2021届浦东区一模数学试卷及答案

合集下载

2021-2022学年上海市浦东新区高三(上)期末数学试卷(一模)

2021-2022学年上海市浦东新区高三(上)期末数学试卷(一模)

2021-2022学年上海市浦东新区高三(上)期末数学试卷(一模)试题数:21,总分:1501.(填空题,4分)已知复数z=1+2i (i 是虚数单位),则|z|=___ .2.(填空题,4分)函数f (x )= √x +1的反函数为f -1(x ),则f -1(3)=___ .3.(填空题,4分)已知cosθ=- 35 ,则cos2θ的值为 ___ .4.(填空题,4分)已知集合A={x|-1<x <1},B={x| x x−2 <0},则A∩B=___ .5.(填空题,4分)底面半径长为2,母线长为3的圆柱的体积为 ___ .6.(填空题,4分)三阶行列式 |125143356| 中,元素2的代数余子式的值为 ___ . 7.(填空题,5分)数列{a n }的通项公式为a n = {2n −1(1≤n ≤10)2−1n (n ≥11) ,则 n→∞a n =___ . 8.(填空题,5分)方程log 2(x+1)+log 2(x-1)=1的解为 ___ .9.(填空题,5分)已知函数f (x )=x 2+2x+3+m ,若f (x )≥0对任意的x∈[1,2]恒成立,则实数m 的取值范围是 ___ .10.(填空题,5分)某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为 ___ .(用数字作答)11.(填空题,5分)已知A (-1,0)、B (1,0)、P (1, √3 ),点C 是圆x 2+y 2=1上的动点,则 PC ⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗ + PC⃗⃗⃗⃗⃗ • PA ⃗⃗⃗⃗⃗ 的取值范围是 ___ . 12.(填空题,5分)已知实数x 、y 满足 x|x|4+y|y|=1,则|x+2y-4|的取值范围是 ___ . 13.(单选题,5分)已知直线a 在平面β上,则“直线l⊥a”是“直线l⊥β”的( )条件.A.充分非必要B.必要非充分C.充要D.非充分非必要14.(单选题,5分)(x-1)10的二项展开式中第4项是( )A. C 103x 7B. C 104x 6C. −C 103x 7D. −C 104x 615.(单选题,5分)若方程4x2+ky2=4k表示双曲线,则此双曲线的虚轴长等于()A. 2√kB. 2√−kC. √kD. √−k(x∈[t,t+40])零点的个数不可能是()个16.(单选题,5分)函数f(x)=sinx- 12A.12B.13C.14D.1517.(问答题,14分)已知三棱锥P-ABC中,PA、BA、CA两两互相垂直,且长度均为1.(1)求三棱锥P-ABC的全面积;(2)若点D为BC的中点,求PD与平面PAC所成角的大小.(结果用反三角函数值表示)18.(问答题,14分)已知函数f(x)=x2+ax+1,a∈R.(1)判断函数f(x)的奇偶性,并说明理由;(x>0),写出函数g(x)的单调递增区间并用定义证明.(2)若函数g(x)= f(x)x19.(问答题,14分)某水产养殖户承包一片靠岸水域,如图,AO、OB为直线岸线,,该承包水域的水面边界是某圆的一段弧AB̂,过弧OA=1000米,OB=1500米,∠AOB= π3AB̂上一点P按线段PA和PB修建养殖网箱,已知∠APB= 2π.3(1)求岸线上点A与点B之间的直线距离;(2)如果线段PA上的网箱每米可获得40元的经济收益,线段PB上的网箱每米可获得30元的经济收益,记∠PAB=θ,则这两段网箱获得的经济总收益最高为多少?(精确到元)20.(问答题,16分)已知斜率为k的直线l经过抛物线C:y2=4x的焦点F,且与抛物线C 交于不同的两点A(x1,y1),B(x2,y2).和3,求|AB|;(1)若点A和B到抛物线准线的距离分别为32(2)若|AF|+|AB|=2|BF|,求k的值;(3)点M(t,0),t>0,对任意确定的实数k,若△AMB是以AB为斜边的直角三角形,判断符合条件的点M有几个,并说明理由.21.(问答题,18分)已知数列{a n},若存在A∈R使得数列{|a n-A|}是递减数列,则称数列{a n}是“A型数列”.是否为“A型数列”;(1)判断数列π、- √3、-1、12(2)若等比数列{a n}的通项公式为a n=q n(n∈N*),q>0,其前n项和为S n,且{S n}是“A型数列”,求A的值和q的取值范围;(3)已知k>0,数列{a n}满足a1=0,a n+1=k|a n|-1(n∈N*),若存在A∈R,使得{a n}是“A型数列”,求k的取值范围,并求出所有满足条件的A(用k表示).2021-2022学年上海市浦东新区高三(上)期末数学试卷(一模)参考答案与试题解析试题数:21,总分:1501.(填空题,4分)已知复数z=1+2i(i是虚数单位),则|z|=___ .【正确答案】:[1] √5【解析】:直接利用复数的模的求法公式,求解即可.【解答】:解:复数z=1+2i(i是虚数单位),则|z|= √12+22 = √5.故答案为:√5.【点评】:本题考查复数的模的求法,考查计算能力.2.(填空题,4分)函数f(x)= √x +1的反函数为f-1(x),则f-1(3)=___ .【正确答案】:[1]4【解析】:直接利用反函数的关系式的定义域和函数的值的对应关系求出结果.【解答】:解:∵已知函数y=f(x)存在反函数y=f-1(x),设f(x)=3,则√x +1=3,解得x=4,则f-1(3)的值是4.故答案为:4.【点评】:本题考查了反函数的性质的应用,利用原函数与反函数的定义域和值域恰相反,求出反函数的函数值.3.(填空题,4分)已知cosθ=- 3,则cos2θ的值为 ___ .5【正确答案】:[1]- 725【解析】:由题意利用二倍角的余弦公式,计算求得结果.【解答】:解:∵cosθ=- 35 ,则cos2θ=2cos 2θ-1=2× 925 -1=- 725 ,故答案为:- 725 .【点评】:本题主要考查二倍角的余弦公式的应用,属于基础题.4.(填空题,4分)已知集合A={x|-1<x <1},B={x| x x−2 <0},则A∩B=___ .【正确答案】:[1](0,1)【解析】:求出集合A ,B ,由此能求出A∩B .【解答】:解:∵集合A={x|-1<x <1},B={x| x x−2 <0}={x|0<x <2}, ∴A∩B={x|0<x <1}=(0,1).故答案为:(0,1).【点评】:本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.5.(填空题,4分)底面半径长为2,母线长为3的圆柱的体积为 ___ .【正确答案】:[1]12π【解析】:利用圆柱体的体积公式求解即可.【解答】:解:因为底面半径长为2,母线长为3,所以圆柱的体积为V=Sh=π×22×3=12π.故选:12π.【点评】:本题考查了圆柱的体积公式的理解与应用,属于基础题.6.(填空题,4分)三阶行列式 |125143356| 中,元素2的代数余子式的值为 ___ . 【正确答案】:[1]3【解析】:根据已知条件,结合代数余子式的定义,即可求解.【解答】:解:在三阶行列式 |125143356| 中,元素2的代数余子式A 12=(-1)1+2 |1336| =-(1×6-3×3)=3.故答案为:3.【点评】:本题主要考查代数余子式的求解,考查计算能力,属于基础题.7.(填空题,5分)数列{a n }的通项公式为a n = {2n −1(1≤n ≤10)2−1n (n ≥11) ,则 n→∞a n =___ . 【正确答案】:[1]2【解析】:直接利用数列的极限的运算法则,化简求解即可.【解答】:解:数列{a n }的通项公式为a n = {2n −1(1≤n ≤10)2−1n(n ≥11) , 则 n→∞a n = lim n→∞ (2−1n) =2-0=2. 故答案为:2.【点评】:本题考查数列极限的运算法则的应用,是基础题.8.(填空题,5分)方程log 2(x+1)+log 2(x-1)=1的解为 ___ .【正确答案】:[1] √3【解析】:利用对数的性质及运算法则直接求解.【解答】:解:∵log 2(x+1)+log 2(x-1)=1,∴log 2(x+1)(x-1)=1=log 22,∴(x+1)(x-1)=2且x+1>0,x-1>0,故x= √3 ,故答案为: √3 .【点评】:本题考查对数方程的求法,是基础题,解题时要认真审题,注意对数的性质、运算法则的合理运用.9.(填空题,5分)已知函数f (x )=x 2+2x+3+m ,若f (x )≥0对任意的x∈[1,2]恒成立,则实数m 的取值范围是 ___ .【正确答案】:[1][-6,+∞)【解析】:将问题转化为x 2+2x+3≥-m 对任意的x∈[1,2]恒成立,构造g (x )=x 2+2x+3,利用二次函数的图象与性质,求解函数的最值,即可得到答案.【解答】:解:函数f (x )=x 2+2x+3+m ,且f (x )≥0对任意的x∈[1,2]恒成立, 则x 2+2x+3≥-m 对任意的x∈[1,2]恒成立,令g (x )=x 2+2x+3,函数g (x )在[1,2]上单调递增,所以g (x )min =g (1)=6,则6≥-m ,即m≥-6,所以实数m 的取值范围为[-6,+∞).故答案为:[-6,+∞).【点评】:本题考查了二次函数图象与性质的应用,利用函数单调性求解函数最值的应用,不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.10.(填空题,5分)某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为 ___ .(用数字作答)【正确答案】:[1] 45【解析】:由排列组合的知识易得总数为120,不符合的有24,由古典概型概率公式求解即可.【解答】:解:从10人中任选3人有 C 103 =120种选法,这3人中只有女生的共有 C 43 =4种,这3人中只有男生的共有 C 63 =20种, ∴这3人中必须男女生都有的共96种,∴所求概率P= 96120 = 45 .故答案为: 45 .【点评】:本题考查古典概型及其概率公式,属基础题.11.(填空题,5分)已知A (-1,0)、B (1,0)、P (1, √3 ),点C 是圆x 2+y 2=1上的动点,则 PC ⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗ + PC⃗⃗⃗⃗⃗ • PA ⃗⃗⃗⃗⃗ 的取值范围是 ___ . 【正确答案】:[1][4,12]【解析】:设点C 坐标(c osθ,sinθ),将 PC ⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗ + PC⃗⃗⃗⃗⃗ • PA ⃗⃗⃗⃗⃗ 用θ函数表示,用正弦函数取值范围求解.【解答】:解:设C (cosθ,sinθ), PA ⃗⃗⃗⃗⃗ =(-2,- √3 ), PB ⃗⃗⃗⃗⃗ =(0,- √3 ), PC⃗⃗⃗⃗⃗ =(cosθ-1,sinθ- √3 ),PC ⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗ + PC ⃗⃗⃗⃗⃗ • PA ⃗⃗⃗⃗⃗ = PC ⃗⃗⃗⃗⃗ •( PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )=(cosθ-1,sinθ- √3 )•(-2,-2 √3 )=-2(cosθ-1+ √3 sinθ-3)=8-4( √32 sinθ+ 12 cosθ)=8-4sin (θ+ π6 ),因为sin (θ+ π6 )∈[-1,1],所以 PC ⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗ + PC⃗⃗⃗⃗⃗ • PA ⃗⃗⃗⃗⃗ 的取值范围是[4,12], 故答案为:[4,12].【点评】:本题考查了平面向量数量积的性质及其运算,属于中档题.12.(填空题,5分)已知实数x 、y 满足x|x|4 +y|y|=1,则|x+2y-4|的取值范围是 ___ . 【正确答案】:[1][4-2 √2 ,4)【解析】:把 x|x|4 +y|y|=1等式变形,画出图形,利用线性规划知识求出x+2y-4的范围,取绝对值得答案即可.【解答】:解答】解:由 x|x|4+y|y|=1, 得 {x ≥0,y ≥0x 24+y 2=1 或 {x >0,y <0x 24−y 2=1 或 {x <0,y >0y 2−x 24=1 , 如图,令z=x+2y-4,得y=- 12 x+ 12 z+2,由图可知,当直线y=- 12 x+ 12 z+2与第一象限的椭圆相切时,直线在y 轴上的截距最大, 联立得 {y =−12x +12z +2x 24+y 2=1 ,即2x 2-(2z+8)x+z 2+8z+12=0,∵相切,∴Δ=(2z+8)2-4×2×(z 2+8z+12)=0,∴z 2+8z+8=0,∴z=-4±2 √2 ,∵椭圆的图象只在第一象限,∴z=-4 +2√2 ,根据双曲线的方程知,两条双曲线的渐近线方程都是y=- 12 x ,当直线y=- 12 x+ 12z+2无限靠近y=- 12x时,12z+2趋于0,即z趋于-4,∴-4<z≤-4 +2√2,∴|x+2y-4|的取值范围是[4-2 √2,4),故答案为:[4-2 √2,4).【点评】:本题考查简单的线性规划,考查直线与椭圆相切,双曲线的渐近线,考查数形结合思想,是中档题.13.(单选题,5分)已知直线a在平面β上,则“直线l⊥a”是“直线l⊥β”的()条件.A.充分非必要B.必要非充分C.充要D.非充分非必要【正确答案】:B【解析】:“直线l⊥a”成立时,“直线l⊥β”不一定成立;“直线l⊥β”⇒“直线l⊥a”,由此能求出结果.【解答】:解:直线a在平面β上,则“直线l⊥a”成立时,“直线l⊥β”不一定成立;“直线l⊥β”⇒“直线l⊥a”,∴直线a在平面β上,则“直线l⊥a”是“直线l⊥β”的必要非充分条件.故选:B.【点评】:本题考查充分条件、必要条件的判断,考查空间中线与面的位置关系等基础知识,考查空间立体感和推理论证能力,属于中档题.14.(单选题,5分)(x-1)10的二项展开式中第4项是()A. C103x7B. C104x6C. −C103x7D. −C104x6【正确答案】:C【解析】:写出(x-1)10的二项展开式的通项公式,令r=3,可得所求项.【解答】:解:(x-1)10的二项展开式的通项公式为T r+1= C10r x10-r(-1)r= C10r(-1)r x10-r,r=0,1,2, (10)令r=3,T4=- C103 x7,故选:C.【点评】:本题考查二项式定理的运用,考查运算能力,是一道基础题.15.(单选题,5分)若方程4x2+ky2=4k表示双曲线,则此双曲线的虚轴长等于()A. 2√kB. 2√−kC. √kD. √−k【正确答案】:B【解析】:根据双曲线标准方程直接求解.【解答】:解:方程4x2+ky2=4k,即为x2k +y24=1,由方程表示双曲线,可得y 24−x2−k=1,所以a=2,b=√−k,所以虚轴长为2b=2√−k.故选:B.【点评】:本题主要考查双曲线的几何性质,由双曲线方程求解虚轴的长度等知识,属于基础题.16.(单选题,5分)函数f(x)=sinx- 12(x∈[t,t+40])零点的个数不可能是()个A.12B.13C.14D.15【正确答案】:D【解析】:f(x)的零点个数,即为y=sinx的图象与直线y= 12的交点个数,在正弦函数的一个周期内,即在区间[t,t+2π)上总有两个交点,然后考虑,40减去个周期后,在区间[t,t+0.74π]中的交点个数,根据的不同取值可确定结论.的交点个数,【解答】:解:f(x)的零点个数,即为y=sinx的图象与直线y= 12≈6.37,易知在[t,t+2π)上它们有两个交点,而402π所以前6个周期共有交点12个,因此我们主要研究它们在区间[t,t+0.74π]中的交点个数,<t<-π时,它们在区间[t,t+0.74π]上无交点,当- 7π6<t<0时,它们在区间[t,t+0.74π]有1个交点,当- π3时,它们在区间[t,t+0.74π]上有2个交点,当0<t<π6因此交点个数可能为12,13,14,不可能是15.故选:D.【点评】:本题考查了函数的零点与方程的根的关系,属于中档题.17.(问答题,14分)已知三棱锥P-ABC中,PA、BA、CA两两互相垂直,且长度均为1.(1)求三棱锥P-ABC的全面积;(2)若点D为BC的中点,求PD与平面PAC所成角的大小.(结果用反三角函数值表示)【正确答案】:【解析】:(1)由已知易得△PAB≌△PAC≌△BAC且为直角三角形,则可得△PBC为边长为√2的等边三角形,进而可求全面积;(2)取AC的中点H,连接HD和HP,进而证明DH⊥平面PAC,可得∠DPH是PD与平面PAC所成角;在△PDH中求解即可.【解答】:解:(1)由题意知△PAB≌△PAC≌△BAC且为直角三角形,则可得△PBC为边长为√2的等边三角形,所以三棱锥P-ABC的全面积S= 12 ×1×1×3+ 12× √2 × √2 ×sin60°= 3+√32;(2)取AC的中点H,连接HD和HP,因为PA、BA、CA两两互相垂直,所以PA⊥平面ABC,DH在平面ABC内,所以PA⊥DH,又因为DH⊥AC,所以DH⊥平面PAC,所以∠DPH是PD与平面PAC所成角;因为DH= 12,PH= √52,所以tan∠DPH= √55,∠DPH=arctan √55,所以PD与平面PAC所成角的大小为arctan √55.【点评】:本题考查表面积的问题和线面角的求法,属中档题.18.(问答题,14分)已知函数f(x)=x2+ax+1,a∈R.(1)判断函数f(x)的奇偶性,并说明理由;(2)若函数g(x)= f(x)x(x>0),写出函数g(x)的单调递增区间并用定义证明.【正确答案】:【解析】:(1)分a=0和a≠0两种情况,分别利用奇函数与偶函数的定义分析判断即可;(2)利用函数单调性的定义判断并证明即可.【解答】:解:(1)当a=0时,函数f(x)为偶函数,证明如下:函数f(x)=x2+1,定义域为R,因为f(-x)=x2+1=f(x),所以当a=0时,函数f(x)为偶函数;当a≠0时,f(-1)=2-a,f(1)=2+a,则f(-1)≠f(1),f(-1)≠-f(1),函数f(x)为非奇非偶函数.(2)函数g(x)的单调递增区间为[1,+∞),证明如下:g(x)= f(x)x =x+1x+a,设1≤x1<x2,则g(x1)−g(x2)=x1+1x1+a−(x2+1x2+a) = (x1−x2)(1−1x1x2) = (x1−x2)(x1x2−1)x1x2,由于1≤x1<x2,则x1-x2<0,x1x2−1x1x2>0,所以f(x1)<f(x2),则函数g(x)的单调递增区间为[1,+∞).【点评】:本题考查了函数单调性和奇偶性的判断与证明,考查了函数奇偶性与单调性的定义,考查了逻辑推理能力与化简运算能力,属于基础题.19.(问答题,14分)某水产养殖户承包一片靠岸水域,如图,AO、OB为直线岸线,OA=1000米,OB=1500米,∠AOB= π3,该承包水域的水面边界是某圆的一段弧AB̂,过弧AB̂上一点P按线段PA和PB修建养殖网箱,已知∠APB= 2π3.(1)求岸线上点A与点B之间的直线距离;(2)如果线段PA上的网箱每米可获得40元的经济收益,线段PB上的网箱每米可获得30元的经济收益,记∠PAB=θ,则这两段网箱获得的经济总收益最高为多少?(精确到元)【正确答案】:【解析】:(1)根据已知条件,结合余弦定理,即可求解.(2)根据已知条件,结合正弦定义,以及三角函数的恒等变换,即可求解.【解答】:解:(1)∵OA=1000米,OB=1500米,∠AOB= π3,∴AB= √OA2+OB2−2×OA×OB×cosπ3 = √15002+10002−2×1500×1000×12=500√7,故岸线上点A与点B之间的直线距离为500√7米.(2)∵在△PAB中,500√7sin2π3=PAsin(π3−θ)=PBsinθ,∴ PA=√7√3(π3−θ),PB= √7√3(0<θ<π3),设两段网箱获得的经济总收益为y元,则y=40PA+30PB= √7√3(π3−θ) + √7√3= √7√3(π3−θ)+3sinθ]= √7√3√3cosθ+sinθ)=10000√91√3sin(θ+arctan2√3) ,当 θ+arctan2√3=π2,即 θ≈π2−arctan2√3 ∈(0, π3)时, y max =10000√91√3≈55076 (元),故两段网箱获得的经济总收益最高约为55076元.【点评】:本题主要考查函数的实际应用,掌握正弦定理,余弦定理是解本题的关键,属于中档题.20.(问答题,16分)已知斜率为k 的直线l 经过抛物线C :y 2=4x 的焦点F ,且与抛物线C 交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)若点A 和B 到抛物线准线的距离分别为 32 和3,求|AB|; (2)若|AF|+|AB|=2|BF|,求k 的值;(3)点M (t ,0),t >0,对任意确定的实数k ,若△AMB 是以AB 为斜边的直角三角形,判断符合条件的点M 有几个,并说明理由.【正确答案】:【解析】:(1)根据抛物线的定义求得焦点弦长;(2)直线l 的方程为y=k (x-1),代入抛物线方程后应用韦达定理得x 1+x 2,x 1x 2,利用焦半径公式及已知|AF|+|AB|=2|BF|,得出x 1,x 2的关系,与韦达定理结合可求得k ;(3)把 MA⃗⃗⃗⃗⃗⃗ •MB ⃗⃗⃗⃗⃗⃗ =0 用坐标表示出来,代入韦达定理的结论,得出关于t 的方程,由一元二次方程根的分布可得t 的正数解的个数.【解答】:解:(1)根据抛物线定义,|AF|= 32 ,|BF|=3, ∴|AB|= 92;(2)设直线l 的方程为y=k (x-1), 由 {y =k (x −1)y 2=4x ,可得:k 2x 2-(2k 2+4)x+k 2=0,Δ=(2k 2+4)2-4k 4=16k 2+16>0, ∴x 1+x 2=2+ 4k 2 ,x 1x 2=1,|AF|=x 1+1,|BF|=x 2+1,|AB|=x 1+x 2+2, 又∵|AF|+|AB|=2|BF|,∴(x 1+1)+(x 1+x 2+2)=2(x 2+1), ∴x 2-2x 1=1, ∴x 1=k 2+43k 2 ,x 2= 5k 2+83k 2, 代入x 1x 2=1得: k 2+43k 2 • 5k 2+83k 2 =1, ∴k 4-7k 2-8=0,∴k 2=-1(舎)或k 2=8, ∴k= ±2√2 ;(3)∵△AMB 是以AB 为斜边的直角三角形, ∴MA⊥MB , MA⃗⃗⃗⃗⃗⃗ •MB ⃗⃗⃗⃗⃗⃗ =0 , 即(x 1-t ,y 1)(x 2-t ,y 2)=0, ∴(x 1-t )(x 2-t )+y 1y 2=0, 即x 1x 2-t (x 1+x 2)+t 2+y 1y 2=0,又因为y 1y 2=k 2(x 1-1)(x 2-1)=k 2(x 1x 2-x 1-x 2+1)=-4, ∴1-t (2+ 4k 2 )+t 2-4=0, 即t 2-(2+ 4k 2 )t-3=0, ∵ Δ=(2+4k 2)2+12>0 ,t 1t 2=-3<0,∴方程仅有一个正实数解, 存在一个满足条件的点M .【点评】:本题考查了直线和圆锥曲线(抛物线)的相关计算,属于综合性较强的题目,解决此类题的一个基本思路就是要联立直线方程和圆锥曲线方程,再用设而不解的方法来进行相关解答,属于中档题.21.(问答题,18分)已知数列{a n},若存在A∈R使得数列{|a n-A|}是递减数列,则称数列{a n}是“A型数列”.(1)判断数列π、- √3、-1、12是否为“A型数列”;(2)若等比数列{a n}的通项公式为a n=q n(n∈N*),q>0,其前n项和为S n,且{S n}是“A型数列”,求A的值和q的取值范围;(3)已知k>0,数列{a n}满足a1=0,a n+1=k|a n|-1(n∈N*),若存在A∈R,使得{a n}是“A型数列”,求k的取值范围,并求出所有满足条件的A(用k表示).【正确答案】:【解析】:(1)根据A型数列的新定义直接判断即可;(2)分q=1,q>1和0<q<1分别求出{a n}的前n项和为S n,再判断是否存在A满足|S n-A|递减即可求解;(3)分k≥1和0<k<1两种情况讨论,首先判断k≥1不符合题意,当0<k<1时,先证明a n≤0,进而可得a n以及符合题意的A的值,再证明A是唯一的即可.【解答】:解:(1)因为|π−0|>|−√3−0|>|−1−0|>|−12−0|,“A型数列“的定义可知该数列是“A型数列“.(2)若q=1,|S n-A|=|n-A|,不存在A∈R使得数列{|n-A|}是递减数列,此时{S n}不是“A型数列“;若q>1,S n=q(1−q n)1−q =q(q n−1)q−1,因为{S n}为递增数列,对于任意A,存在N,当n>N时,|S n-A|=S n-A,递增,因此不存在A,此时{S n}不是“A型数列“;若0<q<1,S n=−q1−q q n+q1−q,取A=q1−q,|S n−A|=q1−qq n,递减,此时符合题意;综上所述A=q1−q,q的取值范围{q|0<q<1}.(3)(i)若k≥1,则a1=0,a2=-1,a3=k-1.此时若存在A∈R使得{a n}是A型数列,则|A|>|A+1|>|k-1-A|,从而A<−12且k<1,矛盾;(ii)当0<k<1时,首先证明a n≤0(n∈N*).用反证法.由题意,此时a1=0,a2=-1,a3=k-1.因此,若存在n∈N*,使得a n>0,则n≥4.假设n=m为使得a n>0的最小正整数,则a m>0≥a m-1,故a m=−ka m−1−1>0⇒a m−1<−1k,而a m−1=−ka m−2−1<−1k ⇒a m−2>1−kk2>0,与m的最小性矛盾.故a n≤0(n∈N*),从而a n+1=-ka n-1对一切n∈N*成立.据此,可解得a n=(−k)n−1−1k+1.故当α=−1k+1时,|a n−α|=k n−1k+1,即:{|a n-α|}为递减数列.于是{a n}为α型数列.再证明α是唯一解.用反证法.假设存在A≠α使得{a n}是A型数列.若A>α,则由a2m−1=α+k2m−2k+1得,当m>log k2[(A−α)(k+1)]+1时,a2m-1<A.故|a2m−1−A|=A−α−k2m−2k+1<A−α−k2mk+1=|a2m+1−A|,{|a n-A|}不是递减数列,从而{a n}不是A型数列.同理可证A<α时,{a n}也不是A型数列,综上,k∈(0,1),相应的A=−1k+1.【点评】:本题主要考查数列中的新定义问题,数列知识的综合运用等知识,属于中等题.。

上海市浦东新区2021届高三上学期一模数学试题

上海市浦东新区2021届高三上学期一模数学试题
r
2
7r
r1
7
7
0r7,rN

当且仅当为偶数时,该项系数为有理数,
r
0,2,4,6
故有r
满足题意,
41
故所求概率.
P
82
(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特
定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中和的隐含条件,即,
nr
n
均为非负整数,且≥,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指
AC
EF
要用
表示出,,就易求得取值范围.
AEAF
AO
a
n
1
S
10.若等比数列{}的前项和为,且满足
2,则数列{}的前项和为为
anS
a
n
S
1
n
1
n
n
n
n
________.
22
n1
a
S
2
2
,令1,
2
.

可得a
S
,求得和q,确定数列的前n项和为S
n1
n
n
n
a
1
1
1
n1
n
n
a
S
aS2*
(),
n1
n
11
n1
n
A

BC
5πππ
ππ
BC

A
1243
π
2sin
sin
AB
BC
ABsinA
sinC
3
π
由正弦定理得
,所以

上海市浦东新区2021届高三一模数学试卷

上海市浦东新区2021届高三一模数学试卷

2 ,1 2 2
2 , 2
12.
2 2
,1
2020.12
二、选择题 13. C 14. C 15. D 16.B
三、解答题
注:解答题其他解法相应给分
17.解:(1)因为 SABC
1 11 2
1 2

VA1B1C1 ABC
SABC
A1A ,
V 所以, A1B1C1 ABC
S ABC
A1 A
2
6
3
由 A B C , B C 2 , B 2 C
3
3
sin B sin C sin( 2 C) sin C 3 sin C 3 cos C
3
2
2
∵0 C 2 , C 5 , 1 sin(C ) 1
36
66 2
6
sin
B
sin
C
的取值范围为
3, 2
A. 充分非必要条件
B. 必要非充分条件

1 2 8 14.若某线性方程组的增广矩阵为 2 4 16 ,则该线性方程组的解的个数为( )
A. 0 个
B. 1个
C. 无数个
D. 不确定
15.下列命题中正确的是( )
A. 三点确定一个平面
B. 垂直于同一直线的两条直线平行 C. 若直线 l 与平面 上的无数条直线都垂直,则直线 l
1 4 2
2.
(2)法一:∵ BC // B1C1 , MBC 是异面直线 BM 与 B1C1 所成的角或其补角. 在 MBC 中, BM CM 5 , BC 2 ,
由余弦定理得, cosMBC 10 , 10
MBC arccos
10
.

上海市浦东新区2022届高三上学期一模数学试题(解析版)

上海市浦东新区2022届高三上学期一模数学试题(解析版)
【小问1详解】
根据抛物线定义, ,∴ .
【小问2详解】
直线 的方程为 ,
由 , , ,




代入(5)得: ,
(舎)或 ,∴ .
【小问3详解】
∵ 是以 为斜边的直角三角形,
∴ , ,
, ,
即 ,

(或者 ),
∴ , ,
, ,方程仅有一个正实数解,
存在一个满足条件 点 .
21.已知数列 ,若存在 使得数列 是递减数列,则称数列 是“ 型数列”.
【详解】
因为实数 满足 ,
当 时,方程为 的图象为椭圆在第一象限的部分;
当 时,方程为 的图象为双曲线在第四象限的部分;
当 时,方程为 的图象为双曲线在第二象限的部分;
当 时,方程为 的图象不存在;
在同一坐标系中作出函数的图象如图所示,
根据双曲线的方程可得,两条双曲线的渐近线均为 ,
令 ,即 ,与双曲线渐近线平行,
所以 平面 ,
所以 是 与平面 所成角;
因为 , ,
所以 , ,
所以 与平面 所成角的大小为 .
18.已知函数 , .
(1)判断函数 的奇偶性,并说明理由;
(2)若函数 ,写出函数 的单调递增区间并用定义证明.
【答案】(1)答案见解析
(2) ,证明见解析
【解析】
【分析】(1)分 、 两种情况,利用函数奇偶性的定义判断出结果;
小问2详解】
若 , ,不存在 使得数列 是递减数列,此时 不是“ 型数列”;
若 , ,因为 为递增数列,对于任意 ,存在 ,
当 时, ,递增,因此不存在 ,此时 不是“ 型数列”;
若 , ,取 , ,递减;此时符合题意,综上所述 , 的取值范围 .

2021年上海市浦东新区中考数学一模试题

2021年上海市浦东新区中考数学一模试题

2021年上海市浦东新区中考数学一模试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( ) A .8sin 17A = B .cosA=815 C .tan A =817 D .cot A=815 2.已知线段MN =4cm ,P 是线段MN 的黄金分割点,MP >NP ,那么线段MP 的长度等于( )A .()cmB .(2)cmC .)cmD .﹣1)cm 3.已知二次函数 y = -( x + 3)2 ,那么这个二次函数的图像有( )A .最高点(3, 0)B .最高点(-3, 0)C .最低点(3, 0)D .最低点(-3, 0) 4.如果将抛物线y =x 2+4x +1平移,使它与抛物线y =x 2+1重合,那么平移的方式可以是( )A .向左平移 2个单位,向上平移 4个单位B .向左平移 2个单位,向下平移 4个单位C .向右平移 2个单位,向上平移 4个单位D .向右平移 2个单位,向下平移 4个单位5.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米 B .cot cot m βα-千米 C .tan tan m αβ-千米D .tan tan m βα-千米二、填空题6.已知2x =5y ,那么2x x y+=_______________. 7.如果y =(k ﹣3)x 2+k (x ﹣3)是二次函数,那么k 需满足的条件是____. 8.如图,已知直线l 1 、l 2 、l 3 分别交直线l 4于点 A 、B 、C ,交直线l 5于点 D 、E 、F,且l1 / /l2 / /l3 ,AB = 6, BC= 4, DF =15 ,那么线段DE 的长等于.9.如果△ABC∽△DEF,且△ABC的面积为2cm2,△DEF的面积为8cm2,那么△ABC与△DEF相似比为_____.10.已知向量a与单位向量e的方向相反,a= 4 ,那么向量a用单位向量e表示为_____.11.已知某斜面的坡度为_____度.12.如果抛物线经过点A(2,5)和点B (-4,5),那么这条抛物线的对称轴是直线_____.13.已知点A(﹣5,m)、B(﹣3,n)都在二次函数y12=x252-的图象上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)14.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,且BD=4,CD=2,那么AF=_____.15.在平面直角坐标系xOy 中,我们把对称轴相同的抛物线叫做同轴抛物线.已知抛物线y=-x2+ 6x 的顶点为M ,它的某条同轴抛物线的顶点为N ,且点N 在点M 的下方,MN = 10,那么点N 的坐标是_____.16.如图,已知花丛中的电线杆AB上有一盏路灯A.灯光下,小明在点C处时,测得他的影长CD=3米,他沿BC方向行走到点E处时,CE=2米,测得他的影长EF=4米,如果小明的身高为1.6米,那么电线杆AB的高度等于_____米.17.将矩形纸片ABCD 沿直线AP 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果AED ∠的余弦值为35,那么AB BC =________.三、解答题18.已知在平面直角坐标系 xOy 中,二次函数 y = 2x 2 -12x +10 的图像与 x 轴相交于点 A 和点 B (点 A 在点 B 的左边),与 y 轴相交于点C ,求△ABC 的面积. 19.如图,在直角梯形 ABCD 中,AD / /BC ,AD ⊥ CD ,M 为腰 AB 上一动点,联结 MC 、MD , AD = 10, BC = 15 , cot B =512,求: (1)线段CD 的长.(2)设线段 BM 的长为 x ,△CDM 的面积为 y ,求 y 关于 x 的函数解析式,并写出它的定义域.20.“雪龙”号考察船在某海域进行科考活动,在点 A 处测得小岛C 在它的东北方向上,它沿南偏东37°方向航行 2 海里到达点 B 处,又测得小岛C 在它的北偏东23°方向上(如图所示),求“雪龙”号考察船在点 B 处与小岛C 之间的距离.(参考数据:sin22°≈0.37 , cos22°≈0.93 , tan 22°≈ 0.40 ≈ 1.4 1.7 )21.已知,如图,在平行四边形ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连结EM ,分别交线段AD 、AC 于点F 、G .(1)求证:GF EF GM EM=;(2)当BC2=2BA∙BE时,求证:∠EMB=∠ACD.22.如图,在平面直角坐标系xOy中,直线y=﹣12x+b与x轴相交于点A,与y轴相交于点B,抛物线y=ax2﹣4ax+4经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)求证:△BOD∽△AOB;(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.23.将大小两把含30°角的直角三角尺按如图1 位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D、E 分别在大三角尺的直角边AC、BC 上,此时小三角尺的斜边DE 恰好经过大三角尺的重心G .已知∠A =∠CDE = 30°,AB =12 .(1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D第一次落在大三角尺的边AB 上时(如图2),求点B 、E 之间的距离;(3)在小三角尺绕点C 旋转的过程中,当直线DE 经过点A 时,求∠BAE 的正弦值.参考答案1.D【解析】【分析】根据锐角三角函数的定义进行作答.【详解】由勾股定理知,AB=17;A.15sin 17BC A AB == ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC ==,所以,C 错误;D.cot AC A BC ==815,所以选D. 【点睛】本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键. 2.B【解析】【分析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,MP MN =MN=4,所以, - 2. 所以答案选B. 【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.3.B【分析】根据二次函数的顶点式进行作答.【详解】由题知,y = -( x + 3)2+0,所以,这个二次函数由最高点且为(-3, 0).所以答案选B.【点睛】本题考查了二次函数的顶点式,熟练掌握二次函数的顶点式是本题解题关键.4.C【解析】根据图像平移的步骤进行作答.【详解】由题知,抛物线 y = x 2 + 4x +1=(x+2)2-3,再根据“左加右减”,知图像向右平移2 个单位,向上平移 4 个单位,可与抛物线 y = x 2 +1重合.所以答案选C.【点睛】本题考查了图像平移的步骤,熟练掌握图像平移的步骤是本题解题关键.5.A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】 本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.6.59【解析】【分析】根据解方程的步骤进行解答.【详解】由题知,2x=5y ,所以,x=52y ,代入2x x y +,得到最终值为59. 【点睛】本题考查了解方程的步骤,熟练掌握解方程的步骤是本题解题关键.7.k≠3【分析】根据二次函数的定义可得k-3≠0,即可得答案.∵y=(k﹣3)x2+k(x﹣3)是二次函数,∴k﹣3≠0,解得:k≠3,∴k需满足的条件是:k≠3,故答案为:k≠3.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.8.9【解析】【分析】根据平行线的性质和等比例定理进行解答.【详解】∵l1 / /l2 / /l3,∴AC DE AB DF=,求得DE=DF÷AC AB∵AB = 6, BC= 4, DF =15,∴AC=AB+BC=10,∴DE=DF÷ACAB=15÷106=9,故答案为9.【点睛】本题考查的是平行线的性质和等比例定理,熟练掌握是本题的解题关键. 9.1: 2【解析】【分析】根据相似三角形比例性质,三角形相似比与三角形面积相似比相等进行求解. 【详解】∵△ABC∽△DEF,且△ABC 的面积为2cm2,△DEF 的面积为8cm2,∴S△ABC:S△DEF=1: 4根据相似三角形的面积比等于相似比的平方可得△ABC 与△DEF 相似比=1: 2,故答案为1: 2.【点睛】本题考查的是相似三角形比例性质,熟练掌握相似三角形比例性质是本题的解题关键. 10.-4e【解析】【分析】根据向量的表示方法及相反数的性质进行计算.【详解】∵已知向量a 与单位向量e 的方向相反,且a = 4,∴-a =-4a e e =-,【点睛】本题考查的是向量的表示方法及相反数的性质,熟练掌握其性质是本题的解题关键. 11.30°【解析】分析:画出示意图,利用坡角的定义直接得出求出∠A 即可.详解:如图所示:∵某坡面的坡比为1:,∴tan A则它的坡角是:30∘.故答案为30.点睛:本题考查三角函数的知识,解题的关键是掌握特殊角度的三角函数值,常见的特殊角的三角函数值包括30°、60°、90°、45°的三角函数值,直接根据特殊角度的三角函数值进行12.x =-1【解析】【分析】根据抛物线对称轴的性质分析进行计算.【详解】抛物线经过点A(2,5)和点B(-4,5),可得出这两点为抛物线上关于对称轴对称的两点,所以抛物线对称轴为x=(2+(-4))÷2=-1,故对称轴直线为x =-1.【点睛】本题考查的是抛物线对称轴的性质,熟练掌握性质是本题的解题关键.13.>【分析】根据抛物线解析式可得抛物线的对称轴是y轴,根据二次函数的性质即可的答案.【详解】∵二次函数的解析式为y12=x252-∴抛物线的对称轴为y轴,∵12>0,∴抛物线开口向上,∴当x<0时,y随x的增大而减小,∵-5<-3,∴m>n.故答案为:>【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.14 3【分析】根据三角形的角性质定理、相似三角形的性质进行求解. 【详解】∵△ABC 和△ADE 都是等边三角形,∴∠B=∠ADE=∠C=60°,∵∠B+∠BAD=∠ADF+∠FDC,∴∠BAD=∠FDC,∴△ABD∽△FDC,∴DC FC AB BD=,∵BD= 4,CD= 2,且△ABC是等边三角形,∴AB=BC=BD+DC=6,∴2=6 DC FCAB BD=,∴FC=4 3 ,AF=AC-FC=14 3.【点睛】本题主要考查的是三角形的角性质定理、相似三角形的性质,熟练掌握是本题的解题关键. 15.(3,-1)【分析】根据题意求出M,根据二次函数对称轴的知识点即可求出N.【详解】根据题意,抛物线y=-x2+ 6x的对称轴的横坐标为3,可得M为(3,9)又知道把对称轴相同的抛物线叫做同轴抛物线,所以点N的横坐标与M相同,为3.又因为点 N 在点 M 的下方,MN = 10,即点N的纵坐标为-1.可得点N为(3,-1).【点睛】本题考察了二次函数抛物线对称轴的相关知识,能够理解同轴抛物线的意义是解答本题的关键.16.245【解析】【分析】根据相似三角形的判定,由AB//CG 得三角形相似,利用相似比即可解答.【详解】根据AB//CG 得△ABD ∽△GCD , 即AB BD GC CD =,即31.63AB BC +=, 同理可得△ABF ∽△HEF , 即AB BF HE EF =,即61.64AB BC +=, 根据31.63AB BC +=和61.64AB BC +=得AB=245. 【点睛】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决. 17.2425【分析】设35EF a AE a ==,,则5AD BC a ==,利用射影定理可得94PF a =,利用勾股定理可得154DP a =,再根据ABE ECP ∆∆∽,即可得到BE AE CP EP =,进而得出245AB a =,据此可得AB BC的值. 【详解】解:如图所示,由折叠可得,AP 垂直平分DE ,90ADP AEP ∠=∠=︒,∵AED ∠的余弦值为35, ∴可设35EF a AE a ==,,则5AD BC a ==,∵Rt AEP ∆中,EF AP ⊥,∴2EF AF PF =⨯,即294EF PF a AF ==, ∴Rt ADP ∆中,154DP a ==, ∴154PE a =, 设AB CD x ==,则154CP x a =-,BE == 由90B C BAE CEP ∠=∠=︒∠=∠,,可得ABE ECP ∆∆∽, ∴BE AE CP EP =51544a x a a =-, 解得245x a =, ∴245AB a =, ∴24245525a AB BC a ==, 故答案为2425.【点睛】本题主要考查了矩形的性质,折叠的性质以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.20【解析】【分析】根据题意求出A,B,C即可解答. 【详解】解:根据二次函数 y= 2x2-12x +10,可得A(1,0),B(5,0),C(0,10),即S△ABC=12×4×10=20.【点睛】本题考查二次函数的特殊点,求出特殊点是解题关键.19.(1)CD=12;(2)y=-309013x+( 0 <x<13 ).【解析】【分析】(1)做AM垂直BC于M,根据条件即可解答.(2) 做MN垂直BC于N,,根据三角函数求出NC即可解答. 【详解】解:(1)做AE垂直BC于M,则BE=15-10=5.又因为cotB=512,BE=5,可得AE=12,即CD=12.(2)做MN垂直BC于N,则BN=513x,CN=15-513x,即y=12×12×(15-513x)=-3013x+90,(定义域为0≤x≤13).【点睛】本题考查三角函数的综合运用,能够根据题意得出式子是解答关键.20.5.25 海里【解析】【分析】做AN 垂直BC 于N ,根据三角函数求出BN 的长度,再根据条件得出∠C,从而可求CN 进行解答.【详解】解:由图可知做AN 垂直BC 于点N ,根据平行线定理得∠ABC=37°+23°=60°,已知∠ABC=60°,AB=2,可得BN=1,,根据条件可得∠C=22°,即AN CN=tan22°=0.40,得NC=4.25, 所以BC=1+4.25=5.25.【点睛】本题只要考察三角函数的综合运用,能够正确画出辅助线是解题关键.21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据题意可得四边形ABCD 是平行四边形,易证△FGA ∽△MGC ,△EAF ∽△EBM ,再利用相似三角形的性质与等量代换即可得证;(2)将BC 2=2BA∙BE 变形为12BC BA BA BE BMBC ==,根据相似三角形的判定可得△BCA ∽△BEM ,则∠BME=∠BAC ,再根据平行四边形的性质即可得证.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴ △FGA ∽△MGC ,△EAF ∽△EBM , ∴FG AF GM CM =,AF EF BM EM=, ∵M 是BC 边的中点,∴CM=BM , ∴FG AF GM BM=, ∴GF EF GM EM =; (2)∵BC 2=2BA ⋅BE , ∴12BC BA BA BE BMBC ==, ∵∠B=∠B ,∴△BCA ∽△BEM ,∴∠BME=∠BAC ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD=∠BAC ,∴∠EMB=∠ACD .【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.22.(1)y =﹣18x 2+12x+4(2)证明见解析(3)(165,125) 【解析】【分析】(1)利用直线表达式求出点A 、B 的坐标,把这两个点的坐标代入二次函数表达式即可求解;(2)利用两个三角形夹角相等、夹边成比例,即可证明△BOD∽△AOB;(3)证明△BCP∽△BAC,则BP BCBC BA=,求出BP的长度,即可求解.【详解】解:(1)∵抛物线y=ax2﹣4ax+4经过点A和点B,点B在y轴上,∴当x=0时,y=4,∴点B的坐标为(0,4),∵直线y=﹣12x+b与x轴相交于点A,与y轴相交于点B,∴b=4,∴直线y=﹣12x+4,当y=0时,x=8,∴点A的坐标为(8,0),∵抛物线y=ax2﹣4ax+4经过点A和点B,∴a×82﹣4a×8+4=0,解得,a=18 -,∴抛物线y=18-x2+12x+4;(2)证明:∵y=18-x2+12x+4=21(2)8x--+92,该抛物线的对称轴与x轴相交于点D,令y=0,解得:x=﹣4和8,则点C的坐标为(﹣4,0),即:OC=4,∴点D的坐标为(2,0),∴OD=2,∵点B(0,4),∴OB=4,∵点A(8,0),∴OA =8, ∴12OD OB =,4182OB OA == , ∴OD OB OB OA =, ∵∠BOD =∠AOB =90°,∴△BOD ∽△AOB ;(3)连接CP ,∵△BOD ∽△AOB ,∴∠OBD =∠BAO =α,∠BCP =∠DBO =α,∴∠BCP =∠BAO =α,而∠CPB =∠CBP ,∴△BCP ∽△BAC ,则BP BC BC BA=,其中,BC = ,AB =BP过点P 作x 轴的平行线交y 轴于点H ,∵PH ∥x 轴, ∴PH PB OA BA=,即:8PH =,解得:PH =165, 即:点P 的横坐标为:165, 同理可得其纵坐标为125, 即点P 的坐标为(165,125). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养,要会利用数形结合的思想把代数和几何图形结合起来,利用三角形相似求出线段的长度.23.(1)(2)(3)6 【解析】【分析】(1)求出BC ,AC,利用重心即可解答.(2) 做CH ⊥AB 于H ,根据条件求出AD ,利用三角形相似即可解答.(3)分类讨论DE 在AC 下方和DE 在AC 上方时的情况,利用勾股定理即可解答.【详解】解:(1)根据题意得BC=6, 由重心性质可得23CD AC =,可得.(2)做CH ⊥AB 于H ,可得BH=3,AH=9,∵,即.∴∵∠ACD=∠BCE ,CE CB CD CA ==, 所以△ACD ∽△BCE ,所以BE CE AD CD ==. (3)①DE 在AC 下方时:△ACD ∽△BCE ,得∠BED=∠ADC=∠DCE+∠CED ,BE CB AD CA ==,∴∠AEB=∠DCE=90°,设x, 在Rt △ABE 中,222AE BE AB +=,可得.所以sin ∠BAE=12x ②DE 在AC 上方时, 同理BE AD = ∠BEC+∠DEC=∠D+∠DEC=90°, ∴∠AEB=90,设在直角三角形ABE 中,222AE BE AB +=,解得所以sin ∠BAE=126x =.故∠BAE 的正弦值.【点睛】 本题考查三角形相关知识的综合运用,掌握重心,证明三角形相似等知识点是解答本题的关键.。

2021-2022学年上海市浦东新区九年级上学期期末数学试卷(一模)(含答案解析)

2021-2022学年上海市浦东新区九年级上学期期末数学试卷(一模)(含答案解析)

2021-2022学年上海市浦东新区九年级上学期期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1. 已知a b =c d ,则下列等式中不成立的是( ) A. a c =b dB. a−2b b =c−2d dC.b−a a =d−c c D. a+b b+c =c d 2. 如图,在△ABC 中,若∠C =Rt∠,则( )A. sinA =acB. sinA =b cC. cosB =b cD. cosB =b a3. 下列函数中,y 关于x 的二次函数的是( ) A. y =x 3+2x 2+3B. y =−1x 2C. y =x 2+xD. y =mx 2+x +1 4. 下列等式一定正确的是( )A. AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗B. AB ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ C. AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗D. AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0⃗ 5. 如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且点C 是弧BD 的中点.过点C 作AD 的垂线EF 交直线AD 于点E.若⊙O 的半径为2.5,AC 的长度为4,则CE 的长度为( )A. 3B. 203C. 125D. 1656.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为()A.B.C.D.二、填空题(本大题共12小题,共48.0分)7.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是______ cm.8.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是______.9.计算:√12+√13−sin60°=______ .10.如图1是两扇推拉门,AB是门槛,AD,BC是可转动门宽,现将两扇门推到如图2的位置(平面示意图),其中tan∠DAB=512,tan∠CBA=34,测得C,D间的距离为4√130dm,则门槛AB的长为______dm.11.已知点A、B都在反比例函数y=6x(x>0)的图象上,其横坐标分别是m、n(m<n).过点A分别向x轴、y轴作垂线,垂足分别是C、D;过点B分别向x轴、y轴作垂线,垂足分别是E、F,AC与BF交于点P.当点P在线段DE上,且m(n−2)=3时,m的值等于______.12.平行四边形ABCD中,AB=6cm,BC=12cm,对边AD和BC之间的距离是4cm,则对边AB和CD间的距离是______cm.13.若二次函数y=−(x+1)2+ℎ的图象与线段y=x+2(−3≤x≤1)没有交点,则ℎ的取值范围是______ .14.y=x2+kx+1与y=x2−x−k的图象相交,若有一个交点在x轴上,则k为______.15.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为______.16.如图,已知梯形ABCD中,AB//CD,AB=12,CD=9,过对角线的交点O作底边平行线与两腰交于点E,F,则OE的长为______.17.如果A(−1,y1),B(−2,y2)是二次函数y=x2+m图象上的两个点,那么y1______ y2(填“<”或者“>”)18.如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若△DEF的面积为1,则△ABC的面积为______.三、解答题(本大题共7小题,共78.0分)19.如图,已知两个不平行的向量a⃗、b⃗ .(1)化简:2(3a⃗−b⃗ )−(a⃗+b⃗ );a⃗ .(不要求写作法,但要指出所作图中表示结论的向量).(2)求作c⃗,使得c⃗=b⃗ −1220.在平面直角坐标系xOy中,二次函数y=x2−2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度,向上平移1个单位长度得到点B.(1)直接写出点A的坐标为______ ,点B的坐标为______ ;(2)若函数y=x2−2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.21.如图,在△ABC中,D,E分别是AB和AC上的点,且DE//BC.(1)若AD=3,BD=6,AE=2.8,求EC的长;(2)若AB=12,BD=8,CE=7,求AE的长.22.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C处分别测得气球A的仰角∠ABD为30°,∠ACD为45°.求气球A离地面的高度AD(结果保留根号).23.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC;(2)若BC=12,AFFC =12,求线段BE的长.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C(0,3),且抛物线的顶点坐标为(1,4).(1)求抛物线的解析式;(2)如图2,点D是第一象限抛物线上的一点,AD交y轴于点E,设点D的横坐标为m,设△CDE的面积为S,求S与m的函数关系式(不必写出自变量的取值范围);(3)在(2)的条件下,连接AC,是否存在这样的点D,使得∠DAB=2∠ACO,若存在,求点D的坐标及相应的S的值,若不存在,请说明理由.25.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2.动点P以每秒2个单位长度的速度从点A出发,沿A→C→B的方向向终点B运动(点P不与△ABC的顶点重合).点P关于点C的对称点为点D,过点P作PQ⊥AB于点Q,以PD、PQ为边作▱PDEQ.设▱PDEQ与△ABC.重叠部分的面积为S,点P的运动时间为t(s)(1)当点P在AC上运动时,用含t的代数式表示PD的长;(2)当点E落在△ABC的直角边上时,求t的值;(3)当▱PDEQ与△ABC重叠部分的图形是四边形时,求S与t之间的函数关系式.参考答案及解析1.答案:D解析:解:A、∵ab =cd,∴ac =bd,成立;B、∵a−2bb =c−2dd,∴ad−2bd=cb−2bd,∴ab=bc,∴等式成立;C、∵b−aa =d−cc,cb−ca=ad−ac,∴bc=ad,∴等式成立;D、∵a+bb+c =cd,∴ad+bd=bc+c2,∴等式不成立;故选:D.直接利用比例的性质以及等式的性质将各选项化简进而得出答案.此题主要考查了比例的性质,正确将原式变形是解题关键.2.答案:A解析:解:在△ABC中,若∠C=Rt∠,sinA=ac ,cosB=ac,故选:A.根据三角函数的定义即可得到结论.本题考查了三角函数的定义,熟练掌握三角函数的定义是解题的关键.3.答案:C解析:本题考查了二次函数的定义,利用二次函数的定义是解题关键.根据二次函数的定义求解即可.解:A.是三次函数,故A 不符合题意;B .此函数关系的右边不是整式,故B 不符合题意;C .是二次函数,故C 符合题意;D .m =0时是一次函数,故D 不符合题意.故选C .4.答案:D解析:解:A 、AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =−BA ⃗⃗⃗⃗⃗ −CB⃗⃗⃗⃗⃗ ,故不符合题意. B 、AB ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ ,故不符合题意. C 、AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =−DA ⃗⃗⃗⃗⃗ ,故不符合题意. D 、AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0⃗ ,故符合题意. 故选:D .根据相等向量、平行向量以及三角形法则解答.本题主要考查了平面向量的知识,解题时需要注意:平面向量既有大小,又有方向.5.答案:C解析:解:连接BC ,∵点C 是弧BD 的中点,∴∠EAC =∠CAB ,又∵AB 为直径,AE ⊥EF ,∴∠AEC =∠ACB =90°,∴△EAC∽△CAB ,∴AC AB =EC BC ,∴EC =AC⋅BC AB =4×√52−425=125.故选:C .根据直径所对的角是90°和等弧对等角判定相似,然后根据相似三角形的性质结合勾股定理求出CE 的长度.本题主要考查圆周角定理、相似三角形的判定和性质和圆心角、弧、弦的关系,关键是在圆中寻找相等的角判定相似.6.答案:C解析:解析:试题分析:连接0B,如图,OABC是边长为1的正方形,由勾股定理得OB=,OC与x轴正半轴的夹角为15°,点B在y轴上的投影为=;OC与x轴正半轴的夹角为15°,点B在x轴上的投影为=,由图知,点B在第四象限,所以点B坐标为(,−);点B在抛物线(a<0)的图象上,所以,解得a=,所以选C考点:正方形,抛物线,三角函数点评:本题考查正方形,抛物线,三角函数,解答本题需要考生熟悉正方形的性质,掌握抛物线的概念和性质,掌握三角函数的概念7.答案:100解析:先设实际距离500km的两地在地图上的图距是xcm,根据图上距离比上实际距离等于比例尺,可得关于x的方程,解即可.本题考查了比例线段,解题的关键是根据比例尺不变得出等式.解:设实际距离500km的两地在地图上的图距是xcm,则4:2000000=x:50000000,解得x=100.故答案是100.8.答案:x2−6x+4=0解析:解:设雕像的上部高x m,则题意得:x 2−x =2−x2,整理得:x2−6x+4=0,故答案为:x2−6x+4=0设雕像的上部高x m ,则下部长为(2−x)m ,然后根据题意列出方程即可.本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.9.答案:76√3 解析:解:原式=2√3+√33−√32=76√3.故答案为:76√3.直接利用二次根式的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键. 10.答案:260解析:解:过D 作DF ⊥AB 于F ,过C 点作CG ⊥AB 于G ,过点D 作DE ⊥CG 于E ,则四边形DFGE 为矩形,∴DE =FG ,EG =DF ,∠DEC =90°,设AD =BC =x ,则AB =2x ,∵tan∠DAB =512,tan∠CBA =34, ∴sin∠A =513,sin∠B =35,∴DF =513x ,AF =1213x ,CG =35x ,BG =45x ,∴CE =CG −EG =CG −DF =35x −513x =1465x , DE =FG =AB −AF −BG =2a −1213x −45x =1865x ,在Rt △CDE 中,DC =4√130dm ,DE 2+CE 2=DC 2,即(1865x)2+(1465x)2=(4√130)2,解得x =130,∴AB =2x =260dm .过D 作DF ⊥AB 于F ,过C 点作CG ⊥AB 于G ,过点D 作DE ⊥CG 于E ,则四边形DFGE 为矩形,进而可得DE =FG ,EG =DF ,设AD =BC =x ,则AB =2x ,通过解直角三角形可求得CE =1465x ,DE =1865x ,利用勾股定理列式计算可求解x 值,进而求解AB 的值.本题主要考查解直角三角形的应用,构造直角△CDE 是解题的关键.11.答案:1+√72 解析:本题考查了反比例函数的性质:反比例函数y =kx (k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.解:如图,A(m,6m ),B(n,6n ),则P(m,6n), ∵点P 在线段DE 上,AD//CE ,∴△ADP∽△CEP ,∴ADCE =AP PC ,即mn−m =6m −6n 6n ,∴m 2=(n −m)2,而n >m >0, ∴m =n −m ,即n =2m ,把n =2m 代入m(n −2)=2得m(2m −2)=3,整理得2m 2−2m −3=0,解得m 1=1+√72,m 2=1−√72(舍去), 即m 的值为1+√72.故答案为1+√72.如图,A(m,6m ),B(n,6n),则P(m,6n),通过证明△ADP∽△CEP得到ADCE=APPC,即mn−m=6m−6n6n,从而得到n=2m,所以m(2m−2)=3,然后解关于m的方程即可.12.答案:8解析:解:设对边AB和CD间的距离是xcm,根据平行四边形的面积公式可得:6x=12×4,可得x=8.故答案为8.根据平行四边形的面积公式求解即可.“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.13.答案:ℎ>7或ℎ<34解析:解:x=1时,y=x+2=3,将(1,3)代入y=−(x+1)2+ℎ并解得:ℎ=7,联立y=−(x+1)2+ℎ和y=x+2并整理得:x2+3x+(3−ℎ)=0,∵△=3−4(3−ℎ)<0,∴ℎ<34,故答案为ℎ>7或ℎ<34.将(1,3)代入y=−(x+1)2+ℎ并解得:ℎ=7,再根据△=3−4(3−ℎ)<0,即可求解.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.14.答案:2解析:解:根据题意可知,x2+kx+1=0,x2−x−k=0,即x2+kx+1=x2−x−k,(k+1)x=−(k+1),解得x=−1,把x=−1代入x2+kx+1=0中,解得k=2.故答案为:2.根据题意可知交点在x轴上,即x2+kx+1=x2−x−k=0,解方程得x=−1,再把x=−1代入x2+kx+1=x2−x−k=0中即可得出答案.本题主要考查了二次函数的性质及二次函数图像上点的坐标特征,合理利用二次函数的性质进行计算是解决本题的关键.15.答案:13解析:解:由翻折变换可知,AD=AF=5,在Rt△ABF中,由勾股定理得,BF=√AF2−AB2=√52−32=4,∴FC=BC−BF=5=4=1,设DE=x,则EF=x,EC=3−x,在Rt△EFC中,由勾股定理得,12+(3−x)2=x2,解得x=53,即DE=53,在Rt△ADE中,tan∠DAE=DEAD =535=13,故答案为:13.根据翻折变换和勾股定理可求出FC=1,再在Rt△EFC中,由勾股定理求出DE,最后根据锐角三角函数的定义求解即可.本题考查翻折变换,直角三角形的边角关系,理解翻折变换的性质和勾股定理是解决问题的关键.16.答案:367解析:解:∵AB//CD,AB=12,CD=9,∴DOOB =DCAB=34,∴DODB =COCA=37,∵EF//AB,∴EOAB =DODB=37,FOAB=COCA=37,∴EO=FO=37AB=37×12=367.由AB//CD,AB=12,CD=9,EF//AB,根据平行线分线段成比例即可求解;本题考查了梯形及平行线分线段成比例,解题的关键是熟练掌握基本知识,属于中考常考题型.17.答案:<解析:解:∵二次函数y=x2+m中a=1>0,∴抛物线开口向上.∵x=−b2a=0,−1<−2,∴A(−1,y1),B(−2,y2)在对称轴的左侧,且y随x的增大而减小,∴y1<y2.故答案为:<.根据函数解析式的特点,其对称轴为x=0,图象开口向上;利用对称轴左侧y随x的增大而减小,可判断y1<y2.本题考查的是二次函数图象上点的坐标特点,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.答案:154解析:解:连接DC,设平行线间的距离为ℎ,AD=2a,如图所示:∵S△DEF=12DE⋅2ℎ=DE⋅ℎ,S△ADE=12DE⋅2ℎ=DE⋅ℎ,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:S△DEC=12,又∵S △ADC =S △ADE +S △DEC ,∴S △ADC =32, 又∵平行线是一组等距的,AD =2a , ∴BD =3a ,又∵S △ADC =12AD ⋅k =ak ,S △BDC =12BD ⋅k =32ak ,∴S △BDC =32×32=94, 又∵S △ABC =S △ADC +S △BDC ,∴S △ABC =94+32=154, 故答案为154.在三角形中由同底等高,同底倍高求出S △ADC =32,根据三角形相似的判定与性质的运用,等距平行线间的对应线段相等求出S △BDC =94,最后由三角形的面积的和差法求得S △ABC =154.本题综合考查了相似三角形的判定与性质,平行线间的距离相等,三角形的面积求法等知识,重点掌握三角形相似的判定与性质的运用,等距平行线间的对应线段相等,难点是作辅助线求三角形的面积.19.答案:解:(1)2(3a ⃗ −b ⃗ )−(a ⃗ +b ⃗ )=6a ⃗ −2b ⃗ −a ⃗ −b ⃗ =5a ⃗ −3b ⃗ ;(2)如图,AB ⃗⃗⃗⃗⃗ =12a ⃗ ,CB ⃗⃗⃗⃗⃗ =b ⃗ ,则CA ⃗⃗⃗⃗⃗ =c ⃗ =b ⃗ −12a ⃗ . ∴CA⃗⃗⃗⃗⃗ 即为所求. 解析:(1)直接利用平面向量的加减运算法则求解即可求得,注意去括号时的符号变化;(2)利用三角形法则求解即可求得答案.此题考查了平面向量的运算与作法.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.20.答案:(0,1) (4,2)解析:解:(1)当x =0时,y =1,因此点A 的坐标为(0,1),将点A 向右平移4个单位长度,向上平移1个单位长度得到点B ,因此点B 坐标为(4,2),故答案为:(0,1),(4,2);(2)抛物线y =x 2−2mx +1的对称轴为x =−b 2a =−−2m 2=m ,抛物线恒过点A(0,1), 当函数y =x 2−2mx +1的图象与线段AB 恰有一个公共点,就是抛物线与线段AB 除点A 以外没有其它的公共点,设线段AB 的关系式为y =kx +b ,把A(0,1)B(4,2)代入得,{b =14k +b =1, 解得{k =14b =1, ∴线段AB 的关系式为y =14x +1(0≤x ≤4),当函数y =x 2−2mx +1的图象与线段AB 有两个公共点时,即方程x 2−2mx +1=14x +1有两个不相等的实数根, 解得x 1=0,x 2=2m +14,∵函数y =x 2−2mx +1的图象与线段AB 的交点在0到4之间,∴0<2m +14≤4,解得−18<m ≤158, 即当−18<m ≤158,函数y =x 2−2mx +1的图象与线段AB 有两个公共点, ∴当m ≤−18或m >158时,函数y =x 2−2mx +1的图象与线段AB 恰有一个公共点时,综上所述,当m ≤−180或m >158时,函数y =x 2−2mx +1的图象与线段AB 恰有一个公共点. (1)根据关系式可求出抛物线与y 轴的交点坐标,即点A 的坐标,再根据平移可得点B 坐标;(2)求出线段AB的关系式,而抛物线过点A,因此当函数y=x2−2mx+1的图象与线段AB有两个公共点时,就是抛物线与线段AB的关系式组成的方程组有两个不相等的实数根,进而求得m的取值范围,再得出函数y=x2−2mx+1的图象与线段AB恰有一个公共点时m的取值范围即可.本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提.21.答案:解:(1)∵DE//BC,∴ADBD =AEEC,∵AD=3,BD=6,AE=2.8,∴36=2.8EC,解得:EC=5.6;(2)∵DE//BC,∴ABBD =ACEC,∵AB=12,BD=8,CE=7,∴128=AC7,解得:AC=212,∴AE=AC−EC=212−7=72.解析:(1)根据平行线分线段成比例定理得到ADBD =AEEC,代入计算即可;(2)根据平行线分线段成比例定理求出AC,结合图形计算,得到答案.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.22.答案:解:设AD=x,∵AD⊥CD,∠ACD=45°,∴CD=AD=x,∵AD⊥BD,∠ABD=30°,∴BD=√3AD=√3x,∵BC=BD−CD=20,∴√3x−x=20,解得:x=10√3+10;答:气球A离地面的高度AD为(10√3+10)m.解析:本题考查的是解直角三角形的应用−仰角俯角问题,属于基础题.设AD =x ,由题意得出CD =AD =x ,BD =√3AD =√3x ,由BC =BD −CD =20,得出方程√3x −x =20,解方程即可.23.答案:证明:(1)∵DE//AC ,∴∠DEB =∠FCE ,∵EF//AB ,∴∠DBE =∠FEC ,∴△BDE∽△EFC ;(2)∵EF//AB ,∴BE EC =AF FC =12, ∵EC =BC −BE =12−BE ,∴BE 12−BE =12,解得:BE =4.解析:(1)由平行线的性质可得∠DEB =∠FCE ,∠DBE =∠FEC ,可得结论;(2)由平行线分线段成比例可得BE EC =AF FC =12,即可求解.本题考查了相似三角形的判定和性质,平行线分线段成比例,掌握相似三角形的判定是本题的关键. 24.答案:解:(1)设抛物线的表达式为:y =a(x −ℎ)2+k =a(x −1)2+4,将点C 的坐标代入上式并解得:a =−1,故抛物线的表达式为:y =−(x −1)2+4=−x 2+2x +3①;(2)点D 的横坐标为m ,则点D 的坐标为(m,−m 2+2m +3),设直线AD 的表达式为:y =kx +t ,则{−m 2+2m +3=km +t 0=−k +t,解得{k =3−m t =3−m , 故直线AD 的表达式为:y =−(m −3)x +3−m ,故点E(0,3−m),则CE =3−(3−m)=m ,则S =S △CED +S △CEA =12CE ×(x D −x A )=12m(m +1)=12m 2+12m ;(3)存在,理由:在OB 上截取OM =OA =1,故点M(1,0),则∠MCO =∠ACO ,∵∠DAB =2∠ACO ,∴∠ACM =∠DAB ,在△ACM 中,设CM 边上的高为ℎ,AC =MC =√32+12=√10,则S △AMC =12AM ×CO =12×CM ×ℎ,即2×3=√10ℎ,解得:ℎ=√10,在△ACM 中,sin∠ACM =ℎAC =6√10√10=35=sin∠DAB ,则tan∠DAB =34, 在Rt △AOE 中,OA =1,tan∠DAB =34,则OE =34,故点E(0,34),由点A 、E 的坐标得,直线AE 的表达式为:y =34x +34②, 联立①②并解得:x =94或−1(舍去−1),故x =94=m ,故点D(94,3916) 由(2)知,S =12m 2+12m =11732, ∴点D 的坐标为(94,3916),相应的S 的值为11732.解析:(1)设抛物线的表达式为:y =a(x −ℎ)2+k =a(x −1)2+4,将C 的坐标代入上式,即可求解;(2)S =S △CED +S △CEA =12CE ×(x D −x A )=12m(m +1)=12m 2+12m ;(3)求出sin∠ACM =ℎAC =sin∠DAB ,则tan∠DAB =34,得到直线AE 的表达式,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、面积的计算等,综合性强,难度适中.25.答案:解:(1)由题意,得AP =2t ,CP =2−2t , ∴PD =2CP =4−4t ;(2)①如图2−1,当点E 落在BC 边上时,过点Q 作QH ⊥AD 于H , 由题意知,△AQP 和△CED 为等腰直角三角形, ∴CE =HQ =12AP ,CE =CD , ∵HQ =12AP =t ,CD =PC =2−2t ,∴t =2−2t ,∴t =23;②如图2−2,当点E 落在AC 边上时,过点Q 作QG ⊥BC 于G , 由题意知,△BQP 和△CED 为等腰直角三角形, ∴CE =GQ =12BP ,CE =CD ,∵GQ =12BP =12(4−2t)=2−t ,CD =PC =2t −2, ∴2−t =2t −2,∴t =43,综上所述,点E 落在△ABC 的直角边上时,t 的值为23或43;(3)如图3−1,当0<t ≤23时,S =S 梯形PQMC=12t(2−2t +2−t)=−32t 2+2t ;如图3−2,当43≤t ≤2时,S =S 梯形PQNC=12(2−t)(2t −2+t)=−32t 2+4t −2, 综上所述,S ={−32t 2+2t(0<t ≤23)−32t 2+4t −2(43≤t <2). 解析:(1)由题意,可先写出AP 的长,再写出CP 的长,由对称的性质即可写出PD 的长;(2)①如图2−1,当点E 落在BC 边上时,过点Q 作QH ⊥AD 于H ,证明CE =HQ =12AP =CD ,即可列出关于t 方程,求出t 的值;②如图2−2,当点E 落在AC 边上时,过点Q 作QG ⊥BC 于G ,证明CE =GQ =12BP =CD ,即可列出关于t 的方程,求出t 的值即可; (3)如图3−1,当0<t ≤23时,求出梯形PQMC 的面积即可;如图3−2,当43≤t ≤2时,求出梯形PQCN 的面积即可.本题考查了等腰直角三角形的性质,平行四边形的性质,四边形的面积等,解题关键是能够根据题意画出图形,并注意分类讨论思想的运用.。

上海市浦东新区名校2021-2022学年中考一模数学试题含解析

上海市浦东新区名校2021-2022学年中考一模数学试题含解析

上海市浦东新区名校2021-2022学年中考一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在0.3,﹣3,0,﹣3这四个数中,最大的是( )A .0.3B .﹣3C .0D .﹣32.已知关于x 的方程x 2+3x +a =0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣53.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D .4.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒5.如图,已知点 P 是双曲线 y =2x上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y = 3xB .y =﹣ 13xC .y = 13xD .y =﹣3x6.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次C .2x 2y –3y 2–1是3次3项式D .3x 2y 3与–3213x y 是同类项 7.若关于x 的一元二次方程ax 2+2x ﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值范围是( )A .a <3B .a >3C .a <﹣3D .a >﹣38.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A .50°B .110°C .130°D .150°9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( ) A .20 B .25 C .30 D .3510.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°二、填空题(共7小题,每小题3分,满分21分)11.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为_____.12.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.13.如图,在平面直角坐标系xOy中,△ABC的顶点A、C在坐标轴上,点B的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.14.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.15.我们知道方程组345456x yx y+=⎧⎨+=⎩的解是12xy=-⎧⎨=⎩,现给出另一个方程组3(23)4(2)54(23)5(2)6x yx y++-=⎧⎨++-=⎩,它的解是____.16.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.17.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.三、解答题(共7小题,满分69分)18.(10分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.8 1.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B 种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?19.(5分)解方程21=122xx x---20.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.21.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)22.(10分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.23.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.24.(14分)如图,AB为⊙O直径,C为⊙O上一点,点D是BC的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<30<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.2、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B .3、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】312840x x ->⎧⎨-≤⎩①② 解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.4、B【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.5、D【解析】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,利用AAS 得到两三角形全等,由全等三角形对应边相等及反比例函数k 的几何意义确定出所求即可.【详解】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN ,由旋转可得OP=OQ ,在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ),∴ON=PM ,QN=OM ,设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x 上. 故选D .【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.6、C【解析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误;B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y-3y 2-1是3次3项式,此选项正确;D 、3x 2y 3与﹣3213x y 相同字母的次数不同,不是同类项,此选项错误; 故选C .【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.7、B【解析】试题分析:当x=0时,y=-5;当x=1时,y=a -1,函数与x 轴在0和1之间有一个交点,则a -1>0,解得:a >1.考点:一元二次方程与函数8、C【解析】如图,根据长方形的性质得出EF ∥GH ,推出∠FCD=∠2,代入∠FCD=∠1+∠A 求出即可.【详解】∵EF ∥GH ,∴∠FCD=∠2,∵∠FCD=∠1+∠A ,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.9、B【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:k y x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿.故选B.10、C【解析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x (x <0)中,得k=8. 给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.12、10【解析】连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC,当CD⊥OA时CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=2213-12=5,∴CD=5×2=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .13、(-5,112)【解析】分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣6x的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于552,可得OC=112,进而得到点C2的坐标是(﹣5,112).详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣6x的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于552,∴AA2×OC=552,∴OC=112,∴点C2的坐标是(﹣5,112).故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.14、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】:∵第1个正方形的面积为:1+4××2×1=5=51;第2个正方形的面积为:5+4××2×=25=52;第3个正方形的面积为:25+4××2×=125=53;…∴第n个正方形的面积为:5n;∴第2018个正方形的面积为:1.故答案为1.【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.15、24 xy=-⎧⎨=⎩【解析】观察两个方程组的形式与联系,可得第二个方程组中23122xy+=-⎧⎨-=⎩,解之即可.【详解】解:由题意得23122xy+=-⎧⎨-=⎩,解得24xy=-⎧⎨=⎩.故答案为:24xy=-⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、50【解析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.17、1【解析】由抛物线y=x 2-2x+m 与x 轴只有一个交点可知,对应的一元二次方程x 2-2x+m=2,根的判别式△=b 2-4ac=2,由此即可得到关于m 的方程,解方程即可求得m 的值.【详解】解:∵抛物线y=x 2﹣2x+m 与x 轴只有一个交点,∴△=2,∴b 2﹣4ac=22﹣4×1×m=2;∴m=1.故答案为1.【点睛】本题考查了抛物线与x 轴的交点问题,注:①抛物线与x 轴有两个交点,则△>2;②抛物线与x 轴无交点,则△<2;③抛物线与x 轴有一个交点,则△=2.三、解答题(共7小题,满分69分)18、(1)该公司计划购进A 种品牌的教学设备20套,购进B 种品牌的教学设备30套;(2)A 种品牌的教学设备购进数量至多减少1套.【解析】(1)设该公司计划购进A 种品牌的教学设备x 套,购进B 种品牌的教学设备y 套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设A 种品牌的教学设备购进数量减少m 套,则B 种品牌的教学设备购进数量增加1.5m 套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m 的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】解:(1)设该公司计划购进A 种品牌的教学设备x 套,购进B 种品牌的教学设备y 套,根据题意得:()()1.5 1.2661.8 1.5 1.4 1.212x y x y +⎧⎨-+-⎩== 解得:2030x y =⎧⎨=⎩. 答:该公司计划购进A 种品牌的教学设备20套,购进B 种品牌的教学设备30套.(2)设A 种品牌的教学设备购进数量减少m 套,则B 种品牌的教学设备购进数量增加1.5m 套,根据题意得:1.5(20﹣m )+1.2(30+1.5m )≤18,解得:m≤203, ∵m 为整数,∴m≤1.答:A 种品牌的教学设备购进数量至多减少1套.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.19、x=-1.【解析】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-2≠0∴原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解20、(1)122y x =+;(1)-6<x <0或1<x ;(3)(-1,0)或(-6,0) 【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴点P的坐标为(-6,0)或(-1,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=1.21、(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.22、(1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.23、(15;(2)∠CDE=2∠A.【解析】(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:222242AC BC+=+=25∴AO=125∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴OE AO BC AC=,∴OE=254 BC AOAC⋅==52.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.24、(1)DE与⊙O相切,证明见解析;(2)AC=8. 【解析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8。

〖2021年整理〗上海市浦东新区初三上学期数学一模 参考答案及评分说明

〖2021年整理〗上海市浦东新区初三上学期数学一模 参考答案及评分说明

浦东新区2021学年度第一学期初三年级学业质量监测数学试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.A ;3.D ;4.A ;5.C ;6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.32; 8.252-; 9.0; 10.36; 11.2; 12.AB b a =-; 13.向上; 14.<; 15.15; 16.2625; 17.()251y x =--; 18.2.三、解答题:(本大题共7题,满分78分)19.解:11322a x b x -=+. ………………………………………………………(2分)11322x x b a --=-. ………………………………………………………(2分)7122x b a -=-. ………………………………………………………(2分)2177x b a =-+. …………………………………………………(4分)2021:由题意得 ()214y x m =++-. …………………………………………(4分) ∴该抛物线的顶点为(1-,4m -). ……………………………………(2分) ∵抛物线的顶点在第二象限.∴40m ->. ………………………………………………………………(2分) 解得 4m >. ………………………………………………………………(2分) ∴m 的取值范围是 4m >.21.解:(1)∵AD DE AB DFAC =63147DE AB DFAC===2l 2l -AB BM ACCN =37AB AC=37BM CN=tan =AH B BH =tan AH BH B tan =AHACH CH∠=tan AH CH ACB∠tan tan AD AH AHACB B=-∠11tan tan AH AD ACB B ⎛⎫=÷- ⎪⎝⎭∠1111180140tan tan 0.50 1.40AH AD ACB B ⎛⎫⎛⎫=÷-≈÷-= ⎪ ⎪⎝⎭⎝⎭∠140140380tan tan 1.400.50AH B ACB AH BC BH CH ≈+==+=+∠证明:(1)∵∠ACB=90°,∴∠CAD ∠CBA=90°. ∵DE ⊥AB ,∴∠EDA=90°.∴∠CDA ∠CDE=90°. …………………(1分)∵CD =CA ,∴∠CDA=∠CAD . ………………………………………………(1分) ∴∠CDE=∠B . …………………………………………………………………(1分) ∵∠ECD=∠DCB ,∴△CDE ∽△CBD . ……………………………………(1分) ∴CE CD CD CB =. ………………………………………………………………… (1分) ∵CD =CA ,∴CE CA CA CB=. 即2CA CE CB =⋅. ……………………………… (1分)(2)∵∠ECA=∠ACB ,CE CA CACB=,∴△ECA ∽△ACB . ……………………………(1分)∴∠EAC=∠B . ………………………………(1分)∵∠ACB=90°,M 是AE 的中点,∴MA =MC .∴∠ACM=∠EAC . ……………(1分) ∴∠ACM=∠B . ………………………………(1分) ∵∠CAH=∠BAC ,∴△AHC ∽△ACB .∴∠AHC=∠ACB . ……………………………(1分) ∵∠ACB=90°,∴∠AHC=90°. …………(1分) ∴CH ⊥AB .24.解:(1)∵二次函数2y ax bx c =++的图像经过点A (2,4)、B (5,0)和O (0,0).∴424,2550,0.a b c a b c c ++=⎧⎪++=⎨⎪=⎩…………………………………………………………(2分) 解得 23a =-,103b =,0c =. ……………………………………………(1分) ∴二次函数的解析式是221033y x x =-+. …………………………………(1分)(2)由(1)得抛物线的对称轴是直线52x =. …………………………………(1分) 将对称轴与轴的交点记为E ,可得52OE EB ==.过点A 作AD ⊥OB ,垂足为点D . Rt △ADO 中,21tan 42DAO ∠==. ……………(1分) 由题意得 ∠DAO =∠CBO ,∴Rt △1tan 2PE CBO EB ∠==54PE =5254554PA =554PB =5AB =1522AH AB ==54PH =cot 2AH BAP PH ∠==1tan 2PH BAP AH ∠==tan tan DAO BAP ∠=∠180MAO DAO ∠=-∠180APB BAP ABP ∠=-∠-∠MAO APB ∠≠∠AM AP AO AB =AM AB AO AP =AM APAO AB=554525AM=52AM =32AM ABAO AP=525554AM =8AM =4-324-AB BE EC CF =3AB EC BE CF ==32AB EC =2239()()24ABE ECFS ABSEC ===94ABE ECFSS=AG GE EHHF=+22k x-66BG AB k CHFCk===22k x--22226363k x k x k xk x --=+-BG AB =6165x x k k ==15++cos EP PF EF AFE FD DA FA ===∠.∴62cos 2PC AFE m m+==∠-.………………(1分) ∴4(1)2m PC m +=-.∴co 1123(2)PC m EP m +=-6123(2)m m m +=--=17.经检验m =17是方程的解. ∴菱形ABCD 的边长是17. …………………………………………………(1分)G H FED C B A PF E DC B A。

上海市浦东新区2021届高三上学期一模数学试题

上海市浦东新区2021届高三上学期一模数学试题

浦东新区2020学年度第一学期期末教学质量检测高三数学试卷一、填空题(本大题满分54分)本大 题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1. lim 21n nn →∞⎛⎫= ⎪+⎝⎭________. 12由lim 21n n n →∞⎛⎫= ⎪+⎝⎭lim 112n n →∞⎛⎫ ⎪ ⎪ ⎪+ ⎪⎝⎭,再求解即可. 解:因为lim 21n n n →∞⎛⎫= ⎪+⎝⎭1lim 1221n n →∞⎛⎫ ⎪= ⎪ ⎪+ ⎪⎝⎭, 故答案为:12. 本题考查了数列的极限的运算,属基础题. 2. 半径为2的球的表面积为________.16π代入球的表面积公式:2=4S R π表即可求得.2R =,∴由球的表面积2=4S R π表公式可得,2=42=16S ππ⨯⨯球表, 故答案为:16π本题考查球的表面积公式;属于基础题. 3. 抛物线24x y=-准线方程为______________.1y =根据抛物线的性质得结论.由抛物线方程得2p =,焦点为(0,1)-,准线方程为1y =. 故答案为:1y =.4. 已知集合{|0}A x x =>,2{|1}B x x =≤,则A B =________.(]0,1利用集合间的运算直接求解{}[]2{0},11,1A x x B x x =>=≤=-,所以(]0,1A B ⋂=.故答案为:(]0,1.5. 已知复数z 满足(1)4z i -=(i 为虚数单位),则||z =___________.求出41z i=-,再根据复数模的求法即可求解. 41z i=-,所以4|||1|z i ===-故答案为:6. 在ABC 中,若2AB =,512B π∠=,4C π∠=,则BC =_________.由内角和求得A ,然后由正弦定理求得BC .51243A πBC ππππ-=--==-, 由正弦定理得sin sin AB BC C A =,所以2sinsin 3sin sin 4πAB A BC πC ===.7. 函数2()1log f x x =+(4)x ≥的反函数的定义域为___________.[)3,+∞根据原函数与反函数的关系,直接求原函数的值域. 函数2()1log (4)f x x x =+≥值域为[)3,+∞,反函数的定义域是原函数的值域,故其反函数的定义域为[)3,+∞. 故答案为:[)3,+∞ 8. 在7(x 二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)12根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率.7(x +展开式的通项为7721772r rr rr r r T C xC x --+==,07,r r N ≤≤∈,当且仅当r 为偶数时,该项系数为有理数, 故有0,2,4,6r =满足题意, 故所求概率4182P ==. (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.9. 正方形ABCD 的边长为2,点E 和F 分别是边BC 和AD 上的动点,且CE AF =,则AE AF 的取值范围为________.[]0,1EF 与AC 的交点O 为它们的中点,这样AO =AO 表示出,AE AF ,计算数量积易得取值范围.连接EF 交AC 于点O ,则正方形中,由于AE CF =,得AEO CFO ≅△△,∴AO OC ==OE OF =,22()()AE AF AO OE AO OE AO OE ⋅=+⋅-=-,因为正方形的边长为2,所以OE ⎡∈⎣,所以[]0,1AE AF ⋅∈. 故答案为:[0,1].关键点点睛:本题考查平面向量的数量积.解题关键是EF 的中点O 也是AC 的中点,从而只要用AO 表示出,AE AF ,就易求得取值范围. 10. 若等比数列{}n a 的前n 项和为n S ,且满足1211n n a S +=,则数列{}n a 的前n 项和为n S 为________.122n +- 由1211n n a S +=可得12n n a S +-=,令1n =,2n =,求得1a 和q ,确定数列的前n 项和为n S .11211n n n n a S a S ++=-=(*),在(*)式中,分别令1,2n =,得213212{2a a a a a -=--=,即21312{24a a a a =+=+,因为{}n a 是等比数列,所以公比322a q a ==,解得12a =, 所以11(1)2(12)22112n n n n a q S q +--===--- 故答案为:122n +-.11. 设函数()2f x x a a x=--+,若关于x 的方程1f x有且仅有两个不同的实数根,则实数a 的取值构成的集合为________.1212222⎧⎫-+⎪⎪⎨⎬⎪⎪⎩⎭, 将方程的解转化为两个函数交点问题求解. 由()1f x =得2||1x a a x-+=+有两个不同的解,令2 ()||,()1 h x x a ag xx=-+=+,()||h x x a a=-+的顶点(,)a a在y x=上,而y x=与2()1g xx=+的交点坐标为(2,2),(1,1)--,联立221y x ayx=-+⎧⎪⎨=+⎪⎩得2(12)20x a x+-+=,由2(12)80a∆=--=,解得1222a-=或1222+,数形结合,要使得2||1x a ax-+=+有两个不同的解,则实数a的取值范围是1222a-=或1222+或2.故答案为:122122,2⎧⎫-+⎪⎪⎨⎬⎪⎪⎩⎭,12. 对于任意的正实数a,b,则222953a a ba b+++的取值范围为___________.2⎫⎪⎪⎣⎭法一,原式上下同时除以a,再构造斜率的几何意义,求表示打算的取值范围;法二,原式上下同时除以a后,利用换元,再变形,利用基本不等式求表达式的取值范围.法一:转化为斜率先把22 22953a a ba b+++化作2221953baa⎛⎫++ ⎪⎝⎭+⋅,故可看作23,19bAa ab⎛⎫⎛⎫⎪⨯+ ⎪⎪⎝⎭⎝⎭与(5,22)B--两点的斜率其中点A在221(0,0)y x x y-=>>上,数形结合(如下图),故ABk最小值为相切时取得,设22(5)y k x+=+,联立2222(5)1y k xy x⎧+=+⎪⎨-=⎪⎩由0∆=解得122132k k==(舍)当ba→+∞时,22219153ABbaka⎛⎫++ ⎪⎝⎭=→+(极限思想)故2222953a a ba b++的取值范围是2⎫⎪⎪⎣⎭.法二:令0bta=>,则222222192292219535353baa ab ta b ta⎛⎫++ ⎪+++⎝⎭==+++,再令3(0)t x x=>,则原式222122222x x x++++=≥=当且仅当1x=时取等号,再令22m x =+>,则22119(2)522944x m m m m+==≤=-+-+-, 当且仅当3,1m x ==时取等号,故原式122=22≥⋅,又x →+∞时,222115x x+→+,22229a a b ++的取值范围是2,12⎫⎪⎪⎣⎭. 故答案为:2,12⎫⎪⎪⎣⎭关键点点睛:本题上下同时除以a 后,法一的关键是点2319b A a a b ⎛⎛⎫⨯+ ⎪ ⎝⎭⎝在221(0,0)y x x y -=>>上运动,宜采用数形结合分析问题,法二的关键是通过换元,降次,变形再利用基本不等式求取值范围.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. 若a 、b 是实数,则a b >是22a b >的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件C根据2x y =是增函数可得出.因为2x y =是增函数,所以a b >是22a b >的充要条件. 故选:C.14. 若某线性方程组的增广矩阵为1282416⎛⎫⎪⎝⎭,则该线性方程组的解的个数为( )A. 0个B. 1个C. 无数个D. 不确定C将线性方程组转化为方程,即可判断解的个数. 该线性方程组可化为方程28x y +=,故有无数组解,故选:C .15. 下列命题中正确的是( ) A. 三点确定一个平面B. 垂直于同一直线的两条直线平行C. 若直线l 与平面α上的无数条直线都垂直,则直线l α⊥D. 若a b c 、、是三条直线,//a b 且与c 都相交,则直线a b c 、、共面. D利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A 错误;B.由墙角模型,显然B 错误;C.根据线面垂直的判定定理,若直线l 与平面α内的两条相交直线垂直,则直线l 与平面α垂直,若直线l 与平面α内的无数条平行直线垂直,则直线l 与平面α不垂直,故C 错误;D.因为//a b ,所以a b 、确定唯一一个平面,又c 与a b 、都相交,故直线a b c 、、共面,故D 正确; 故选:D.16. 已知函数2,(),x x f x x x ⎧=⎨⎩为无理数为有理数,则以下4个命题:①()f x 是偶函数;②()f x 在[)0,+∞上是增函数; ③()f x 的值域为R ;④对于任意的正有理数a ,()()g x f x a =-存在奇数个零点. 其中正确命题的个数为( ) A. 0 B. 1C. 2D. 3B取特殊值可判断①②;根据值域中不含负无理数可判断③;根据,x a x =为有理数或2,x a x =为无理数,解出可判断④.①因为2,(),x x f x x x ⎧=⎨⎩为无理数为有理数,所以(1)1,(1)1f f =-=-,所以()f x 不是偶函数,故错误;②因为(3)35)5f f ==<,所以()f x 在[)0,+∞不是增函数,故错误;③因为2,(),x x f x x x ⎧=⎨⎩为无理数为有理数,显然()f x 的值域中不含负无理数,故()f x 的值域不为R ,故错误;④()()g x f x a =-的零点即,x a x =为有理数或2,x a x =为无理数, 对于,x a x =为有理数,必有解x a =,对于2,x a x =为无理数,必有解x a=±或无解, 故()()g x f x a =-有三个零点或一个,故正确; 故选:B.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 如图,直三棱柱111A B C ABC -中,1AB AC ==,2BAC π∠=,14A A =,点M 为线段1A A 的中点.()1求直三棱柱111A B C ABC -的体积;()2求异面直线BM 与11B C 所成的角的大小.(结果用反三角表示) ()12;()210. ()1利用体积公式代入数据求值即可;()2MBC ∠是异面直线BM 与11B C 所成的角或其补角,在MBC △中,利用余弦定理求得结果即可.解:()1因为1AB AC ==,2BAC π∠=,14A A =,所以11111222ABC S AB AC =⋅⋅=⨯⨯=△,因为1111A B C ABC ABC V S A A -=⋅△,所以11111422A B C ABC ABC V S A A -=⋅=⨯=△.()2因为11//BC B C ,MBC ∴∠是异面直线BM 与11B C 所成的角或其补角. 在MBC △中,1AB =,1114222AM AA =⋅=⨯=,BM ==BC ==,MC ===,由余弦定理得,222222cos 210MB BC MC MBC MB BC+-+-∠===⋅⋅,MBC ∴∠=. ∴异面直线BM 与11B C 所成的角为arccos 10.本题考查棱柱的体积、异面直线夹角的求法,利用平移的思想找出一面直线的夹角是解题的关键点,考查学生的空间立体感和运算能力,属于基础题.18. 已知函数()sin()6f x x πω=+(0)>ω的最小正周期为π.(1)求ω与()f x 的单调递增区间;(2)在ABC 中,若()12A f =,求sin sinBC +的取值范围. (1)2ω=,,,36k k k Zππππ⎡⎤-+∈⎢⎥⎣⎦;(2)⎝ (1)根据函数的最小正周期为π,可求ω,并写出函数式进而求()f x 的单调递增区间;(2)由(1)结论,()12Af =求角A ,根据三角形内角和的性质可知角B 、C 的关系,进而求B 的范围,即可求sin sin BC +的取值范围.(1)因为()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,即2T ππω== ∴2,()sin(2)6f x x πω==+,令222,262k x k k Z πππππ-≤+≤+∈解得,36k x k k Z ππππ-≤≤+∈∴()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)在ABC 中,若12A f ⎛⎫= ⎪⎝⎭,由(1)得,()sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以sin 16A π⎛⎫+= ⎪⎝⎭因为0,A π<< 所以62A ππ+=,即3A π=23sin sin sin sin sin 326B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭因为203B π<<,所以5666B πππ<+<;所以1sin 266B B ππ⎛⎫⎛⎫<+≤<+≤ ⎪ ⎪⎝⎭⎝⎭所以sin sin B C +的取值范围⎝ 关键点点睛: (1)由最小正周期2||T πω=求参数,利用整体代入法求()f x 的单调递增区间; (2)应用三角形内角和性质可得内角B 、C 的关系,进而用其中一角表示另一角并确定角的范围,进而求函数值的范围.19. 勤俭节约是中华民族的传统美德.为避免舌尖上的浪费,各地各部门采取了精准供应的措施.某学校食堂经调查分析预测,从年初开始的前(1,2,3,,12)n n =个月对某种食材的需求总量n S (公斤)近似地满足2635(16)6774618(712)n n n S n n n ≤≤⎧=⎨-+-≤≤⎩.为保证全年每一个月该食材都够用,食堂前n 个月的进货总量须不低于前n 个月的需求总量.(1)如果每月初进货646公斤,那么前7个月每月该食材是否都够用?(2)若每月初等量进货p (公斤),为保证全年每一个月该食材都够用,求p 的最小值. (1)前7个月每月该食材都够用;(2)为保证全年每一个月该食材都够用,每月初进货量p 的最小值为652.2公斤.(1)由题意知6460n n S -≥恒成立,讨论16n ≤≤、7n =确定不等式是否成立即可. (2)保证全年每一个月该食材都够用有n pn S ≥恒成立,即max ()nS p n≥,可求p 的最小值. (1)当16n ≤≤时,每月需求量635公斤,每月进货646公斤,1到6月都够用;当7n =时,因为()7646764676497747618160S ⨯-=⨯--⨯+⨯-=>,第7个月该食材够用. 所以,前7个月每月该食材都够用(2)为保证该食材全年每一个月都够用,不等式n pn S ≥对1,2,,12n =恒成立.当16n ≤≤时,635pn n ≥恒成立,可得635p ≥;当712n ≤≤时,26774618pn n n ≥-+-恒成立,即1037746()p n n≥-+恒成立,而当10n =时,1037746()n n-+的最大值为652.2 综上,可得652.2p ≥.∴为保证全年每一个月该食材都够用,每月初进货量p 的最小值为652.2公斤.20. 已知椭圆1:C 2214xy +=,1F 、2F 为1C 的左、右焦点.(1)求椭圆1C 的焦距;(2)点,2Q 为椭圆1C 一点,与OQ 平行的直线l 与椭圆1C 交于两点A 、B ,若QAB 面积为1,求直线l 的方程;(3)已知椭圆1C 与双曲线2221:C x y -=在第一象限交点为(,)M M M x y ,椭圆 1C 和双曲线2C 上满足||||M x x ≥的所有点(,)x y 组成曲线C .若点N 是曲线C 上一动点,求12NF NF ⋅的取值范围.(1)(2)112y x =±;(3)45,⎡⎫-+∞⎪⎢⎣⎭(1)由椭圆方程,根据参数关系以及焦距的含义即可求焦距. (2)由直线与椭圆关系,令1:2l y x m =+,与椭圆方程联立有1212,x x x x +,应用弦长公式、点线距离公式、三角形面积公式,结合已知QAB 面积为1,即可求m 的值. (3)由题意知(,55M 则曲线C 由双曲线、椭圆中||5x ≥的部分构成,令(),N x y 应用向量数量积的坐标表示即可得22123NF NF x y ⋅=+-,讨论N 在椭圆部分或双曲线部分,求12NF NF ⋅的取值范围.(1)由椭圆1C的方程知:3c ==,即焦距为2c =(2)设1:2l y x m =+,代入2244x y +=得222220x mx m ++-=, 由()222481840m m m ∆=--=->得||m <212122,22+=-=-x x m x x m ,所以12||AB x x =-== 所以Q 到直线l的距离d =,由1||||12QABS d AB m =⋅==,得1m =± 所以1:12l y x =±(3)由2222441x y x y ⎧+=⎨-=⎩解得M M x y ⎧=⎪⎪⎨⎪=⎪⎩,设(),N x y 是曲线C上一点,又1(0)F,2,0)F,()1,NF x y =--,()23,NF x y=-,∴22123,(||5NF NF x y x ⋅=+-≥,当N 在曲线2244(||||)M x y x x +=≥上时,21213NF NF y ⋅=-,当15y =()12min45NF NF ⋅=-,当0y =时,()12max1NF NF ⋅=,所以124,15NF NF ⎡⎤⋅∈-⎢⎥⎣⎦; 当N 在曲线221(||||)M x y x x -=≥上时,21222NF NF y ⋅=-;当155y =时,()12min45NF NF ⋅=-,124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭;综上,124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭. 关键点点睛:(1)由椭圆方程求参数c ,进而求焦距.(2)设直线方程,由直线与椭圆相交关系联立方程求1212,x x x x +,结合弦长公式、点线距离公式、三角形面积公式求参数,写出直线方程. (3)由题意知曲线C 由双曲线、椭圆中210||x ≥结合向量数量积的坐标表示构造函数,讨论N 点的位置求向量数量积的范围.21. 已知函数()f x 的定义域是D ,若对于任意的1x 、2x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.(1)判断()214f x x x =-,[]1,4x ∈与()212f x x x =-+-,[]1,4x ∈是否是非 减函数? (2)已知函数()122xx ag x -=+在[]2,4上为非减函数,求实数a 的取值范围;(3)已知函数()h x 在[]0,1上为非减函数,且满足条件:①()00h =,②()132x h h x ⎛⎫= ⎪⎝⎭,③()()11h x h x -=-,求12020h ⎛⎫ ⎪⎝⎭的值. (1)()214f x x x =-在[]1,4上不是非减函数,()212f x x x =-+-在[]1,4上是非减函数;(2)(],8-∞;(3)112020128h ⎛⎫= ⎪⎝⎭. (1)化简两个函数的解析式,结合二次函数和一次函数的单调性可得出结论;(2)任取1x 、[]22,4x ∈且12x x <,由题中定义可得()()12g x g x ≤,通过作差法得出1222x x a +≤,求出122x x +的取值范围,即可得出实数a 的取值范围;(3)根据题意计算出121332h h ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,根据非减函数的定义得知,对任意的12,33x ⎡⎤∈⎢⎥⎣⎦,()12h x =,由已知条件得出()()132h x h x =,进而可得出611729202022020h h ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即可得解.(1)()()221424f x x x x =-=--,所以,函数()1f x 在区间[)1,2上为减函数,在区间(]2,4上为增函数, 则函数()1f x 在区间[]1,4上不是非减函数, 当[]1,4x ∈时,()21,1223,24x f x x x ≤≤⎧=⎨-<≤⎩,所以,函数()212f x x x =-+-在区间[]1,4上为非减函数; (2)任取1x 、[]22,4x ∈且12x x <,即1224x x ≤<≤,因为函数()122xx ag x -=+在[]2,4上为非减函数, 有()()()()()()2112121121221212122222222112222202222x x x x x x x x x x x x x x x x a a g x g x a +++---⎛⎫-=-+-=-+=≤ ⎪⎝⎭, 1224x x ≤<≤,1222x x ∴<, 12220x x a +∴-≥,1222x x a +∴≤,1224x x ≤<≤,则1248x x <+<,则()12216,256x x +∈,216a ∴≤,即8a ≤,因此,实数a 的取值范围是(],8-∞;(3)由已知得,()00h =,得()()1101h h =-=,从而()1111322h h ⎛⎫== ⎪⎝⎭,2111332h h ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以,121332h h ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 因为函数()h x 为[]0,1上的非减函数,对任意的12,33x ⎡⎤∈⎢⎥⎣⎦,()1233h h x h ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭,即()1122h x ≤≤,所以,()12h x =, ()132x h h x ⎛⎫= ⎪⎝⎭,所以,()()132h x h x =,所以,261131917292020220202202022020h h h h ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 17292320203<<,则729120202h ⎛⎫= ⎪⎝⎭,因此,661172911120202202022128h h ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 关键点点睛:本题考查函数的新定义“非减函数”,解题时要充分理解“非减函数”的定义,本题第(2)问,在解题时充分利用定义,结合函数单调性、作差法以及参变量分离得出1222x x a +≤,进而可求得参数a 的取值范围;在求解第(3)问时,要结合赋值法以及非减函数的定义得出()12h x =对任意的12,33x ⎡⎤∈⎢⎥⎣⎦恒成立,再结合已知条件将所求函数值转化至已知区间进行求解.。

上海市浦东新区2021年中考数学一模试卷 (解析版)

上海市浦东新区2021年中考数学一模试卷 (解析版)

上海市浦东新区2021年中考数学一模试卷一、单选题(共6题;共24分)1.A 、B 两地的实际距离AB=250米,如果画在地图上的距离 A ′B ′ =5厘米,那么地图上的距离与实际距离的比为( )A. 1∶500B. 1∶5 000C. 500∶1D. 5 000∶12.已知在 RtΔABC 中, ∠C =90° , ∠A =α,BC =2 ,那么AB 的长等于( ) A. 2sinα B. 2sinα C. 2cosα D. 2cosα3.下列 y 关于x 的函数中,一定是二次函数的是( )A. y =(k −1)x 2+3B. y =1x 2+1C. y =(x +1)(x −2)−x 2D. y =2x 2−7x 4.已知一个单位向量 e ,设 a 、 b 是非零向量,那么下列等式中正确的是( ).A. 1|a ⃗ |a =e ;B. |e |a =a ;C. |b ⃗ |e =b ⃗ ;D. 1|a ⃗ |a =1|b ⃗ |b ⃗ . 5.如图,在 △ ABC 中,点D 、F 是边AB 上的点,点E 是边AC 上的点,如果∠ACD=∠B ,DE // BC ,EF // CD ,下列结论不成立的是( )A. AE 2=AF ⋅ADB. AC 2=AD ⋅ABC. AF 2=AE ⋅ACD. AD 2=AF ⋅AB6.已知点A (1,2)、B (2,3)、C (2,1),那么抛物线 y =ax 2+bx +1 可以经过的点是( )A. 点A 、B 、CB. 点A 、BC. 点A 、CD. 点B 、C二、填空题(共12题;共48分)7.如果线段a 、b 满足 a b =52 ,那么 a−bb 的值等于________.8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是________cm . 9.计算: 2sin30∘−tan45∘= ________.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是________度. 11.已知AD 、BE 是 △ ABC 的中线,AD 、BE 相交于点F ,如果AD=3,那么AF=________.12.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点O ,设 OA ⃗⃗⃗⃗⃗ =a , OB ⃗⃗⃗⃗⃗ =b⃗ ,那么向量 AB ⃗⃗⃗⃗⃗ 关于 a、 b ⃗ 的分解式为________.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向________.(填“向上”或“向下”)14.如果(2,y1)、(3,y2)是抛物线y=(x+1)2上两点,那么y1________ y2.(填“>”或“<”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC 长60厘米,高AH为40厘米,如果DE=2DG,那么DG=________厘米.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt △ABC中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE //AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=________.17.如果将二次函数的图像平移,有一个点既在平移前的函数图像上又在平移后的函数图像上,那么称这个点为“平衡点”.现将抛物线C1:y=(x−1)2−1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为________.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为________.三、解答题(共7题;共78分)(a−x )=b⃗+3x,试用向量a、b⃗表示向量x.19.已知向量关系式1220.已知抛物线y=x2+2x+m−3的顶点在第二象限,求m的取值范围.21.如图,已知AD //BE //CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB=6,BC=8.的值;(1)求DEDF(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt △ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE⋅CB.(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H.求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图像经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图像的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP相似时,求点M 的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cosB的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.答案解析部分一、单选题1.【答案】B【考点】图上距离与实际距离的换算(比例尺的应用)【解析】【解答】解:∵250米=25000cm,∴A′B′:AB=5:25000=1:5000.故答案为:B.【分析】地图上距离与实际距离的比就是在地图上的距离A′B′与实际距离AB的比值.2.【答案】A【考点】锐角三角函数的定义,直角三角形的性质【解析】【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=BCAB,∴AB=BCsinA = 2sinα,故答案为:A.【分析】在直角三角形ACB中,根据锐角三角函数的定义,求出答案即可。

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)浦东新区2021年一模数学试卷(含答案详解)(总分150)2021一、选择题:(本大题共6小题,每题4分,满分24分)1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是()A. 1:2B. 1:4C. 1:8D. 1:162.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为()A 3344A. B. C. D. 4553 DE3.如图,点D、E分别在AB、AC上,以下能推得DE//BC的条件是() A. AD:AB=DE:BC; B.AD:DB=DE:BC;CBC. AD:DB=AE:EC; D. AE:AC=AD:DB. y 24.已知二次函数y=ax+bx+c的图像如图所示,那么a、b、c的符号为() A. a<0,b<0,c>0; B. a<0,b<0,c<0;o C. a>0,b>0,c>0; D. a>0,b>0,c<0. x5.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是() A. AC2=AD・AB; B. CD2=CA・CB;CC. CD2=AD・DB; D. BC2=BD・BA.6.下列命题是真命题的是()A. 有一个角相等的两个等腰三角形相似; BADB. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似.二、填空题(本大题共12小题,每题4分,满分48分)x1x7.已知,那么 . ==y3x+y 18.计算: . 2 a-3(a+b)=39.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约厘米.10.某滑雪运动员沿着坡比为1:3 的斜坡向下滑行了100m,则运动员下降的垂直高度是米.11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .12.二次函数y=ax2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x轴的一个交点为(6,0),则抛物线与x轴的另一个交点坐标是 .13.如图,已知AD是△ABC的中点,点G是△ABC的重心, AB = a,那么用向量表示向量为. a AG14.如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是.AB115.如图,直线AA1//BB1//CC1,如果 ,AA1=2,CC1=6,那么线段BB1的长为 . = BC3AABAA1B1GBDCCDBCC1第12题图第13题图第14题图第15题16.如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P 处水平放置一平面镜.一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是米.17.若抛物线y=ax2+c与x轴交于点A(m,0),B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角形”.特别地,当mnc<0时,称△ABC为“倒抛物三角形”时,a、c应分别满足条件 .18.在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E均与端点不重合),如果△CDE与△ABC相似,那么CE= .三、解答题(本大题共7小题,满分78分) 19.(本题满分10分)计算:sin45°+6tan30°-2cos30°. 220.(本题满分10分,第(1)小题6分,第(2)小题4分)二次函数y=ax2+bx+c的变量x与变量y的部分对应值如下表: x ? -3 -2 -1 0 1 5 ? y ? 7 0 -5 -8 -9 7 ? (1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴.21. (本题满分10分,每小题8分)如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,ED:BC=1:3,求线段DC的长;(2)求证:EF・GB=BF・GE.22. (本题满分10分,第(1)小题6分,第(2)小题4分)如图,l为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A、B、C. P是一个观测点,PC⊥l,PC=60米,4,∠BPC=45°,测得该车从点A行驶到点B tan∠APC= 3所用时间为1秒.(1)求A、B两点间的距离;(2)试说明该车是否超过限速.FAEGDBC23. (本题满分12分,每小题6分)如图,在△ABC中,D是BC边的中点,DE⊥BC交AB于点E,AD=AC,EC交AD于点F. (1)求证:△ABC∽△FCD; A(2)求证:FC=3EF.EFBCD24. (本题满分12分,每小题4分)如图,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点 C(0,-3),抛物线的顶点为M. (1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45°,BE交对角线AC于点F,BM交对角线AC于点G,交CD于点M.(1)如图1,联结BD,求证:△DEB∽△CGB,并写出DE:CG的值;(2)联结EG,如图2,若设AE=x,EG=y,求y关于x的函数解析式,并写出函数的定义域;(3)当M为边DC的三等分点时,求S△EGF的面积.DMCDMCDCGEFABGEFABAB备用图感谢您的阅读,祝您生活愉快。

上海市浦东新区2021届新高考一诊数学试题含解析

上海市浦东新区2021届新高考一诊数学试题含解析

上海市浦东新区2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数31iz i-=-,则z 的虚部为( ) A .i - B .iC .1-D .1【答案】C 【解析】 【分析】 先将31iz i-=-,化简转化为2z i =+,再得到2z i =-下结论. 【详解】已知复数()()()()3132111i i i z i i i i -+-===+--+, 所以2z i =-, 所以z 的虚部为-1. 故选:C 【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.2. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( ) A .56383 B .57171C .59189D .61242【答案】C 【解析】 【分析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前n 项和公式,可得结果. 【详解】被5除余3且被7除余2的正整数构成首项为23, 公差为5735⨯=的等差数列,记数列{}n a 则()233513512n a n n =+-=-令35122020n a n =-≤,解得25835n ≤. 故该数列各项之和为5857582335591892⨯⨯+⨯=. 故选:C. 【点睛】本题考查等差数列的应用,属基础题。

3.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74 B .121 C .74- D .121-【答案】D 【解析】 【分析】根据5678(1)(1)(1)(1)x x x x -+-+-+-,利用通项公式得到含3x 的项为:()+++-333335678()C C C C x ,进而得到其系数,【详解】因为在5678(1)(1)(1)(1)x x x x -+-+-+-,所以含3x 的项为:()+++-333335678()C C C C x ,所以含3x 的项的系数是的系数是33335678()C C C C -+++,()10203556121=-+++=-,故选:D 【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题, 4.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .9【答案】B 【解析】 【分析】由题意可得()4k πωϕπ-+=g ,且42k ππωϕπ+='+g ,故有2()1k k ω='-+①,再根据12234πππω-g …,求得12ω„②,由①②可得ω的最大值,检验ω的这个值满足条件.【详解】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ„,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴, ()4k πωϕπ∴-+=g ,且42k ππωϕπ+='+g ,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①. ()f x Q 在(4π,)3π单调,∴12234πππω-g…,12ω∴„②. 由①②可得ω的最大值为1. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=g ,满足4πx =-为()f x 的零点, 同时也满足满足()f x 在,43ππ⎛⎫⎪⎝⎭上单调, 故11ω=为ω的最大值, 故选:B . 【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.5.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30 B.C.D .62【答案】B 【解析】 【分析】根据14+=nn n a a ,分别令1,2n =,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n 项和公式进行求解即可. 【详解】设等比数列{}n a 的公比为q ,由题意可知中:10,0a q >>.由14+=nn n a a ,分别令1,2n =,可得124a a =、2316a a =,由等比数列的通项公式可得:1112114162a a q a a q a q q ⎧⋅⋅=⎧=⎪⇒⎨⎨⋅⋅⋅==⎪⎩⎩因此552)12S -==-故选:B 【点睛】本题考查了等比数列的通项公式和前n 项和公式的应用,考查了数学运算能力.6.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3 B .2C .32D .1【答案】A 【解析】 【分析】根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案. 【详解】 解:由于312ln 3y x x =+,根据导数的几何意义得: ()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥, 当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A. 【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.7.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于,A B两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S =V V ( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。

上海市浦东新区2021届高三上学期一模数学试题

上海市浦东新区2021届高三上学期一模数学试题
(1)如果每月初进货 公斤,那么前7个月每月该食材是否都够用?
(2)若每月初等量进货 (公斤),为保证全年每一个月该食材都够用,求 的最小值.
20.已知椭圆 , 、 为 的左、右焦点.
(1)求椭圆 的焦距;
(2)点 为椭圆 一点,与 平行的直线 与椭圆 交于两点A、B,若 面积为 ,求直线 的方程;
B.由墙角模型,显然B错误;
C.根据线面垂直的判定定理,若直线 与平面 内的两条相交直线垂直,则直线 与平面 垂直,若直线 与平面 内的无数条平行直线垂直,则直线 与平面 不垂直,故C错误;
D.因为 ,所以 确定唯一一个平面,又 与 都相交,故直线 共面,故D正确;
故选:D.
16.B
【分析】
取特殊值可判断①②;根据值域中不含负无理数可判断③;根据 为有理数或 为无理数,解出可判断④.
上海市浦东新区2021届高三上学期一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1. ________.
2.半径为2的球的表面积为________.
3.抛物线 的准线方程为______________.
4.已知集合 , ,则 =________.
21.(1) 在 上不是非减函数, 在 上是非减函数;(2) ;(3) .
【分析】
(1)化简两个函数的解析式,结合二次函数和一次函数的单调性可得出结论;
(2)任取 、 且 ,由题中定义可得 ,通过作差法得出 ,求出 的取值范围,即可得出实数 的取值范围;
(3)根据题意计算出 ,根据非减函数的定义得知,对任意的 , ,由已知条件得出 ,进而可得出 ,即可得解.

中考数学一模试题含解析 试题

中考数学一模试题含解析 试题

2021年浦东新区中考数学一模试卷一.选择题〔本大题一一共6题,每一小题4分,一共24分〕1.在以下y关于x的函数中,一定是二次函数的是〔〕A.y=2x2B.y=2x﹣2 C.y=ax2D.2.假如向量、、满足+=〔﹣〕,那么用、表示正确的选项是〔〕A.B.C.D.3.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于〔〕A.B.2sinαC.D.2cosα4.在△ABC中,点D、E分别在边AB、AC上,假如AD=2,BD=4,那么由以下条件可以判断DE∥BC的是〔〕A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,假如AD=9,CE=12,那么以下结论不正确的选项是〔〕A.AC=10 B.AB=15 C.BG=10 D.BF=156.假如抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为〔〕A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题〔本大题一一共12题,每一小题4分,一共48分〕7.线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.||=2,||=4,且和反向,用向量表示向量= .10.假如抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,那么m= .11.假如抛物线y=〔a﹣3〕x2﹣2有最低点,那么a的取值范围是.12.在一个边长为2的正方形中挖去一个边长为x〔0<x<2〕的小正方形,假如设剩余局部的面积为y,那么y关于x的函数解析式是.13.假如抛物线y=ax2﹣2ax+1经过点A〔﹣1,7〕、B〔x,7〕,那么x= .14.二次函数y=〔x﹣1〕2的图象上有两个点〔3,y1〕、〔,y2〕,那么y1y2〔填“>〞、“=〞或者“<〞〕15.如图,小鱼同学的身高〔CD〕是,她与树〔AB〕在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,假设AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C 分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题〔本大题一一共7题,一共10+10+10+10+12+12+14=78分〕19.计算:2cos230°﹣sin30°+.20.如图,在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC 相交于点F;〔1〕求的值;〔2〕假如=, =,求向量;〔用向量、表示〕21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;〔1〕求证:△ADC∽△BAC;〔2〕当AB=8时,求sinB.22.如图,是某台阶〔结合轮椅专用坡道〕景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为,宽为,轮椅专用坡道AB的顶端有一个宽2米的程度面BC;?城道路与建筑物无障碍设计标准?第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度〔米〕〔1〕选择哪个坡度建立轮椅专用坡道AB是符合要求的?说明理由;〔2〕求斜坡底部点A与台阶底部点D的程度间隔 AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;〔1〕求证:AC=2CF;〔2〕连接AD,假如∠ADG=∠B,求证:CD2=AC•CF.24.顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,与x轴交于C、D两点〔点C在点D 的左侧〕;〔1〕求这条抛物线的表达式;〔2〕联结AB、BD、DA,求△ABD的面积;〔3〕点P在x轴正半轴上,假如∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;〔1〕当点E在线段BC上时,求证:△AEF∽△ABD;〔2〕在〔1〕的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;〔3〕当△AGM与△ADF相似时,求BE的长.2021年浦东新区中考数学一模试卷参考答案与试题解析一.选择题〔本大题一一共6题,每一小题4分,一共24分〕1.在以下y关于x的函数中,一定是二次函数的是〔〕A.y=2x2B.y=2x﹣2 C.y=ax2D.【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c 〔a≠0〕是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;应选:A.【点评】此题考察二次函数的定义,形如y=ax2+bx+c 〔a≠0〕是二次函数.2.假如向量、、满足+=〔﹣〕,那么用、表示正确的选项是〔〕A.B.C.D.【考点】*平面向量.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵ +=〔﹣〕,∴2〔+〕=3〔﹣〕,∴2+2=3﹣2,∴2=﹣2,解得: =﹣.应选D.【点评】此题考察了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.3.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于〔〕A.B.2sinαC.D.2cosα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,应选A.【点评】此题考察了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,那么sinA=,cosA=,tanA=.4.在△ABC中,点D、E分别在边AB、AC上,假如AD=2,BD=4,那么由以下条件可以判断DE∥BC的是〔〕A.B.C.D.【考点】平行线分线段成比例;平行线的断定;相似三角形的断定与性质.【分析】先求出比例式,再根据相似三角形的断定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的断定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4, =,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,应选C.【点评】此题考察了平行线分线段成比例定理,相似三角形的性质和断定的应用,能灵敏运用定理进展推理是解此题的关键.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,假如AD=9,CE=12,那么以下结论不正确的选项是〔〕A.AC=10 B.AB=15 C.BG=10 D.BF=15【考点】三角形的重心.【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,应选:B.【点评】此题考察的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的间隔是它到对边中点的间隔的2倍.6.假如抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为〔〕A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【考点】二次函数图象与几何变换.【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的顶点坐标是〔0,﹣1〕,抛物线C:y=x2﹣2x+2=〔x﹣1〕2+1的顶点坐标是〔1,1〕.那么将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=〔x﹣1〕2﹣1=x2﹣2x.应选:C.【点评】此题考察了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移本质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题〔本大题一一共12题,每一小题4分,一共48分〕7.线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【考点】比例线段.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】此题考察了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.8.点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .【考点】黄金分割.【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】此题考察的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC〔AC>BC〕,且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.||=2,||=4,且和反向,用向量表示向量= ﹣2.【考点】*平面向量.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得: =﹣2.故答案为:﹣2.【点评】此题考察了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.假如抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,那么m= 2 .【考点】二次函数图象上点的坐标特征.【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】此题考察了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.假如抛物线y=〔a﹣3〕x2﹣2有最低点,那么a的取值范围是a>3 .【考点】二次函数的最值.【分析】由于原点是抛物线y=〔a+3〕x2的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.【解答】解:∵原点是抛物线y=〔a﹣3〕x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】此题主要考察二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,此题比拟根底.12.在一个边长为2的正方形中挖去一个边长为x〔0<x<2〕的小正方形,假如设剩余局部的面积为y,那么y关于x的函数解析式是y=﹣x2+4〔0<x<2〕.【考点】函数关系式.【分析】根据剩下局部的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下局部的面积为y,那么:y=﹣x2+4〔0<x<2〕,故答案为:y=﹣x2+4〔0<x<2〕.【点评】此题主要考察了根据实际问题列二次函数关系式,利用剩下局部的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.假如抛物线y=ax2﹣2ax+1经过点A〔﹣1,7〕、B〔x,7〕,那么x= 3 .【考点】二次函数图象上点的坐标特征.【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A〔﹣1,7〕、B〔x,7〕,∴=1,∴x=3,故答案为3.【点评】此题主要考察了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,此题难度不大.14.二次函数y=〔x﹣1〕2的图象上有两个点〔3,y1〕、〔,y2〕,那么y1<y2〔填“>〞、“=〞或者“<〞〕【考点】二次函数图象上点的坐标特征.【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=〔3﹣1〕2=4,当x=时,y2=〔﹣1〕2=,y1<y2,故答案为<.【点评】此题考察了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.如图,小鱼同学的身高〔CD〕是,她与树〔AB〕在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.【考点】相似三角形的应用.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】此题主要考察相似三角形的应用,纯熟掌握相似三角形的断定与性质是解题的关键.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,假设AD=2,EF=5,那么FG= 4 .【考点】梯形中位线定理.【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,那么EG是△ABD的中位线,即可求得EG的长,那么FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】此题考察了梯形的中位线,三角形的中位线的应用,主要考察学生的推理才能和计算才能.17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .【考点】相似三角形的断定与性质.【分析】根据相似三角形的断定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=〔〕2=〔〕2=1:4,故答案为:1:4.【点评】此题考察了相似三角形的断定和性质,纯熟掌握相似三角形的断定和性质是解题的关键.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C 分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .【考点】旋转的性质.【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的断定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】此题考察的是旋转变换的性质,掌握对应点到旋转中心的间隔相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题〔本大题一一共7题,一共10+10+10+10+12+12+14=78分〕19.计算:2cos230°﹣sin30°+.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×〔〕2﹣+=1++.【点评】此题考察了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.如图,在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC 相交于点F;〔1〕求的值;〔2〕假如=, =,求向量;〔用向量、表示〕【考点】相似三角形的断定与性质;平行四边形的性质;*平面向量.【分析】〔1〕根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得==;〔2〕由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==, ==,最后根据向量的运算得出答案.【解答】解:〔1〕∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;〔2〕∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==, ==,那么=+=.【点评】此题主要考察相似三角形的断定与性质、平行四边形的性质及向量的运算,纯熟掌握相似三角形的断定与性质是解题的关键.21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;〔1〕求证:△ADC∽△BAC;〔2〕当AB=8时,求sinB.【考点】相似三角形的断定与性质;解直角三角形.【分析】〔1〕作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;〔2〕由△ADC∽△BAC得,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理求得AE的长,最后根据正弦函数的定义可得.【解答】解:〔1〕如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,那么=,,∴,∵∠C=∠C,∴△ADC∽△BAC;〔2〕∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】此题主要考察相似三角形的断定与性质及勾股定理、等腰三角形的性质、三角函数的定义,纯熟掌握相似三角形的断定与性质是解题的关键.22.如图,是某台阶〔结合轮椅专用坡道〕景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为,宽为,轮椅专用坡道AB的顶端有一个宽2米的程度面BC;?城道路与建筑物无障碍设计标准?第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度〔米〕〔1〕选择哪个坡度建立轮椅专用坡道AB是符合要求的?说明理由;〔2〕求斜坡底部点A与台阶底部点D的程度间隔 AD.【考点】解直角三角形的应用-坡度坡角问题.×10=1.5〔米〕,由表格查对应的坡度为:1:20;〔2〕作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:〔1〕∵第一层有十级台阶,每级台阶的高为,∴×10=1.5〔米〕,由表知建立轮椅专用坡道AB选择符合要求的坡度是1:20;〔2〕如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的程度间隔 AD为62米.【点评】此题考察了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;〔1〕求证:AC=2CF;〔2〕连接AD,假如∠ADG=∠B,求证:CD2=AC•CF.【考点】相似三角形的断定与性质;等腰三角形的性质.【分析】〔1〕由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,根据AB=AC即可得证;〔2〕由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC•CF.【解答】证明:〔1〕∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;〔2〕如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,那么△ACD∽△DCF,∴,即CD2=AC•CF.【点评】此题主要考察相似三角形的断定与性质,纯熟掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,与x轴交于C、D两点〔点C在点D 的左侧〕;〔1〕求这条抛物线的表达式;〔2〕联结AB、BD、DA,求△ABD的面积;〔3〕点P在x轴正半轴上,假如∠APB=45°,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】〔1〕设抛物线的解析式为y=a〔x﹣2〕2﹣1,把〔0,3〕代入可得a=1,即可解决问题.〔2〕首先证明∠ADB=90°,求出BD、AD的长即可解决问题.〔3〕由△PDB∽△ADP,推出PD2=BD•AD=3=6,由此即可解决问题.【解答】解:〔1〕∵顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,∴可以假设抛物线的解析式为y=a〔x﹣2〕2﹣1,把〔0,3〕代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.〔2〕令y=0,x2﹣4x+3=0,解得x=1或者3,∴C〔1,0〕,D〔3,0〕,∵OB=OD=3,∴∠BDO=45°,∵A〔2,﹣1〕,D〔3,0〕,∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S△ABD=•BD•AD=3.〔3〕∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P〔3+,0〕.【点评】此题考察二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的断定和性质等知识,解题的关键是灵敏运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;〔1〕当点E在线段BC上时,求证:△AEF∽△ABD;〔2〕在〔1〕的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;〔3〕当△AGM与△ADF相似时,求BE的长.【考点】相似形综合题.【分析】〔1〕首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.〔2〕如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点一共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.〔3〕分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】〔1〕证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.〔2〕解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点一共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=〔0≤x≤4〕.〔3〕解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或者1.【点评】此题考察相似形综合题、相似三角形的断定和性质、锐角三角函数、四点一共圆等知识,解题的关键是灵敏运用所学知识解决问题,属于中考压轴题.励志赠言经典语录精选句;挥动**,放飞梦想。

2021年上海市浦东新区中考一模数学试卷(期末)

2021年上海市浦东新区中考一模数学试卷(期末)

2021年上海市浦东新区中考一模数学试卷(期末)一、选择题(共6小题;共30分)1. ,两地的实际距离米,如果画在地图上的距离厘米,那么地图上的距离与实际距离的比为A. B. C. D.2. 已知一个单位向量,设,是非零向量,那么下列等式中正确的是;;; D. .3. 已知在中,,,,那么的长等于A. ;B. ;C. ;D. .4. 下列关于的函数中,一定是二次函数的是A. B.C. D.5. 如图,在中,点,是边上的点,点是边上的点,如果,,,下列结论不成立的是A. B.C. D.6. 已知点,,,那么抛物线可以经过的点是A. 点,,B. 点,C. 点,D. 点,二、填空题(共12小题;共60分)7. 如图,已知平行四边形的对角线与相交于点,设,那么向量关于,的分解式为.8. 如果线段,满足,那么的值等于.9. 已知线段的长为,点是线段的黄金分割点,那么较长线段的长是.10. 计算:.11. 如果从某一高处甲看低处乙的俯角为度,那么从低处乙看高处甲的仰角是度.12. 已知,是的中线,,相交于点,如果,那么.13. 如果抛物线经过原点,那么该抛物线的开口方向.(填“向上”或“向下”)14. 如果,是抛物线上两点,那么.(填“”或“”)15. 如图,矩形的边在的边上,顶点,分别在边,上,已知的边长厘米,高为厘米,如果,那么厘米.16. 秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在中,,,,,,过点作交的延长线于点,过点作交于点,那么.17. 如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线:向右平移得到新抛物线,如果“平衡点”为,那么新抛物线的表达式为.18. 如图,中,,,,点是边上一点,且,连接,过中点的直线将分成周长相等的两部分,这条直线分别与边,相交于点,,那么线段的长为.三、解答题(共7小题;共91分)19. 已知向量关系式,试用向量,表示向量.20. 如图,已知,它们依次交直线,于点,,和点,,,且,.(1)求的值.(2)当,时,求的长.21. 中,,点,分别为边,上的点,且,.(1)求证:.(2)连接,取的中点,连接并延长与交于点.求证:.22. 已知抛物线的顶点在第二象限,求的取值范围.23. 如图,燕尾槽的横断面是等腰梯形,现将一根木棒放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端与点重合,且经过点.已知燕尾角,外口宽毫米,木棒与外口的夹角,求燕尾槽的里口宽(精确到毫米).(参考数据:,,,,,)24. 二次函数的图象经过点,和.(1)求二次函数的解析式.(2)连接,过点作于点,与该二次函数图象的对称轴交于点,连接,求的余切值.(3)在()的条件下,点在经过点且与轴垂直的直线上,当与相似时,求点的坐标.25. 四边形是菱形,,点为边上一点,连接,过点作,与边交于点,且.(1)如图,当时,求与的比值;(2)如图,当点是边的中点时,求的值;(3)如图,连接,当且时,求菱形的边长.答案第一部分1. B2. A3. A4. D5. C6. C第二部分10.11.12.13. 向上14.15.16.17.18.第三部分19.20. (1),.,,..(2)过点作,与,分别交于点,.,,.,.,.,.,...21. (1),.,..,..,..,.即.(2),,..,是的中点,...,..,..22. 由题意得.该抛物线的顶点为.抛物线的顶点在第二象限..解得.的取值范围是.23. 分别过点,作,,垂足分别为点,.根据题意,可知.在中,,.在中,,...,.毫米,.答:燕尾槽的里口宽约为毫米.24. (1)二次函数的图象经过点,和.解得,,.二次函数的解析式是.(2)由()得抛物线的对称轴是直线.将对称轴与轴的交点记为,可得.过点作,垂足为点.中,.由题意得,中,,..,,,,..过点作于点,.中,由勾股定理得..(3)由()得,,.若点在点上方,,..点在点下方.当与相似时,或.①,.点的坐标是.②,.点的坐标是.综上所述,点的坐标是或.25. (1)四边形是菱形,,,.,........,即.(2)由()中结论可知当为中点时,不为.分别过点,作,,垂足分别为点,..,..设,.由题意得,,,.由,可得..,..化简可得.在中,.即.(3)由于,不为.在的延长线上取点,使得..,...,,.设菱形的边长为....,.,解得.经检验是方程的解.菱形的边长是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浦东新区2020学年度第一学期期末教学质量检测高三数学试卷 2020.12考生注意:1、本试卷共21道试题,满分150分,答题时间120分钟;2、请在答题纸上规定的地方解答,否则一律不予评分.一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1.lim21n nn →∞=+______________.2.半径为2的球的表面积为_________.3.抛物线24x y =-的准线方程为______________. 4.已知集合{|0}A x x =>,2{|1}B x x =≤,则AB =________.5.已知复数z 满足(1)4z i -=(i 为虚数单位),则||z = . 6.在ABC △中,若2AB =,512B π∠=,4C π∠=,则BC =_________. 7.函数2()1log f x x =+(4)x ≥的反函数的定义域为___________.8.在7(x 的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)9.正方形ABCD 的边长为2,点E 和F 分别是边BC 和AD 上的动点,且CE AF =,则AE AF 的取值范围为________. 10.若等比数列{}n a 的前n 项和为n S ,且满足1211n n a S +=,则数列{}n a 的前n 项和为n S 为________. 11.设函数()2f x x a a x=--+,若关于x 的方程()1=x f 有且仅有两个不同的实数根,则实数a 的取值构成的集合为________.12.对于任意的正实数a ,b ___________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.若a 、b 是实数,则a b >是22a b >的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件14.若某线性方程组的增广矩阵为1282416⎛⎫⎪⎝⎭,则该线性方程组的解的个数为( )(A )0个(B )1个(C )无数个 (D )不确定15.下列命题中正确的是( ) (A )三点确定一个平面(B )垂直于同一直线的两条直线平行(C )若直线l 与平面α上的无数条直线都垂直,则直线α⊥l(D )若c b a 、、是三条直线,b a //且与c 都相交,则直线c b a 、、共面.16.已知函数2,()(),()为无理数为有理数x x f x x x ⎧=⎨⎩,则以下4个命题:①()f x 是偶函数;②()f x 在[)0,+∞上是增函数; ③()f x 的值域为R ;④对于任意的正有理数a ,()()g x f x a =-存在奇数个零点. 其中正确命题的个数为( ) (A )0(B )1(C )2(D )3三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分).本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,直三棱柱ABC C B A -111中,1AB AC ==,2BAC π∠=,41=A A ,点M 为线段A A 1的中点.(1)求直三棱柱ABC C B A -111的体积;(2)求异面直线BM 与11C B 所成的角的大小.(结果用反三角表示)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()sin()6f x x πω=+(0)ω>的最小正周期为π.(1)求ω与()f x 的单调递增区间;(2)在ABC ∆中,若()12Af =,求sin sin B C +的取值范围.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.勤俭节约是中华民族的传统美德.为避免舌尖上的浪费,各地各部门采取了精准供应的措施.某学校食堂经调查分析预测,从年初开始的前(1,2,3,,12)n n =个月对某种食材的需求总量n S (公斤)近似地满足2635(16)6774618(712)n nn S n n n ≤≤⎧=⎨-+-≤≤⎩.为保证全年每一个月该食材都够用,食堂前n 个月的进货总量须不低于前n 个月的需求总量.(1)如果每月初进货646公斤,那么前7个月每月该食材是否都够用?(2)若每月初等量进货p (公斤),为保证全年每一个月该食材都够用,求p 的最小值.1A20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆1:C 2214x y +=,1F 、2F 为1C 的左、右焦点.(1)求椭圆1C 的焦距;(2)点2Q 为椭圆1C 一点,与OQ 平行的直线l 与椭圆1C 交于两点A 、B ,若QAB △面积为1,求直线l 的方程;(3)已知椭圆1C 与双曲线222:1C x y -=在第一象限的交点为(,)M M M x y ,椭圆1C 和双曲线2C 上满足||||M x x ≥的所有点(,)x y 组成曲线C .若点N 是曲线C 上一动点,求21NF NF ⋅的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()f x 的定义域是D ,若对于任意的12,x x D ∈,当12x x <时,都有12()()f x f x ≤,则称函数()f x 在D 上为非减函数。

(1)判断[]21()4,(1,4)f x x x x =-∈与[]2()12,(1,4)f x x x x =-+-∈是否是非 减函数?(2)已知函数1()22x x ag x -=+在[]2,4上为非减函数,求实数a 的取值范围. (3)已知函数()h x 在[0,1]上为非减函数,且满足条件:①(0)0h =, ②1()()32x h h x =,③(1)1()h x h x -=-,求1()2020h 的值.浦东高三数学答案 2020.121.122. 16π 3. 1y = 4.{|01}x x <≤ 5. 67.[)3,+∞ 8.12 9.[]0,1 10.122n +- 11.2⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 12.2⎫⎪⎪⎣⎭13. C 14. C 15. D 16.B 注:解答题其他解法相应给分 17.解:(1)因为211121=⨯⨯=∆ABC S , 1111A B C ABC ABC V S A A -∆=⋅,所以,24211111=⨯=⋅=∆-A A S V ABC ABC C B A . (2)法一:11//C B BC ,MBC ∠∴是异面直线BM 与11C B 所成的角或其补角.在MBC ∆中,2,5===BC CM BM ,由余弦定理得,1010cos =∠MBC , 1010arccos=∠∴MBC . ∴异面直线BM 与11C B 所成的角为1010arccos. 法二:如图所示建系,则()()()()3,1,0,2,0,0,3,0,1,0,0,111C M B B()()0,1,1,2,0,111-=-=C B ,1010θ==cos , ∴异面直线BM 与11C B 所成的角为1010arccos.18.解:(1) 2ω= ()f x 的单调递增区间:222262k x k πππππ-≤+≤+即36k x k ππππ-≤≤+()f x 的单调递增区间,36k k ππππ⎡⎤-+⎢⎥⎣⎦k Z ∈(2)()sin(2)6f x x π=+,由()12Af =,sin()16A π+=,(0,)A π∈,3A π=由A B C π++=,23B C π+=,23B C π=-23sin sin sin()sin sin cos )3226B C C C C C C ππ+=-+=+=+ 250,3666C C ππππ<<∴<+<,1sin()126C π<+≤ sin sin B C +的取值范围为2⎛ ⎝19.解:(1)当16n ≤≤时,每月需求量635公斤,每月进货646公斤,1到6月都够用; 当7n =时,因为()7646764676497747618160S ⨯-=⨯--⨯+⨯-=>,第7个月该食材够用.所以,前7个月每月该食材都够用(2)为保证该食材全年每一个月都够用,不等式n pn S ≥对1,2,,12n =恒成立.当16n ≤≤时,635pn n ≥恒成立,可得635p ≥;当712n ≤≤时,26774618pn n n ≥-+-恒成立,即1037746()p n n≥-+恒成立, 当10n =时,1037746()n n-+的最大值为652.2 可得652.2p ≥.∴为保证全年每一个月该食材都够用,每月初进货量p 的最小值为652.2公斤.20.解:(1)2a = 1b =则c =则椭圆1C的焦距为(2)由于12OQ k =,设l 方程为12y x t =+, ()2212,,,)(A x y B x y .由221214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,222220x tx t ++-=,()12212222224202x x t x x t t t ⎧+=-⎪⎪∴=-⎨⎪∆=-->⇒<⎪⎩, 则||AB ===. 又点Q 到l的距离d ==,-1QABS∴==, 解得21t =,1t =±,则直线l 的方程为112yx =±. (3)由2222441x y x y ⎧+=⎨-=⎩解得M M x y ⎧=⎪⎪⎨⎪=⎪⎩设()y x N ,是曲线C 上一点,则1(3,0)F ,2(3,0)F ,()1,NF x y =--,()23,NF x y =-,所以,22123NF NF x y ⋅=+-;当点N 在曲线2244(||||)M x y x x +=≥上时,21213NF NF y ⋅=-,当5y =时,()12min 45NF NF ⋅=-,当0y =时,()12max1NF NF ⋅=,所以124,15NF NF ⎡⎤⋅∈-⎢⎥⎣⎦;-当点N 在曲线221(||||)M x y x x -=≥上时,21222NF NF y ⋅=-;当5y =时,()12min 45NF NF ⋅=-,124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭; 综上,124,5NF NF ⎡⎫⋅∈-+∞⎪⎢⎣⎭.21.解:(1)1()f x 不是,2()f x 是. (因为11(1)(2)f f >, 则1()f x 不是[]1,4上的非减函数.21,12()23,24x f x x x ≤≤⎧=⎨-<≤⎩, 12,[1,2]x x ∀∈,且设1212x x ≤<≤,则2122()()f x f x =,显然满足2122()()f x f x ≤; 12,(2,4]x x ∀∈,且设1224x x <<≤,则211222()2323()f x x x f x =-<-=,显然满足2122()()f x f x ≤;1[1,2]x ∀∈,2(2,4]x ∀∈,则21222()1,()231f x f x x ==->,显然满足2122()()f x f x ≤综上所述,2()f x 是[]1,4上的非减函数. )(2)12,[2,4]x x ∀∈,设1224x x ≤<≤,则12()()0g x g x -≤12121222()()2(2)22x x x x a a g x g x -=+-+ 121221*********()22(22)2222x x x x x x x x x x a a a=-+-=-+-12122(22)(1)022x x x x a=--≤则12,[2,4]x x ∀∈,设1224x x ≤<≤,不等式1221022x x a-≥恒成立, 即:12222xxa ≤. 则8a ≤.(3)(1)(0)1(1)1h h h +=⇒=111()(1)322h h ⇒==211()1()332h h =-= 得出:121()()332h h ==12,33x ⎛⎫∀∈ ⎪⎝⎭,因为函数()h x 在[0,1]上为非减函数,所以12()()()33h h x h ≤≤所以11()22h x ≤≤ 得到:121[,],()332x h x ∀∈≡由1()()()32x ii h h x =知,1()(3)2h x h x =1131729()()()202022020642020h h h === 11()2020128h ∴=.。

相关文档
最新文档