最短路径问题 (PPT课件)
合集下载
《最短路径问题》PPT课件
![《最短路径问题》PPT课件](https://img.taocdn.com/s3/m/4e5e82c0aaea998fcd220e61.png)
A
a 3、连接PA,PB,由对称轴 的性质知,PA= P1A,
P1
PB=P2B
∴先到点A处吃草,再到点B
处饮水,最后回到营地,
这时的放牧路线总路程最
短,即 (PB+BA+AP)min
• 证明:
P2
b ∵ PA1+A1B1+B1P
B1 B
.P
河
= P1A1+A1B1+B1P2 > P1A+AB+BP2
前面和右面
D D1
③
A 1 A1
C1
2
4
B1
AC1 =√52+22 =√29
左面和上面
• 1、如图是一个长方体木块,已知 AB=5,BC=3,CD=4,假设一只蚂蚁 在点A处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 7 4 。
D
4
C
A
5
B3
• 2、现要在如图所示的圆柱体侧面A点 与B点之间缠一条金丝带(金丝带的宽 度忽略不计),圆柱体高为6cm,底面 圆周长为16cm,则所缠金丝带长度的 最小值为 10cm 。
在河上建一座桥MN,桥造在何处才能使从A到B
的路径最短?(假设河的两岸是平行的直线,桥
要与河垂直)
.A M
作法: 1、将点B沿垂直与河岸的方
向平移一个河宽到E
N
2、. E连接AE交河对岸与点M,则
.点BM为建桥的位置,MN为 所建的桥。
A C
M ND E
B
• 证明: ∵ AC+CD+DB = AC+CD+CE = AC+CE+CD > AE+CD = AM+ME+CD = AM+NB+MN ∴ AC+CD+DB > AM+NB+MN
《最短路径问题》PPT课件
![《最短路径问题》PPT课件](https://img.taocdn.com/s3/m/c134fd07daef5ef7bb0d3c5e.png)
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
最短路径问题-(PPT课件) 公开课
![最短路径问题-(PPT课件) 公开课](https://img.taocdn.com/s3/m/4e3903760508763230121243.png)
第十三章 轴对称
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
人教版数学八年级上册13.4 课题学习 最短路径问题课件(共27张PPT)
![人教版数学八年级上册13.4 课题学习 最短路径问题课件(共27张PPT)](https://img.taocdn.com/s3/m/36d28171a31614791711cc7931b765ce04087a1e.png)
A∙ 请小组讨论证明这个结论吧!
A′
M′ a M
b
N′
N
∙B
13.4 最短路径问题
证明
证明:在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,
连接AM′,A′N′,N′B.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′. ∴AM+NB+MN<AM′+BN′+M′N′, 即AM+NB+MN的值最小.
13.4 最短路径问题
解:∵点B 和 点C 关于直线 AD 对称, ∴BF = CF . 求BF + EF 最小值,只需 CF + EF 最小. 连接EC,线段 CE 的长即为 BF + EF 的最 小值. ∵D、E 是等边△ABC 中 BC、AB 的中点, ∴CE = AD = 5. ∴BF+EF的最小值为5.
路程最短? C
A
D
A1
A C
C1 D1 E
E1 B B1
C1 B
解:如图,作 AA1⊥CD,且 AA1 = 河宽,作 BB1⊥CE,且 BB1 = 河宽, 连接 A1B1,与内河岸相交于 E1,D1. 过 E1,D1作河岸的垂线段 EE1 、 DD1,即为桥.
13.4 最短路径问题
13.4 最短路径问题
学习目标 1. 利用轴对称、平移等变化解决简单的最短路径问题. 重点
2. 体会图形的变化在解决最值问题中的作用,感受由实际问题转化为
数学问题的思想. 难点
最短路径问题 ppt课件
![最短路径问题 ppt课件](https://img.taocdn.com/s3/m/5b9084b067ec102de3bd8957.png)
12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)
人教版八年级数学上册第十三章课题学习最短路径问题(共30张PPT)
![人教版八年级数学上册第十三章课题学习最短路径问题(共30张PPT)](https://img.taocdn.com/s3/m/3ba55c3303d8ce2f00662358.png)
此时从A到B点路径最短.
M N
P Q
G
H B1 B
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用平 移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点
依次至A1、A2、A3 ,..., An,平移距离分别等于各自河宽, AnB交第n条河近B点河岸于Nn,建桥 MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,..., 连接M1A交第一条河近B点河岸于N1, 建桥M1N1,此时所走路径最短.
献 。 现 将 主 要工作 报告 一 、 关 心 爱 护学生 。经常 耐心细 致地做 学生的 思想教 育工作 ,有时可 以说达 到了废 寝 忘 食 的 地 步。特 别是在 抗击非 典期间 ,对学生 的生命 安全高 度负责 ,从协助校领导
制 定 各 项 预 防措施 到学生 病情的 监控和 学生的 诊治陪 护等都 凡事躬 亲。自 己带领 的 由 党 团 员 组成的 陪护小 组,不怕 死,不怕 累,出 色完成 了学校 交给的 陪护学 生的任 务 。 XX 年 7月 ,音 专 001班 黄德华 被骗到 合浦搞 传销,我 接到求 救电话 后,马上 与杨小 林 等 同 志 赶 赴合浦 解救学 生,回到 南宁后 ,又自己 掏钱为 学生购 好了返回龙州的车票
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
• 如图,点A,点B是直线l两侧的点, 请在直线l上找一点C,使AC+BC最短
联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
第十三章 轴对称
如图所示,从A地到B地有三条路 可供选择,你会选走哪条路最近 ?你的理由是什么?
C ①D E
A
②
B
两点之间,线段最短
③
F
要在河边修建一个泵站向张村引水,在何 处修建才能使所用引水管道最短?为什么?
张村
泵站
河流
垂线段最短
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然 后再到帐蓬B.问:在河边的什么地方饮水,可使 所走的路径最短?
点M、N应该在 l1、l2的什么位置 ?
A’
l1
M A
N
l2
A’’
走A-M- N 路线最短.
A’
l1 M
A
N
l2
A’’
变式练习2
如图:某一天牧马人要从马棚A牵出马到草地边吃草, 再到河边饮水,最后回到帐篷B,请你帮他确定这一天 的最短路线。
N
P
Q
A
Ml1
B
l2
A’
P
A
l1
Q
B’
B
l2
归纳小结 1.学了三种情况下的最短路径问题
(1)两点在一条直线同侧 (2)一点在两相交直线内部 (3)两点在两相交直线内部
l1
l1
2.关键:
l2
l2
作对称点,利用轴对称的性质将线段转化,
从而利用“两点之间,线段最短”来解决
新课推进
问题2 如图,A和B两地在一条河的两岸,现 要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直 线,桥要与河垂直)
B A
l
解决实 际问题
问题1 归纳
转化为数学问题
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
变式练习1 如图,牧马人要把马从马棚A牵到草地边吃草,
然后到河边饮水,最后再回到马棚A.
A
ห้องสมุดไป่ตู้
小
河
问题:请你确定这一过程的最短路径.
转化为数学问题
如图,在l1、l2之间有一点A,要使AM+MN+NA最小,
径AM+MN+BN最短. N
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
A
B
新课推进
追问1 如图假定任选位 置造桥MN,连接AM和BN, A 从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
追问2 利用线段公理解决问题我们遇到 了什么障碍呢?如何解决?
M
N B
新课推进
A
解:如图,平移A到A1,使 AA1等于河宽,连接A1B交
A1
M
河岸于N作桥MN,此时路
1.如图,A.B是直线a同侧的两定点,定 长线段PQ在a 上平行移动,问PQ移 动到什么位置时,AP+PQ+QB的长最短?
.B A.
a
..
PQ
分析: PQ是一个定长线段,AP+PQ+QB最
短即AP+QB最短.此题类似课本问题二 的“造桥选址”问题。
问:平移哪条线段?沿哪个方向平移?
.B
A.
A’
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接CB′。
A C
B 问题可以转化为:当点C在直线 l 的什 么位置时,AC与CB′的和最小?如上右
l
图,在连接AB′两点的线中,线段AB′ 最短. 因此,线段AB′与直线 l 的交
点C的位置即为所求.
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最 短?
根据前面的分析,我们认为的
最短路径是AC+CB=AC+C B′= AB′
B
略证:
在直线 l 上取一个与 C点不重合的点C′ 新路径= A C′ + C′B
A
l
C′ C
=A C′ + C′B′
B′
试比较新路径与AB′的大小
结论: AC+CB这条路径最短.
a
.
. Q’
PQ
B’
归纳小结
B
A l
C
B′
轴对称 变换
A C
A
A' M a
b
N
B
平移
l
变换
B
两点之间,线段最短.
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
• 如图,点A,点B是直线l两侧的点, 请在直线l上找一点C,使AC+BC最短
联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
第十三章 轴对称
如图所示,从A地到B地有三条路 可供选择,你会选走哪条路最近 ?你的理由是什么?
C ①D E
A
②
B
两点之间,线段最短
③
F
要在河边修建一个泵站向张村引水,在何 处修建才能使所用引水管道最短?为什么?
张村
泵站
河流
垂线段最短
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然 后再到帐蓬B.问:在河边的什么地方饮水,可使 所走的路径最短?
点M、N应该在 l1、l2的什么位置 ?
A’
l1
M A
N
l2
A’’
走A-M- N 路线最短.
A’
l1 M
A
N
l2
A’’
变式练习2
如图:某一天牧马人要从马棚A牵出马到草地边吃草, 再到河边饮水,最后回到帐篷B,请你帮他确定这一天 的最短路线。
N
P
Q
A
Ml1
B
l2
A’
P
A
l1
Q
B’
B
l2
归纳小结 1.学了三种情况下的最短路径问题
(1)两点在一条直线同侧 (2)一点在两相交直线内部 (3)两点在两相交直线内部
l1
l1
2.关键:
l2
l2
作对称点,利用轴对称的性质将线段转化,
从而利用“两点之间,线段最短”来解决
新课推进
问题2 如图,A和B两地在一条河的两岸,现 要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直 线,桥要与河垂直)
B A
l
解决实 际问题
问题1 归纳
转化为数学问题
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
变式练习1 如图,牧马人要把马从马棚A牵到草地边吃草,
然后到河边饮水,最后再回到马棚A.
A
ห้องสมุดไป่ตู้
小
河
问题:请你确定这一过程的最短路径.
转化为数学问题
如图,在l1、l2之间有一点A,要使AM+MN+NA最小,
径AM+MN+BN最短. N
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
A
B
新课推进
追问1 如图假定任选位 置造桥MN,连接AM和BN, A 从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
追问2 利用线段公理解决问题我们遇到 了什么障碍呢?如何解决?
M
N B
新课推进
A
解:如图,平移A到A1,使 AA1等于河宽,连接A1B交
A1
M
河岸于N作桥MN,此时路
1.如图,A.B是直线a同侧的两定点,定 长线段PQ在a 上平行移动,问PQ移 动到什么位置时,AP+PQ+QB的长最短?
.B A.
a
..
PQ
分析: PQ是一个定长线段,AP+PQ+QB最
短即AP+QB最短.此题类似课本问题二 的“造桥选址”问题。
问:平移哪条线段?沿哪个方向平移?
.B
A.
A’
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接CB′。
A C
B 问题可以转化为:当点C在直线 l 的什 么位置时,AC与CB′的和最小?如上右
l
图,在连接AB′两点的线中,线段AB′ 最短. 因此,线段AB′与直线 l 的交
点C的位置即为所求.
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最 短?
根据前面的分析,我们认为的
最短路径是AC+CB=AC+C B′= AB′
B
略证:
在直线 l 上取一个与 C点不重合的点C′ 新路径= A C′ + C′B
A
l
C′ C
=A C′ + C′B′
B′
试比较新路径与AB′的大小
结论: AC+CB这条路径最短.
a
.
. Q’
PQ
B’
归纳小结
B
A l
C
B′
轴对称 变换
A C
A
A' M a
b
N
B
平移
l
变换
B
两点之间,线段最短.