高等数学练习题附答案

合集下载

高等数学练习题(附答案)

高等数学练习题(附答案)

《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。

高等数学练习题及答案

高等数学练习题及答案

一、单项选择题1.0lim()x x f x A →=,则必有( ).(A )()f x 在0x 点的某个去心邻域内有界. (B) ()f x 在0x 点的任一去心邻域内有界.(C)()f x 在0x 点的某个去心邻域内无界. (D) ()f x 在0x 点的任一去心邻域内无界.2.函数⎩⎨⎧≥+<=0)(x x a x e x f x ,要使()f x 在0x =处连续,则a =( ).(A) 2. (B) 1. (C) 0. (D) -1.3.若()()F x f x '=,则()dF x =⎰( ).(A )()f x . (B) ()F x . (C) ()f x C +. (D) ()F x C +4.方程 410xx --=至少有一根的区间是( ).(A ) 10,2⎛⎫ ⎪⎝⎭. (B )1,12⎛⎫⎪⎝⎭. (C )(2,3). (D )(1,2).二、填空题1. 设()f x 在0x x =处可导,则0lim x x y →∆= .2. 某需求曲线为1002000Q P =-+,则当10P =时的弹性为 .3. 曲线3267yx x =+-在0x =处的法线方程为 .4.2sin 2x t d e dt dx⎰= . 三、求下列极限(1)2211lim 21x x x x →---.(2)1lim(1)2x x x→∞-.(3) 0sin 2lim ln(1)x xx →+. 四、求下列导数和微分(1)已知3cos x y x=, 求dy . (2)求由方程l n2xyy e =+所确定的函数()y f x =的导数dy dx .五、求下列积分(1)221(sec )1x dx x++⎰.(2)20⎰ . (3)sin ⎰. 六、求函数()x f x xe -=的单调区间和极值.七、求由直线2yx =和抛物线2y x =所围成的平面图形的面积.八、证明:当0x >时,(1)l n (1)x x x++>.九、某种商品的成本函数23()200030.010.0002c x x x x =+++(单位:元),求生产100件产品时的平均成本和边际成本.一、 A . B . D . D . 二、(1)0. (2)-1. (3)0x=. (4)] 2sin cos x e x ⋅.三、求极限(1)解:原式=11(1)(1)12limlim (21)(1)213x x x x x x x x →→-++==+-+ (2)解:原式= 111222220011lim[(1)][lim(1)]22x xx x e x x -----→→-=-= (3)解:这是未定型,由洛必达法则原式=00cos 22limlim2(1)cos 2211x x x x x x →→⋅=+=+四、求导数和微分(1)解:23l n3c os 3sin(c os )x xx xy x +'=,23ln3cos 3sin (cos )x x x x dy dx x += (2)解:方程两边对x 求导,()xyy e y xy ''=+, 1xyxyye y xe '=-五、积分1.原式=221sec xdx dx +⎰⎰=tan arctan x x c ++ 2.原式=220118(4)x --=-=⎰3.t =,2,2x t dx tdt ==原式=sin 22(cos )2cos 2cos t tdt td t t t tdt⋅=-=-+⎰⎰⎰2c o s 2s in 2int t t C C=-++=-六、解: 函数定义域为(),-∞+∞,()(1)x x x f x e xe e x ---'=-=- 1x =是驻点 可列表讨论:单调增区间(,1)-∞单调减区间(1,)+∞极大值1(1)f e=. 七、解:解方程组22y x y x =⎧⎨=⎩得交点坐标(0,0) (2,4) 23222004(2)33x A x x dx x ⎡⎤=-=-=⎢⎥⎣⎦⎰ 八、 证明:设 ()(1)ln(1)f x x x x =++- 当0>x 时,()l n (1)11l n (1)0f x x x '=++-=+>故原函数是增函数,0>x ,即()(0)0f x f >= 即(1)ln(1)0x x x ++-> 故 当0x >时,(1)l n (1)x x x++>.九、解:23200030.010.0002()x x x c x x+++=, 23200031000.011000.0002100(100)100c +⨯+⨯+⨯==262'()30.020.0006c x x x =++ 2'(100)30.021000.000610011c =+⨯+⨯=一、单项选择题1. 无穷小量是( ). (A )比零稍大一点的一个数. (B )一个很小很小的数.(C )以零为极限的一个变量. (D )数零.2.下列函数中当0x +→时为无穷大的函数是( ). (A) 21x--. (B) sin 1sec x x+. (C) xe -. (D) 1x e .3.()f x x =在点0x =处的导数( ). (A)1 . (B) 0. (C) -1.. (D) 不存在.4. x 0为驻点是可导函数f x ()在x 0处取得极值的( ). (A) 充要条件. (B) 充分条件. (C) 必要条件. (D) 即非充分又非必要.二、填空题1.0x =是函数1,10(),01x x f x x ⎧--≤<⎪=≤<的第 类间断点.2.设某种商品的需求函数为220Q P =-,则5P =时的边际需求为 . 3.已知曲线3223x y x =-+,则其上切线平行于x 轴的点的坐标为 .4.1-=⎰ . 三、求下列极限1.1lim x →23321x x x +++. 2.23lim(1)x x x →∞-.3.00lim sin xtx e dt x -→⎰. 四、求下列导数和微分1.已知ta n c o s2y x x =⋅, 求dy .2.求由参数方程233cos 2sin x ty t⎧=⎪⎨=⎪⎩所确定的函数()y f x =的导数 dy dx .五、求下列积分1.32x x e dx ⎰. 2.3(dxx +⎰. 3.21ln x xdx ⎰. 六、求函数arctan yx =的凹凸区间和拐点.七、求由抛物线 2x y=与直线22y x =-所围成平面图形的面积.八、证明:当0x >时,2ln(1)2x x x -<+.九、某商品每月销售x 件的收入函数为100()1000,xR x xe-=问每月销售多少件商品时,可使收入最大?一、C. D . D . C . 二、(1)一. (2)—10 . (3)()0,2、22,3⎛⎫⎪⎝⎭.(4)0. 三、求极限 (1)解:因为函数()f x =23321x x x +++在点1x =处连续,故1lim x →2332132(1)3111x x f x ++++===++(2) 原式=(3)2663333lim[1()][lim(1)]xxx x e xx --⋅---→∞→∞+-=-= (3)解: 这是一个未定型,由洛必达法则原式=000lim lim 1cos limcos xxx x x e ex x--→→→== 四、求导数和微分(1)解:22seccos2tan (sin 2)2sec cos22tan sin 2y x x x x x x x x '=+-⋅=-2sec cos 22tan sin 2dy x x x x dx ⎡⎤=-⎣⎦(2)解:2236sin ,6cos dx dy t t t t dt dt=-=,233226cos cos 6sin sin dy t t t t dx t t t ==--五、积分1.原式=33311()33x x e d x e C =+⎰ 2.原式=1323ln 2arcsin dx x x C x +=++⎰3.原式=222222211111ln ln ()ln 222x x x x xdx xd x dx x ⎡⎤==-⋅⎢⎥⎣⎦⎰⎰⎰=22132ln 22ln 244x ⎡⎤-=-⎢⎥⎣⎦六、解:函数定义域为(,)-∞+∞,211y x '=+,222(1)xy x -''=+,令0y ''=得0x =,0x =把定义区间分成两部分(,0)(0,)-∞⋃+∞.可表示为:凹区间(,0)-∞,凸区间(0,)+∞,拐点(0,0).七、解:222y x y x⎧=⎪⎨=-⎪⎩交点()1,1-,()1,1 由定积分的几何意义可得1122210(2))4(1)A x x dx x dx -⎡⎤=--=-⎣⎦⎰⎰1308433x x ⎡⎤=-=⎢⎥⎣⎦八、证:设2()ln(1)2x f x x x =+-+当0x > 21()1011x f x x x x'=-+=>++ 故)(x f 在定义域内单增,即()(0)0f x f >=2ln(1)02x x x +-+>,即当0x >时,2ln(1)2x x x -<+ 九、解:1001001'()1000()100x xR x e xe --⎡⎤=+⋅-⎢⎥⎣⎦=1001000(1)100x x e --令'()0R x =,得驻点x=100 由于收入的最大值存在,而收入函数的驻点仅有一个,故函数在驻点x=100处取得最大值,最大值为:R(100)=1005100101000100e e-⨯⨯=36862≈ 即每月销售100件商品时,可使收入最大为36862.一、单项选择题 1.任意给定0M>,总存在着0X >,当x X<-时,()f x M<-,则( ).(A )lim ()x f x →-∞=-∞ . (B )lim ()x f x →∞=-∞.(C )lim ()x f x →-∞=∞.(D )lim ()x f x →+∞=∞.2.点1x =是函数31,1()1,13,1x x f x x x x ⎧-<⎪==⎨⎪->⎩ 的( ). (A) 连续点. (B) 第一类非可去间断点. (C) 可去间断点. (D) 第二类间断点. 3.设0()2f x '=,则000()()limh f x h f x h →--= ( ).(A )-2. (B )4. (C )2. (D )12.4.罗尔定理中的条件:()f x 在[],a b 上连续,在(,)a b 内可导,且()()f a f b =,是()f x 在(,)a b 内至少存在一点ξ,使得()0f ξ'=成立的( ).(A)必要条件. (B) 充分条件. (C)充要条件. (D)无关条件.二、填空题1.0x →时,2352x x -是x 的 阶无穷小. 2.设某种商品的成本函数C(x)= 210004x ++x=100件产品的边际成本是 . 3.()f x dx '=⎰=. 4.2cos x d tdt dx =⎰.三、求下列极限1.sin lim n xx →∞. 2.[]lim ln(2)ln x x x x →∞+-. 3.201lim cos31x x e x →--. 四、求下列导数和微分(1)已知ln(y x =, 求dy .(2)求由方程cos sin y y x =+所确定的函数()y f x =的导数dydx. 五、求下列积分(1)()xxeex dx --⎰.(2)2. (3)1ln 1e x dx x +⎰. 六、求函数32231214y x x x =+-+的单调区间和极值.七、求由直线x y =和曲线y =所围成的平面图形绕x 轴旋转所得旋转体的体积.八、证明:当1x>时,2(1)2x e e x >+.(7分)九、设某商品的需求函数为402Q p =-,其中p 为价格,试求:(1)需求量对价格的弹性;(2)价格p=15元时需求量对价格的弹性,此时是提价还是降价会使收入增加。

高等数学练习题库及答案

高等数学练习题库及答案

高等数学练习题库及答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n n n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) .0 C 27.设=+∞→x x xk )1(lim e 6 则k=( ) .2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1)(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、x9D、 x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、 233、函数f(x)在点x0连续是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x可微的()A、充分条件B、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( ) A 、0/0型 B 、∞/∞型 C 、∞ -∞ D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 x x x x sin 1sinlim 20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A 、原点(0,0,0)B 、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程3x 2+3y 2-z 2=0表示旋转曲面,它的旋转轴是( )A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面56下列命题正确的是( )A 、发散数列必无界B 、两无界数列之和必无界C 、两发散数列之和必发散D 、两收敛数列之和必收敛(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A 、.必要条件B 、充分条件C 、充分必要条件D 、无关条件58函数f(x)=tanx 能取最小最大值的区间是下列区间中的( )A 、[0,л]B 、(0,л)C 、[-л/4,л/4]D 、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有( )A 、f(x)=x+1B 、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=( )A 、-1B 、0C 、1D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( ) 2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( ) 3、求极限2lim →x x-2/(x+2)1/2=( ) 4、求极限∞→x lim [x/(x+1)]x=( ) 5、求极限0lim →x (1-x)1/x= ( ) 6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=()16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt =( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x xt dt e x 在点x=0连续, 则a=( )21、∫02(x 2+1/x 4)dx =( )22、∫49x 1/2(1+x 1/2)dx=( )23、∫031/2adx/(a 2+x 2)=( )24、∫01dx/(4-x 2)1/2=( )25、∫л/3лsin (л/3+x)dx=( )26、∫49x 1/2(1+x 1/2)dx=( )27、∫49x 1/2(1+x 1/2)dx=( )28、∫49x 1/2(1+x 1/2)dx=( )29、∫49x 1/2(1+x 1/2)dx=( )30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为 ( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、 y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()→∞x47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大并求出其最大值。

高等数学习题集及答案

高等数学习题集及答案

D. 无关条件
A. 若 { un} 有界,则 { un} 发散 C. 若 { un} 单调,则 { un} 收敛
B. 若 {un} 有界,则 { un} 收敛 D. 若 { un} 收敛,则 { un} 有界
22. 下面命题错误的是 【 】
A. 若 { un} 收敛,则 { un} 有界
C. 若 { un} 有界,则 { un} 收敛
A. y arcsin x
B. y arccosx
C. y arctan x
D. y arccot x
7. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. ( , )
B. [ 1,1]
C. ( , )
D. [ 2,0]
8. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. 连续点
B. 可去间断点
C.跳跃间断点
47. lim xsin 1 的 值为 【
x0
x
A. 1
B.
】 C. 不存在
D. 0
48. 当 x
时下列函数是无穷小量的是 【 】
x cos x
A.
sin x
x2
B.
C.
sin x D. (1 1) x
x
x
x
x
x2 1 x 0
49. 设 f ( x)
, 则下列结论正确的是 【 】
C. e 3

D. e3
4
A. e
B. 1
2
C. e
D.
4
e
26. x 1是函数 f ( x)
x x3 的 【 x2 x 2

A. 连续点

高等数学练习题(附答案)

高等数学练习题(附答案)

高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。

因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。

3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。

因此,该说法是错误的。

4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。

因此,该说法是错误的。

=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。

因此,该说法是错误的。

四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。

高数练习题及答案解析

高数练习题及答案解析

高数练习题及答案解析一、填空题1.设f?ax?by,其中a,b为常数,则f)?.axy?abx?b2y 2.函数z?x2?y2在点处,沿从点到点的方向的方向导数是.1?223.设有向量场A?yi?xyj?xzk,则divA? x1x2114.二重积分dxfdy交换积分次序后为?dyfdx0n5.幂级数?的收敛域为 . [0,6) nn3n?16.已知z?e7.三重积分x?2y,而x?sint,y?t,则33dzesint2t dt其中?是由x?0,x?1,y?0,y?1,z?0,z?3dv? ,所围成的立体.二、计算题21.设a?2,b?5,a与b的夹角为?,向量m??a?17b与n?3a?b相互垂直,求?.3222解:由0?m?n?3?a?a?b?17b?122?5?cos??17?253得??40.2x3yz50垂直的平面方程.3x?y?2z?4?0?ijk?解:直线的方向向量为s?2?31??5,7,1131?22.求过点且与直线?取平面的法向量为n?s,则平面方程为5?7?11?0 即5x?7y?11z?8?0.3.曲面xyz?32上哪一点处的法线平行于向量S?{2,8,1}?并求出此法线方程.解:设曲面在点M处的法线平行于s,令F?xyz?32则在点M处曲面的法向量为n?{Fx,Fy,Fz}?{yz,xz,xy}.由于ns,故有yzxzxy.由此解得81x?4y,z?8y,代入曲面方程,解得M的坐标为,用点向式即得所求法线方程为x?4y?1z?881三、计算题1.设z?xy?xF,其中F为可导函数,求xyx?z?z?y. ?x?y解:zyzyFF, xF xxyzzy2xyxFzxy xynd?ex?1?2.将函数f?展成的幂级数,并求的和. xdx?x?n?1!ex?1111xxn1 解:x2!n!并在内收敛。

12n1n2nfxxxn1,x2!3!n!n?1!ex1nfx!n1x?113.求微分方程y1?,y??2dy的通解. dx解:令y??p,则yp?,原方程化为p??1?p2?dpdxptan1p2y??tandx??lncos?c2四、计算题1.求曲线积分I?22233的值,其中L为x?y?R的正向. ydx?dyL解:记L所围成的区域为D,利用格林公式得2?RI?y3dx?dydxdy?3?dd?LD3R22.求微分方程yy?4xex的通解.解:对应的齐次方程为yy?0,它的特征方程为r?1?0,其根为r1?1,r2??1,该齐次方程的通为Y?C1ex?C2e?x。

高等数学习题集及解答

高等数学习题集及解答

高等数学习题集及解答第二章一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。

2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。

3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。

4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。

5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。

6、()x f x xe =,则_______________(ln 2)f '''=。

7、如果(0)y ax a =>是21y x =+的切线,则__________a =。

8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。

9、()(1)(2)()f x x x x x n =+++,则_________________(0)f '=。

10、ln(13)x y -=+,则____________________y '=。

11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。

12、设tan x y y +=,则_________________________dy =。

13、设lny =_______________(0)y '''=。

14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。

完整)高等数学练习题附答案

完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。

+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。

2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) A.1 B.0 C.2 D.1/27.设=+∞→x x xk )1(lim e 6 则k=( ) A.1 B.2 C.6 D.1/68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x 2-1B. x 3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C 、有最大值与最小值D 、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)=()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、 -8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 x x x x sin 1sinlim 20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A、2B、1/2C、1D、042、抛物线y=4x-x2在它的顶点处的曲率半径为()A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程3x 2+3y 2-z 2=0表示旋转曲面,它的旋转轴是( )A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x=( )5、求极限0lim →x (1-x)1/x= ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt =( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx =( )22、∫49 x 1/2(1+x 1/2)dx=( )23、∫031/2a dx/(a 2+x 2)=( )24、∫01 dx/(4-x 2)1/2=( )25、∫л/3лsin (л/3+x)dx=( )26、∫49 x 1/2(1+x 1/2)dx=( )27、∫49x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( )29、∫49 x 1/2(1+x 1/2)dx=( )30、∫49 x 1/2(1+x 1/2)dx=( )31、∫49 x 1/2(1+x 1/2)dx=( )32、∫49x 1/2(1+x 1/2)dx=( ) 33、满足不等式|x-2|<1的X 所在区间为 ( )34、设f(x) = [x] +1,则f (л+10)=( )35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( )37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cos θ)的全长为 ( )39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为 ( )40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是 ( )41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是( )42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz 面且经过(2,-5,3)的平面方程是 ( )44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( )A.偶函数B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x)=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n nn n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ).0 C 27.设=+∞→x x x k)1(lim e 6 则k=( ).2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/2x相切,则()21、若直线y=x与对数曲线y=logaA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、x9D、 x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( ) A 、0/0型 B 、∞/∞型 C 、∞ -∞ D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( )A 、00型B 、0/0型C 、1∞型D 、∞0型38、极限 x x x x sin 1sinlim 20 =( ) A 、0 B 、1 C 、2 D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+160设y=(cos)sinx ,则y’|x=0=( ) A 、-1 B 、0 C 、1 D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( ) 16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dte x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( )26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为 ( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、 y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()∞x→47函数y=x2-2x+3的极值是y(1)=()48∫49 x1/2(1+x1/2)dx=()49y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大并求出其最大值。

大学高等数学试题及答案

大学高等数学试题及答案

大学高等数学试题及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2在区间(-∞, -3)上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 不存在3. 微分方程y''+y=0的通解为:A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*ln(x)+C24. 函数f(x)=x^3-3x+1在x=1处的导数为:A. 1B. -1C. 3D. -35. 定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1二、填空题(每题4分,共20分)6. 函数f(x)=x^2+2x+1的极小值点为______。

7. 函数f(x)=e^x的不定积分为______。

8. 曲线y=x^3-3x+2在点(1,0)处的切线斜率为______。

9. 函数f(x)=sin(x)的周期为______。

10. 极限lim(x→∞) (1/x)的值为______。

三、计算题(每题10分,共30分)11. 求极限lim(x→2) (x^2-4)/(x-2)。

12. 计算定积分∫(0 to 1) (2x+1) dx。

13. 求函数f(x)=x^3-6x^2+9x+1的二阶导数。

四、证明题(每题15分,共30分)14. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。

15. 证明极限lim(x→0) (1+x)^(1/x)=e。

答案:一、单项选择题1. B2. B3. A4. B5. A二、填空题6. x=-17. e^x+C8. 09. 2π10. 0三、计算题11. 412. 3/213. f''(x)=6x-12四、证明题14. 证明略15. 证明略结束语:本试题涵盖了高等数学的多个重要知识点,包括极限、导数、积分等,旨在检验学生对高等数学基本概念和计算方法的掌握程度。

高数基础练习题选择题及答案

高数基础练习题选择题及答案

高数基础练习题选择题及答案高等数学基础模拟练题一、单项选择题1.设函数f(x)的定义域为(-∞,+∞),则函数f(x)+f(-x)的图形关于()对称.A)y=xB)x轴C)y轴D)坐标原点2.当x→0时,变量()是无穷小量.A)1/xB)sinx/xC)2xD)ln(x+1)3.下列等式中正确的是().A)d(arctanx)=1/(1+x^2)dxB)d(1/x)=-1/x^2dxC)d(2xln2)=2dxD)d(tanx)=sec^2xdx4.下列等式成立的是().A)d/dx∫f(x)dx=f(x)B)∫f'(x)dx=f(x)C)d∫f(x)dx=f(x)D)∫df(x)=f(x)5.下列无穷限积分收敛的是().A)∫1/x dx from 1 to +∞B)∫1/x dx from 1 to 0C)∫1/3x^4 dx from 1 to +∞D)∫sinx dx from 0 to +∞二、填空题1.函数f(x)=(x^2-4)/(x-2)的定义域是(-∞,2)∪(2,+∞).2.函数y=(x+2)/(x+1)的间断点是x=-1.3.曲线f(x)=1/x在(1,1)处的切线斜率是-1.4.函数y=ln(1+x^2)的单调增加区间是(0,+∞).5.d∫e^-x^2 dx=-2xe^-x^2+C.三、计算题(每小题9分,共54分)1.计算极限lim(x^2-6x+8)/(x^2-5x+4) as x→4,结果为-2.2.设y=ln(cosx)+x^2lnx,求dy=-(sinx/x)+2xlnx+dx/(xln10).3.计算不定积分∫(1/x+e^x)dx=ln|x|+e^x+C.4.计算定积分∫cosx/x dx,结果为Ci(x)+C,其中Ci(x)为余积分函数.5.计算定积分∫e^(1/x)lnx dx,结果为-γ-2ln2,其中γ为欧拉常数.四、应用题1.求曲线y=x上的点,使其到点A(3,0)的距离最短.解:设点P(x,y)在曲线y=x上,则P到A的距离为d=sqrt((x-3)^2+y^2).将y=x代入得d=sqrt((x-3)^2+x^2)=sqrt(2x^2-6x+9).对d求导得d'=(4x-6)/sqrt(2x^2-6x+9),令d'=0得x=3/2.再求d''(3/2)<0,故点P(3/2,3/2)到A的距离最短.。

(完整版)高等数学试题及答案,推荐文档

(完整版)高等数学试题及答案,推荐文档

xD⎨ab∞ 高学试题及答案选择题(本大题共 40 小题,每小题 2.5 分,共 100 分)1.设f ( x) =l nx ,且函数(x) 的反函数-12( x+1) ,则f [( x)]=(B)2.limx→0 ⎰0(e t+e-t- 2)dt1- cos x=( A )( x) =x- 1A.0 B.1 C.-1 D.∞3.设∆y =f (x0+∆x) -f (x0 ) 且函数f (x) 在x =x0处可导,则必有( A )⎧2x2, x ≤ 14. 设函数f ( x) =⎨⎩3x -1, x > 1,则f ( x) 在点x=1处( C )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5. 设⎰x f ( x) dx=e-x2 +C ,则f ( x) = ( D )6.设I =⎰⎰(x2 +y2 )dxdy ,其中D 由x2 +y2 =a2 所围成,则I =( B ).(A) ⎰2d⎰a a2rdr=a4(B) ⎰2d⎰a r2⋅rdr=1a40 0 0 0 2(C) ⎰2d⎰a r2dr=2a3(D) ⎰2d⎰a a2⋅adr=2a40 0 3 0 07.若L 是上半椭圆⎧x =a cos t ,取顺时针方向,则⎰ydx -xdy 的值为( C ).⎩y=b sin t ,(A)0 (B)2L(C)ab(D)ab8.设a 为非零常数,则当( B )时,级数∑∞ a 收敛 .n=1r n(A) | r | > | a | (B) | r | > | a | (C) | r | ≤1 (D)| r | > 19.lim u n= 0 是级数∑u n收敛的( D )条件.n→∞n =1(A)充分(B)必要(C)充分且必要(D)既非充分又非必要10.微分方程y+y = 0 的通解为 B .(A) (C) y = cos x +cy =c1+c2 sin x(B)(D)y =c1 cos x +c2y =c1 cos x +c2 sin x →→→→11.若a ,b 为共线的单位向量,则它们的数量积a⋅b =(D).1 - x2 - y 2⎨⎩⎨ → →(A ) 1 (B )-1 (C ) 0 (D ) cos(a , b )12. 设平面方程为Bx + Cz + D = 0 ,且B , C , D ≠ 0 , 则平面( C ). (A )平行于 x 轴(B )垂直于 x 轴 (C )平行于 y 轴 (D )垂直于 y 轴⎧(x 2 + y 2 ) sin 1 , x 2 + y 2 ≠ 013. 设 f (x , y ) = ⎪x 2 + y 2 ,则在原点(0,0) 处 f (x , y ) ( D ).⎪ 0, x 2 + y 2 = 0 (A) 不连续(B) 偏导数不存在 (C)连续但不可微 (D)可微14. 二元函数 z = 3(x + y ) - x 3 - y 3 的极值点是( D ).(A) (1,2)(B) (1,-2 )(C) (1,-1)(D) (-1,-1)15. 设 D 为 x 2 + y 2 ≤ 1, 则 ⎰⎰1dxdy =(C).D(A) 0(B) (C) 2 (D) 411-x16. 1 ⎰0dx ⎰0f (x , y )dy =( C )6.1-x111- x(A) ⎰0 dy ⎰0 f (x , y )dx(B) ⎰0 dy ⎰0f (x , y )dx11- y11(C)( ⎰0 dy ⎰0f (x , y )dx(D) ⎰0 dy ⎰0 f (x , y )dxC)17. 若L 是上半椭圆⎧x = a cos t ,取顺时针方向,则⎰ ydx - xdy 的值为( C ).⎩ y = b sin t , (A) 0(B) 218. 下列级数中,收敛的是( B ).L(C)ab (D) ab(A) ∑∞ 5 n -1 (B) ∑∞ 4 n -1 (C) ∑∞(- n -1 5 n -1(D) ∑∞( 5 + 4 n -1( )( ) 1) ( )) n =1 4n =1 5n =14n =1 4 519.若幂级数∑∞ a x n 的收敛半径为R : 0 < R < +∞ ,幂级数∑∞b x n 的收敛半径为R :nn =011n2n =0∞0 < R 2 < +∞ ,则幂级数∑(a n n =0+ b n )x n 的收敛半径至少为( D)(A) R + R(B) R ⋅ R(C) max {R 1, R 2}(D) m in {R 1, R 2}121220. 下列方程为线性微分方程的是( A )(A)(C) y ' = (sin x ) y + e x y ' = sin x + e y(B)(D) (D)aby '=x sin y + e xxy '= cos y + 1⎰ ⎰⎰ 1x21. 2 a+< a -b 充分必要条件是( B )1.b×(A) a b = 0 (B) a⋅b = 0 (C) a⋅b > 0 (D) a b⋅< 022. 两平面x - 4 y +z + 5 = 0 与2x - 2 y -z - 3 = 0 的夹角是( C )(A)6 (B)3(C)4(D)223.若f (a, b) = 1,则lim f (a,b +∆y)-f (a,b -∆y) =( A )y∆y→0 ∆y(A) 2 (B) 1 (C) 4 (D) 024.若f x(x0 , y0 ) 和f y(x0 , y0 ) 都存在,则f ( x, y) 在( x0 , y0 ) 处( D )(A)连续且可微(B) 连续但不一定可微(C) 可微但不一定连续(D) 不一定连续且不一定可微25.下列不等式正确的是( B )(A)⎰⎰(x 3 +y 3 )d> 0 (B) ⎰⎰(x 2 +y2 )d> 0x 2 +y 2 ≤1 x 2 +y 2 ≤1(C)⎰⎰(x +y)d> 0 (D) ⎰⎰(x -y)d> 0x2 +y 2 ≤1 x 2 +y 2 ≤11 1-x26. ⎰0dx⎰0 f (x, y)dy =( C )1-x 1 1 1-x(A)⎰0dy⎰0f (x, y)d x (B) ⎰0 dy⎰0 f(x,y)d x1 1-y 1 1(C) ⎰0 dy⎰0 f (x, y)d x (D) ⎰0dy⎰0f (x, y)d x27.设区域 D 由分段光滑曲线 L 所围成,L 取正向,A 为区域 D 的面积,则( B )(A) (C) A =1ydx -xdy2LA =1xdy +ydx2(B)(D)A =1xdy -ydx2LA =⎰x dy -ydx∞LnL∞28.设∑a n是正项级数,前 n 项和为s n=∑a k,则数列{s n}有界是∑a n收敛的( C )n =1 k =1 n =1(A)充分条件(B) 必要条件(C) 充分必要条件(D)既非充分条件,也非必要条件29.以下级数中,条件收敛的级数是( D )∞n ∞ n -1 1(A) ∑(-1) N (B) ∑(-1)N =12n +10 n =1 n 32xy + 1 - 1∑ ∑(C) ∞(-1) n =11 n +1 ( ) n2(D) ∞(-1)n =1n - 1330.设⎰x f ( x) dx=e - x2+ C ,则f ( x) = ( D )31、已知平面: x - 2 y + z - 4 = 0 与直线L : x - 1 = y + 2 = z + 1的位置关系是( D )3 1 - 1(A )垂直(B )平行但直线不在平面上 (C )不平行也不垂直(D )直线在平面上 32、limx →0 y →03xy = ( B)(A )不存在 (B )3(C )6(D ) ∞∂ 2 z∂ 2 z33、函数 z = f (x , y ) 的两个二阶混合偏导数∂x ∂y 及∂y ∂x在区域 D 内连续是这两个二阶混合偏导数在 D 内相等的( B )条件.(A )必要条件 (B )充分条件 (C )充分必要条件 (D )非充分且非必要条件 34、设⎰⎰d= 4,这里a 0 ,则a =( A )x 2 + y 2 ≤a(A )4(B )2 (C )1(D )035、已知(x + ay )dx + ydy 为某函数的全微分,则a = ( C )(x + y )2(A )-1(B )0(C )2(D )1ds⎧x 2 + y 2 + z 2=1036、曲线积分⎰L x 2 + y 2 + z 2 = ( C ),其中L : ⎨ .⎩z = 1 (A )5∞(B ) 25∞(C ) 35(D ) 4537、数项级数∑ a n 发散,则级数∑ k a n ( k 为常数)( B)n =1n =1(A )发散 (B )可能收敛也可能发散(C )收敛 (D )无界38、微分方程 xy = y ' 的通解是( C )(A ) y = C 1x + C 2(C ) y = C 1x 2 + C 2(B ) y = x 2 + C (D ) y = 1 x 2+ C 2n“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

(完整word版)《高等数学》练习题库及答案.docx

(完整word版)《高等数学》练习题库及答案.docx

《高等数学》练习测试题库及答案一.选择题1.函数 y=1是()2x1A. 偶函数B. 奇函数C 单调函数D 无界函数2.设 f(sin x)=cosx+1,则 f(x) 为()2A 2x 2-2B 2-2x 2+x 2D 1 - 2C 1x3.下列数列为单调递增数列的有( )A . 0.9 ,0.99, 0.999,0.9999B . 3, 2, 5,42345n为奇数n1 , n21nC . {f(n)}, 其中 f(n)=n , 为偶数 D. { 2n}1n4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散D .两收敛数列之和必收敛6. lim sin( x 21) ()x 1x 1A.1B.0C.2D.1/27.设 lim (1 k ) x e 6则 k=()xxA.1B.2C.6D.1/68.当 x1 时,下列与无穷小(x-1)等价的无穷小是()A.x 2 -1B. x 3 -1C.(x-1) 2D.sin(x-1)9.f(x) 在点 x=x 0 处有定义是 A. 必要条件C.充分必要条件f(x) 在x=x 0 处连续的(B.充分条件 D.无关条件)10、当|x|<1时,y=()A 、是连续的B、无界函数C 、有最大值与最小值D、无最小值11、设函数 f (x)=( 1-x )cotx要使 f (x)在点: x=0 连续,则应补充定义f (0)为()A 、B、 e C、-e D、-e -112、下列有跳跃间断点x=0 的函数为()A、xarctan1/xB、 arctan1/xC、 tan1/xD、 cos1/x13、设f(x) 在点 x0连续, g(x) 在点 x0不连续,则下列结论成立是(A、f(x)+g(x)在点x0必不连续B、f(x) ×g(x) 在点 x0必不连续须有C、复合函数 f[g(x)]在点x0必不连续)D、在点x0必不连续14、设f(x)=在区间 (-∞,+∞) 上连续,且f(x)=0,则a,b满足()A、a>0,b >0 C、a<0,b >0BD、a>0,b <0、a<0,b <015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、 f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、( 0, л)C、[-л /4,л/4]D、( - л/4,л /4 )17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b)<0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x 4-4x+120、曲线 y=x2在 x=1 处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线 y=x 与对数曲线 y=log a x 相切,则()A、eB、1/e CxD1/e 、 e、 e22、曲线 y=lnx平行于直线 x-y+1=0 的法线方程是()A、x-y-1=0B、x-y+3e -2 =0C、 x-y-3e-2 =0D、 -x-y+3e -2 =023、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()A、± 1B、±л/2C、± ( л/2+1)D、± ( л/2-1)24、设 f(x) 为可导的奇函数,且 f`(x 0)=a ,则 f`(-x0)=()A、 aB、-aC、|a|D、025、设 y=㏑,则 y’|x =0=()A、 -1/2 B 、1/2C、-1 D、026、设 y=(cos)sinx,则 y’|x =0=()A、 -1B、0C、1D、不存在27、设 yf(x)=㏑(1+X) ,y=f[f(x)],则 y’|x =0=()A、 0 B 、 1/㏑ 2 C 、 1 D 、㏑ 228、已知 y=sinx ,则 y(10)=()A、 sinx B 、cosx C、-sinx D、 -cosx29、已知 y=x ㏑ x,则 y(10) =()9B 99、9A、 -1/x、1/ x C 、8.1/xD-8.1/x30、若函数 f(x)=xsin|x|,则()A、f``(0) 不存在 B 、f``(0)=0C、f``(0) =∞D、 f``(0)=л31、设函数 y=yf(x)在[0 ,л ] 内由方程 x+cos(x+y)=0所确定,则|dy/dx|x=0=()32、圆 A 、 -1 B 、0 C 、л/2D、 2x2cos θ,y=2sin θ上相应于 θ =л /4 处的切线斜率,K=()A 、-1B 、0C 、1D 、233、函数f(x)在点x 0 连续是函数f(x)在 x 0 可微的()A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数 f(x) 在点 x 0 可导是函数 f(x) 在 x 0 可微的()A 、充分条件B、必要条件C 、充要条件D 、无关条件35、函数A 、0f(x)=|x|在B 、-dxx=0 的微分是( C 、dx D 、)不存在36、极限 lim ( x1) 的未定式类型是()x 11x ln xA 、0/0 型B、∞ / ∞型 C 、∞ - ∞D 、∞型137、极限 lim(sin x) x 2的未定式类型是()xx 0A 、00 型B、 0/0 型∞型C 、 1 型D 、∞x 2sin138、极限limx=()x 0sin x A 、0 B、1 C 、 2 D 、不存在39、x x 0 时, n 阶泰勒公式的余项 Rn(x) 是较 x x 0 的()A 、(n+1)阶无穷小B 、 n 阶无穷小C 、同阶无穷小D、高阶无穷小40、若函数 f(x) 在[0, +∞] 内可导,且 f`(x) >0,xf(0) <0 则 f(x) 在 [ 0,+ ∞]内有()A 、唯一的零点 B、至少存在有一个零点C 、没有零点D、不能确定有无零点41、曲线 y=x2-4x+3 的顶点处的曲率为()A、2B、 1/2C、1D、 042、抛物线 y=4x-x 2在它的顶点处的曲率半径为()A、0B、 1/2C、1D、 243、若函数 f(x)在( a,b )内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫ f(x)dx=2e x/2 +C=()A、2e x/2B、 4 e x/2C、e x/2+CD、e x/245、∫ xe-x dx = ( D)A、xe-x -e -x +CB、-xe -x+e-x+CC、xe-x +e -x +CD、-xe -x -e -x+C-ndx()46、设 P( X)为多项式,为自然数,则∫ P(x)(x-1)A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx= ()A、5/6 B 、1/2C、-1/2D、148、两椭圆曲线x2/4+y 2 =1及 (x-1)2/9+y 2/4=1之间所围的平面图形面积等于()A、л B 、2л C 、4л D 、6л49、曲线 y=x2-2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л /15C、16л/15D、32л/1550、点( 1, 0, -1 )与( 0, -1 ,1)之间的距离为()A、 B 、2 C 、31/2D、2 1/251、设曲面方程(P, Q)则用下列平面去截曲面,截线为抛物线的平面是()A、 Z=4 B 、Z=0C、Z=-2D 、x=252、平面x=a 截曲面 x2/a 2+y2 /b 2-z 2/c 2=1 所得截线为()A、椭圆B、双曲线 C 、抛物线 D 、两相交直线53、方程 =0 所表示的图形为()A、原点( 0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程 3x2 +3y2-z 2=0 表示旋转曲面,它的旋转轴是()A、X 轴B、Y轴C、Z轴D、任一条直线55、方程 3x2 -y 2-2z 2=1 所确定的曲面是()A、双叶双曲面 B 、单叶双曲面 C 、椭圆抛物面D、圆锥曲面56 下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、. 必要条件B、充分条件C、充分必要条件D、无关条件58 函数 f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0, л ]B、(0,л)C、[- л/4, л/4]D、(-л/4,л /4)59 下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x 2-1D、f(x)=5x4-4x+160 设 y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在二、填空题1、求极限 lim(x 2+2x+5)/(x 2+1)= ()x1、求极限3()lim2x 03、求极限 lim x-2/(x+2)1/2 =()x 24、求极限 lim[x/(x+1)]x=()x5、求极限 lim1/x= ()(1-x)x 06、已知 y=sinx-cosx ,求 y`| x=л/6 =()7、已知ρ=ψsin ψ+cosψ/2 ,求 dρ /d ψ| ψ=л/6=()8、已知 f(x)=3/5x+x2 /5 ,求 f`(0)=()9、设直线 y=x+a 与曲线 y=2arctanx相切,则 a=()10、函数 y=x2-2x+3 的极值是 y(1)= ()11、函数 y=2x3极小值与极大值分别是()12、函数 y=x2-2x-1的最小值为()13、函数 y=2x-5x 2的最大值为()14、函数 f(x)=x 2e-x在[-1,1]上的最小值为()315、点( 0, 1)是曲线 y=ax +bx2+c 的拐点,则有 b=() c= ()16、∫ xx 1/2 dx= ()17、若 F`(x)=f(x) ,则∫ dF(x) = ()18、若∫ f(x)dx =x2e2x+c,则 f(x)= ()b19、d/dx∫a arctantdt =()1x t2x2(e1)dt0, x 0在点x=0连续,则a=()20、已知函数 f(x)=a, x0、∫ 02(x 2+1/x 4 )dx =()21x1/2(1+x1/2)dx=()22、∫4923、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()л25、∫л/3 sin (л /3+x)dx=()x1/2(1+x1/2)dx=()26、∫49x1/2(1+x1/2)dx=()27、∫49x1/2(1+x1/2)dx=()28、∫49x1/2(1+x1/2)dx=()29、∫49x1/2(1+x1/2)dx=()30、∫4931、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式 |x-2|<1 的 X 所在区间为34、设 f(x) = [x] +1 ,则 f (л+10)=(35、函数 Y=|sinx|的周期是()())36、y=sinx,y=cosx 直线 x=0,x= л/2 所围成的面积是()238、心形线 r=a(1+cosθ )的全长为()39、三点( 1,1,2),(-1,1,2),( 0, 0, 2)构成的三角形为()40、一动点与两定点( 2,3,1)和( 4,5,6)等距离,则该点的轨迹方程是()41、求过点( 3,0,-1),且与平面 3x-7y+5z-12=0 平行的平面方程是()42、求三平面 x+3y+z=1 ,2x-y-z=0,-x+2y+2z=0 的交点是()43、求平行于 xoz 面且经过( 2,-5, 3)的平面方程是()44、通过 Z 轴和点( -3, 1, -2)的平面方程是()45、平行于 X 轴且经过两点( 4, 0, -2)和( 5, 1, 7)的平面方程是()46求极限 lim [x/(x+1)]x=()x47函数 y=x2-2x+3 的极值是 y(1)= ()9x 1/2(1+x1/2)dx= ()48∫449y=sinx,y=cosx直线 x=0,x= л /2 所围成的面积是()50求过点( 3,0,-1 ),且与平面 3x-7y+5z-12=0平行的平面方程是()三、解答题21、设 Y=2X-5X ,问 X 等于多少时 Y 最大?并求出其最大值。

高等数学练习册及答案

高等数学练习册及答案

第一章第一章 函数与极限§1 函数一、单项选择题1、下面四个函数中,与y=|x |不同的是( A ) (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。

的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ )函数的是( 、下列函数中为非偶数B 3)1lg(1)(4343)(arccos )(1212sin )(2222x x x x y D x x x x y C x y B x y A x x +++=++++−==+−⋅=;;4、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(二、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++= . 解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有 x x x f −=2)( )()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236Υ.3、[]=则., ;,设)(0202)(x f f x x x x f≥<+=解:[]f f x x x x ()=+<−≥−4222,;, 4、=的反函数则.,;,;,设)()(42411)(2x x f x x x x x x f xφ+∞<<≤≤<<∞−=解:当时,,即−∞<<==x y x x y 1 −∞<<y 1 当时,, .141162≤≤=∴=≤≤x y x x yy当时,, .42162<<+∞=∴=>x y x y x y log>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 5,,且成立,对一切实数设0)0()()()()(212121≠=+f x f x f x x f x x x f ,a f =)1(=则)0(f ,=)(n f )(为正整数.n解)0()0()0()00(021≠⋅=+==f f f f x x ,代入已知式取∴=f ()01又 f af f f f a ()()()()()1211112==+==设则f k a f k f k f a a akkk ()()()()=+=⋅=⋅=+111nan f n =)(有故对一切§2 数列的极限一.单项选择题1、{}无界是数列发散的数列n a ( B )件..既非充分又非必要条 .充分必要条件.充分条件 .必要条件D C B A ;;;2、=−为偶数当为奇数当n n n x n ,10,17则 D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 自测题一、填空题(每小题3分,共18分)1. ()3limsin tan ln 12x x xx →=-+ .2. 1x →= . 3.已知212lim 31x x ax bx →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a = . 5. 曲线21()43x f x x x -=-+的水平渐近线是 ,铅直渐近线是 . 6. 曲线()121e xy x =-的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 .A. 充分条件但非必要条件B. 必要条件但非充分条件C. 充分必要条件D. 既非充分也非必要条件2. 设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦ . A. 22,02,0x x x x ⎧+<⎨-≥⎩ B. 22,02,0x x x x ⎧-<⎨+≥⎩ C. 22,02,0x x x x ⎧-<⎨-≥⎩ D. 22,02,0x x x x ⎧+<⎨+≥⎩3. 下列各式中正确的是 .A .01lim 1e x x x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭ C.1lim 1e x x x →∞⎛⎫-=- ⎪⎝⎭ D. -11lim 1e xx x -→∞⎛⎫+= ⎪⎝⎭4. 设0→x 时,tan e1x-与n x 是等价无穷小,则正整数n = .A. 1B. 2C. 3D. 45. 曲线221e 1ex x y --+=- .A. 没有渐近线B. 仅有水平渐近线C. 仅有铅直渐近线D. 既有水平渐近线又有铅直渐近线 6.下列函数在给定区间上无界的是 . A.1sin ,(0,1]x x x ∈ B. 1sin ,(0,)x x x ∈+∞ C. 11sin ,(0,1]x x x ∈ D. 1sin ,(0,)x x x∈+∞三、求下列极限(每小题5分,共35分)1.22x →2.()120lim ex xx x -→+3.()1lim 123nn nn →∞++4.21sinlimx x5. 设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦.6.142e sin lim1exxxxx→⎛⎫+⎪+⎪⎪+⎝⎭7.limx+→四、确定下列极限中含有的参数(每小题5分,共10分)1.2212lim22xax x bx x→-+=-+-2.(lim1 xx→-∞=五、讨论函数,0()(0,0,1,1)0,0x xa bxf x a b a bxx⎧-≠⎪=>>≠≠⎨⎪=⎩在0x=处的连续性,若不连续,指出该间断点的类型.(本题6分)六、设sin sin sin ()lim sin x t xt x t f x x -→⎛⎫= ⎪⎝⎭,求()f x 的间断点并判定类型. (本题7分)七、设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎥⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题6分)第二章 自测题一、填空题(每小题3分,共18分)1.设()f x 在0x 可导,且00()0,()1f x f x '==,则01lim h hf x h →∞⎛⎫-= ⎪⎝⎭. 2.设21cos f x x ⎛⎫=⎪⎝⎭,则()f x '=. 3.d x = . 4.设sin (e )xy f =,其中()f x 可导,则d y = .5.设y =12y ⎛⎫'=⎪⎝⎭. 6.曲线1sin xy x y =+在点1,ππ⎛⎫⎪⎝⎭的切线方程为 . 二、单项选择题(每小题3分,共15分)1.下列函数中,在0x =处可导的是 .A.||y x =B.|sin |y x =C.ln y x =D.|cos |y x =2.设()y f x =在0x 处可导,且0()2f x '=,则000(2)()limx f x x f x x x→+--= .A.6B.6-C.16D.16-3.设函数()f x 在区间(,)δδ-有定义,若当(,)x δδ∈-时恒有2|()|f x x ≤,则0x =是()f x 的 .A.间断点B.连续而不可导的点C.可导的点,且(0)0f '=D.可导的点,且(0)0f '≠4.设2sin ,0(),0x x f x x x <⎧=⎨≥⎩,则在0x =处()f x 的导数 .A.0B.1C.2D.不存在5.设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x =-时,相应的函数增量y 的线性主部为0.1,则(1)f '= .A.1-B.0.1C.1D.0.5三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)(ln e x y =+(2))11y⎫=⎪⎭(3)aaxa x ay x a a =++(4)cos (sin )xy x =2.求下列函数的微分(每小题4分,共12分) (1)2ln sin y x x x =+ (2)21cot e xy =(3)y x=3.求下列函数的二阶导数(每小题5分,共10分) (1)2cos ln y x x = (2)11xy x-=+4.设e ,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =可导,试求a 与b .(本题6分)5.设sin ,0()ln(1),0x x f x x x <⎧=⎨+≥⎩,求'()f x .(本题6分)6.设函数()y y x =由方程22ln 1x xy y-=所确定,求d y .(本题6分)7.设()y y x =由参数方程ln tan cos 2sin t x a t y a t⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩,求22d d ,d d y y x x .(本题6分)8.求曲线3213122t x t y t t +⎧=⎪⎪⎨⎪=+⎪⎩在1t =处的切线方程和法线方程.(本题5分)第三章 自测题一、填空题(每小题3分,共15分)1.若0,0a b >>均为常数,则30lim 2x xxx a b →⎛+⎫=⎪⎝⎭. 2.2011lim tan x x x x →⎛⎫-=⎪⎝⎭. 3.3arctan limln(12)x x xx →-=+ . 4.曲线2e xy -=的凹区间 ,凸区间为 .5.若()e x f x x =,则()()n fx 在点x = 处取得极小值.二、单项选择题(每小题3分,共12分)1.设,a b 为方程()0f x =的两根,()f x 在[,]a b 上连续,(,)a b 可导,则()f x '0=在(,)a b .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设()f x 在0x 处连续,在0x 的某去心邻域可导,且0x x ≠时,0()()0x x f x '->,则0()f x 是 .A.极小值B.极大值C.0x 为()f x 的驻点D.0x 不是()f x 的极值点 3.设()f x 具有二阶连续导数,且(0)0f '=,0()lim1||x f x x →''=,则 . A.(0)f 是()f x 的极大值 B.(0)f 是()f x 的极小值C .(0,(0))f 是曲线的拐点D .(0)f 不是()f x 的极值,(0,(0))f 不是曲线的拐点 4.设()f x 连续,且(0)0f '>,则0δ∃>,使 .A.()f x 在(0,)δ单调增加.B.()f x 在(,0)δ-单调减少.C.(0,)x δ∀∈,有()(0)f x f >D.(,0)x δ∀∈-,有()(0)f x f >.三、解答题(共73分)1.已知函数()f x 在[0,1]上连续,(0,1)可导,且(1)0f =,证明在(0,1)至少存在一点ξ使得()()tan f f ξξξ'=-.(本题6分)2.证明下列不等式(每小题9分,共18分) (1)当0a b <<时,ln b a b b ab a a--<<.(2)当02x π<<时,2sin x x x π<<.3.求下列函数的极限(每小题8分,共24分)(1)0e e 2lim sin x x x xx x-→---(2)21sin 0lim(cos )xx x →(3)10(1)elimxx x x→+-4.求下列函数的极值(每小题6分,共12分) (1)1233()(1)f x x x =-(2)2,0()1,0x x x f x x x ⎧>=⎨+<⎩5.求2ln xy x=的极值点、单调区间、凹凸区间和拐点.(本题6分)6.证明方程1ln0ex x+=只有一个实根.(本题7分)第一章自测题一、填空题(每小题3分,共18分)1. 2. 3. , 4.5. 水平渐近线是,铅直渐近线是6.二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C三、求下列极限(每小题5分,共35分)解:1.. 2..3. ,又.4.. 5.. 6.,,所以,原式.7..四、确定下列极限中含有的参数(每小题5分,共10分)解:1.据题意设,则,令得,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1) .(2).(3).(4) 两边取对数得,两边求导数得,.2.求下列函数的微分(每小题4分,共12分)(1) .(2).(3) .3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故.6.方程可变形为,两边求微分得,故.7.,.8.,故.当时,.故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1. 2. 3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,;即当时,,当时,,从而在取得极小值4. C,提示:由定义,由极限的保号性得,当时,,即三、解答题(共73分)证明:1.令,则在上连续,可导,且;由罗尔定理知,至少存在一点,使得,故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为;,,令得驻点,令得;列表得:- - + + +- + + + - 单减凸单减凹极小值点单增凹单增凸拐点6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。

相关文档
最新文档