶点的坐标:A ________;B ________;(2)请在图中画出△ABC 关于y 轴对称的图形△A ′B ′C ′;(3)计算出△ABC 的面积.【答案】(1)(-1,6),(-2,0);(2)见解析;(3)152【解析】(1)由图知,点A 的坐标为(-1,6),点B 的坐标为(-2,0),故答案为:(-1,6),(-2,0)(2)由图得,点C 的坐标为(-4,3),则点A 、B 、C 关于y 轴的对称点A ′,B ′,C ′坐标分别为(1,6),(2,0),(4,3),依次连接A ′,B ′,C ′,即得△A ′B ′C ′,所得图形如图所示(3)过A 、C 作x 轴的垂线,垂足分别为D 、E则ABC AOD CED ADEC S S S S =-- 梯形111(36)31623222=⨯+⨯-⨯⨯-⨯⨯152=类型三、点的存在性问题例1.如图,在平面直角坐标系中,点B ,C 的坐标分别为(),2a a -、()3,2a a ,其中0a >,点A 为BC 的中点,若4BC =,解决下列问题:(1)BC 所在直线与x 轴的位置关系是;(2)求出a 的值,并写出点A ,C 的坐标;(3)在y 轴上是否存在一点P ,使得三角形PAC 的面积等于5?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)平行;(2)()1,2A ,()3,2C ;(3)存在,P 点坐标为()0,3-或()0,7【解析】(1)∵点B ,C 的坐标分别为(),2a a -、()3,2a a ,∴BC 所在直线与x 轴的位置关系是平行.故答案为:平行.(2)∵4BC =,∴()34a a --=,∴1a =,∴B (-1,2),C (3,2),∵A 为BC 的中点,∴()1,2A .(3)存在点P .设()0,P m ,∵2AC =,∴12252m ⨯⨯-=,∴3m =-或7.∴P 为()0,3-或()0,7.【变式训练1】如图,在直角坐标系中,已知()0,2A ,()3,0B ,()3,4C 三点.(1)求四边形AOBC 的面积;(2)是否存在点()0.5P x x ,,使2ABC AOBC S S = 四边形?若存在,求出点P 的坐标.若不存在,请说明理由.【答案】(1)9;(2)存在,()189P --,或(18,9)【解析】如图,∵34C (,),∴33CD ==.∵()34C ,,30B (,),∴404CB =-=,∴4312DCBO S =⨯=四边形.∵()04D ,,()02A ,,∴422DA =-=,∴11236322DCA S =⨯⨯=⨯= .∵DCA AOBC DCBO S S S =- 四边形四边形,∴1239AOBC S =-=四边形.(2)由(1)得1239AOBC S =-=四边形设存在点()0.5P x x ,,使△AOP 的面积为四边形AOBC 的面积的两倍.∵△AOP 的面积=122x x ⨯⨯=,∴29x =⨯,∴18x =±∴存在点P (18,9)或(-18,-9),使△AOP 的面积为四边形AOBC 的面积的两倍.【变式训练2】如图,A (0,3)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒2个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t 秒.(1)若AB ∥x 轴,求t 的值;(2)如图2,当t =2时,坐标平面内有一点M (不与A 重合)使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标.【答案】(1)t 的值为1.5;(2)点M 的坐标为(3,7),(8,﹣3),(11,1).【解析】(1)过点B 作BC ⊥x 轴于点C ,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为矩形,∴AO=BC=3,∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°-∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=3,∴t=3÷2=1.5(秒),故t的值为1.5;(2)当t=2时,OP=4,①如图3,若△ABP≌△MBP,则AP=PM,过点M作MD⊥OP于点D,∵∠AOP=∠PDM,∠APO=∠DPM,∴△AOP≌△MDP(AAS),∴OA=DM=3,OP=PD=4,∴M(8,-3);②如图,若△ABP≌△MPB,连接AM,则AP=PB=BM,∠APB=∠MBP=90︒,∴AP∥MB,且AP=MB,∴四边形APBM是平行四边形,y轴于点E,又∠APB=∠MBP=90︒,∴四边形APBM是正方形,∴AP=AM,过点M作ME⊥同理可证△AOP≌△MEA(AAS),∴OA=EM=3,OP=AE=4,∴M(3,7);③如图,若△ABP≌△MPB,则AP=BP=BM,过点M 、B 分别作x 轴的垂线,垂足分别为点F 、G ,过点M 作MH ⊥BF 于点H ,∴四边形FGMH 是矩形,∴MH =FG ,MG =HF ,同理可证△AOP ≌△PFB ≌△BHM (AAS ),∴OA =PF =BH =3,OP =BF =MH =4,∴MG =HF =BF -BH =1,OG =OP +PF +FG =11,∴M (11,1);综合以上可得点M 的坐标为(3,7),(8,-3),(11,1).【变式训练3】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作第1个正方形111A B C C ;延长11C B 交x 轴于点2A ,作第2个正方形2221A B C C ,…,按这样的规律进行下去,第2021个正方形的面积是______.【答案】404235(2⨯【解析】()()1,0,0,2,A D 正方形ABCD ,1,2OA OD ∴==,,AD AB ===190,DAO ADO DAO BAA ∠+∠=︒=∠+∠1,ADO BAA ∴∠=∠190,DOA ABA ∠=∠=︒ 1,AOD A BA ∴ ∽1,AO OD A B AB ∴=15,2AO AB A B OD ∴== 正方形111A B C C,1113222A B A C ∴====⨯同理可得:22232442A B ⎛⎫=+==⨯ ⎪⎝⎭33332A B ⎛⎫= ⎪⎝⎭······20212021202132A B ⎛⎫= ⎪⎝⎭所以第2021个正方形的面积是22021404233=5.22⎡⎛⎫⎛⎫⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣⎦故答案为:404235.2⎛⎫⨯ ⎪⎝⎭。

专题07 平面直角坐标系(解析版)

专题07 平面直角坐标系(解析版)

专题07 平面直角坐标系知识点1:认识平面直角坐标系1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

知识点2:坐标方法的简单应用1.用坐标表示地理位置;2.用坐标表示平移。

1.平面直角坐标系中各象限点的坐标特点①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0。

2.平面直角坐标系中坐标轴上点的坐标特点①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0。

3.平面直角坐标系中对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

4.平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。

如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。

(完整版)平面直角坐标系典型例题含答案(可编辑修改word版)

(完整版)平面直角坐标系典型例题含答案(可编辑修改word版)

平面直角坐标系一-知识点复习1•有序数对:有顺序的两个数“与b组成的数对,记作(“小)。

注童“与b的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平而直角坐标系。

这个平而叫做坐标平面。

(2)平面g角坐标系中点的坐标:通常若平而宜角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,有序实数对(40)叫做点A的坐标,其中«叫横坐标,&叫做纵坐标。

3・各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标5・对称点的坐标特征:6・点到坐标轴的距离:点Pgy)到X 轴距离艸卜,到y 轴的距离制X 。

nP1拥O1 _//1............... -4r4—P ....... ■1;—m八一"f 0册• X 1 ■ 1 A关于X 轴对称关于y 轴对称关于原点对称▲AX二、典型例题讲解考点1:点的坐标与象限的矣系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.2•若点P (44-2)在第四象限,则“的取值范ffl 是(3•在平面直角坐标系中,点P (-2, F+j )所在的象限是( A.第一象限B.第二象限C.第三象限D.第四象限7.点的平移坐标变化规律:简单记为“左减右加,上加下减” A. — 2 < a < 0 B. 0 < « < 2 C. « > 2D. </ < 0A.B. C. D.四考点2:点在坐标轴上的特点1•点P 伽+ 3W+1)在X 轴上,则P 点坐标为( A ・(0-2) B. (2,0) C. (4,0) D. (0,-4) 2.已知点P (”2川-1)在y 轴上,则P 点的坐标是 3.若点P (X, y )的坐标满足xy=0 (xHy ),则点P 必在( )A.原点上B. X 轴上C. y 轴上D. X 轴上或y 轴上(除原点) 考点3:对称点的坐标 1•平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( A. (-3,2) B. (3-2) C. (-2,3) D. (2,3) 2. 已知点A 的坐标为(-2, 3),点B 与点A 关于X 轴对称,点C 与点B 关于y 轴对称,则点C关于X 轴对称的点的坐标为( ) A. (2, -3) B. (一2, 3) 3. 若坐标平面上点P (8, 1)与点Q A. a=4, b=-lB. a 二一4, b=l 考点4:点的平移1. 已知点A (-2, 4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点y , 则点A'的坐标是( ) A. (-5, 6) B. (1, 2) C. (1, 6) D. (-5, 2)2. 已知A (2,3),其关于X 轴的对称点是B,B 关于y 轴对称点是C,那么相当于将A 经过( 的平移到了 C. 向左平移4个单位, 向左平移4个单位, 向右平移4个单位,向下平移6个单位,C. (2, 3)D. (一2, -3) (-4, b)关于X 轴对称,贝y ( )C. a 二一4, b=-lD. a=4» b=lA .B .C . D. 3.再向上平移 再向下平移 再向上平移 再向右平移 个单位 个单位 个单位个单位如图,A, B 的坐标为(2, 0), 4 (0, 1),若将线段AB 平移至A1B1,贝Ija+b 的值为(51•点M (-3, -2)到y轴的距离是( )A- 3 B. 2 C. -3 D- -22•点P到X轴的距离是5,到y轴的距离是6,且点P在X轴的上方,则P点的坐标为•3.已知P (2-X, 3X-4)到两坐标轴的距离相等,则X的值为( )_A. ?B. -12考点6 :平行于X轴或y轴的直线的特点C・3 -或-123D. —或12C. B与C的纵坐标相同2.已知点A (m+1, -2)A. 2B. -43.已知点M (-2, 3),A. (-2, 0) 或(-5. 3)D. B与D的纵坐标相同(3, m-1),若直线AB〃x 轴,C. -1D. 3线段MN二3,且轴,则点X的坐标是( B. (1,3) C.和点B(1, 3)D. (一2, 0)或(-2, 6)考点7:角平分线的理解则m的值为(1.已知点A (3a+5, a-3)在二、四象限的角平分线上,则沪考点8:特定条件下点的坐标1. 如图,已知棋子“车〃的坐标为(.2, 3),棋子〃马〃的坐标为(1, 3),则棋子“炮〃的坐标考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A (-1, 0) , B (3, -1) , C (4, 3): (2) 顺次连接A, B, C,组成△ABC,求△ABC 的面积. 1-4I ——_i i ------------------------- i ————i ---- 1参考答案:(1)略 (2) &52.如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0, 2) (1, 0) (6, 2) (2, 4),求四边形ABCD 的面积•A ・(3, 2)B ・(3, 1) C. (2, 2) D- (.2, 2)-1电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.点评:本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)答:B考点二:函数的概念及函数自变量的取值范围例3 在函数1xyx+=中,自变量x的取值范围是.思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围.解:根据题意得:x+1≥0且x≠0解得:x≥-1且x≠0.例3 函数y=31xx+-中自变量x的取值范围是()A.x≥-3 B.x≥3C.x≥0且x≠1D.x≥-3且x≠1思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:根据题意得,x+3≥0且x-1≠0,解得x≥-3且x≠1.故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.对应训练3.函数22yx=+中自变量x的取值范围是()A.x>-2 B.x≥2 C.x≠-2 D.x≥-23.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是()A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确.故选D.点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD的顶点上,它们的各边与ABCD的各边分别平行,且与ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答.解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似, ∴2()328y x =, 整理得212y x =, 又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y 与x 的函数关系是解题的关键.例8 已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标洗中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(Ⅰ)如图①,当∠BOP=30°时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP ,△QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案; (Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与m= 16t 2- 116t+6,即可求得t 的值. 点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用. 对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( )A .甲队率先到达终点B .甲队比乙队多走了200米路程C .乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快4.C4.解:A、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C、因为4-3.8=02分钟,所以,乙队比甲队少用0.2分钟,本选项正确;D、根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误;故选C.5.如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿OC-CD-DO的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y (度)与t(秒)之间函数关系最恰当的是()A.B.C.D.考点:动点问题的函数图象.分析:根据动点P在OC上运动时,∠APB逐渐减小,当P 在CD上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在CD上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.考点四:动点问题的函数图象例5 如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=4 5C.当0<t≤10时,y=2 5 t2D.当t=12s时,△PBQ是等腰三角形思路分析:由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD-ED=BC-ED=10-4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=12BC•EF=12×10×EF,∴EF=8,∴sin∠EBC=EFBE=84105;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=12BQ•PG=12BQ•BP•sin∠EBC=12t•t•45=25t2.。

相关文档
最新文档