2013年湖北省恩施州中考数学试卷及答案(解析版)

合集下载

湖北省恩施州中考数学试题

湖北省恩施州中考数学试题

湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.【解析】9的相反数是﹣9,故选A.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105【解析】36900=3.69×104;故选C.3.下列图标中是轴对称图形的是()A.B.C.D.【解析】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【解析】A、原式=5a3,错误;B、原式=x15,错误;C、原式=﹣2m2+6m,错误;D、原式=9a2﹣4,正确,故选D5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°【解析】如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠2【解析】根据题意得:,解得x≥﹣1且x≠2.故选:B.7.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.【解析】画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同【解析】由题意可知和六相邻的是施、城、同、创,所以和六相对的是恩.因为和创相邻的是恩、施、六、城,所以和创相对的是同.故选D.9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<0【解析】在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴﹣1≤m<0,故选C.10.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.18【解析】根据题意列方程得100×(1﹣x%)2=100﹣36解得x1=20,x2=180(不符合题意,舍去).故选:B.11.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【解析】∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c >0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【解析】①∵二次函数开口向上,∴a>0,∵二次函数与y轴交于正半轴,∴c>0,∵二次函数对称轴在y轴右侧,∴b<0,∴abc<0,所以此选项正确;②由图象可知:二次函数与x轴交于两点分别是(1,0)、(5,0),当x=1时,y=0,则a+b+c=0,所以此选项错误;③∵二次函数对称轴为:x=3,则﹣=3,b=﹣6a,代入a+b+c=0中得:a﹣6a+c=0,5a﹣c=0,所以此选项正确;④由图象得:当x<或x>6时,y1>y2;所以此选项正确.二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.【解析】原式=b(a2﹣10a+25)=b(a﹣5)2,故答案为:b(a﹣5)214.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.【解析】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2﹣2mn=﹣2×=,故答案为:.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.【解析】如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,∴OF=OG﹣GF=2﹣=.同理MN=,则有OM=.=××=,∴S阴影=1﹣=.∴S△OFM故答案为:.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=.【解析】∵1+2+3+4+…+n=n(n+1)=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3),∴1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4)=n (n+1)(n+2)(n+3)(n+4),故答案为:n(n+1)(n+2)(n+3)(n+4).三、解答题(本大题共有8个小题,共72分)17.先化简,再求值:÷(a+2),其中a=﹣3.【解析】原式=÷=•=,当a=﹣3时,原式==.18.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.19.在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为125.(2)扇形统计图中表示获得一等奖的扇形的圆心角为72度.(3)估计全州有多少名学生获得三等奖?【解析】(1)∵抽取的获奖学生有100÷20%=500(人),∴a=500﹣100﹣275=125,故答案为:125;(2)扇形统计图中表示获得一等奖的扇形的圆心角为360°×20%=72°,故答案为:72;(3)8×=4.4(万人),答:估计全州有4.4万名学生获得三等奖.20.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB 的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)【解析】由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,AB=BD在Rt△GEH中,∵tan∠EGH==,即,∴BF=8,∴PG=BD=BF+FD=8+9,AB=(8+9)米≈23米,答:办公楼AB的高度约为23米.21.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.【解析】(1)∵∠ACB=60°,∴∠AOQ=60°,∴tan60°==,设点A(a,b),则,解得:或(不合题意,舍去)∴点A的坐标是(2,2),∴点C的坐标是(﹣2,﹣2),∴点B的坐标是(2,﹣2),(2)∵点A的坐标是(2,2),∴AQ=2,∴EF=AQ=2,∵点P为EF的中点,∴PF=,设点P的坐标是(m,n),则n=∵点P在反比例函数y=的图象上,∴=,S△OPF=|4|=2,∴m=4,∴OF=4,∴S长方形DEFO=OF•OD=4×2=8,∵点A在反比例函数y=的图象上,∴S△AOD=|4|=2,∴S四边形AOPE =S长方形DEFO﹣S△AOD﹣S△OPF=8﹣2﹣2=4.22.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?【解析】(1)设大车租x辆,则小车租(80﹣x)辆.由题意,解得39≤x≤44.5,∵x为整数,∴x=39或40或41或42或43或44.∴施工方共有6种租车方案.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,∵300>0,∴w随x增大而增大,∴x=39时,w最小,最小值为18900元.23.(10分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:由(1)得:DF⊥OD,∴∠ODF=90°,∵AB⊥CD,∴由射影定理得:OD2=OE•OP,∵OC=OD,∴OC2=OE•OP;(3)解:∵AB⊥CD,∴DE=CE=4,∠OEC=90°,由相交弦定理得:DE2=AE×BE,即42=8×BE,解得:BE=2,∴CG=AB=AE+BE=8+2=10,∴OC=CG=5,∴cosC==,在△CEG中,由余弦定理得:EG2=CG2+CE2﹣2×CG×CE×cosC=102+42﹣2×10×4×=52,∴EG==2.24.(12分)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD 折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA 上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解析】(1)∵点E在直线l:y=﹣x+7上,∴设点E的坐标为(x,﹣x+7),∵OE=OC=5,∴=5,解得:x1=3,x2=4,∴点E的坐标为(3,4),点F的坐标为(4,3).(2)∵OG=OC=5,且点G在x正半轴上,∴G(5,0).设经过E,F,G三点的抛物线的解析式为y=ax2+bx+c,将E(3,4)、F(4,3)、G(5,0)代入y=ax2+bx+c中,得:,解得:,∴经过E,F,G三点的抛物线的解析式为y=﹣x2+6x﹣5.(3)∵BC∥x轴,且OC=5,∴设点D的坐标为(m,5)(m>0),则CD=m.∵ED=CD或FD=CD,∴=m或=m,解得:m=或m=.∴当点C的对应点落在直线l上时,CD的长为或.(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),∵E(3,4),F(4,3),∴EF==,PE=,PF=.以E,F,P为顶点的直角三角形有三种情况:①当∠EFP为直角时,有PE2=PF2+EF2,即(n﹣3)2+(﹣n2+6n﹣9)2=2+(n﹣4)2+(﹣n2+6n﹣8)2,解得:n1=1,n2=4(舍去),此时点P的坐标为(1,0);②当∠FEP为直角时,有PF2=PE2+EF2,即(n﹣4)2+(﹣n2+6n﹣8)2=2+(n﹣3)2+(﹣n2+6n﹣9)2,解得:n3=2,n4=3(舍去),此时点P的坐标为(2,3);③当∠EPF为直角时,有EF2=PE2+PF2,即2=(n﹣3)2+(﹣n2+6n﹣9)2+(n﹣4)2+(﹣n2+6n﹣8)2,整理得:(n﹣4)(n﹣3)(n2﹣5n+7)=0,∵在n2﹣5n+7中△=(﹣5)2﹣4×7=﹣3<0,∴n2﹣5n+7≠0.解得:n5=3(舍去),n6=4(舍去).综上可知:在(2)中的抛物线上存在点P,使以E,F,P为顶点的三角形是直角三角形,点P的坐标为(1,0)或(2,3).第11 页。

2013年中考数学试卷分类汇编5--2:实数运算

2013年中考数学试卷分类汇编5--2:实数运算

考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

湖北省恩施州中考数学真题试题(带解析)

湖北省恩施州中考数学真题试题(带解析)

2012年恩施州中考数学试题一、选择题(本大题共12小题,每小题3分,共36分)1.(2012•恩施州)5的相反数是()A.B.﹣5 C.±5D.﹣考点:相反数。

分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2012•恩施州)恩施生态旅游初步形成,2011年全年实现旅游综合收入908600000元.数908600000用科学记数法表示(保留三个有效数字),正确的是()A.9.09×109B.9.087×1010C.9.08×109D.9.09×108考点:科学记数法与有效数字。

分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:908600000=9.086×109≈9.09×109故选A.点评:本题考查了科学记数法及有效数字的定义.用科学记数法表示一个数的方法是:(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.3.(2012•恩施州)一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是()A.B.C.D.考点:简单组合体的三视图。

分析:根据组合体的排放顺序可以得到正确的答案.解答:解:从上面看该组合体的俯视图是一个矩形,并且被一条棱隔开,故选B.点评:本题考查几何体的三种视图,比较简单.解决此题既要有丰富的数学知识,又要有一定的生活经验.4.(2012•恩施州)下列计算正确的是()A.(a4)3=a7B.3(a﹣2b)=3a﹣2b C.a4+a4=a8D.a5÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方。

湖北省恩施州中考数学真题试题(含解析)

湖北省恩施州中考数学真题试题(含解析)

湖北省恩施州xx年中考数学真题试题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= .14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD 于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣8×(﹣)=1,即可解答.【解答】解:根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4【分析】先由平均数是3可得x的值,再结合方差公式计算.【解答】解:∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.【点评】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.6.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.【点评】本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.8.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤3【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.【解答】解:解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.9.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.【点评】此题主要考查了由三视图判断几何体,正确想象出最少时几何体的形状是解题关键.10.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.12.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= 2a(2a+b)(2a﹣b).【分析】首先提取公因式2a,再利用平方差公式分解因式得出答案.【解答】解:8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).【点评】此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.(3分)函数y=的自变量x的取值范围是x≥﹣且x≠3 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π.(结果不取近似值)【分析】先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,然后根据扇形的面积公式计算点B所经过的路径与直线l所围成的封闭图形的面积.【解答】解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.【点评】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为1946 个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.【点评】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= 2 ,b= 45 ,c= 20 ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为72 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【分析】(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)【分析】先根据题目给出的方向角.求出三角形各个内角的度数,过点B作BE⊥AC构造直角三角形.利用三角函数求出AE、BE,再求和即可.【解答】解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.【点评】本题考查了方向角和解直角三角形.题目难度不大,过点B作AC的垂线构造直角三角形是解决本题的关键.21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据D(3,2),可得CD=2,依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.【点评】此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD 于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.【分析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论;(2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3﹣a)2+(2a)2,解出a的值可得AD的值;(3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论.【解答】证明:(1)如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)PF=FD,理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠PAD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.【点评】本题考查了圆的综合问题,熟练掌握切线的判定,锐角三角函数,圆周角定理,垂径定理等知识点的应用,难度适中,连接BD构造直角三角形是解题的关键.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD是平行四边形;当四边形BCPD是平行四边形;四边形BDCP是平行四边形时,利用平移规律确定出P坐标即可;(3)由B与C坐标确定出直线BC解析式,求出与直线BC平行且与抛物线只有一个交点时交点坐标,确定出交点与直线BC解析式,进而确定出另一条与直线BC平行且与BC距离相等的直线解析式,确定出所求M坐标,且求出定值S的值即可.【解答】解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,一次函数的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题的关键.。

2013年湖北武汉中考数学试题及答案解析

2013年湖北武汉中考数学试题及答案解析

2013年湖北武汉中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2013年)下列各数中,最大的是()A.-3 B.0 C.1 D.22.(2013年)式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-13.(2013年)不等式组的解集是()A.-2≤≤1 B.-2<<1 C.≤-1 D.≥24.(2013年)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.(2013年)若,是一元二次方程的两个根,则的值是()A.-2 B.-3 C.2 D.36.(2013年)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.(2013年)如图,是由四个相同小正方体组合而成的几何体,它的主视图是().A.B.C.D.8.(2013年)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点9.(2013年)为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则这两个统计图可估计喜爱“科普常识”学生约有360人C.在扇形统计图中,“漫画”所在扇形的圆心角为72ºD.这两个统计图不能确定喜好“小说”的人数10.(2013年)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=°,∠ECD=°,⊙B的半径为R,则的长度是()A .B .C .D .二、填空题11.(2013年)计算:cos 45︒=______.12.(2013年)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是_____.13.(2013年)太阳半径约为696000千米,数字696000用科学记数法表示为___千米. 14.(2013年)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.15.(2013年)如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数(0)ky x x=<的图象上,则k 的值等于________.16.(2013年)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD 于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_____.三、解答题17.(2013年)解方程:.18.(2013年)直线经过点(3,5),求关于的不等式≥0的解集.19.(2013年)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C求证:∠A=∠D20.(江苏省东台市第二教育联盟2017届九年级上学期期中考试数学试题)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.21.(2013年)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A 的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.22.(2013年)如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°,求证:;(2)如图②,若,求的值.23.(2013年)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度/℃植物每天高度增长量/mm这些数据说明:植物每天高度增长量关于温度的函数是反比例函数、一次函数和二次函数中的一种.(1)你认为是哪一种函数,并求出它的函数关系式;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.24.(2013年)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;CDADCFDE=CDADCFDE=(3)如图③,若BA=BC=6,DA=DC=8,∠BAD =90°,DE ⊥CF ,请直接写出的值.25.(2013年)如图,点P 是直线:上的点,过点P 的另一条直线交抛物线于A 、B 两点.(1)若直线的解析式为,求A 、B 两点的坐标;(2)①若点P 的坐标为(-2,),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立. (3)设直线交轴于点C ,若△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐标.参考答案1.D 【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小. 【详解】解:∵-3<0<1<2CFDE∴最大的是2故选:D.【点睛】本题考查有理数的大小比较,属于基础应用题,只需学生熟练掌握有理数的大小比较法则,即可完成.2.B【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,,故选B.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.3.A【解析】试题分析:先分别求得两个不等式的解,再根据求不等式组解集的口诀求解即可.解得解得所以不等式组的解集为故选A.考点:解一元一次不等式组点评:解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.5.B【解析】试题分析:因为,是一元二次方程的两个根,所以根据根与系数的关系可得:=331ca-==-,故选B.考点:一元二次方程根与系数的关系.6.A【解析】试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可. ∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.C【分析】主视图是从正面看,此几何体分上下两层,下层3个正方形,上层右边1个正方形,从而画图即可.【详解】解:根据图形可得主视图为:故选C.【点睛】本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.8.C【分析】试题分析:由题意两条直线最多有2(21)12⨯-=个交点,三条直线最多有3(31)32⨯-=个交点,四条直线最多有4(41)62⨯-=个交点,根据这个规律即可求得结果.【详解】由题意得六条直线最多有6(61)152⨯-=个交点,故选C.考点:找规律-图形的变化点评:解答此类问题的关键是根据所给图形的特征得到规律,再把这个规律应用于解题. 9.D【分析】根据两个统计图的特征依次分析各选项即可作出判断.【详解】A.喜欢“科普常识”的学生有30÷10%×30%=90人,B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,C.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,均正确,不符合题意;D.喜欢“小说”的人数为30÷10%-60-90-30=120人,故错误,本选项符合题意.故选D.【点睛】统计图的应用初中数学的重点,是中考必考题,一般难度不大,需熟练掌握.10.B【解析】试题分析:根据切线垂直于经过切点的半径结合弧长公式求解即可.由题意得的长度是,故选B.考点:圆的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.11.【解析】试题分析:直接根据特殊角的锐角三角函数值填空即可.=.考点:特殊角的锐角三角函数值点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成. 12.28【解析】试题分析:众数的定义:一组数据中个数最多的数据叫做这组数据的众数.由题意得这组数据的众数是28.考点:众数的定义点评:本题属于基础应用题,只需学生熟练掌握众数的定义,即可完成.13.56.9610 .【解析】试题分析:696000=6.96×105,故答案为6.96×105.考点:科学记数法—表示较大的数.14.20【解析】试题分析:设甲车的速度是m 米/秒,乙车的速度是n 米/秒,根据题意及图形特征即可列方程组求解.设甲车的速度是m 米/秒,乙车的速度是n 米/秒,由题意得,解得则甲车的速度是20米/秒.考点:实际问题的函数图象,二元一次方程组的应用点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.15.-12【解析】试题分析:根据平行四边形的性质及BC =2AB 可求得点C 的坐标,再根据待定系数法求解即可.∵四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2)∴点C的坐标为(-3,4)∵C点在反比例函数的图象上∴k=-12.考点:待定系数法求函数关系式点评:待定系数法求函数关系式,在中考中比较常见,一般难度不大,需熟练掌握.161.【分析】由图可得当点E与点E重合时,即AE=DF时线段DH长度最小,根据正方形的性质及勾股定理即可求得结果.【详解】解:由题意得当点E与点E重合时,即AE=DF时线段DH长度最小.所以线段DH长度的最小值是1.1.【点睛】本题考查正方形中的动点问题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.17.【解析】试题分析:解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.方程两边同乘以,得解得.经检验,是原方程的解.考点:解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.18.≥【解析】 试题分析:先根据直线经过点(3,5)求得b 的值,再解关于的不等式≥0即可.∵直线经过点(3,5) ∴. ∴.即不等式为≥0,解得≥.考点:函数图象上的点的坐标的特征,解一元一次不等式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.19.答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.20.(1)详见解析(2)14 【分析】设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)=21 84 =.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.21.(1)如下图;(2)(,);(3)(-2,0).【分析】(1)根据网格结构找出点A、B以点C为旋转中心旋转180°的对应点A1、B1的位置,然后与点C顺次连接即可;再根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两对对应顶点,交点即为旋转中心,然后写出坐标即可;(3)根据轴对称确定最短路线问题,找出点A关于x轴的对称点A′的位置,然后连接A′B与x轴的交点即为点P.【详解】(1)画出△A1B1C与△A2B2C2如图(2)如图所示,旋转中心的坐标为:(32,-1)(3) 如图所示,点P的坐标为(-2,0).22.(1)先根据圆周角定理可得∠BAC=∠BPC=60°,即可证得△ABC为等边三角形,则可得∠ACB=60°,由点P是弧AB的中点,可得∠ACP=30°,再结合∠APC=∠ABC=60°即可求得结果;(2)【解析】试题分析:(1)先根据圆周角定理可得∠BAC=∠BPC=60°,即可证得△ABC为等边三角形,则可得∠ACB=60°,由点P是弧AB的中点,可得∠ACP=30°,再结合∠APC=∠ABC=60°即可求得结果;(2)连接AO并延长交PC于F,过点E作EG⊥AC于G,连接OC.由AB=AC可得AF⊥BC,BF=CF.由点P是弧AB中点可得∠ACP=∠PCB,即可得到EG=EF.由∠BPC=∠FOC可得sin∠FOC=sin∠BPC=.设FC=24a,根据勾股定理可得OC=OA=25a,则OF=7a,AF =32a.在Rt△AFC中,根据勾股定理可表示出AC的长,在Rt△AGE和Rt△AFC中,根据三角函数的定义求解即可.(1)∵弧BC=弧BC∴∠BAC=∠BPC=60°.又∵AB=AC,∴△ABC为等边三角形∴∠ACB=60°,∵点P是弧AB的中点,∴∠ACP=30°,又∠APC=∠ABC=60°,∴AC=AP;(2)连接AO并延长交PC于F,过点E作EG⊥AC于G,连接OC.∵AB=AC,∴AF⊥BC,BF=CF.∵点P是弧AB中点,∴∠ACP=∠PCB,∴EG=EF.∵∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=.设FC=24a,则OC=OA=25a,∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2,∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=,∴,∴EG=12a.∴tan∠PAB=tan∠PCB=.考点:圆的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.23.(1);(2)-1℃;(3).【解析】 试题分析:(1)根据表中数据可知应选择二次函数,再根据待定系数法求解即可;(2)先把(1)中求得的函数关系式化为顶点式,再根据二次函数的性质求解即可;(3)根据“实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ”可得“植物每天高度增长量超过25mm ”,再根据表中数据的特征即可作出判断.(1)选择二次函数,设,得,解得∴关于的函数关系式是.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以不是的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以不是的一次函数;(2)由(1),得,∴, ∵, ∴当时,有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大.(3).考点:二次函数的应用点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.24.(1)根据矩形的性质可得∠A =∠ADC =90°,由DE ⊥CF 可得∠ADE =∠DCF ,即可证得△ADE ∽△DCF ,从而证得结论;(2)当∠B+∠EGC =180°时;(3). 【解析】试题分析:(1)根据矩形的性质可得∠A =∠ADC =90°,由DE ⊥CF 可得∠ADE =∠DCF ,即可证得△ADE ∽△DCF ,从而证得结论;(2)在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .根据平行线的性质可得∠A =∠CDM ,再结合∠B+∠EGC =180°,可得∠AED =∠FCB ,即可证得△ADE ∽△DCM ,从而证得2425 CF DE结论;(3)根据相似三角形的性质结合图形特征求解即可.(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF ,∴; (2)当∠B+∠EGC =180°时,成立,证明如下: 在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .∵AB ∥CD ,∴∠A =∠CDM ,∵∠B+∠EGC =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,∴,即; (3). 考点:相似三角形的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.25.(1)A (,),B (1,1);(2)详见解析(3)(,).【解析】 试题分析:(1)由题意联立方程组即可求得A 、B 两点的坐标;(2)①根据函数图象上的点的坐标的特征结合PA =AB 即可求得A 点的坐标;②过点P 、B 分别作过点A 且平行于轴的直线的垂线,垂足分别为G 、H.设P (,),A (,),由PA =PB 可证得△PAG ≌△BAH ,即得AG =AH ,PG =BH ,则B (,DCAD CF DE =DC AD CF DE=DCAD CM DE =DC AD CF DE =2425=CF DE),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H.由△AOB的外心在AB上可得∠AOB=90°,由△AGO∽△OHB,得,则,联立得,依题意得、是方程的两根,即可求得b的值,设P(,),过点P作PQ⊥轴于Q,在Rt△PDQ中,根据勾股定理列方程求解即可.(1)依题意,得解得,∴A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),∵PA=PB,∴△PAG≌△BAH,∴AG=AH,PG=BH,∴B(,),将点B坐标代入抛物线,得,∵△=∴无论为何值时,关于的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H.∵△AOB的外心在AB上,∴∠AOB=90°,由△AGO∽△OHB,得,∴.联立得,依题意得、是方程的两根,∴,∴,即D(0,1).∵∠BPC=∠OCP,∴DP=DC=3.设P(,),过点P作PQ⊥轴于Q,在Rt△PDQ中,,∴.解得(舍去),,∴P(,).∵PN平分∠MNQ,∴PT=NT,∴.考点:二次函数的综合题21。

2013年湖北省恩施州中考数学试卷及答案(解析版)

2013年湖北省恩施州中考数学试卷及答案(解析版)

7.( 3 分)(2013?恩施州)下列命题正确的是(

A 若 a> b, b< c , B 若 a> b,则 ac C 若 a> b,则 ac2
. 则 a> c
. > bc

2
> bc
D 若 ac2> bc2,则 a . >b
考 点: 分 析: 解 答:
点 评:
不等式的性质;命题与定理.
根据不等式的基本性质,取特殊值法进行解答.

A 70° .
B 80° .
C 90° .
D 100° .
考 点: 分
平行线的判定与性质. 首先证明 a∥b,再根据两直线平行同位角相等可得∠
3=∠6,再根据对顶角相等可
-1-
析: 解 答:
得∠ 4. 解:∵∠ 1+∠5=180°,∠ 1+∠2=180°, ∴∠ 2=∠5, ∴a∥b, ∴∠ 3=∠6=100°, ∴∠ 4=100°. 故选: D.
( 3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
8.( 3 分)(2013?恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在C
D




考 点: 分 析: 解
几何概率;平行四边形的性质.
先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即 可. 解:∵四边形是平行四边形,
0 的数字起,后面所有的数字都是有效
数字.
用科学记数法表示的数的有效数字只与前面的 解: 39360=3.936×10 4≈3.94 ×10 4.
a 有关,与 10 的多少次方无关.
故选: B.
此题考查了科学记数法的表示方法, 以及用科学记数法表示的数的有效数字的确定

湖北省恩施州2013年中考数学模拟试题

湖北省恩施州2013年中考数学模拟试题

2013年恩施州中考数学模拟试题姓名______________ 分数__________________一、选择题(每小题3分,共36分) 1.-5的倒数是( )A .-5B .5C .- 15D .152.人民网北京1月18日电:今天,国家统计局局长马建堂介绍2012年国民经济运行情况,初步核算,全年国内生产总值519322亿元,按可比价格计算,比上年增长7.8%。

这个数据用科学记数法表示(保留3位有效数字)正确的是( )A .51019.5⨯B .61019.5⨯C .5102.5⨯D .6102.5⨯3.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为6cm ,则⊙O 1与⊙O 2的位置关系为( )A .外离B .相交C .相切D .内含4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A.①②B.②③C. ②④D. ③④5.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或806. 如图,图中的小正方形的边长均为1,则图中的阴影三角形与△ABC 相似的是( ):7. 已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根 C .该方程无实数根 D .该方程根的情况不确定 8.2011年5月份,我市市区一周空气质量报告中某项污染指数的数据是: 31 35 31 34 30 32 31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,359.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角α(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为( )A . 7 2°B .108°或14 4°C .144°D . 7 2°或144°10. 如图是一个圆锥形冰淇淋,已知它的母线长是5cm ,高是4cm ,则这个圆锥形冰淇淋的底面面积是( )A .210cm πB .29cm πC .220cm πD .2cm π①正方体②圆柱③圆锥④球第11题图FEDBAC第12题图第10题图11.如图是一张矩形纸片ABCD ,cm AD 10=,若将纸片沿DE 折叠,使DC落在DA上,点C 的对应点为点F ,若cm BE 6=,则DC 的长是( )A .cm 4B .cm 6C .cm 8D .cm 1012.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为( )二、填空题(每小题3分,共18分) 13. 方程2132=-xx 的解是 ;14.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _;15.如图等边三角形ABC 中,AB =3,D 、E 是BC 上的两点,AD 、AE 把△ABC 分割成周长相等的三个三角形,则CD = ;16.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC (用含n 的代数式表示).三、解答题(共8个小题,第17、19、20、21题各8分,第18题6分,第22题10分,第23、24题各12分,共72分)17.已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.18.如图:把一张给定大小的矩形卡片ABCD 放在宽度为10mm 的横格纸中,恰好四个顶 点都在横格线上,已知α=25°,求长方形 卡片的周长。

2013年全国数学中考试卷分类汇编:规律探索题

2013年全国数学中考试卷分类汇编:规律探索题

2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。

七年级新思维28-实验与操作

七年级新思维28-实验与操作

28.实验与操作问题解决例1 (第4届《时代学习报》数学文化节试题)循环往复图中的程序表示,输入一个整数x便会按程序进行计算.设输入的x值为18,那么根据程序,第1次计算的结果是9;第2次计算的结果是4,……这样下去第5次计算的结果是_______,第2009次计算的结果是_______.【答案】-4;-4 输入18,依次得到的结果为:9,4,2,1,4-,2-,1-,6-,3-,8-,4-,2-,1-,…显然,除去前4次的结果外,从第5次的结果-4开始,每6次一个循环,而(2009-4)÷6=2005÷6=334余1,故第2009次计算的结果为4-.例2将一个正方形纸片依次按图①、图②方式对折,然后沿图③中的虚线截剪,最将图④的纸再展平铺平,所看到的图案是().图④(向右对折)(向上对折)A B C D图①图②图③【答案】D例3(贵州省中考题)如图,有一正方形,通过多次划分,得到若干个正方形,具体操作如下:……(第3次)(第2次)(第1次)第1次把它等分成4个小正方形,第2次将上次分成小正方形的其中一个又等分成4个小正方形……依此操作下去.(1)请通过观察和猜想,将第3次、第4次和第n次划分图中得到的正方形总个数(m)填入下表.(2)请你推断,按上述操作方法,能否得到103个正方形?为什么?【答案】(1)当n=3时,13m=;4n=时,17m=;……一般的41m n=+.(2)由41m n=+,得1034125.5n n=+=,,因n不是正整数,故按此要求操作不可能得到103个正方形.例4(太原市竞赛题)有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现在要求每一次翻转其中任意6枚,使它们的国徽朝向相反.问:能否经过有限次翻转后,使所有硬币的国徽都朝上?给出你的结论,并给出证明.【答案】用1997枚硬币的朝向情况可用1997个数的乘积来表示.若这些数之积为1-(或+1),表明有奇数(或偶数枚硬币朝下).开始时,其乘积为1000997(1)(1)1+⨯-=-.每次翻折6枚硬币,即每次改变6个数的符号,其结果是1997个数之积仍为1-.经过有限次翻转后,这个结果总保持不变,即国徽朝下的硬币数永远是奇数枚,故回答是否定的.例5在2×2方格纸中,以格点连线为边作面积为2的多边形(含凹多边形),请尽可能多地找出答案,在寻找答案的过程中你能发现什么规律吗?分析与解若没有规律性的认识,则要无遗漏重复地找出全部解答是困难的.恰当的方法是:选择一些图形作基本图形,通过基本图形的组合找出解答,可将下列7个图形作为基本图形:(5)(6)(7)(4)由此可得如下23个解答,其中凸多边形7个,凹多边形16个:(23)(22)(21)(19)(18)(12)(20)(9)(15)(7)(8)俄罗斯方块例6游戏机的“方块”中共有下面7种图形,每种“方块”都由4个1×1的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?分析与解 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品”字形必占3个黑格1个白格或3个白格1个黑格外,其余6个方块各占2个黑格2个白格. 用其中的6种不同的图形方块可以拼成7×4的长方形,方法很多,如图①仅出示一种. 下面证明不能7种图形方块都各用一次.将7×4的长方形的28个小方格黑白相间染色,则如图②所示,黑、白格各14个.若7×4的长方形能用7种不同的方块拼成,则每个方块用到一次且只用一次.其中“品”字形如图③必占3个黑格1个白格或3个白格1个黑格,其余6个方块各占2个黑格2个白格.7种不同的方块占据的黑格总数、白格总数都是奇数个,不会等于14.矛盾.因此,不存在7种图形方块每个各用一次拼成7×4的长方形的方法. 所出,要拼成7×4的长方形,最多可以用这7种图形方块中的6种.图①图②图③数学冲浪知识技能广场 1.(《时代学习报》数学文化节试题)乐在其中七巧板的起源要追溯到我国先秦时期,古算书《骨髀算经》中即有正方形分割术,经历代演变而成“七巧图”(又称为“益智图”和“智慧板”,如图①).19世纪传到国外,多称其为“唐图”(意为“来自中国的拼图”),引起人们的极大兴趣,欧美许多国家纷纷出版书籍予以介绍.(第1题)图①图②如果有一副七巧板的总面积是100平方厘米,那么其中正方形的那一块的面积是_______平方厘米. 图②“乐在其中”的每个字都是由一副七巧板摆拼所得,请在图中用线段画出模块之间的“拼缝”.【答案】12.5 画图略 2.(乌鲁木齐市中考题)如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有_______种. 【答案】5(第3题)(第2题)3.(乌鲁木齐市中考题)如图,将长度为20cm ,宽为2cm 的长方形的纸带,折成如图所示的图形并在其一面着色,则着色部分的面积为_______cm 2. 【答案】36 4.(浙江省嘉兴市中考题)定义一种对正数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取26n =,则26134411F F F −−−→−−−→−−−→第一次第二次第三次②①②…若449n =,则第449次“F ”运算的结果是_______.【答案】8 5.(浙江省金华市中考题)图中的大正三角形是由9个相同的小正三角形拼成的,将其部分涂黑,如图①、②所示.图④(第5题)图③图②图①观察图①、图②中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形,②涂黑色部分都是三个小正三角形.请在图③、图④内分别设计一个新图案,使图案具有上述两个特征. 【答案】略 思维方法天地 6.(《时代学习报》数学文化节试题)折折剪剪一张正方形纸片,通过两次对折,然后按阴影部分进行裁剪并展开,可以得到如图(1)末的“蝴蝶结”:(第6题①)第三次对折第二次对折第一次对折请你仿图①,将下面的正方形纸片经过两次对折后裁剪并展开,得到如图②末的图形,请画出虚线和实线表示折叠过程,并用阴影表示剪去的部分.(第6题②)【答案】或7.(深圳市“启智杯”数学思维能力竞赛题)把四个完全相同的空啤酒瓶放置在桌面上,使得四个啤酒瓶底中心的距离两两相等,请写出摆法关键步骤(可画图辅助说明):___________________________________________________.【答案】先将三个空啤酒瓶放置成底面中心成“正三角形”的位置,再将一个空啤酒瓶倒置放在这个三角形中心P的位置,保持中心P的位置不变,适当移动三个底朝下的空啤酒瓶,放大或缩小“正三角形”,可使瓶底中心构成四个边长相等的“正三角形”如图(答案不唯一).(第8题)(第7题)8.(俄罗斯萨温市竞赛题)方格纸上有3个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?【答案】9.(“希望杯”邀请赛试题)有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,1-,8,这称为第一次操作;做第二次同样的操作后也可以产生一个新数串:3,3,6,3,9,10-,1-,9,8.继续依次操作下去.问:从数串3,9,8开始操作至第100次以后所产生的那个新数串的所有数之和是多少?【答案】一个依次排列的n个数组成一个数串:123na a a a,,,,,依题设操作方法可得新增的数为:2132431n na a a a a a a a-----,,,,,则新增数之和为:2132()()a a a a-+-+ 4311()()n n na a a a a a--++-=-(※)原数串为3个数:3,9,8.第1次操作后所得数串为:3,6,9,1-,8,根据(※)可知,新增2项之和为:6+(1-)=5=83-,第2次操作后所得数串为:3,3,6,3,9,10-,1-,9,8,根据(※)可知,(第7题)新增4项之和为3+3+(10-)+9=5=8-3,按这个规律下去,第100次操作后所得新数串所有数的和为:(3+9+8)+100×(83-)=520. 10.(五城市联赛题)有三堆石子的个数分别是19,8,9,现在进行如下的操作:每次这三堆石子中的任意两堆中各取出1个石子,然后把这2个石子都加到另一堆中去,试问能否经过若干次这样的操作后,使得:(1)三堆石子的数分别是2,12,22; (2)三堆都是12.如能,请用最快的操作完成;不能,则说明理由[注:若从第一、二堆各取1个到第三堆,可表示为(19,8,9)⇒(18,7,11)等]. 【答案】(1)经过6次操作可达到要求:(19,8,9)⇒(21,7,8)⇒(23,6,7)⇒(25,5,6)⇒(24,4,8)⇒(23,3,10)⇒(22,2,12).(2)不可能.因为每次操作后,每堆码数要么加2,要么少1,而19,8,9被3除余数分别为1,2,0,经过任何一次操作后余数分别是0,1,2,不可能同时被3整除. 11.(中国科技技术大学“少年班”招生入学试题)如图a 所示的展览馆有36个陈列室,每两个相邻陈列室之间有门可通,其人口与出口位置如图b 所示,现有人希望每个陈列都能参观,但只经过每个展室一次.这可能吗?如果可能,请为他设计一条参观路线;如果不能,请说明理由.ba入口展览大厅==进口出口【答案】不可能 我们设想36个展室都依次相间地铺上了两种颜色的地毯,则参观者无论怎样走法,只能按白→黑→白→黑→白→……的次序前进.因此,不管参观者怎样走法,第36次只能走到一间黑色地毯的展室,绝不可能走到铺白色地毯的展室出口.应用探究乐园12.(江苏省竞赛题)如图是一张“3×5”(表示边长分别为3和5)的长方形,现要把它分成若干边长为整数的长方形(包括正方形)纸片,并要求分得的任何两线纸片都不完全相同. (1)能否分成5张满足上述条件的纸片? (2)能否分成6张满足上述条件下纸片?若能分,用“a ×b ”的形式分别表示出各张纸片的边长,并画出分割的示意图;若不能分,请说明理由.【答案】(1)把可分得的边长为整数的长方形按面积从小到大排列,有1×1,1×2,1×3,1×4,2×2,1×5,2×3,2×4,3×3,2×5,3×4,3×5.若能分成5张满足条件的纸片,因为其面积之和应为15,所以满足条件的有1×1、1×2、1×3、1×4、1×5(如图①)或1×1、1×2、1×3、2×2、1×5(如图②)(第12题)出口进口(第11题)图①图②(第12题)(2)若能分成6张满足条件的纸片,则其面积之和仍应为15,但上面排在前列的6个长方形的面积之和为1×1+1×2+1×3+1×4+2×2+1×5=19>15.所以分成6张满足条件的纸片是不可能的. 13.(河北省中考题)图形的操作过程(本题中四个矩形的水平方向的边长均为a ,竖直方向的边长均为b )在图①中,将线段12A A 向右平移1个单位到12B B ,得到封闭图形1221A A B B (即阴影部分); 在图②中,将折线123A A A 向右平移1个单位到123B B B ,得到封闭图形123321A A A B B B (即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积: 1S =_______,2S =_______,3S =_______;(3)联想与探索:如图④,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.图③33A B B A 22图④图①图②【答案】(1)略;(2)123S S S 、、的结果都是ab b -;(3)这是有关道路形状及草地面积的研究题,其中包含阅读、作图、计算及猜想等步骤.关键是探索:当道路由笔直到任意弯曲的变化中,矩形中空白部分(即草地)面积情况.猜想:依据前面的计算,无论小路怎么弯曲,可以猜想草地的面积仍然是ab b -.方法是将“小路”沿左右两个边界剪去,将其中一侧的草地平移一个单位向另一侧草地靠拢,得到一个新的矩形.此时,在新的矩形中,其纵向宽仍然是b ,其水平方向的长度变成了1a -,所以草地面积是(1)b a ab b -=-.设而不求(微探究)(第13题)字母示数是代数式的一个重要特征,是由算术跨越到代数的桥梁,是数学发展史上的一个飞跃.字线示数具有简明性、一般性,在求代数式的值、形成公式、解应用题等方面有广泛的应用. 为了沟通数量间的关系,或将有些不明朗的关系表示出来,我们需要设元,而所设的字母不能或不需要求出,这就是设而不求的基本涵义.例1 (四川省竞赛题)老师报出一个5位数,同学们将它的顺序倒排后得到的5位数减去原数,甲、乙、丙、丙的结果分别是34567,34056,23456,34956,老师判定4个结果中只有1个正确,答对的是_______.【答案】乙 所得差=11×[909(e a -)+90(d b -)]是11的倍数例2 (2012年湖北省恩施自治州中考题)某大型超市从生产基地购进一批水果,运输过程中质量损失10%.假设不计超市其他费用,如果超市要想获得20%的利润,那么这种水果的售价在进价基础上应至少提高( ).A .40%B .33.4%C .33.3%D .30%【答案】B 设水果质量为m ,进价为a ,售价在进价的基础上至少提高x , 则101(1)20100100m x a ma ma⎛⎫-+- ⎪⎝⎭-,解得33.4%x ≈. 例3 (江苏省竞赛题)某地区的民用电,按白天时段和晚间规定了不同的单位.某户8月份白天时段用电量比晚间时段用电量多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的用电量虽比8月份的用电量多20%,但9月份的电费却比8月份的电费少10%.求该地区晚间时段民用电的单价比白天时段的单价低的百分数.【答案】设白天的单价为a 元/度,晚间的单价比白天低的百分数为x ,即晚间的单价为(1-x )a 元/度,又设8月份晚间用电量为n 度,则8月份白天用电量为(1+50%)n =1.5n 度,8月份电费为1.5(1)(2.5)na x na x na +-=-元,9月份白天用电量为1.5(160%)0.6n n -=度,9月份晚间用电量为( 1.5n n +)(120%+)-0.6 2.4n n =度,9月份电费为0.6 2.4(1)(3 2.4)na x na x na +-=-.由题意得,(3 2.4-x )na =(2.5-x )(110-%)na ,解得0.550%x ==.例4 从两个重量分别为12千克和8千克,且含铜的百分数不同的合金上切下重量相等的两块,把所切下的每块和另一块剩余的合金放在一起,熔炼后两个合金含铜的百分数相等.求所切下的合金的重量是多少千克?【答案】设所切下的合金的重量为x 千克,重12千克的合金的含铜百分数为p ,重8千克的合金的含铜百分数为()q p q ≠,于是有(12)(8)128xq x p xp x q-+-=,整理得()24()p q p x q p -=-.因为p q ≠,所以0p q -≠,因此 4.8x =,即所切下的合金重4.8千克.例5 (“华罗庚杯”邀请赛试题)能否找到7个整数,使得这7个整数沿圆周排成一圈后,任3个相邻数的和都等于29?如果能,请举一例;如果不能,请简术理由. 分析 假设存在7个整数1234567a a a a a a a ,,,,,,排成一圈后,满足题意,由此展开计算推理.若推得矛盾,则原假设不成立. 解 由题意aa 4a1232342929a a a a a a ++=++=……6717122929a a a a a a ++=++=将上述7式相加,得312345673()297a a a a a a a ++++++=⨯,12345672673a a a a a a a ∴++++++=,与1234567a a a a a a a ++++++为整数矛盾,故不存在满足题设要求的7个整数. 难解的结英国剑桥大学有一位数学家(真名叫道奇逊),用刘易士·卡洛尔的笔名写了不少非常有趣的科普读物,其中有一本《乱纷纷的结》,书中的每一章都叫做“绳结”,意即这些问题像绳结一样复杂难解,下面就是一个“绳结”的题目:例6 两个步行者正在急促地以每小时6千米的速度向山下走去,一个年轻人像羚羊似的边跳边走,他的同伴吃力地跟在后面.年轻人说,只怪我们上山的时候走得太慢了,每小时只走3千米.在平地的时候走得多快?他的同伴回答,在平路上每小时走4千米.年轻人说,能赶得上回去吃夜饭吗?同伴说,这要看我们了.我们3点钟出来,8点钟该我们回到旅馆的时候了.今天可真走了不少路.年轻人说,到底走了多少路呢?同伴不耐烦地说,你自己去想吧.题目就是这样,似乎条件不充分,你能解开这个“结”吗?解 设旅行都一共走过的路程为x 千米,上坡(或下坡)走过的路程为y 千米, 整个行程分为四段:走平路、上坡、下坡、再走平路.开始走平路所花的时间是124x y-小时,上坡所花的时间是3y 小时,下坡所花的时间是6y 小时,再走平路所花的时间是124x y -小时. 依题意可得方程:112254364x y x yy y --+++=, 原方程化简得15204x x ==,,故他们一共走了20千米. 练一练 1.(2012年“希望杯”邀请赛试题)已知23566914x y z y z x -=+=--,,则x y z ,,的平均数是_______.【答案】4932.(世界数学团体锦标赛试题)A B 、两校男生、女生人数的比分别为8∶7,30∶31,两校合并后男生、女生人数的比是27∶26.若用一位整数的比近似表示合并前A B 、两校的人数的比,则这个近似比是_______.【答案】453614≈ 3.(“希望杯”邀请赛试题)甲、乙两车从A 向B 行驶,甲比乙晚出发6小时,开始时甲、乙的速度比是4∶3.甲出发6小时后,速度提高1倍,甲、乙两车同时到达B .则甲从A 到B 共走了_______小时.【答案】8.4 设甲出发6小时后再用t 小时即可追上乙,甲原速为u ,乙速为v ,由题设知当甲出发行驶6小时,乙已经行驶了12小时,故有(12)62t v u tu +=+,即12t +=(62)t u v +=(62t +)·u v =(6+2t )·43,故363248 2.4t t t +=+=,(小时).故甲共走了6+2.4=8.4(小时).4.某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价–成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增加80%,那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长( ).A .2%B .8%C .40.5%D .62%【答案】B 设9月份每件冬装的出厂价为x 元,则每件成本为0.75x 元,10月份每件冬装的利润为(1-10%)0.75x x -=0.15x 元,又设9月份销售冬装m 件,则10月份销售冬装(1+80%)m =1.8m 件,故10月份的利润总额与9月份相比,增长0.15 1.80.258%0.25x m xmxm⋅-=.5.(“希望杯”邀请赛试题)甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29,23,21和17,则这四人中最大年龄与最小年龄的差是( ). A .28 B .27 C .19 D .18 【答案】D 6.(“希望杯”邀请赛试题)一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加%a ,则所用的时间减少6%,则a b 、的关系是( ). A .1001%a b a =+ B .1001%b a =+ C .1a b a =+ D .100100ab a=+【答案】D 设A B 、两地之间的距离为S ,汽车行驶的速度为v ,汽车从A 地到B 地所用的时间为t ,则(1%)(1%)S vt v a t b ==+-. 7.(环求城市数学奥林匹克试题)如图3×3数表各行、各列及两条对角线之和彼此相等,设为S .求证:(1)S =3e ;(2)2()4a c g i b d f h e +++=++++.【答案】(1)S a e i b e h c e g d e f =++=++=++=++, 相加得43S a b c d e f g h i i e =++++++++++,故3S e =. (2)S a b c b e h =++=++,故a c e h +=+,同理a g e f g i e b c i e d +=++=++=+,,,四式相加得2()4a c g i b d f h e +++=++++.8.(湖北省黄冈市竞赛题)在一次数学竞赛中,组委会决定用NS 公司赞助的款购买一批奖品.若以1台NS 计算器和3本《数学竞赛讲座》书为一份奖品,则可买100份奖品;若以1台NS 计算器和5本《数学竞赛讲座》书为一份奖品,则可买80份奖品.问这笔钱全部用来购买计算器或《数学竞赛讲座》书,可各买多少?【答案】设每台计算器x 元,每本《数学竞赛讲座》书y 元,则100(3)x y +=80(5x y +),d i h g fe c b a解得5x y =,故可购买计算器100(3)10085x y yx y+⨯==160(台), 书100(3)1008800()x y yy y+⨯==本. 9.(河北省中考题)甲、乙二人分别从A B 、两地出发,相向而行.若同时出发,经24分钟相遇;若乙比甲提前10分钟出发,甲出发20分钟与乙相遇.求甲从A 地到B 地、乙从B地到A 地各需多少分钟? 【答案】40分钟、60分钟 10.(广州市中考题)在车站开始检票时,有(0)a a >名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;现在要求在6分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随时随检,问需要同时开放几个检票口?【答案】设需要开放x 个窗口,每个窗口每分钟检出的人数是c ,每分钟来排队的人数是b ,则30301021066a b c a b c a b cx +=⎧⎪+=⨯⎨⎪+=⎩①②③由①,②得302a b c b ==,.将302a b c b ==,带入③,得3x =.借助图形思考(微探究)数学是研究数量关系与空间形式的科学,数与形,以及数和形的关联与转化,这是数学研究的永恒主题.当代美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并能创造性地思考问题.”现阶段借助图形思考主要体现为:通过构造图形或拼图解与数量关系相关联的问题.例 1 A B C D E F 、、、、、六个足球队进行单循环比赛,当比赛到某一天时,统计出A B C D E 、、、、五队已分别比赛了5、4、3、2、1场球,则这没有与B 队比赛的球队是_______.【答案】E 队D例2 (山东省威海市中考题)古希望常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图①中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数.类似地,称图②中的1,4,9,16,…,这样的数为正方形数.下列数中,既是三角形数,又是正方形数的是( ).A .289B .1024C .1225D .1378图②图①……1361014916【答案】C 图①中第n 个图共有石子1+2+…+n =(1)2n n +(个),图②中第n 个图共有石子2n (个),1225=249501225352⨯=,. 例3 (浙江省衢州市中考题)有足够多的长方形和正方形卡片,如下图:(1)如果选取的1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.122333______________________________________________________________________________ 这个长方形的代数意义是___________________________________________________ (2)小明想用类似方法解释多项式乘法(3a b +)(2a b +)=22273a ab b ++,那么需要用2号卡片_______张,3号卡片_______张.【答案】(1)或2232()(2)a ab b a b a b ++=++.(2)3;7 眼见亦可为虚例4 一只小渔船在海上遇到了台风,触到礁石上,船身撞出了一个窟窿.如果不把它堵上,渔船就有沉淀的危险.船中只有一块边长是8cm 的正方形木板.但是和船的窟窿相比,木板的面积少1cm 2.怎么办好呢?正在焦急当中,有一个船员用锯把这块正方形的木板裁开(如下图),然后用胶粘接拼成了长方形木板.13×5=65 (cm 2)8×8-64 (cm 2)5855333①②③④④③②①从图中的计算可知:原来的正方形木板的面积是64cm 2,可是改成长方形以后的木板的面积却变成了65cm 2了,正好多出1cm 2.船员赶紧把它堵在窟窿上,避免渔船的沉没.可是大家都感到惊奇的是,这1cm 2是从哪里多出来的呢,你能告诉他们吗? 【答案】如图,形成“对角线”的三角形之边与梯形之边不在同一条直线上,则180αβ+≠︒,这便函是问题的症结所在.横看成岭侧成峰例5 21()()()()()()24222a b a b a b a b a b a b a b +-⎡⎤-=+-=+-⨯=⨯⨯⎢⎥⎣⎦.下面的图形,形象直观验证了平方差公式:baaa b ab a柳卡趣题例6 法国数学家柳卡·施斗姆生于瑞士,因数学上的成就,于1836年当选为法国科学院院士,他对射影几何与微分几何研究都作出了重要贡献.在某次国际科学会议期间,一次有许多著名数学家参加的晚宴上,他提出了如下的一个轮船问题,人们称它为“柳卡趣题”. 每天中午有一艘轮船从法国巴黎的勒阿佛尔开往美国的纽约,且每天同一时间也有一艘轮船从纽约开往勒阿佛尔.轮船在途中需要七天七夜.假定所有轮船都以同一航线、同速匀速行驶,问某艘从勒阿佛尔开出的轮船,在到达纽约时,能遇到几艘从纽约开来的轮船? 这个问题难倒了在场的所有数学家,连柳卡本人也没有彻底解决.后来有一位数学家通过构图解法,才能使问题最终得以解决. 解 用“时间—路程图”解答.日期171234567891011121314151616151413121110987654321纽约日期勒阿佛尔17从图上可以很清楚地看到,某艘从勒阿佛尔开出的轮船,在中途可以遇到13艘从纽约开来的轮船,加上开航时与到达时相遇的2艘,因此一共遇到了15艘从纽约开出的轮船. 练一练 1.(浙江省湖州市中考题)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形,现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片_______张,才能用它们拼成一个新的正方形.【答案】4 设至少取丙类纸片n 张,新的正方形边长为a ,则2222142n a +⨯+=. 2.(四川省眉山市中考题)有若干张如图①所示的正方形和长方形卡片,如果要拼一个长为(2a b +),宽为(a b +)的矩形,则需要A 类卡片_______张,B类卡片_______张,C 类卡片_______张,请你在图②中的大矩形中画出一种拼法.【答案】2;1;3 拼法略3.小明在拼图时,发现8个一样大小的长方形如图①所示,恰好可以拼成一个大的长方形. 小红看见了,说:“我来试一试.”结果七拼八凑,拼成如图②那样的正方形.咳,怎么中间还留下了一个边长为2mm 的正方形洞!你能帮他们解开其中的奥秘吗?【答案】图①的面积为2480mm ,图②的面积为4842mm . 4.(江苏省盐城市中考题)如图①,现有a ×a 、b b ⨯的正方形纸片和a b ⨯的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须丙乙甲Ca+b2a+b 图①图②a A a B bb (第3题)图①图②(第4题)ba ab b a保留拼图痕迹),使拼出的矩形面积为22252a ab b ++,并标出此矩形的长和宽.【答案】22252(2)(2)a ab b a b a b b a ++=++>,,矩形的长为2a b +,宽为2a b +,给出如图所示的两种拼法.babba abba b b a5.用新方法解释旧模式常会推导绝妙的公式.请你依下列图形直观分别写出相应公式.图③3333图①图②图③3+=图④【答案】(1)(1)123;2n n n +++++=(2)2135(21)n n ++++-= ; (3)333212(12)n n +++=+++ ;(4)2223(12)(12)(21)n n n +++=++++ ,代入1+2+…+n =(1)2n n +, 得22212n +++=(1)(21)2n n n ++.6.(安徽省芜湖市竞赛题)如图,九块大小不等的正方形纸片A B ,,…,I 无重叠、无缝隙地铺满了一块长方形,已知E 的边长为7,求其余各正方形的边长.【答案】设a b c h i ,,,,,分别表示正方形A B C ,,,H I ,,的边长,由其相互位置可得到8个线性无关(独立)的方程,从该方程组不难解得:B CD EF G H AI。

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州2015 年中考数学试卷一、选择题(本题共12小题,每小题3分,满分36 分,中每小题给出的四个选项中,只有一项符合题目要求的,请将正确选则项请的字母代号填涂在答题卷相应位置上)15的绝对值是()A. —5B.—C.D. 5考点:绝对值. 分析:利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得| —5|=5,故选D.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2. 恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶201 3年总产量达64000 吨,将64000 用科学记数法表示为()3 54 5A. 64X 10B. X 10C. X 10D. X 10 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a x 10n的形式,其中K |a| v 10, n为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:64000=X10 3 4,故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中1w|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.考点:分析:平行线的性质.延长ED交BC于F,根据平行线的性质求出/ MFC M B=70°,求出/ FDC=40,根据三角形外角性质得出/ C=Z MFO Z MDC代入求出即可.3(3 分)(2015?恩施州)如图,已知AB// DE / ABC=70,/ CDE=140,则/ BCD 的值为()A. 20°B. 30°C. 40D. 70°解答:解:延长ED交BC于F,•/ AB// DE / ABC=70 ,•••/ MFC M B=70°,•••/ CDE=140 ,•••/ FDC=180 - 140°=40°,•••/ C=Z MF G/ MDC=7° - 40°=30°, 故选B.点评:本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出/MFC 的度数,注意:两直线平行,同位角相等.4. ( 3分)(2015?恩施州)函数 y=+x - 2的自变量x 的取值范围是( ) A . x >2B. x >2C. x ^2D. x <2考点:函 数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求 出 x 的范围.解答:解:根据题意得:x - 2>0且x - 2工0,解得: x > 2. 故选: B .点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负. 5. ( 3 分) ( 2 0 1 5?恩施州)下列计算正确的是()3264372510A . 4x ?2x =8xB . a +a =aC . ( - x ) =- x 考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式. 专题:计 算题. 分析:A 、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B 、 原式不能合并,错误;C 、 原式利用幕的乘方与积的乘方运算法则计算得到结果,即可做出判断;D 原式利用完全平方公式化简得到结果,即可做出判断. 解答:解:A 、原式=8x 5,错误; B 、 原式不能合并,错误;10C 、 原式=-x ,正确;D 原式=a 2- 2ab+b 2,错误, 故选 C点评:此题考查了单项式乘单项式, 合并同类项, 幂的乘方与积的乘方, 以及完全平方公式, 熟练掌握公式及法则是解本题的关键.6 . ( 3分) ( 2 0 1 5?恩施州)某中学开展“眼光体育一小时”活动,根据学校实际情况,如图 决定开设“A :踢毽子,B :篮球,C :跳绳,D :乒乓球”四项运动项目(每位同学必须选择 一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结 果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A . 240B . 120C . 80D . 40考点:条 形统计图;扇形统计图.分析:根据A 项的人数是80,所占的百分比是40%即可求得调查的总人数,然后李用总人数 减去其它组的人数即可求解.解答:解:调查的总人数是:80- 40%=200(人),2 2 2D . ( a - b ) =a - b则参加调查的学生中最喜欢跳绳运动项目的学生数是:200 - 80 - 30 - 50=40 (人).故选D.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(3 分)(2015?恩施州)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“ 1”;“学”相对的字是“ 2”;“5”相对的字是“ 0”.故选:A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.& ( 3分)(2015?恩施州)关于x的不等式组的解集为x v 3,那么m的取值范围为()A. m=3B. m>3C. m v 3D. m>3考点:解一元一次不等式组.专题:计算题.分析:不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可. 解答:解:不等式组变形得: ,由不等式组的解集为x v3,得到m的范围为m^3,故选D点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.9. (3分)(2015?恩施州)如图,在平行四边形ABCD中, EF// AB交AD于E,交BD于F, DE EA=3: 4, EF=3,则CD的长为()A. 4B. 7C. 3D. 12考点相似三角形的判定与性质;平行四边形的性质.分析由EF/ AB根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.解答解:•/ DE EA=3 4,••• DE DA=3: 7•/ EF// AB•,解得:AB=7,•••四边形ABCD是平行四边形,•C D=AB=.7故选B.点评:此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.10. (3分)(2015?恩施州)如图,AB是OO的直径,弦CD交AB于点E,且E为OB的中点, / CDB=30,CD=4,则阴影部分的面积为()A. nB. 4 nC. nD. n考点:扇形面积的计算.分析:首先证明OE=OC=QB则可以证得△ OEC^A BED贝U S阴影=半圆-S扇形OCB利用扇形的面积公式即可求解.解答:解:I/ COB=2CDB=60 ,又••• CDL AB•/ OCB=3°0 ,CE=DE,•O E=OC=OB=2OC=4.•O E=BE则在△ OEC和厶BED中,•△OEC2A BED•S阴影=半圆-S 扇形OCB=.故选D.点评:本题考查了扇形的面积公式,证明△ OE QA BED得到S阴影=半圆-S扇形OCB是本题的关键.11. (3分)(2015?恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%现售价为b元,则原售价为()A. (a+b)元B. (a+b)元C. (b+a)元D. (b+a)元考点:列代数式.分析:可设原售价是x元,根据降价a元后,再次下调了20%后是b元为相等关系列出方程,用含a,b 的代数式表示x 即可求解.解答:解:设原售价是x 元,则(x- a)(1 - 20% =b,解得x=a+b,故选A.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断 a 与0的关系,由抛物线与 y 轴的交点判断c 与0的关系, 然后根据对称轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:•••抛物线的开口方向向下,a v 0;•••抛物线与x 轴有两个交点,2 2.b - 4ac >0, 即卩 b >4ac ,故①正确由图象可知:对称轴 x= - = - 1, 2a — b=0, 故②错误;•••抛物线与y 轴的交点在y 轴的正半轴上, • c > 0由图象可知:当 x=1时y=0, • a+b+c=0; 故③错误;由图象可知:当 x= - 1时y > 0,•••点B (-, y 1)、C (-, y 2)为函数图象上的两点,贝U y 1 v y 2, 故④正确. 故选B点评:此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与 x 轴交点的个数确定.二、填空题(共4小题,每小题3分,满分12分,不要求写出解答过程,请把答案直接填 写在答题卷相应位置上)13. ( 3分)(2015?恩施州)4的平方根是 ±2 . 考点:平方根. 专题:计算题.分析:根据平方根的定义,求数 a 的平方根,也就是求一个数 x ,使得x 2=a ,则x 就是a 的 平方根,由此即可解决问题.2解答:解:•(土 2) =4,•4的平方根是土 2.12. ( 3分)(2015?恩施州)如图是二次函数 0),对称轴为直线 x=- 1,给出四个结论: ①b > 4ac ;②2a+b=0;③a+b+c > 0;④若点 则 y i < y 2, 其中正确结论是( ) A .②④B.①④y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,B (-, y i )、C (-, y 2)为函数图象上的两点,C.①③D.②③故答案为:土2.点评:本题考查了平方根的定义•注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2 314. (3 分)(2015?恩施州)因式分解:9bx y - by = by (3x+y)(3x- y)•考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取by,再利用平方差公式分解即可.. , 2 2解答:解:原式=by (9x - y )=by (3x+y)(3x - y),故答案为:by (3x+y)(3x- y)点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2015?恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b, 然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5n .考点:弧长的计算;旋转的性质.分析:根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.解答:解:由图形可知,圆心先向前走OO的长度即圆的周长,然后沿着弧OC2旋转圆的周长,则圆心O运动路径的长度为:X 2nX 5+X 2nX 5=5 n, 故答案为:5 n.点评:本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16. (3 分)(2015?恩施州)观察下列一组数:1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,…其中每个数n都连续出现n次,那么这一组数的第119个数是15 .考点:规律型:数字的变化类.分析:根据每个数n都连续出现n次,可列出1+2+3+4+- +x=119+1,解方程即可得出答案. 解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共8小题,满分72分,请在大题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (8分)(2015?恩施州)先化简,再求值:?-,其中x=2 - 1.考点:分式的化简求值.专题:计算题.分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把x 的值代入计算即可求出值.解答:解:原式=?-=-=-,当x=2 - 1时,原式=-=-.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18. ( 8分)(2015?恩施州)如图,四边形ABCD BEFG匀为正方形,连接AG CE( 1 )求证:AG=CE;(2)求证:AGL CE考点:全等三角形的判定与性质;正方形的性质. 专题:证明题.分析:(1)由正方形的性质得出AB=CB / ABC d GBE=90 , BG=BE得出/ ABG M CBE由SAS证明△CBE得出对应边相等即可;(2)由厶CBE得出对应角相等/ BAG M BCE由/BAG# AMB=90 ,对顶角 / AMB M CMN 得出/ BCE# CMN=9° ,证出/ CNM=9° 即可.解答:(1)证明:•••四边形ABCD BEFG均为正方形,••• AB=CB M ABC# GBE=90 , BG=BE•••/ ABG# CBE在厶ABG和厶CBE中,,•△ABG^A CBE( SAS ,• AG=C;E(2)证明:如图所示:•••△ ABG^^ CBE•# BAG=# BCE,•••# ABC=90 ,•# BAG+# AMB=9°0 ,•••# AMB# CMN•# BCE+# CMN=9°0 ,•# CNM=9°0 ,• AG L CE.点评:本题考查了正方形的性质、全等三角形的判定与性质、垂线的证法;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.19. (8 分)(2015?恩施州)质地均匀的小正方体,六个面分别有数字“ 1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.(1)求数字“ 1”出现的概率;( 2 )求两个数字之和为偶数的概率.考点:列表法与树状图法. 专题:计算题.分析:(1)列表得出所有等可能的情况数,找出数字“ 1”出现的情况数,即可求出所求的概率;(2)找出数字之和为偶数的情况数,即可求出所求的概率.解答:解:(1)列表如下:1234561(1,1) ( 2,1) ( 3,1) ( 4,1) ( 5,1) ( 6,1)2(1,2) ( 2,2) ( 3,2) ( 4,2) ( 5,2) ( 6,2)3(1,3) ( 2,3) ( 3,3) ( 4,3) ( 5,3) ( 6,3)4(1,4) ( 2,4) ( 3,4) ( 4,4) ( 5,4) ( 6,4)5(1,5) ( 2,5) ( 3,5) ( 4,5) ( 5,5) ( 6,5)6(1,6) ( 2,6) ( 3,6) ( 4,6) ( 5,6) ( 6,6)所有等可能的情况有36 种,其中数字“ 1”出现的情况有11 种,则P (数字“ 1”出现)=;(2)数字之和为偶数的情况有18 种,则P (数字之和为偶数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20. (8分)(2015?恩施州)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:~)考点:解直角三角形的应用-方向角问题.分析:过点C作CDL AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.解答:解:如图,过点C作CDLAB于点D,AB=20< 仁20 (海里),•••/ CAF=60,/ CBE=30 ,•••/ CBA d CBE k EBA=120,/ CAB=90 -/ CAF=30 ,•••/ C=180 -Z CBA-Z CAB=30 ,•••/ C=Z CAB•B C=BA=2(0 海里),Z CBD=90 -Z CBE=60°,• CD=BC?si Z CBD= 17 (海里). 点评:此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.21. (8分)(2015?恩施州)如图,已知点A、P在反比例函数y= (k v 0)的图象上,点B、Q 在直线y=x - 3的图象上,点B的纵坐标为-1, AB Lx轴,且S MA=4,若P、Q两点关于y 轴对称,设点P 的坐标为(m,n).(1 )求点 A 的坐标和k 的值;(2)求的值.考点:反比例函数与一次函数的交点问题.分析:(1)先由点B在直线y=x - 3的图象上,点B的纵坐标为-1,将y= - 1代入y=x- 3, 求出x=2,即B (2,- 1).由AB丄x轴可设点A的坐标为(2, t),利用S ZA B=4列出方程(-1 - t )X 2=4,求出t= - 5,得到点A的坐标为(2,- 5);将点A的坐标代入y=,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q( m n),由点P (m, n)在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,得出mn=- 10, m+n=- 3,再将变形为,代入数据计算即可.解答:解:(1)v点B在直线y=x - 3的图象上,点B的纵坐标为-1, •••当y= - 1 时,x - 3= - 1,解得x=2,二 B (2,- 1).设点A的坐标为(2, t ),则t V- 1, AB=- 1 - t .TS △OA=4,•••(- 1 - t )X 2=4,解得t= - 5 ,•••点A的坐标为(2,- 5).•••点A在反比例函数y= (k V 0)的图象上,•- 5=,解得k=- 10;(2)T p、Q两点关于y轴对称,点P的坐标为(m n),•Q(- m,n ),•••点P在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,•n=-,n=- m- 3,•mn=- 10, m+n=- 3,点评:本题考查了反比例函数与一次函数的交点问题, 反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y轴对称的点的坐标特征,代数式求值,求出点A的坐标是解决第(1)小题的关键,根据条件得到mn=- 10, m+n=-3是解决第(2)小题的关键.22.(10 分)(2015?恩施州)某工厂现有甲种原料360 千克,乙种原料290 千克,计划用这两种原料全部生产A B两种产品共50件,生产A B两种产品与所需原料情况如下表所示:原料型号甲种原料(千克)乙种原料(千克)A 产品(每件)9 3B 产品(每件) 4 10(1)该工厂生产A、 B 两种产品有哪几种方案(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.解答:解:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品由题意得:解得:30W x w 32的整数.•••有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30 件,B,20 件时,20X 120+30X 80=4800 (元).方案(二)A,31 件,B,19 件时,19X 120+31X 80=4760(元).方案(三)A,32 件,B,18 件时,18X 120+32X 80=4720(元).故方案(一)A,30 件,B,20 件利润最大.点评:本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.23. (10分)(2015?恩施州)如图,AB是OO的直径,AB=6,过点O作OHL AB交圆于点H, 点C 是弧AH上异于A、B的动点,过点C作CD L OA CE L OH垂足分别为 D E,过点C的直线交OA 的延长线于点G,且/ GCD M CED(1)求证:GC是OO的切线;(2 )求DE的长;(3)过点C作CF L DE于点F,若/ CED=30,求CF的长.考点:圆的综合题.分析:(1)先证明四边形ODC區矩形,得出/ DCE=90 , DE=OC MC=M,得出 / CED#MDC=9° ,Z MDC W MCD 证出/ GCD乂MCD=9°,即可得出结论;(2)由(1)得:DE=OC=AB即可得出结果;(3)运用三角函数求出CE再由含30°角的直角三角形的性质即可得出结果.解答:(1)证明:连接OC交DE于M,如图所示:•/ OHL AB CD L OA CEL OH•# DOE#= OEC#= ODC=9°0•四边形ODCE是矩形,•# DCE=9°0 DE=OC MC=MD•# CED+# MDC=9°0 ,# MDC#= MCD,•••/ GCD# CED•# GCD#+ MCD=9°0即GC L OC•GC是OO的切线;( 2)解:由( 1)得:DE=OC=AB=;3(3)解:I / DCE=90 , / CED=30 ,•CE=DE?co#s CED=X3 =,••• CF=CE=点评:本题是圆的综合题目,考查了切线的判定、矩形的判定与性质、等腰三角形的判定与性质、三角函数、含30°角的直角三角形的性质等知识;本题有一定难度,综合性强,特别是(1)中,需要证明四边形是矩形,运用角的关系才能得出结论.24. (12分)(2015?恩施州)矩形AOCD绕顶点A( 0, 5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2 CM=4( 1 )求AD 的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S A PA=若存在,求出P点坐标;若不存在,请说明理由.考点:几何变换综合题.专题:综合题.分析:(1)作BP丄AD于P, BQLMC于Q 如图1,根据旋转的性质得AB=AO=5 BE=OC=AJD / ABE=90 ,利用等角的余角相等得/ ABP2 MBQ 可证明Rt△ ABP^Rt△ MBQ得到==, 设BQ=PD=x AP=y,则AD=x+y,所以BM=x+y- 2,利用比例性质得到PB?MQ=xy而PB -MQ=DQ MQ=DM=1利用完全平方公式和勾股定理得到52- y2- 2xy+(x+y - 2)- x2=1,解得x+y=7,则BM=5 BE=BM+ME=7所以AD=7;(2)由AB=BM可判断Rt△ ABP^Rt△ MBQ 贝U BQ=PD=-AP, MQ=AP 利用勾股定理得到(7-MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3则BQ=4根据三角形面积公式和梯形面积公式,利用S 阴影部分=S 梯形ABQD- S A BQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3, 1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2设P (x,2 2 2x - x+5),则K( x, - x+5),则KP=- x +x,根据三角形面积公式得到?(- x +x)?7=, 解得X1=3, X2=,于是得到此时P点坐标为(3, 1)、(,);再求出过点(3, 1)与(,)的直线I的解析式为y= -x+,则可得到直线l与y轴的交点A'的坐标为(0,),所以AA =,然后把直线AM向上平移个单位得到I ',直线l '与抛物线的交点即为P 点,由于A〃(0,),则直线l '的解析式为y= - x+,再通过解方程组得P点坐标.解答:解:(1)作BP丄AD于P, B(QLMC于Q 如图1,•••矩形AOCD绕顶点A (0, 5)逆时针方向旋转得到矩形ABEF• AB=AO=5 BE=OC=AP / ABE=90 ,•••/ PBQ=90 ,•••/ ABP2 MBQ• Rt △ ABP^ Rt △ MBQ・ ?设BQ=PD=x AP=y,则AD=x+y, BM=x+y- 2,• ==,• PB?MQ=xy•/ PB- MQ=DQ MQ=DM=1•(PB- MQ)2=1 ,即PB2- 2PB?MQ+M2=Q1 ,2 2 2 2•••5 - y - 2xy+ (x+y - 2)- x =1,解得x+y=7,/• BM=5•B E=BM+ME=5+2,=7•A D=7;(2)v AB=BM• Rt △ ABP^ Rt △ MBQ• BQ=PD=-7 AP,MQ=AP,•/ B S+M Q=B M,•••( 7 - MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3• BQ=7- 3=4,•S阴影部分=S 梯形ABQ- S^BQM=X(4+7)X 4-X 4X3=16;设直线AM的解析式为y=kx+b ,把A(0,5),M(7,4)代入得,解得,•直线AM的解析式为y= - x+5;2(3)设经过A、B D三点的抛物线的解析式为y=ax +bx+c,■/ AP=MQ=3 BP=DQ=4• B(3, 1 ),而A(0,5),D(7,5),•,解得,2•经过A、B、D三点的抛物线的解析式为y=x - x+5;(4)存在.当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2,2设P (x, x - x+5),贝U K (x, - x+5),2 2• KP=- x+5-(x - x+5)=- x +x,•「S △ PAI=,• ?(- x2+x)?7=,整理得7x2- 46x+75,解得X i=3, x?=,此时P点坐标为(3, 1)、(,),求出过点(3, 1)与(,)的直线I的解析式为y= - x+,则直线I与y轴的交点A 的坐标为(0 ,),• AA =5 -=,把直线AM向上平移个单位得到I ',贝U A〃(0,),贝U直线I '的解析式为y= - x+, 解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3, 1)、(,)、(,)、(,).点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.。

恩施州中考数学试卷真题

恩施州中考数学试卷真题

恩施州中考数学试卷真题根据您的要求,我将为您提供一份恩施州中考数学试卷真题的文章。

请注意,由于我无法获取真实的恩施州中考数学试题,所以以下内容仅为示例,仅供参考。

恩施州中考数学试卷真题一、选择题1. 若向一个正方体又粘一块正方形面,则改变后的立体的面数、顶点数和边数之和分别是多少?A. 7, 9, 12B. 6, 8, 12C. 7, 8, 12D. 6, 9, 12选择题的答案为:B2. 下列哪一个十进制小数等于九分之二的百分数?A. 0.20%B. 0.2%C. 2.0%D. 20.0%选择题的答案为:C二、填空题1. 某地每小时加工200台手机,则24小时内共能加工____台手机。

填空题的答案为:48002. 如图所示,已知∠C = 90°,∠A = 30°,用线段AB、BC和AC表示的三个三角形分别为正三角形、等腰直角三角形和等边三角形。

求∠CBA的度数。

填空题的答案为:60°三、解答题1. 已知一个长方体的底面为10 cm × 8 cm,高为6 cm。

现在把这个长方体沿高度方向切割成若干块,要求每块的底面积都相等,问每块的底面积是多少?解答:底面积为10 cm × 8 cm = 80 cm²由于要求每块的底面积相等,假设每块的底面积为S,则每块的高度为6 cm / S根据体积相等的条件,有10 cm × 8 cm × 6 cm = S × (6 cm / S)解得 S = 48 cm²所以每块的底面积为48 cm²。

2. 甲、乙两人分别从A、B两地同时出发,以相同的速度往对方的地方走。

甲到达B地时,乙走了12 km,甲再次出发,与乙相遇于C 地,然后再返回B地,到达B地时乙走了多少公里?解答:设甲和乙的速度为v,甲到达B地的时间为t,则甲到达C地时的时间为2t。

在甲到达B地的时间内,乙走了12 km,所以乙的速度为12 km / t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省恩施州2013年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。

)1.(3分)(2013•恩施州)的相反数是()解:﹣的相反数是2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()223)8.(3分)(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()S∴针头扎在阴影区域内的概率为,9.(3分)(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛x∴得到的抛物线的解析式为y=(x﹣1)2﹣3.10.(3分)(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()析:值,又知AB=DC,即可得出DF:FC的值.∴=,DB11.(3分)(2013•恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:额析: 资额可得来凤县固定资产投资额,再根据中位数定义可得2009年恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案. 解答: 解:A 、24÷12%=200(亿元),故此选项不合题意; B 、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C 、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),故此选项不合题意;D 、360°×=108°,故此选项符合题意;故选:D . 点评: 本题考查的是条形统计图和扇形统计图的综合运用,以及中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 12.(3分)(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( )A .B .C . π+1D . 考点: 扇形面积的计算;正方形的性质;旋转的性质. 分析: 画出示意图,结合图形及扇形的面积公式即可计算出点A 运动的路径线与x 轴围成的面积.解答:解:如图所示:点A 运动的路径线与x 轴围成的面积=S 1+S 2+S 3+2a=+++2×(×1×1)=π+1.故选C .点评: 本题考查了扇形的面积计算,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式. 二、填空题(本大题共有4小题,每小题3分,共12分。

不要求写出解答过程,请把答案直接填写在相应的位置上) 13.(3分)(2013•恩施州)25的平方根是 ±5 .考点:平方根.分析:如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.解答:解:∵(±5)2=25 ∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.14.(3分)(2013•恩施州)函数y=的自变量x的取值范围是x≤3且x≠﹣2 .考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(3分)(2013•恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.考点:相切两圆的性质;含30度角的直角三角形;切线的性质;弧长的计算.分析:首先求出扇形半径,进而利用扇形弧长公式求出扇形弧长,进而得出扇形周长.解答:解:如图所示:设⊙O与扇形相切于点A,B,则∠CAO=90°,∠AOB=30°,∵一半径为1的圆内切于一个圆心角为60°的扇形,∴AO=1,∴CO=2AO=2,∴BC=2=1=3,∴扇形的弧长为:=π,∴则扇形的周长为:3+3+π=6+π.故答案为:6+π.16.(3分)(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171 .三、解答题(本大题共有8个小题,共72分。

解答时应写出文字说明、证明过程或演算步骤)17.(8分)(2013•恩施州)先简化,再求值:,其中x=.析:÷×=,当x=﹣2时,原式=﹣=﹣.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.(8分)(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.考点:菱形的判定;梯形;中点四边形.专题:证明题.分析:连接AC、BD,根据等腰梯形的对角线相等可得AC=BD,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EF=GH=AC,HE=FG=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形判定即可.解答:证明:如图,连接AC、BD,∵AD∥BC,AB=CD,∴AC=BD,∵E、F、G、H分别为边AB、BC、CD、DA的中点,∴在△ABC中,EF=AC,在△ADC中,GH=AC,∴EF=GH=AC,同理可得,HE=FG=BD,∴EF=FG=GH=HE,∴四边形EFGH为菱形.点评:本题考查了菱形的判定,等腰梯形的对角线相等,三角形的中位线平行于第三边并且等于第三边的一半,作辅助线是利用三角形中位线定理的关键,也是本题的难点.19.(8分)(2013•恩施州)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.个.根据题意得:=在直线y=x下方的情况,再利用概率公式即可求得答案.根据题意得:=,3 (1,3)(2,3)(2,3)(3,3)(3,3)﹣3 (1,3)(2,3)(2,3)(3,3)﹣(3,3)3 (1,3)(2,3)(2,3)﹣(3,3)(3,3)2 (1,2)(2,2)﹣(3,2)(3,2)(3,2)2 (1,2)﹣(2,2)(3,2)(3,2)(3,2)1 ﹣(2,1)(2,1)(3,1)(3,1)(3,1)1 2 2 3 3 3∴点A(x,y)在直线y=x下方的概率为:.20.(8分)(2013•恩施州)如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.y=,根据等边三角,∴AD=3,CD=sin60°×AC=×6=3,y==n=21.(8分)(2013•恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).55+x==55(米)×110=55AD=AE+ED=55x∴DN=DF+NF=55++x=x+5522.(10分)(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?y解得:解得:29≤m≤3223.(10分)(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB 于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.AD=AD=AF=1DF=,:∴AG=224.(12分)(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.,()•m﹣×3×3﹣(S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,。

相关文档
最新文档