(word完整版)高中物理圆周运动练习题

合集下载

高中物理【圆周运动】测试题

高中物理【圆周运动】测试题

高中物理【圆周运动】测试题(时间:75分钟满分:150分)一、单项选择题(本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的()A.线速度B.加速度C.角速度D.轨道半径、b相对静止且绕同一转轴转动,所以它们的角速度相同,C正确。

2.图示为公路自行车赛中运动员在水平路面上转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看成整体,下列说法正确的是()A.运动员转弯所需向心力由重力与地面对车轮的支持力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合外力大于所需的向心力,C错误;运动员转弯时,地面对车轮的摩擦力提供所需的向心力,故A错误,B正确;当F f<mv 2r,即静摩擦力不足以提供所需向心力时,就会发生侧滑,故D错误。

3.两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点,若两个小球以相同的角速度绕共同的竖直轴在水平面内做匀速圆周运动,则两个摆球在运动过程中,相对位置关系示意图正确的是()小球做匀速圆周运动,对其受力分析如图所示,则有mg tan θ=mω2L sin θ,整理得L cos θ=gω2,则两球处于同一高度,故B正确。

4.如图是自行车传动装置的示意图,其中Ⅰ是半径为R1的大链轮,Ⅱ是半径为R2的小飞轮,Ⅲ是半径为R3的后轮,假设脚踏板的转速为n(单位:r/s),则自行车后轮边缘的线速度为()A.πnR1R3R2B.πnR2R3R1C.2πnR2R3R1D.2πnR1R3R2,所以ω=2πn,因为要测量自行车后轮Ⅲ边缘上的线速度的大小,根据题意知,轮Ⅰ和轮Ⅱ边缘上的线速度大小相等,据v=rω可知,R1ω1=R2ω2,已知ω1=2πn,则轮Ⅱ的角速度ω2=R1R2ω1=2πnR1R2。

高中物理必修二第六章《圆周运动》测试卷(包含答案解析)

高中物理必修二第六章《圆周运动》测试卷(包含答案解析)

一、选择题1.如图所示,一个小球在F作用下以速率v做匀速圆周运动,若从某时刻起,小球的运动情况发生了变化,对于引起小球沿a、b、c三种轨迹运动的原因,下列说法正确的是()A.沿a轨迹运动,可能是F减小了一些B.沿b轨迹运动,一定是v增大了C.沿b轨迹运动,可能是F减小了D.沿c轨迹运动,一定是v减小了2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。

已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变4.关于做匀速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是()A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的周期一定小D.角速度大的半径一定小5.火车转弯时,如果铁路弯道的内、外轨一样高,则外轨对轮缘(如左图所示)挤压的弹力F提供了火车转弯的向心力(如图中所示),但是靠这种办法得到向心力,铁轨和车轮极易受损。

在修筑铁路时,弯道处的外轨会略高于内轨(如右图所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的侧向挤压,设此时的速度大小为v,重力加速度为g,以下说法中正确的是()A.该弯道的半径R=2 v gB.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于v时,外轨将受到轮缘的挤压D.按规定速度行驶时,支持力小于重力6.一个圆锥摆由长为l的摆线、质量为m的小球构成,小球在水平面内做匀速圆周运动,摆线与竖直方向的夹角为θ,如图所示。

人教版新版高中物理必修二第六章圆周运动训练题(35)

人教版新版高中物理必修二第六章圆周运动训练题(35)

⼈教版新版⾼中物理必修⼆第六章圆周运动训练题(35)必修⼆第六章圆周运动训练题 (35)⼀、单选题(本⼤题共3⼩题,共12.0分)1.长为L的细绳,⼀端系⼀质量为m的⼩球,另⼀端固定于某点。

当绳竖直时⼩球静⽌,再给⼩球⼀⽔平初速度v0,使⼩球在竖直平⾯内做圆周运动。

关于⼩球的运动下列说法正确的是( )A. ⼩球过最⾼点时的最⼩速度为零B. ⼩球开始运动时绳对⼩球的拉⼒为m v02LC. ⼩球过最⾼点时速度⼤⼩⼀定为√gLD. ⼩球运动到与圆⼼等⾼处时向⼼⼒由细绳的拉⼒提供2.如图所⽰,⼀质量为m的⼩球⽤长度为l的细线悬挂于O点,已知细线能够承受的最⼤张⼒为7mg重⼒加速度为g,在最低点给⼩球⼀个初速度,让⼩球在竖直平⾯内绕O点做完整的圆周运动,下列说法正确的是A. ⼩球通过最低点的最⼩速度为√7glB. ⼩球通过最低点的最⼤速度为√7glC. ⼩球通过最⾼点的最⼤速度为√2glD. ⼩球通过最⾼点的最⼩速度为03.如图所⽰,某两相邻匀强磁场区域B1、B2以MN为分界线,⽅向均垂直于纸⾯。

有甲、⼄两个电性相同的粒⼦同时分别以速率v1和v2从边界的a、c点垂直于边界射⼊磁场,经过⼀段时间后甲、⼄粒⼦恰好在b相遇(不计重⼒及两粒⼦间的相互作⽤⼒),o1和o2分别位于所在圆的圆⼼,其中R1=2R2则()A. B1、B2的⽅向相反B. v2=2v1C. 甲、⼄两粒⼦做匀速圆周运动的周期不同D. 若B1=B2,则甲、⼄两粒⼦的荷质⽐相同⼆、多选题(本⼤题共3⼩题,共12.0分)4.若宇航员在⽉球表⾯附近⾃⾼h处以初速度v0⽔平抛出⼀个⼩球,测出⼩球的⽔平射程为L.已知⽉球半径为R,万有引⼒常量为G.则下列说法正确的是()A. ⽉球表⾯的重⼒加速度g⽉=2?v02L2B. ⽉球的质量m⽉=2?R2v02GL2C. ⽉球的⾃转周期T=2πRv0D. ⽉球的平均密度ρ=3?v022πGL25.质量为m的⼩球由轻绳a和b分别系于⼀轻质细杆的A点和B点,如图所⽰,绳a与⽔平⽅向成θ⾓,绳b在⽔平⽅向且长为l.当轻杆绕轴AB以⾓速度ω匀速转动时,⼩球在⽔平⾯内做匀速圆周运动.下列说法正确的是(重⼒加速度为g)()A. a绳的张⼒不可能为零B. a绳的张⼒随⾓速度ω的增⼤⽽增⼤C. 当⾓速度ω>√g,b绳中将出现张⼒ltan?θD. 若b绳突然被剪断,则a绳的张⼒⼀定发⽣变化6.如图所⽰如图,A、B、C三个物体放在旋转圆台上,它们与圆台之间的动摩擦因数均为µ,A的质量为2m,B、C质量均为m,A、B离轴⼼距离为R,C离轴⼼2R,则当圆台旋转时(设A、B、C都没有滑动)A. 物体C的向⼼加速度最⼤B. 物体B受到的静摩擦⼒最⼤C. ω=√µg是C开始滑动的临界⾓速度2RD. 当圆台转速增加时,B⽐A先滑动三、填空题(本⼤题共1⼩题,共4.0分)7.有关圆周运动的基本模型,回答下列问题(1)如图a,汽车通过拱桥的最⾼点处于_______ (填“超重”或“失重”)状态(2)如图b所⽰是两个圆锥摆,增⼤θ,但保持圆锥的⾼度不变,则圆锥摆的⾓速度________(填“不变”、“增⼤”或“减⼩”)(3)如图c,同⼀⼩球在光滑⽽固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A、B两位置⼩球的⾓速度ωA_____ωB(填>、=、<)四、计算题(本⼤题共13⼩题,共130.0分)8.如图所⽰,长度为L的绝缘细线将质量为m、电荷量为q的带正电⼩球悬挂于O点,整个空间(其中g为重⼒加速度)的匀强电场,⼩球可视为质点。

人教版(2019)高一物理必修第二册第六章圆周运动第3节向心加速度同步练习试题(word 含答案)

人教版(2019)高一物理必修第二册第六章圆周运动第3节向心加速度同步练习试题(word 含答案)

高一物理第二学期人教版(2019)必修二第六章圆周运动第3节向心加速度同步练习题▲不定项选择题1.关于向心加速度的物理意义,下列说法中正确的是()A.描述线速度的方向变化的快慢C.描述角速度变化的快慢B.描述线速度的大小变化的快慢D.描述向心力变化的快慢2.A、B、C三个物体放在旋转的水平圆台上,A的质量是2m,B、C质量各为m;C离轴心的距离是2r,A、B离轴心距离为r,当圆台匀速转动时,A、B、C都没发生滑动,则A、B、C三个物体的线速度、角速度、向心加速度和向心力的大小关系正确的是()A.ωA:ωB:ωC=1:1:2C.aA:aB:aC=2:2:1B.vA:vB:vC=1:1:1D.FA:FB:FC=2:1:23.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是()A.线速度B.向心加速度C.合外力D.角速度4.在光滑的水平面上,一质量为m的小球在绳的拉力作用下做半径为r的匀速圆周运动,小球运动的线速度为v,角速度为ω,则绳的拉力F大小为()v2A.rB.mω2rC.mω2r D.mv2r5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮匀速转动的角速度为ω,三个轮相互不打滑,则丙轮边缘上各点的向心加速度大小为()r12ω2A.r3r32ω2B.2r1r33ω2C.2r1r1r2ω2D.r36.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度大小逐渐减小.汽车转弯时的加速度方向,可能正确的是A.B.C.D.7.关于质点做匀速圆周运动的下列说法中,正确的是()A.由ω=2π可知,ω与T成反比TB.由a=ω2r可知,a与r成正比2vC.由v=ωr可知,ω与r成反比,v与r成正比D.由a=可知,a与r成反比r8.荡秋千是人们平时喜爱的一项休闲娱乐活动,如图所示,某同学正在荡秋千,A和B分别为运动过程中的最低点和最高点,若忽略空气阻力,则下列说法正确的是()A.在B位置时,该同学速度为零,处于平衡状态B.在A位置时,该同学处于超重状态C.在A位置时,该同学对秋千踏板的压力大于秋千踏板对该同学的支持力,处于超重状态D.由B到A过程中,该同学向心加速度逐渐增大9.如图所示为学员驾驶汽车在水平面上绕O点做匀速圆周运动的俯视图。

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C点后经过98s 再次回到C 点。

高中物理圆周运动练习题

高中物理圆周运动练习题

1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。

高中物理必修二第6章_圆周运动练习题含答案

高中物理必修二第6章_圆周运动练习题含答案

高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。

高考专题复习:圆周运动(可编辑修改word版)

高考专题复习:圆周运动(可编辑修改word版)

10 52 6gL1、如图所示,在倾角 α=30°的光滑斜 面上,有一根长为 L =0.8 m 的细绳,一端固定在 O 点,另一端系一质量为 m =02. kg 的小球,小球沿斜面做圆周运动.若要小球能通过最高点 A ,则小球在最低点 B 的最小速度是 ( )A .2 m/sB .2 m/sC .2 m/ sD .2 m/s 3、如图所示,质量 m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为 r=0.2m 的圆周运动,已知小球在最高点的速率为 v =2m/s ,g 取 10m/s 2,试求:(1) 小球在最高点时的细绳的拉力 T 1=?(2)小球在最低点时的细绳的拉力 T 2=?1、半径为 R = 0.5m 的管状轨道,有一质量为 m = 3.0kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m / s , g = 10m / s 2 ,则()A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到6N 的压力2、如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴 O,现给球一初速度,使球和杆一起绕 O 轴在竖直面内转动,不计空气阻力,用 F 表示球到达最高点时杆对小球的作用力,则 F ( )A.一定是拉力B.一定是推力C.一定等于零D.可能是拉力,可能是推力,也可能等于零2、如图所示,小球 A 质量为 m ,固定在轻细直杆 L 的一端,并随杆一起绕杆的另一端 O 点在竖直平面内做圆周运动。

如果小球经过最高位置时,杆对球的作用力为拉力,拉力大小等于球的重力。

求:(1)球的速度大小。

(2) 当小球经过最低点时速度为,杆对球的作用力大小和球的向心加速度大小。

1、图所示的圆锥摆中,小球的质量 m=50g ,绳长为 1m ,小球做匀速运动的半径 r=0.2m ,求:(1) 绳对小球的拉力大小。

(2) 小球运动的周期 T 。

(完整word版)物理:圆周运动的题型5类归纳

(完整word版)物理:圆周运动的题型5类归纳

圆周运动题型总结【圆周运动各物理量的关系】1、如图所示,一种向自行车车灯供电的小发电机的上端有一半径r=1.0 cm 的摩擦小轮,小轮与自行车车轮的边缘接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35 cm,小齿轮的半径R2=4.0 cm,大齿轮的半径R3=10.0 cm.求大齿轮的转速n1和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)2、如图所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的()A.线速度B.角速度C.加速度D.轨道半径【圆周运动的应用】1、如图所示,用细绳一端系着的质量为M=0.6 kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3 kg的小球B,A的重心到O点的距离为0.2m.若A与转盘间的最大静摩擦力为Ff=2 N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围(取g=10m/s2).2、图示是用以说明向心力与质量、半径之间的关系的仪器,球P和Q可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,m P=2m Q.当整个装置以角速度ω匀速旋转时,两球离转轴的距离保持不变,则此时( )A.两球受到的向心力的大小相等B.P球受到的向心力大于Q球受到的向心力C.r P一定等于r Q 2D.当ω增大时,P球将向外运动3、如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩表演.目测体重为G的女运动员做圆锥摆运动时与水平冰面的夹角约为30°,重力加速度为g,则可估算出该女运动员( )A.受到的拉力为3GB.受到的拉力为2GC.向心加速度为3gD.向心加速度为2g4、如图所示,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮.已知皮带轮的半径为r,传送带与皮带轮间不会打滑.当m可被水平抛出时,A轮每秒的转数最少为( )A.12πgrB.grC.grD.12πgr5、如图所示,小球A的质量为2m,小球B和C的质量均为m,B、C两球到结点P 的轻绳长度相等,滑轮摩擦不计,当B、C两球以某角速度ω做圆锥摆运动时,A球将( )A.向上做加速运动B.向下做加速运动C.保持平衡状态D.上下振动7、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B,在各自不同的水平面做匀速圆周运动,以下关系正确的是()A.角速度 ωA >ωBB. 线速度v A >v BC. 向心加速度a A >a BD. 支持力N A >N B8、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm 处放置一小物块A ,其质量为m =2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力的k 倍(k =0.5),试求⑴当圆盘转动的角速度ω=2rad/s 时, 物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s 2【竖直方向上的圆周运动问题】1、如图所示,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动.现给小球一初速度使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是( )①a 处为拉力,b 处为拉力 ②a 处为拉力,b 处为推力 ③a 处为推力,b 处为拉力 ④a 处为推力,b 处为推力 A. ①②B. ①④C. ②③D. ②④2、长度为L=0.50m 的轻质细杆OA ,A 端有一质量为m=3.0kg 的小球,如图所示,小球以O 点位圆心在竖直平面内做圆周运动,通过最高点b 的速度为2m/s ,则此时细杆OA 受到BAAA 、6N 的拉力B 、6N 的压力C 、24N 的拉力D 、24N 的压力【变形】求在最低点a 细杆OA 的受到的力的情况?【再变形】如果在最高点杆OA 受到的弹力大小为F=15N ,则此时小球的瞬时速度大小?3、 有一辆质量为1.2t 的小汽车驶上半径为50m 的圆弧形拱桥。

物理生活中的圆周运动练习题20篇含解析

物理生活中的圆周运动练习题20篇含解析

物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。

高中物理生活中圆周运动试题(有答案和解析)

高中物理生活中圆周运动试题(有答案和解析)

高中物理生活中的圆周运动试题( 有答案和分析 )一、高中物理精讲专题测试生活中的圆周运动1.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小2.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.3.如下图,竖直平面内的圆滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止开释,自由着落至 A 点后进入圆形轨道,并能沿圆形轨道抵达 B 点,且抵达 B 处时小球对圆轨道的压力大小为mg,重力加快度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球经过 B 点后落到斜面上,h 应知足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【分析】【剖析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球走开 B 点做平抛运动,经时间t ,着落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球着落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰巧能经过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2能够证明小球经过 B 点后必定能落到斜面上设小球恰巧落到 D 点,小球经过 B 点时速度为 v2,飞翔时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应知足的条件为 3 R h 3R2【点睛】小球的运动过程能够分为三部分,第一段是自由落体运动,第二段是圆周运动,此机遇械能守恒,第三段是平抛运动,剖析清楚各部分的运动特色,采纳相应的规律求解即可.4.如下图,长为3l 的不行伸长的轻绳,穿过一长为l 的竖直轻质细管,两头分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平川面上。

2022年高考考点完全题物理考点通关练文稿:第六单元 圆周运动 Word版含解析

2022年高考考点完全题物理考点通关练文稿:第六单元 圆周运动 Word版含解析

第六单元圆周运动测试时间:90分钟满分:110分第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,共48分。

在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.[2022·衡水中学周测]关于匀速圆周运动,下列说法正确的是()A.匀速圆周运动是匀速运动B.匀速圆周运动是匀变速运动C.匀速圆周运动是线速度不变的运动D.匀速圆周运动是线速度大小不变的运动,属于变速运动答案 D解析匀速圆周运动速度大小不变,方向时刻变化,故速度是变化的,是变速运动,故A、B、C错误,D正确。

2.[2021·枣庄检测]如图所示,内部为竖直光滑圆轨道的铁块静置在粗糙的水平地面上,其质量为M。

有一质量为m的小球以水平速度v0从圆轨道最低点A 开头向左运动,小球沿圆轨道运动且始终不脱离圆轨道,在此过程中,铁块始终保持静止,重力加速度大小为g,则下列说法正确的是()A.地面受到的压力肯定大于MgB.小球到达B点时与铁块间可能无作用力C.经过最低点A时小球处于失重状态D.小球在圆轨道左侧运动的过程中,地面受到的摩擦力方向可能向右答案 B解析若小球恰好通过C点,重力供应其做圆周运动的向心力,则小球与铁块间无作用力,地面受到的压力为Mg,A错误;若小球恰好到达B点时速度为零,则小球与铁块间无作用力,B正确;小球经过最低点A时具有竖直向上的加速度,则此时小球处于超重状态,C错误;小球在圆轨道左侧运动的过程中,地面可能不受摩擦力,也可能受到水平向左的摩擦力,故D错误。

3.[2021·湖南浏阳模拟]如图所示,半径为R的圆轮在竖直面内绕O轴匀速转动,轮上A、B两点均粘有一小物体,当B点转至最低位置时,A、B两点处的小物体同时脱落,最终落到水平地面上同一点。

此时O、A、B、P四点在同一竖直线上,已知:OA=AB,P是地面上一点。

高中物理必修二第六章《圆周运动》测试(含答案解析)(2)

高中物理必修二第六章《圆周运动》测试(含答案解析)(2)

一、选择题1.如图所示,质量为m的小球在竖直平面内的固定光滑圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以3v的速度经过最高点时,对轨道的压力大小是(重力加速度为g)()A.mg B.2mg C.4mg D.8mg2.市面上有一种自动计数的智能呼拉圈深受女士喜爱。

如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿过轨道,短杆的另一端悬挂一根带有配重的细绳,其模型简化如图乙所示。

已知配重质量0.5kg,绳长为0.4m,悬挂点到腰带中心的距离为0.2m。

水平固定好腰带,通过人体微小扭动,使配重做水平匀速圆周运动,计数器显示在1min内显数圈数为120,此时绳子与竖直方向夹角为θ。

配重运动过程中腰带可看做不动,g=10m/s2,sin37°=0.6,下列说法正确的是()A.匀速转动时,配重受到的合力恒定不变B.若增大转速,腰受到腰带的弹力变大C.配重的角速度是120rad/s D.θ为37°3.一个风力发电机叶片的转速为19~30转每分钟,转子叶片的轴心通过低速轴跟齿轮箱连接在一起,再通过齿轮箱把高速轴的转速提高到低速轴转速的50倍左右,最后由高速轴驱动发动机工作。

即使风力发电机的叶片转得很慢也依然可以发电。

如图所示为三级[一级增速轴(Ⅱ轴)、二级增速轴(Ⅲ轴)、输出轴(Ⅳ轴)]增速箱原理图,已知一级增速轴(Ⅱ轴)与输入轴(Ⅰ轴)的速比为3.90,二级增速轴(Ⅲ轴)与一级增速轴(Ⅱ轴)的速比为3.53,输出轴(Ⅳ轴)与二级增速轴(Ⅲ轴)的速比为3.23(速比=输出轴转速输入轴转速)。

若该风力发电机叶片的转速为20转每分钟,则()A.输出轴(Ⅳ轴)的转速为1500转每分钟B.一级增速轴(Ⅱ轴)与输入轴(Ⅰ轴)接触部分的半径之比为3.90:1C.一级增速轴(Ⅱ轴)与输入轴(Ⅰ轴)接触部分的线速度之比为1:3.90D.一级增速轴(Ⅱ轴)与输入轴(Ⅰ轴)接触部分的向心加速度之比为3.90:14.中国选手王峥在第七届世界军人运动会上获得链球项目的金牌。

高中物理必修二第六章圆周运动经典大题例题(带答案)

高中物理必修二第六章圆周运动经典大题例题(带答案)

高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。

这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。

故选D。

2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。

则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。

3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。

4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。

高中物理必修二第六章《圆周运动》检测题(包含答案解析)(30)

高中物理必修二第六章《圆周运动》检测题(包含答案解析)(30)

一、选择题1.如图所示,质量为m的小球在竖直平面内的固定光滑圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以3v的速度经过最高点时,对轨道的压力大小是(重力加速度为g)()A.mg B.2mg C.4mg D.8mg2.和谐号动车以80m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10 。

在此10s时间内,则火车()A.角速度约为1rad/s B.运动路程为800mC.加速度为零D.转弯半径约为80m3.如图所示,旋转雨伞时,水珠会从伞的边缘沿切线方向飞出,说明()A.水珠做圆周运动B.水珠处于超重状态C.水珠做离心运动D.水珠蒸发4.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须()A.减为原来的12倍B.减为原来的14倍C.增为原来的2倍D.增为原来的4倍5.如图甲,滚筒洗衣机脱水时,衣物紧贴着滚筒壁在竖直平面内做顺时针的匀速圆周运动.如图乙,一件小衣物(可理想化为质点)质量为m,滚筒半径为R,角速度大小为ω,重力加速度为g,a、b分别为小衣物经过的最高位置和最低位置.下列说法正确的是()A.衣物所受合力的大小始终为mω2RB.衣物转到a位置时的脱水效果最好C.衣物所受滚筒的作用力大小始终为mgD.衣物在a位置对滚筒壁的压力比在b位置的大6.在光滑圆锥形容器内固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如下图所示,图甲中小环与小球在同一水平面上,图乙中轻绳与竖直细杆成 角.设甲图和乙图中轻绳对球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则下列说法中,正确的是A.T a一定为零,T b一定为零B.T a可以为零,T b不可以为零C.N a一定不为零,N b可以为零D.N a可以为零,N b可以不为零7.两根长度不同的细线下面分别悬挂着小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个小球在运动过程中的相对位置关系示意图正确的是()A.B.C.D.8.下列关于运动和力的叙述中,正确的是()A.做曲线运动的物体,其加速度方向一定是变化的B.物体做圆周运动,所受的合力一定指向圆心C.物体所受合力方向与运动方向相反,该物体一定做直线运动D.物体运动的速率在增加,所受合力方向一定与运动方向相同9.杂技演员在表演“水流星”的节目时,盛水的杯子经过最高点杯口向下时水也不洒出来.对于杯子经过最高点时杯子和水的受力情况,下列说法正确的是()A.杯子受到重力、拉力和向心力的作用B.杯子受到的拉力一定为零C.杯底对水的作用力可能为零D.水受平衡力的作用,合力为零10.如图所示,AB为竖直转轴,细绳AC和BC的结点C系一质量为m的小球,两绳能承担的最大拉力均为2mg。

高中物理圆周运动大题附答案

高中物理圆周运动大题附答案

答案1.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大?(2)小球落地点C 与B 点水平距离s 是多少?解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =212B mv ① 2B v gR =②小球在B 点时,根据向心力公式有;R vm mg F BN 2=-③mgR vm mg F B N 32=+=根据牛顿第三定律,小球对轨道的压力大小等于轨道对小球的支持力,为3mg(2)小球由B →C 过程,水平方向有:s=vB ·t ④ 竖直方向有:212H R gt -=⑤解②④⑤得2()s H R R =-2.如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。

已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。

不计空气阻力。

(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。

【解析】(1)小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有:mg=2A v mL解得:A v gL =。

(2)小球在B 点时根据牛顿第二定律有T-mg=m 2B v L其中T=6mg解得小球在B 点的速度大小为vB=5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得:竖直方向上1.9L-L=21gt 2(2分) 水平方向上x=vBt(2分) 解得:x=3L(2分)即小球落地点到C 点的距离为3L 。

答案:(1)gL(2)3L3.如图所示,被长L 的轻杆连接的球A 能绕固定点O 在竖直平面内作圆周运动,O 点竖直高度为h ,如杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?4.如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。

圆周运动检测题(Word版 含答案)

圆周运动检测题(Word版 含答案)

一、第六章 圆周运动易错题培优(难)1.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω2grμC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.2.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。

高中物理必修二第六章《圆周运动》测试题(答案解析)

高中物理必修二第六章《圆周运动》测试题(答案解析)

一、选择题1.下列关于圆周运动的说法中正确的是()A.匀速圆周运动是一种匀变速曲线运动B.广州随地球自转的线速度大于北京的线速度C.图中转盘上跟随水平转盘匀速转动的物块收到重力支持力、静摩擦力和向心力共4个力的作用D.时针与分针的角速度之比为1∶602.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量不相等的小球A和B,在各自不同的水平面做匀速圆周运动,关于球A和球B以下物理量的大小相等的是()A.线速度B.角速度C.向心加速度D.对内壁的压力3.关于铁道转弯处内外轨道的高度关系,下列说法正确的是()A.内外轨道一样高时,外轨对轮缘的弹力提供火车转弯的向心力B.因为列车转弯处有向内倾倒可能,故一般使内轨高于外轨C.外轨略低于内轨,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.铺设轨道时内外轨道的高度关系由具体地形决定,与行车安全无关4.甲(质量为80kg)、乙(质量为40kg)两名溜冰运动员,面对面拉着轻弹簧做圆周运动的溜冰表演,如图所示,此时两人相距0.9m且弹簧秤的示数为6N,下列说法正确的是()A .甲的线速度为0.4m/sB .乙的角速度为2rad/s 3C .两人的运动半径均为0.45mD .甲的运动半径为0.3m5.如图是自行车传动结构的示意图,其中I 是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮。

假设脚踏板的转速为n (r/s ),则自行车前进的速度为( )A .231nr r r π B .132nr r r π C .2312nr r r π D .1322nr r r π 6.如图所示,铁路在弯道处的内外轨道高低是不同的,已知内外轨组成的轨道平面与水平面的夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内外轨道均不受侧压力作用,下面分析正确的是( )A .sin v gR θ=B .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内C .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外D .无论火车以何种速度行驶,对内侧轨道都有压力7.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( )A .减为原来的12倍 B .减为原来的14倍 C .增为原来的2倍 D .增为原来的4倍 8.下列关于运动和力的叙述中,正确的是( ) A .做曲线运动的物体,其加速度方向一定是变化的 B .物体做圆周运动,所受的合力一定指向圆心C .物体所受合力方向与运动方向相反,该物体一定做直线运动D .物体运动的速率在增加,所受合力方向一定与运动方向相同9.顺时针摇动水平放置的轮子,图为俯视图。

2021-2022学年 人教版(2019)必修2 第六章 圆周运动 单元测试卷(word版含答案)

2021-2022学年 人教版(2019)必修2 第六章 圆周运动 单元测试卷(word版含答案)

2021-2022学年 人教版(2019)必修2 第六章 圆周运动 单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每题4分,共8各小题,共计32分)1.如图所示,一圆柱形容器绕其轴线匀速转动,内部有A B 、两个物体,均与容器的接触面始终保持相对静止。

当转速增大后(A B 、与容器接触面间仍相对静止),下列说法正确的是( )A.两物体受到的摩擦力都增大B.两物体受到的摩擦力大小都不变C.物体A 受到的摩擦力增大,物体B 受到的摩擦力大小不变D.物体A 受到的摩擦力大小不变,物体B 受到的摩擦力增大2.如图所示,竖直杆AB 在A B 、两点通过光滑铰链连接两等长轻杆AC 和BC AC ,和BC 与竖直方向的夹角均为θ,轻杆长均为L ,在C 处固定一质量为m 的小球,重力加速度为g ,在装置绕竖直杆AB 转动的角速度ω从0开始逐渐增大的过程中,下列说法正确的是( )A.当0ω=时,AC 杆和BC 杆对球的作用力都表现为拉力B.AC 杆对球的作用力先增大后减小C.一定时间后,AC 杆与BC 杆上的力的大小之差恒定D.当ω=BC 杆对球的作用力为0 3.如图甲所示的“太极球”是一种较流行的健身器材。

现将太极球拍和球简化成如图乙所示的平板和球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A B C D 、、、四个位置时球与板间无相对运动趋势。

A 为圆周的最高点,C 为最低点,B D 、与圆心O 等高。

设球的质量为m ,重力加速度为g ,不计球拍的质量和球与球拍间的摩擦。

下列说法正确的是( )A.球运动到最高点A 时的最小速度为零B.球在C 处对板的作用力比在A 处对板的作用力大2mgC.增大球的运动速度,当球运动到B 点时,板与水平面的夹角θ变小D.球运动到B 点,45θ=时,板对球的作用力大小2F mg =4.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都改变 B.速度的大小和方向都不变C.速度的大小不变,方向改变 D.速度的大小改变,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F及摩擦力F f的示意图,其中正确的是()A.B.C.D.3.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是()A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是()A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是()A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则()A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是F f,则物块与碗的动摩擦因数为()A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是()A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则()A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为()A.μmg B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 km,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到需要的任意值,且汽车不离开地面的前提下,下列分析中正确的是()A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是()A.F n= B.F n=mv2r C.F n=mvω D.F n=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴OO′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比mA∶mB=2∶1,那么关于A、B两球的下列说法中正确的是()A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速慢慢增加时().A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速慢慢增加,m1先开始滑动D.随转速慢慢增加,m2先开始滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是()A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为sinθ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线OC间的夹角分别为α=53°和β=37°,则(sin 37°=0.6)()A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中央的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必然指向圆心.综上可知,C项正确.3.【答案】C【解析】根据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力提供,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力提供了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的所有力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,根据牛顿第二定律得F N-mg=m,又F f=μF N,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力提供其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c 方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变化的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但一定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:F N-mg=m,得F N=mg+m,又由摩擦力公式有F f=μF N=μ(mg+m),C选项正确.12.【答案】C【解析】对汽车研究,根据牛顿第二定律得:mg-F N=m,则得F N=mg-m,可知,速度v越大,地面对汽车的支持力F N越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.如果某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,需要有力提供指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力提供向心力,根据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A. 14.【答案】ACD【解析】15.【答案】BCD【解析】两球的向心力都由细绳的拉力提供,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为rA、rB,转动角速度为ω,则mArAω2=mBrBω2,所以运动半径之比为rA∶rB=1∶2,C 正确.由牛顿第二定律F=ma可知aA∶aB=1∶2,D正确.16.【答案】BD【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发现相对滑动前a1∶a2=1∶2,选项B对.随着转盘慢慢滑动,静摩擦力提供向心力,当开始发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1开始发生相对滑动,选项C错,D对.17.【答案】BC【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:mg tanθ=mr,r=L sinθ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】ACD【解析】小球在运动的过程中受到的合力沿水平方向,且恰好提供向心力,根据平行四边形定则得,F N=,则==,故A正确.小球受到的合外力:mg tanθ=m r,r=R sinθ,解得T=,则==,故B错误.根据公式mg tanθ=mω2r,所以ω==,所以==,故C正确.mg tanθ=m,得v=,则==,故D正确.19.【答案】AC【解析】当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不一定会向内侧滑动,选项B错误;当车速高于v0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由mg tanθ=m可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力及细线的拉力两力作用,如图所示,竖直方向:F T cosθ=mg,故拉力F T=.(2)小球做圆周运动的半径r=L sinθ,向心力F n=F T sinθ=mg tanθ,而F n=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力F T=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力F T,根据牛顿第二定律m2g=m1解得v=.22.【答案】1)rad/s(2)2rad/s【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿第二定律及向心力公式得:mg tanθ=mωl sinθ解得:ω=即ω0==rad/s.(2)当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tanα=mω′2l sinα解得:ω′2=,即ω′==2rad/s.23.【答案】对小球受力分析如图所示,小球受重力mg和线的拉力F T作用,这两个力的合力mg tanα指向圆心,提供向心力,由受力分析可知,细线拉力F T=.由F n=m=mω2R=m=mg tanα,半径R=L sinα,得v==sinα,T=2π.【解析】。

相关文档
最新文档